aboutsummaryrefslogtreecommitdiff
path: root/gdb/rs6000-nat.c
blob: f16a9645b653022af48cbf047a3a80c60ab195cd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
/* IBM RS/6000 native-dependent code for GDB, the GNU debugger.

   Copyright (C) 1986-2013 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "inferior.h"
#include "target.h"
#include "gdbcore.h"
#include "xcoffsolib.h"
#include "symfile.h"
#include "objfiles.h"
#include "libbfd.h"		/* For bfd_default_set_arch_mach (FIXME) */
#include "bfd.h"
#include "exceptions.h"
#include "gdb-stabs.h"
#include "regcache.h"
#include "arch-utils.h"
#include "inf-child.h"
#include "inf-ptrace.h"
#include "ppc-tdep.h"
#include "rs6000-tdep.h"
#include "exec.h"
#include "observer.h"
#include "xcoffread.h"

#include <sys/ptrace.h>
#include <sys/reg.h>

#include <sys/param.h>
#include <sys/dir.h>
#include <sys/user.h>
#include <signal.h>
#include <sys/ioctl.h>
#include <fcntl.h>
#include <errno.h>

#include <a.out.h>
#include <sys/file.h>
#include "gdb_stat.h"
#include "gdb_bfd.h"
#include <sys/core.h>
#define __LDINFO_PTRACE32__	/* for __ld_info32 */
#define __LDINFO_PTRACE64__	/* for __ld_info64 */
#include <sys/ldr.h>
#include <sys/systemcfg.h>

/* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for
   debugging 32-bit and 64-bit processes.  Define a typedef and macros for
   accessing fields in the appropriate structures.  */

/* In 32-bit compilation mode (which is the only mode from which ptrace()
   works on 4.3), __ld_info32 is #defined as equivalent to ld_info.  */

#ifdef __ld_info32
# define ARCH3264
#endif

/* Return whether the current architecture is 64-bit.  */

#ifndef ARCH3264
# define ARCH64() 0
#else
# define ARCH64() (register_size (target_gdbarch (), 0) == 8)
#endif

/* Union of 32-bit and 64-bit versions of ld_info.  */

typedef union {
#ifndef ARCH3264
  struct ld_info l32;
  struct ld_info l64;
#else
  struct __ld_info32 l32;
  struct __ld_info64 l64;
#endif
} LdInfo;

/* If compiling with 32-bit and 64-bit debugging capability (e.g. AIX 4.x),
   declare and initialize a variable named VAR suitable for use as the arch64
   parameter to the various LDI_*() macros.  */

#ifndef ARCH3264
# define ARCH64_DECL(var)
#else
# define ARCH64_DECL(var) int var = ARCH64 ()
#endif

/* Return LDI's FIELD for a 64-bit process if ARCH64 and for a 32-bit process
   otherwise.  This technique only works for FIELDs with the same data type in
   32-bit and 64-bit versions of ld_info.  */

#ifndef ARCH3264
# define LDI_FIELD(ldi, arch64, field) (ldi)->l32.ldinfo_##field
#else
# define LDI_FIELD(ldi, arch64, field) \
  (arch64 ? (ldi)->l64.ldinfo_##field : (ldi)->l32.ldinfo_##field)
#endif

/* Return various LDI fields for a 64-bit process if ARCH64 and for a 32-bit
   process otherwise.  */

#define LDI_NEXT(ldi, arch64)		LDI_FIELD(ldi, arch64, next)
#define LDI_FD(ldi, arch64)		LDI_FIELD(ldi, arch64, fd)
#define LDI_FILENAME(ldi, arch64)	LDI_FIELD(ldi, arch64, filename)

extern struct vmap *map_vmap (bfd * bf, bfd * arch);

static void vmap_exec (void);

static void vmap_ldinfo (LdInfo *);

static struct vmap *add_vmap (LdInfo *);

static int objfile_symbol_add (void *);

static void vmap_symtab (struct vmap *);

static void exec_one_dummy_insn (struct regcache *);

/* Given REGNO, a gdb register number, return the corresponding
   number suitable for use as a ptrace() parameter.  Return -1 if
   there's no suitable mapping.  Also, set the int pointed to by
   ISFLOAT to indicate whether REGNO is a floating point register.  */

