aboutsummaryrefslogtreecommitdiff
path: root/gdb/sparc-tdep.c
blob: 5bfd263b5b98b8195890dc93340b380bbe239902 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
/* Target-dependent code for the SPARC for GDB, the GNU debugger.
   Copyright 1986, 1987, 1989, 1991, 1992, 1993 Free Software Foundation, Inc.

This file is part of GDB.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.  */

#include "defs.h"
#include "frame.h"
#include "inferior.h"
#include "obstack.h"
#include "target.h"
#include "ieee-float.h"

#include "symfile.h" /* for objfiles.h */
#include "objfiles.h" /* for find_pc_section */

#ifdef	USE_PROC_FS
#include <sys/procfs.h>
#endif

#include "gdbcore.h"

/* From infrun.c */
extern int stop_after_trap;

/* We don't store all registers immediately when requested, since they
   get sent over in large chunks anyway.  Instead, we accumulate most
   of the changes and send them over once.  "deferred_stores" keeps
   track of which sets of registers we have locally-changed copies of,
   so we only need send the groups that have changed.  */

int deferred_stores = 0;	/* Cumulates stores we want to do eventually. */

typedef enum
{
  Error, not_branch, bicc, bicca, ba, baa, ticc, ta
} branch_type;

/* Simulate single-step ptrace call for sun4.  Code written by Gary
   Beihl (beihl@mcc.com).  */

/* npc4 and next_pc describe the situation at the time that the
   step-breakpoint was set, not necessary the current value of NPC_REGNUM.  */
static CORE_ADDR next_pc, npc4, target;
static int brknpc4, brktrg;
typedef char binsn_quantum[BREAKPOINT_MAX];
static binsn_quantum break_mem[3];

/* Non-zero if we just simulated a single-step ptrace call.  This is
   needed because we cannot remove the breakpoints in the inferior
   process until after the `wait' in `wait_for_inferior'.  Used for
   sun4. */

int one_stepped;

/* single_step() is called just before we want to resume the inferior,
   if we want to single-step it but there is no hardware or kernel single-step
   support (as on all SPARCs).  We find all the possible targets of the
   coming instruction and breakpoint them.

   single_step is also called just after the inferior stops.  If we had
   set up a simulated single-step, we undo our damage.  */

void
single_step (ignore)
     int ignore; /* pid, but we don't need it */
{
  branch_type br, isannulled();
  CORE_ADDR pc;
  long pc_instruction;

  if (!one_stepped)
    {
      /* Always set breakpoint for NPC.  */
      next_pc = read_register (NPC_REGNUM);
      npc4 = next_pc + 4; /* branch not taken */

      target_insert_breakpoint (next_pc, break_mem[0]);
      /* printf ("set break at %x\n",next_pc); */

      pc = read_register (PC_REGNUM);
      pc_instruction = read_memory_integer (pc, sizeof(pc_instruction));
      br = isannulled (pc_instruction, pc, &target);
      brknpc4 = brktrg = 0;

      if (br == bicca)
	{
	  /* Conditional annulled branch will either end up at
	     npc (if taken) or at npc+4 (if not taken).
	     Trap npc+4.  */
	  brknpc4 = 1;
	  target_insert_breakpoint (npc4, break_mem[1]);
	}
      else if (br == baa && target != next_pc)
	{
	  /* Unconditional annulled branch will always end up at
	     the target.  */
	  brktrg = 1;
	  target_insert_breakpoint (target, break_mem[2]);
	}

      /* We are ready to let it go */
      one_stepped = 1;
      return;
    }
  else
    {
      /* Remove breakpoints */
      target_remove_breakpoint (next_pc, break_mem[0]);

      if (brknpc4)
	target_remove_breakpoint (npc4, break_mem[1]);

      if (brktrg)
	target_remove_breakpoint (target, break_mem[2]);

      one_stepped = 0;
    }
}

#define	FRAME_SAVED_L0	0			    /* Byte offset from SP */
#define	FRAME_SAVED_I0	(8 * REGISTER_RAW_SIZE (0)) /* Byte offset from SP */

