1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
|
/* Target-dependent code for OpenBSD/sparc.
Copyright (C) 2004-2022 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "frame.h"
#include "frame-unwind.h"
#include "gdbcore.h"
#include "osabi.h"
#include "regcache.h"
#include "symtab.h"
#include "trad-frame.h"
#include "inferior.h"
#include "obsd-tdep.h"
#include "sparc-tdep.h"
#include "solib-svr4.h"
#include "bsd-uthread.h"
#include "gdbarch.h"
/* Signal trampolines. */
/* The OpenBSD kernel maps the signal trampoline at some random
location in user space, which means that the traditional BSD way of
detecting it won't work.
The signal trampoline will be mapped at an address that is page
aligned. We recognize the signal trampoline by looking for the
sigreturn system call. */
static const int sparc32obsd_page_size = 4096;
static int
sparc32obsd_pc_in_sigtramp (CORE_ADDR pc, const char *name)
{
CORE_ADDR start_pc = (pc & ~(sparc32obsd_page_size - 1));
unsigned long insn;
if (name)
return 0;
/* Check for "restore %g0, SYS_sigreturn, %g1". */
insn = sparc_fetch_instruction (start_pc + 0xec);
if (insn != 0x83e82067)
return 0;
/* Check for "t ST_SYSCALL". */
insn = sparc_fetch_instruction (start_pc + 0xf4);
if (insn != 0x91d02000)
return 0;
return 1;
}
static struct sparc_frame_cache *
sparc32obsd_sigtramp_frame_cache (struct frame_info *this_frame,
void **this_cache)
{
struct sparc_frame_cache *cache;
CORE_ADDR addr;
if (*this_cache)
return (struct sparc_frame_cache *) *this_cache;
cache = sparc_frame_cache (this_frame, this_cache);
gdb_assert (cache == *this_cache);
/* If we couldn't find the frame's function, we're probably dealing
with an on-stack signal trampoline. */
if (cache->pc == 0)
{
cache->pc = get_frame_pc (this_frame);
cache->pc &= ~(sparc32obsd_page_size - 1);
/* Since we couldn't find the frame's function, the cache was
initialized under the assumption that we're frameless. */
sparc_record_save_insn (cache);
addr = get_frame_register_unsigned (this_frame, SPARC_FP_REGNUM);
cache->base = addr;
}
cache->saved_regs = sparc32nbsd_sigcontext_saved_regs (this_frame);
return cache;
}
static void
sparc32obsd_sigtramp_frame_this_id (struct frame_info *this_frame,
void **this_cache,
struct frame_id *this_id)
{
struct sparc_frame_cache *cache =
sparc32obsd_sigtramp_frame_cache (this_frame, this_cache);
(*this_id) = frame_id_build (cache->base, cache->pc);
}
static struct value *
sparc32obsd_sigtramp_frame_prev_register (struct frame_info *this_frame,
void **this_cache, int regnum)
{
struct sparc_frame_cache *cache =
sparc32obsd_sigtramp_frame_cache (this_frame, this_cache);
return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum);
}
static int
sparc32obsd_sigtramp_frame_sniffer (const struct frame_unwind *self,
struct frame_info *this_frame,
void **this_cache)
{
CORE_ADDR pc = get_frame_pc (this_frame);
const char *name;
find_pc_partial_function (pc, &name, NULL, NULL);
if (sparc32obsd_pc_in_sigtramp (pc, name))
return 1;
return 0;
}
static const struct frame_unwind sparc32obsd_sigtramp_frame_unwind =
{
"sparc32 openbsd sigtramp",
SIGTRAMP_FRAME,
default_frame_unwind_stop_reason,
sparc32obsd_sigtramp_frame_this_id,
sparc32obsd_sigtramp_frame_prev_register,