static int
regmap (struct gdbarch *gdbarch, int regno, int *isfloat)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  *isfloat = 0;
  if (tdep->ppc_gp0_regnum <= regno
      && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
    return regno;
  else if (tdep->ppc_fp0_regnum >= 0
           && tdep->ppc_fp0_regnum <= regno
           && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
    {
      *isfloat = 1;
      return regno - tdep->ppc_fp0_regnum + FPR0;
    }
  else if (regno == gdbarch_pc_regnum (gdbarch))
    return IAR;
  else if (regno == tdep->ppc_ps_regnum)
    return MSR;
  else if (regno == tdep->ppc_cr_regnum)
    return CR;
  else if (regno == tdep->ppc_lr_regnum)
    return LR;
  else if (regno == tdep->ppc_ctr_regnum)
    return CTR;
  else if (regno == tdep->ppc_xer_regnum)
    return XER;
  else if (tdep->ppc_fpscr_regnum >= 0
           && regno == tdep->ppc_fpscr_regnum)
    return FPSCR;
  else if (tdep->ppc_mq_regnum >= 0 && regno == tdep->ppc_mq_regnum)
    return MQ;
  else
    return -1;
}

/* Call ptrace(REQ, ID, ADDR, DATA, BUF).  */

static int
rs6000_ptrace32 (int req, int id, int *addr, int data, int *buf)
{
  int ret = ptrace (req, id, (int *)addr, data, buf);
#if 0
  printf ("rs6000_ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n",
	  req, id, (unsigned int)addr, data, (unsigned int)buf, ret);
#endif
  return ret;
}

/* Call ptracex(REQ, ID, ADDR, DATA, BUF).  */

static int
rs6000_ptrace64 (int req, int id, long long addr, int data, void *buf)
{
#ifdef ARCH3264
  int ret = ptracex (req, id, addr, data, buf);
#else
  int ret = 0;
#endif
#if 0
  printf ("rs6000_ptrace64 (%d, %d, %s, %08x, 0x%x) = 0x%x\n",
	  req, id, hex_string (addr), data, (unsigned int)buf, ret);
#endif
  return ret;
}

/* Fetch register REGNO from the inferior.  */

static void
fetch_register (struct regcache *regcache, int regno)
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  int addr[MAX_REGISTER_SIZE];
  int nr, isfloat;

  /* Retrieved values may be -1, so infer errors from errno.  */
  errno = 0;

  nr = regmap (gdbarch, regno, &isfloat);

  /* Floating-point registers.  */
  if (isfloat)
    rs6000_ptrace32 (PT_READ_FPR, PIDGET (inferior_ptid), addr, nr, 0);

  /* Bogus register number.  */
  else if (nr < 0)
    {
      if (regno >= gdbarch_num_regs (gdbarch))
	fprintf_unfiltered (gdb_stderr,
			    "gdb error: register no %d not implemented.\n",
			    regno);
      return;
    }

  /* Fixed-point registers.  */
  else
    {
      if (!ARCH64 ())
	*addr = rs6000_ptrace32 (PT_READ_GPR, PIDGET (inferior_ptid),
				 (int *) nr, 0, 0);
      else
	{
	  /* PT_READ_GPR requires the buffer parameter to point to long long,
	     even if the register is really only 32 bits.  */
	  long long buf;
	  rs6000_ptrace64 (PT_READ_GPR, PIDGET (inferior_ptid), nr, 0, &buf);
	  if (register_size (gdbarch, regno) == 8)
	    memcpy (addr, &buf, 8);
	  else
	    *addr = buf;
	}
    }

  if (!errno)
    regcache_raw_supply (regcache, regno, (char *) addr);
  else
    {
#if 0
      /* FIXME: this happens 3 times at the start of each 64-bit program.  */
      perror (_("ptrace read"));
#endif
      errno = 0;
    }
}

/* Store register REGNO back into the inferior.  */

static void
store_register (struct regcache *regcache, int regno)
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  int addr[MAX_REGISTER_SIZE];
  int nr, isfloat;

  /* Fetch the register's value from the register cache.  */
  regcache_raw_collect (regcache, regno, addr);

  /* -1 can be a successful return value, so infer errors from errno.  */
  errno = 0;

  nr = regmap (gdbarch, regno, &isfloat);

  /* Floating-point registers.  */
  if (isfloat)
    rs6000_ptrace32 (PT_WRITE_FPR, PIDGET (inferior_ptid), addr, nr, 0);

  /* Bogus register number.  */
  else if (nr < 0)
    {
      if (regno >= gdbarch_num_regs (gdbarch))
	fprintf_unfiltered (gdb_stderr,
			    "gdb error: register no %d not implemented.\n",
			    regno);
    }

  /* Fixed-point registers.  */
  else
    {
      if (regno == gdbarch_sp_regnum (gdbarch))
	/* Execute one dummy instruction (which is a breakpoint) in inferior
	   process to give kernel a chance to do internal housekeeping.
	   Otherwise the following ptrace(2) calls will mess up user stack
	   since kernel will get confused about the bottom of the stack
	   (%sp).  */
	exec_one_dummy_insn (regcache);