CORE_ADDR
sparc_frame_chain (thisframe)
     FRAME thisframe;
{
  REGISTER_TYPE retval;
  int err;
  CORE_ADDR addr;

  addr = thisframe->frame + FRAME_SAVED_I0 +
	 REGISTER_RAW_SIZE (FP_REGNUM) * (FP_REGNUM - I0_REGNUM);
  err = target_read_memory (addr, (char *) &retval, sizeof (REGISTER_TYPE));
  if (err)
    return 0;
  SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
  return retval;
}

CORE_ADDR
sparc_extract_struct_value_address (regbuf)
     char regbuf[REGISTER_BYTES];
{
  /* FIXME, handle byte swapping */
  return read_memory_integer (((int *)(regbuf))[SP_REGNUM]+(16*4), 
	       		      sizeof (CORE_ADDR));
}

/* Find the pc saved in frame FRAME.  */

CORE_ADDR
frame_saved_pc (frame)
     FRAME frame;
{
  REGISTER_TYPE retval;
  CORE_ADDR addr,prev_pc;

  if (get_current_frame () == frame)  /* FIXME, debug check. Remove >=gdb-4.6 */
    {
      if (read_register (SP_REGNUM) != frame->bottom) abort();
    }

  addr = (frame->bottom + FRAME_SAVED_I0 +
	  REGISTER_RAW_SIZE (I7_REGNUM) * (I7_REGNUM - I0_REGNUM));
  read_memory (addr, (char *) &retval, sizeof (REGISTER_TYPE));
  SWAP_TARGET_AND_HOST (&retval, sizeof (retval));

  /* CORE_ADDR isn't always the same size as REGISTER_TYPE, so convert.  */

  prev_pc = (CORE_ADDR) retval;
  return PC_ADJUST (prev_pc);
}

/*
 * Since an individual frame in the frame cache is defined by two
 * arguments (a frame pointer and a stack pointer), we need two
 * arguments to get info for an arbitrary stack frame.  This routine
 * takes two arguments and makes the cached frames look as if these
 * two arguments defined a frame on the cache.  This allows the rest
 * of info frame to extract the important arguments without
 * difficulty. 
 */
FRAME
setup_arbitrary_frame (argc, argv)
     int argc;
     FRAME_ADDR *argv;
{
  FRAME fid;

  if (argc != 2)
    error ("Sparc frame specifications require two arguments: fp and sp");

  fid = create_new_frame (argv[0], 0);

  if (!fid)
    fatal ("internal: create_new_frame returned invalid frame id");
  
  fid->bottom = argv[1];
  fid->pc = FRAME_SAVED_PC (fid);
  return fid;
}

/* Given a pc value, skip it forward past the function prologue by
   disassembling instructions that appear to be a prologue.

   If FRAMELESS_P is set, we are only testing to see if the function
   is frameless.  This allows a quicker answer.

   This routine should be more specific in its actions; making sure
   that it uses the same register in the initial prologue section.  */
CORE_ADDR 
skip_prologue (start_pc, frameless_p)
     CORE_ADDR start_pc;
     int frameless_p;
{
  union
    {
      unsigned long int code;
      struct
	{
	  unsigned int op:2;
	  unsigned int rd:5;
	  unsigned int op2:3;
	  unsigned int imm22:22;
	} sethi;
      struct
	{
	  unsigned int op:2;
	  unsigned int rd:5;
	  unsigned int op3:6;
	  unsigned int rs1:5;
	  unsigned int i:1;
	  unsigned int simm13:13;
	} add;
      int i;
    } x;
  int dest = -1;
  CORE_ADDR pc = start_pc;

  x.i = read_memory_integer (pc, 4);

  /* Recognize the `sethi' insn and record its destination.  */
  if (x.sethi.op == 0 && x.sethi.op2 == 4)
    {
      dest = x.sethi.rd;
      pc += 4;
      x.i = read_memory_integer (pc, 4);
    }