NULL,
sparc32obsd_sigtramp_frame_sniffer
};
/* Offset wthin the thread structure where we can find %fp and %i7. */
#define SPARC32OBSD_UTHREAD_FP_OFFSET 128
#define SPARC32OBSD_UTHREAD_PC_OFFSET 132
static void
sparc32obsd_supply_uthread (struct regcache *regcache,
int regnum, CORE_ADDR addr)
{
struct gdbarch *gdbarch = regcache->arch ();
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
CORE_ADDR fp, fp_addr = addr + SPARC32OBSD_UTHREAD_FP_OFFSET;
gdb_byte buf[4];
/* This function calls functions that depend on the global current thread. */
gdb_assert (regcache->ptid () == inferior_ptid);
gdb_assert (regnum >= -1);
fp = read_memory_unsigned_integer (fp_addr, 4, byte_order);
if (regnum == SPARC_SP_REGNUM || regnum == -1)
{
store_unsigned_integer (buf, 4, byte_order, fp);
regcache->raw_supply (SPARC_SP_REGNUM, buf);
if (regnum == SPARC_SP_REGNUM)
return;
}
if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM
|| regnum == -1)
{
CORE_ADDR i7, i7_addr = addr + SPARC32OBSD_UTHREAD_PC_OFFSET;
i7 = read_memory_unsigned_integer (i7_addr, 4, byte_order);
if (regnum == SPARC32_PC_REGNUM || regnum == -1)
{
store_unsigned_integer (buf, 4, byte_order, i7 + 8);
regcache->raw_supply (SPARC32_PC_REGNUM, buf);
}
if (regnum == SPARC32_NPC_REGNUM || regnum == -1)
{
store_unsigned_integer (buf, 4, byte_order, i7 + 12);
regcache->raw_supply (SPARC32_NPC_REGNUM, buf);
}
if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM)
return;
}
sparc_supply_rwindow (regcache, fp, regnum);
}
static void
sparc32obsd_collect_uthread(const struct regcache *regcache,
int regnum, CORE_ADDR addr)
{
struct gdbarch *gdbarch = regcache->arch ();
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
CORE_ADDR sp;
gdb_byte buf[4];
/* This function calls functions that depend on the global current thread. */
gdb_assert (regcache->ptid () == inferior_ptid);
gdb_assert (regnum >= -1);
if (regnum == SPARC_SP_REGNUM || regnum == -1)
{
CORE_ADDR fp_addr = addr + SPARC32OBSD_UTHREAD_FP_OFFSET;
regcache->raw_collect (SPARC_SP_REGNUM, buf);
write_memory (fp_addr,buf, 4);
}
if (regnum == SPARC32_PC_REGNUM || regnum == -1)
{
CORE_ADDR i7, i7_addr = addr + SPARC32OBSD_UTHREAD_PC_OFFSET;
regcache->raw_collect (SPARC32_PC_REGNUM, buf);
i7 = extract_unsigned_integer (buf, 4, byte_order) - 8;
write_memory_unsigned_integer (i7_addr, 4, byte_order, i7);
if (regnum == SPARC32_PC_REGNUM)
return;
}
regcache->raw_collect (SPARC_SP_REGNUM, buf);
sp = extract_unsigned_integer (buf, 4, byte_order);
sparc_collect_rwindow (regcache, sp, regnum);
}
static void
sparc32obsd_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
{
/* OpenBSD/sparc is very similar to NetBSD/sparc ELF. */
sparc32nbsd_init_abi (info, gdbarch);
set_gdbarch_skip_solib_resolver (gdbarch, obsd_skip_solib_resolver);
frame_unwind_append_unwinder (gdbarch, &sparc32obsd_sigtramp_frame_unwind);
/* OpenBSD provides a user-level threads implementation. */
bsd_uthread_set_supply_uthread (gdbarch, sparc32obsd_supply_uthread);
bsd_uthread_set_collect_uthread (gdbarch, sparc32obsd_collect_uthread);
}
void _initialize_sparc32obsd_tdep ();
void
_initialize_sparc32obsd_tdep ()
{
gdbarch_register_osabi (bfd_arch_sparc, 0, GDB_OSABI_OPENBSD,
sparc32obsd_init_abi);
}
|