      /* The PT_WRITE_GPR operation is rather odd.  For 32-bit inferiors,
         the register's value is passed by value, but for 64-bit inferiors,
	 the address of a buffer containing the value is passed.  */
      if (!ARCH64 ())
	rs6000_ptrace32 (PT_WRITE_GPR, PIDGET (inferior_ptid),
			 (int *) nr, *addr, 0);
      else
	{
	  /* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte
	     area, even if the register is really only 32 bits.  */
	  long long buf;
	  if (register_size (gdbarch, regno) == 8)
	    memcpy (&buf, addr, 8);
	  else
	    buf = *addr;
	  rs6000_ptrace64 (PT_WRITE_GPR, PIDGET (inferior_ptid), nr, 0, &buf);
	}
    }

  if (errno)
    {
      perror (_("ptrace write"));
      errno = 0;
    }
}

/* Read from the inferior all registers if REGNO == -1 and just register
   REGNO otherwise.  */

static void
rs6000_fetch_inferior_registers (struct target_ops *ops,
				 struct regcache *regcache, int regno)
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  if (regno != -1)
    fetch_register (regcache, regno);

  else
    {
      struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

      /* Read 32 general purpose registers.  */
      for (regno = tdep->ppc_gp0_regnum;
           regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
	   regno++)
	{
	  fetch_register (regcache, regno);
	}

      /* Read general purpose floating point registers.  */
      if (tdep->ppc_fp0_regnum >= 0)
        for (regno = 0; regno < ppc_num_fprs; regno++)
          fetch_register (regcache, tdep->ppc_fp0_regnum + regno);

      /* Read special registers.  */
      fetch_register (regcache, gdbarch_pc_regnum (gdbarch));
      fetch_register (regcache, tdep->ppc_ps_regnum);
      fetch_register (regcache, tdep->ppc_cr_regnum);
      fetch_register (regcache, tdep->ppc_lr_regnum);
      fetch_register (regcache, tdep->ppc_ctr_regnum);
      fetch_register (regcache, tdep->ppc_xer_regnum);
      if (tdep->ppc_fpscr_regnum >= 0)
        fetch_register (regcache, tdep->ppc_fpscr_regnum);
      if (tdep->ppc_mq_regnum >= 0)
	fetch_register (regcache, tdep->ppc_mq_regnum);
    }
}

/* Store our register values back into the inferior.
   If REGNO is -1, do this for all registers.
   Otherwise, REGNO specifies which register (so we can save time).  */

static void
rs6000_store_inferior_registers (struct target_ops *ops,
				 struct regcache *regcache, int regno)
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  if (regno != -1)
    store_register (regcache, regno);

  else
    {
      struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

      /* Write general purpose registers first.  */
      for (regno = tdep->ppc_gp0_regnum;
           regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
	   regno++)
	{
	  store_register (regcache, regno);
	}

      /* Write floating point registers.  */
      if (tdep->ppc_fp0_regnum >= 0)
        for (regno = 0; regno < ppc_num_fprs; regno++)
          store_register (regcache, tdep->ppc_fp0_regnum + regno);

      /* Write special registers.  */
      store_register (regcache, gdbarch_pc_regnum (gdbarch));
      store_register (regcache, tdep->ppc_ps_regnum);
      store_register (regcache, tdep->ppc_cr_regnum);
      store_register (regcache, tdep->ppc_lr_regnum);
      store_register (regcache, tdep->ppc_ctr_regnum);
      store_register (regcache, tdep->ppc_xer_regnum);
      if (tdep->ppc_fpscr_regnum >= 0)
        store_register (regcache, tdep->ppc_fpscr_regnum);
      if (tdep->ppc_mq_regnum >= 0)
	store_register (regcache, tdep->ppc_mq_regnum);
    }
}


/* Attempt a transfer all LEN bytes starting at OFFSET between the
   inferior's OBJECT:ANNEX space and GDB's READBUF/WRITEBUF buffer.
   Return the number of bytes actually transferred.  */

static LONGEST
rs6000_xfer_partial (struct target_ops *ops, enum target_object object,
		     const char *annex, gdb_byte *readbuf,
		     const gdb_byte *writebuf,
		     ULONGEST offset, LONGEST len)
{
  pid_t pid = ptid_get_pid (inferior_ptid);
  int arch64 = ARCH64 ();

  switch (object)
    {
    case TARGET_OBJECT_MEMORY:
      {
	union
	{
	  PTRACE_TYPE_RET word;
	  gdb_byte byte[sizeof (PTRACE_TYPE_RET)];
	} buffer;
	ULONGEST rounded_offset;
	LONGEST partial_len;

	/* Round the start offset down to the next long word
	   boundary.  */
	rounded_offset = offset & -(ULONGEST) sizeof (PTRACE_TYPE_RET);