  /* Recognize an add immediate value to register to either %g1 or
     the destination register recorded above.  Actually, this might
     well recognize several different arithmetic operations.
     It doesn't check that rs1 == rd because in theory "sub %g0, 5, %g1"
     followed by "save %sp, %g1, %sp" is a valid prologue (Not that
     I imagine any compiler really does that, however).  */
  if (x.add.op == 2 && x.add.i && (x.add.rd == 1 || x.add.rd == dest))
    {
      pc += 4;
      x.i = read_memory_integer (pc, 4);
    }

  /* This recognizes any SAVE insn.  But why do the XOR and then
     the compare?  That's identical to comparing against 60 (as long
     as there isn't any sign extension).  */
  if (x.add.op == 2 && (x.add.op3 ^ 32) == 28)
    {
      pc += 4;
      if (frameless_p)			/* If the save is all we care about, */
	return pc;			/* return before doing more work */
      x.i = read_memory_integer (pc, 4);
    }
  else
    {
      /* Without a save instruction, it's not a prologue.  */
      return start_pc;
    }

  /* Now we need to recognize stores into the frame from the input
     registers.  This recognizes all non alternate stores of input
     register, into a location offset from the frame pointer.  */
  while (x.add.op == 3
	 && (x.add.op3 & 0x3c) == 4 /* Store, non-alternate.  */
	 && (x.add.rd & 0x18) == 0x18 /* Input register.  */
	 && x.add.i		/* Immediate mode.  */
	 && x.add.rs1 == 30	/* Off of frame pointer.  */
	 /* Into reserved stack space.  */
	 && x.add.simm13 >= 0x44
	 && x.add.simm13 < 0x5b)
    {
      pc += 4;
      x.i = read_memory_integer (pc, 4);
    }
  return pc;
}

/* Check instruction at ADDR to see if it is an annulled branch.
   All other instructions will go to NPC or will trap.
   Set *TARGET if we find a canidate branch; set to zero if not. */
   
branch_type
isannulled (instruction, addr, target)
     long instruction;
     CORE_ADDR addr, *target;
{
  branch_type val = not_branch;
  long int offset;		/* Must be signed for sign-extend.  */
  union
    {
      unsigned long int code;
      struct
	{
	  unsigned int op:2;
	  unsigned int a:1;
	  unsigned int cond:4;
	  unsigned int op2:3;
	  unsigned int disp22:22;
	} b;
    } insn;

  *target = 0;
  insn.code = instruction;

  if (insn.b.op == 0
      && (insn.b.op2 == 2 || insn.b.op2 == 6 || insn.b.op2 == 7))
    {
      if (insn.b.cond == 8)
	val = insn.b.a ? baa : ba;
      else
	val = insn.b.a ? bicca : bicc;
      offset = 4 * ((int) (insn.b.disp22 << 10) >> 10);
      *target = addr + offset;
    }

  return val;
}

/* sparc_frame_find_saved_regs ()

   Stores, into a struct frame_saved_regs,
   the addresses of the saved registers of frame described by FRAME_INFO.
   This includes special registers such as pc and fp saved in special
   ways in the stack frame.  sp is even more special:
   the address we return for it IS the sp for the next frame.

   Note that on register window machines, we are currently making the
   assumption that window registers are being saved somewhere in the
   frame in which they are being used.  If they are stored in an
   inferior frame, find_saved_register will break.

   On the Sun 4, the only time all registers are saved is when
   a dummy frame is involved.  Otherwise, the only saved registers
   are the LOCAL and IN registers which are saved as a result
   of the "save/restore" opcodes.  This condition is determined
   by address rather than by value.

   The "pc" is not stored in a frame on the SPARC.  (What is stored
   is a return address minus 8.)  sparc_pop_frame knows how to
   deal with that.  Other routines might or might not.

   See tm-sparc.h (PUSH_FRAME and friends) for CRITICAL information
   about how this works.  */

void
sparc_frame_find_saved_regs (fi, saved_regs_addr)
     struct frame_info *fi;
     struct frame_saved_regs *saved_regs_addr;
{
  register int regnum;
  FRAME_ADDR frame = read_register (FP_REGNUM);
  FRAME fid = FRAME_INFO_ID (fi);

  if (!fid)
    fatal ("Bad frame info struct in FRAME_FIND_SAVED_REGS");

  memset (saved_regs_addr, 0, sizeof (*saved_regs_addr));

  /* Old test.
  if (fi->pc >= frame - CALL_DUMMY_LENGTH - 0x140
      && fi->pc <= frame) */

  if (fi->pc >= (fi->bottom ? fi->bottom :
		   read_register (SP_REGNUM))
      && fi->pc <= FRAME_FP(fi))
    {
      /* Dummy frame.  All but the window regs are in there somewhere. */
      for (regnum = G1_REGNUM; regnum < G1_REGNUM+7; regnum++)
	saved_regs_addr->regs[regnum] =
	  frame + (regnum - G0_REGNUM) * 4 - 0xa0;
      for (regnum = I0_REGNUM; regnum < I0_REGNUM+8; regnum++)
	saved_regs_addr->regs[regnum] =
	  frame + (regnum - I0_REGNUM) * 4 - 0xc0;
      for (regnum = FP0_REGNUM; regnum < FP0_REGNUM + 32; regnum++)
	saved_regs_addr->regs[regnum] =
	  frame + (regnum - FP0_REGNUM) * 4 - 0x80;
      for (regnum = Y_REGNUM; regnum < NUM_REGS; regnum++)
	saved_regs_addr->regs[regnum] =
	  frame + (regnum - Y_REGNUM) * 4 - 0xe0;
      frame = fi->bottom ?
	fi->bottom : read_register (SP_REGNUM);
    }
  else
    {
      /* Normal frame.  Just Local and In registers */
      frame = fi->bottom ?
	fi->bottom : read_register (SP_REGNUM);
      for (regnum = L0_REGNUM; regnum < L0_REGNUM+16; regnum++)
	saved_regs_addr->regs[regnum] = frame + (regnum-L0_REGNUM) * 4;
    }
  if (fi->next)
    {
      /* Pull off either the next frame pointer or the stack pointer */
      FRAME_ADDR next_next_frame =
	(fi->next->bottom ?
	 fi->next->bottom :
	 read_register (SP_REGNUM));
      for (regnum = O0_REGNUM; regnum < O0_REGNUM+8; regnum++)
	saved_regs_addr->regs[regnum] = next_next_frame + regnum * 4;
    }
  /* Otherwise, whatever we would get from ptrace(GETREGS) is accurate */
  saved_regs_addr->regs[SP_REGNUM] = FRAME_FP (fi);
}

/* Push an empty stack frame, and record in it the current PC, regs, etc.

   We save the non-windowed registers and the ins.  The locals and outs
   are new; they don't need to be saved. The i's and l's of
   the last frame were already saved on the stack

   The return pointer register %i7 does not have the pc saved into it
   (return from this frame will be accomplished by a POP_FRAME).  In
   fact, we must leave it unclobbered, since we must preserve it in
   the calling routine except across call instructions.  I'm not sure
   the preceding sentence is true; isn't it based on confusing the %i7
   saved in the dummy frame versus the one saved in the frame of the
   calling routine?  */

/* Definitely see tm-sparc.h for more doc of the frame format here.  */

void
sparc_push_dummy_frame ()
{
  CORE_ADDR sp;
  char register_temp[REGISTER_BYTES];

  sp = read_register (SP_REGNUM);

  read_register_bytes (REGISTER_BYTE (FP0_REGNUM), register_temp,
		       REGISTER_RAW_SIZE (FP0_REGNUM) * 32);
  write_memory (sp - 0x80, register_temp, REGISTER_RAW_SIZE (FP0_REGNUM) * 32);

  read_register_bytes (REGISTER_BYTE (G0_REGNUM), register_temp,
		       REGISTER_RAW_SIZE (G0_REGNUM) * 8);
  write_memory (sp - 0xa0, register_temp, REGISTER_RAW_SIZE (G0_REGNUM) * 8);

  read_register_bytes (REGISTER_BYTE (O0_REGNUM), register_temp,
		       REGISTER_RAW_SIZE (O0_REGNUM) * 8);
  write_memory (sp - 0xc0, register_temp, REGISTER_RAW_SIZE (O0_REGNUM) * 8);

  /* Y, PS, WIM, TBR, PC, NPC, FPS, CPS regs */
  read_register_bytes (REGISTER_BYTE (Y_REGNUM), register_temp,
		       REGISTER_RAW_SIZE (Y_REGNUM) * 8);
  write_memory (sp - 0xe0, register_temp, REGISTER_RAW_SIZE (Y_REGNUM) * 8);

  {
    CORE_ADDR old_sp = sp;

    /* Now move the stack pointer (equivalent to the add part of a save
       instruction).  */
    sp -= 0x140;
    write_register (SP_REGNUM, sp);

    /* Now make sure that the frame pointer we save in the new frame points
       to the old frame (equivalent to the register window shift part of
       a save instruction).  Need to do this after the write to the sp, or
       else this might get written into the wrong set of saved ins&locals.  */
    write_register (FP_REGNUM, old_sp);
  }
}

/* Discard from the stack the innermost frame, restoring all saved registers.

   Note that the values stored in fsr by get_frame_saved_regs are *in
   the context of the called frame*.  What this means is that the i
   regs of fsr must be restored into the o regs of the (calling) frame that
   we pop into.  We don't care about the output regs of the calling frame,
   since unless it's a dummy frame, it won't have any output regs in it.

   We never have to bother with %l (local) regs, since the called routine's
   locals get tossed, and the calling routine's locals are already saved
   on its stack.  */

/* Definitely see tm-sparc.h for more doc of the frame format here.  */

void
sparc_pop_frame ()
{
  register FRAME frame = get_current_frame ();
  register CORE_ADDR pc;
  struct frame_saved_regs fsr;
  struct frame_info *fi;
  char raw_buffer[REGISTER_BYTES];

  fi = get_frame_info (frame);
  get_frame_saved_regs (fi, &fsr);
  if (fsr.regs[FP0_REGNUM])
    {
      read_memory (fsr.regs[FP0_REGNUM], raw_buffer, 32 * 4);
      write_register_bytes (REGISTER_BYTE (FP0_REGNUM), raw_buffer, 32 * 4);
    }
  if (fsr.regs[G1_REGNUM])
    {
      read_memory (fsr.regs[G1_REGNUM], raw_buffer, 7 * 4);
      write_register_bytes (REGISTER_BYTE (G1_REGNUM), raw_buffer, 7 * 4);
    }
  if (fsr.regs[I0_REGNUM])
    {
      CORE_ADDR sp;

      char reg_temp[REGISTER_BYTES];

      read_memory (fsr.regs[I0_REGNUM], raw_buffer, 8 * 4);

      /* Get the ins and locals which we are about to restore.  Just
	 moving the stack pointer is all that is really needed, except
	 store_inferior_registers is then going to write the ins and
	 locals from the registers array, so we need to muck with the
	 registers array.  */
      sp = fsr.regs[SP_REGNUM];
      read_memory (sp, reg_temp, REGISTER_RAW_SIZE (L0_REGNUM) * 16);

      /* Restore the out registers.
	 Among other things this writes the new stack pointer.  */
      write_register_bytes (REGISTER_BYTE (O0_REGNUM), raw_buffer,
			    REGISTER_RAW_SIZE (O0_REGNUM) * 8);

      write_register_bytes (REGISTER_BYTE (L0_REGNUM), reg_temp,
			    REGISTER_RAW_SIZE (L0_REGNUM) * 16);
    }
  if (fsr.regs[PS_REGNUM])
    write_register (PS_REGNUM, read_memory_integer (fsr.regs[PS_REGNUM], 4));
  if (fsr.regs[Y_REGNUM])
    write_register (Y_REGNUM, read_memory_integer (fsr.regs[Y_REGNUM], 4));
  if (fsr.regs[PC_REGNUM])
    {
      /* Explicitly specified PC (and maybe NPC) -- just restore them. */
      write_register (PC_REGNUM, read_memory_integer (fsr.regs[PC_REGNUM], 4));
      if (fsr.regs[NPC_REGNUM])
	write_register (NPC_REGNUM,
			read_memory_integer (fsr.regs[NPC_REGNUM], 4));
    }
  else if (fsr.regs[I7_REGNUM])
    {
      /* Return address in %i7 -- adjust it, then restore PC and NPC from it */
      pc = PC_ADJUST (read_memory_integer (fsr.regs[I7_REGNUM], 4));
      write_register (PC_REGNUM,  pc);
      write_register (NPC_REGNUM, pc + 4);
    }
  flush_cached_frames ();
  set_current_frame ( create_new_frame (read_register (FP_REGNUM),
					read_pc ()));
}

/* On the Sun 4 under SunOS, the compile will leave a fake insn which
   encodes the structure size being returned.  If we detect such
   a fake insn, step past it.  */

CORE_ADDR
sparc_pc_adjust(pc)
     CORE_ADDR pc;
{
  long insn;
  int err;

  err = target_read_memory (pc + 8, (char *)&insn, sizeof(long));
  SWAP_TARGET_AND_HOST (&insn, sizeof(long));
  if ((err == 0) && (insn & 0xfffffe00) == 0)
    return pc+12;
  else
    return pc+8;
}


/* Structure of SPARC extended floating point numbers.
   This information is not currently used by GDB, since no current SPARC
   implementations support extended float.  */

const struct ext_format ext_format_sparc = {
/* tot sbyte smask expbyte manbyte */
   16, 0,    0x80, 0,1,	   4,8,		/* sparc */
};

#ifdef USE_PROC_FS	/* Target dependent support for /proc */

/*  The /proc interface divides the target machine's register set up into
    two different sets, the general register set (gregset) and the floating
    point register set (fpregset).  For each set, there is an ioctl to get
    the current register set and another ioctl to set the current values.

    The actual structure passed through the ioctl interface is, of course,
    naturally machine dependent, and is different for each set of registers.
    For the sparc for example, the general register set is typically defined
    by:

	typedef int gregset_t[38];

	#define	R_G0	0
	...
	#define	R_TBR	37

    and the floating point set by:

	typedef struct prfpregset {
		union { 
			u_long  pr_regs[32]; 
			double  pr_dregs[16];
		} pr_fr;
		void *  pr_filler;
		u_long  pr_fsr;
		u_char  pr_qcnt;
		u_char  pr_q_entrysize;
		u_char  pr_en;
		u_long  pr_q[64];
	} prfpregset_t;

    These routines provide the packing and unpacking of gregset_t and
    fpregset_t formatted data.

 */


/*  Given a pointer to a general register set in /proc format (gregset_t *),
    unpack the register contents and supply them as gdb's idea of the current
    register values. */

void
supply_gregset (gregsetp)
prgregset_t *gregsetp;
{
  register int regi;
  register prgreg_t *regp = (prgreg_t *) gregsetp;

  /* GDB register numbers for Gn, On, Ln, In all match /proc reg numbers.  */
  for (regi = G0_REGNUM ; regi <= I7_REGNUM ; regi++)
    {
      supply_register (regi, (char *) (regp + regi));
    }

  /* These require a bit more care.  */
  supply_register (PS_REGNUM, (char *) (regp + R_PS));
  supply_register (PC_REGNUM, (char *) (regp + R_PC));
  supply_register (NPC_REGNUM,(char *) (regp + R_nPC));
  supply_register (Y_REGNUM,  (char *) (regp + R_Y));
}

void
fill_gregset (gregsetp, regno)
prgregset_t *gregsetp;
int regno;
{
  int regi;
  register prgreg_t *regp = (prgreg_t *) gregsetp;
  extern char registers[];

  for (regi = 0 ; regi <= R_I7 ; regi++)
    {
      if ((regno == -1) || (regno == regi))
	{
	  *(regp + regi) = *(int *) &registers[REGISTER_BYTE (regi)];
	}
    }
  if ((regno == -1) || (regno == PS_REGNUM))
    {
      *(regp + R_PS) = *(int *) &registers[REGISTER_BYTE (PS_REGNUM)];
    }
  if ((regno == -1) || (regno == PC_REGNUM))
    {
      *(regp + R_PC) = *(int *) &registers[REGISTER_BYTE (PC_REGNUM)];
    }
  if ((regno == -1) || (regno == NPC_REGNUM))
    {
      *(regp + R_nPC) = *(int *) &registers[REGISTER_BYTE (NPC_REGNUM)];
    }
  if ((regno == -1) || (regno == Y_REGNUM))
    {
      *(regp + R_Y) = *(int *) &registers[REGISTER_BYTE (Y_REGNUM)];
    }
}

#if defined (FP0_REGNUM)

/*  Given a pointer to a floating point register set in /proc format
    (fpregset_t *), unpack the register contents and supply them as gdb's
    idea of the current floating point register values. */

void 
supply_fpregset (fpregsetp)
prfpregset_t *fpregsetp;
{
  register int regi;
  char *from;
  
  for (regi = FP0_REGNUM ; regi < FP0_REGNUM+32 ; regi++)
    {
      from = (char *) &fpregsetp->pr_fr.pr_regs[regi-FP0_REGNUM];
      supply_register (regi, from);
    }
  supply_register (FPS_REGNUM, (char *) &(fpregsetp->pr_fsr));
}

/*  Given a pointer to a floating point register set in /proc format
    (fpregset_t *), update the register specified by REGNO from gdb's idea
    of the current floating point register set.  If REGNO is -1, update
    them all. */

void
fill_fpregset (fpregsetp, regno)
prfpregset_t *fpregsetp;
int regno;
{
  int regi;
  char *to;
  char *from;
  extern char registers[];

  for (regi = FP0_REGNUM ; regi < FP0_REGNUM+32 ; regi++)
    {
      if ((regno == -1) || (regno == regi))
	{
	  from = (char *) &registers[REGISTER_BYTE (regi)];
	  to = (char *) &fpregsetp->pr_fr.pr_regs[regi-FP0_REGNUM];
	  memcpy (to, from, REGISTER_RAW_SIZE (regi));
	}
    }
  if ((regno == -1) || (regno == FPS_REGNUM))
    {
      fpregsetp->pr_fsr = *(int *) &registers[REGISTER_BYTE (FPS_REGNUM)];
    }
}

#endif	/* defined (FP0_REGNUM) */

#endif  /* USE_PROC_FS */


#ifdef GET_LONGJMP_TARGET

/* Figure out where the longjmp will land.  We expect that we have just entered
   longjmp and haven't yet setup the stack frame, so the args are still in the
   output regs.  %o0 (O0_REGNUM) points at the jmp_buf structure from which we
   extract the pc (JB_PC) that we will land at.  The pc is copied into ADDR.
   This routine returns true on success */

int
get_longjmp_target(pc)
     CORE_ADDR *pc;
{
  CORE_ADDR jb_addr;

  jb_addr = read_register(O0_REGNUM);

  if (target_read_memory(jb_addr + JB_PC * JB_ELEMENT_SIZE, (char *) pc,
			 sizeof(CORE_ADDR)))
    return 0;

  SWAP_TARGET_AND_HOST(pc, sizeof(CORE_ADDR));

  return 1;
}
#endif /* GET_LONGJMP_TARGET */

/* So far used only for sparc solaris.  In sparc solaris, we recognize
   a trampoline by it's section name.  That is, if the pc is in a
   section named ".plt" then we are in a trampline.  */

int
in_solib_trampoline(pc, name)
     CORE_ADDR pc;
     char *name;
{
  struct obj_section *s;
  int retval = 0;
  
  s = find_pc_section(pc);
  
  retval = (s != NULL
	    && s->sec_ptr->name != NULL
	    && STREQ (s->sec_ptr->name, ".plt"));
  return(retval);
}