	/* Since ptrace will transfer a single word starting at that
	   rounded_offset the partial_len needs to be adjusted down to
	   that (remember this function only does a single transfer).
	   Should the required length be even less, adjust it down
	   again.  */
	partial_len = (rounded_offset + sizeof (PTRACE_TYPE_RET)) - offset;
	if (partial_len > len)
	  partial_len = len;

	if (writebuf)
	  {
	    /* If OFFSET:PARTIAL_LEN is smaller than
	       ROUNDED_OFFSET:WORDSIZE then a read/modify write will
	       be needed.  Read in the entire word.  */
	    if (rounded_offset < offset
		|| (offset + partial_len
		    < rounded_offset + sizeof (PTRACE_TYPE_RET)))
	      {
		/* Need part of initial word -- fetch it.  */
		if (arch64)
		  buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
						 rounded_offset, 0, NULL);
		else
		  buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
						 (int *) (uintptr_t)
						 rounded_offset,
						 0, NULL);
	      }

	    /* Copy data to be written over corresponding part of
	       buffer.  */
	    memcpy (buffer.byte + (offset - rounded_offset),
		    writebuf, partial_len);

	    errno = 0;
	    if (arch64)
	      rs6000_ptrace64 (PT_WRITE_D, pid,
			       rounded_offset, buffer.word, NULL);
	    else
	      rs6000_ptrace32 (PT_WRITE_D, pid,
			       (int *) (uintptr_t) rounded_offset,
			       buffer.word, NULL);
	    if (errno)
	      return 0;
	  }

	if (readbuf)
	  {
	    errno = 0;
	    if (arch64)
	      buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
					     rounded_offset, 0, NULL);
	    else
	      buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
					     (int *)(uintptr_t)rounded_offset,
					     0, NULL);
	    if (errno)
	      return 0;

	    /* Copy appropriate bytes out of the buffer.  */
	    memcpy (readbuf, buffer.byte + (offset - rounded_offset),
		    partial_len);
	  }

	return partial_len;
      }

    default:
      return -1;
    }
}

/* Wait for the child specified by PTID to do something.  Return the
   process ID of the child, or MINUS_ONE_PTID in case of error; store
   the status in *OURSTATUS.  */

static ptid_t
rs6000_wait (struct target_ops *ops,
	     ptid_t ptid, struct target_waitstatus *ourstatus, int options)
{
  pid_t pid;
  int status, save_errno;

  do
    {
      set_sigint_trap ();

      do
	{
	  pid = waitpid (ptid_get_pid (ptid), &status, 0);
	  save_errno = errno;
	}
      while (pid == -1 && errno == EINTR);

      clear_sigint_trap ();

      if (pid == -1)
	{
	  fprintf_unfiltered (gdb_stderr,
			      _("Child process unexpectedly missing: %s.\n"),
			      safe_strerror (save_errno));

	  /* Claim it exited with unknown signal.  */
	  ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
	  ourstatus->value.sig = GDB_SIGNAL_UNKNOWN;
	  return inferior_ptid;
	}

      /* Ignore terminated detached child processes.  */
      if (!WIFSTOPPED (status) && pid != ptid_get_pid (inferior_ptid))
	pid = -1;
    }
  while (pid == -1);

  /* AIX has a couple of strange returns from wait().  */

  /* stop after load" status.  */
  if (status == 0x57c)
    ourstatus->kind = TARGET_WAITKIND_LOADED;
  /* signal 0.  I have no idea why wait(2) returns with this status word.  */
  else if (status == 0x7f)
    ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
  /* A normal waitstatus.  Let the usual macros deal with it.  */
  else
    store_waitstatus (ourstatus, status);

  return pid_to_ptid (pid);
}

/* Execute one dummy breakpoint instruction.  This way we give the kernel
   a chance to do some housekeeping and update inferior's internal data,
   including u_area.  */

static void
exec_one_dummy_insn (struct regcache *regcache)
{
#define	DUMMY_INSN_ADDR	AIX_TEXT_SEGMENT_BASE+0x200

  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  int ret, status, pid;
  CORE_ADDR prev_pc;
  void *bp;

  /* We plant one dummy breakpoint into DUMMY_INSN_ADDR address.  We
     assume that this address will never be executed again by the real
     code.  */

  bp = deprecated_insert_raw_breakpoint (gdbarch, NULL, DUMMY_INSN_ADDR);

  /* You might think this could be done with a single ptrace call, and
     you'd be correct for just about every platform I've ever worked
     on.  However, rs6000-ibm-aix4.1.3 seems to have screwed this up --
     the inferior never hits the breakpoint (it's also worth noting
     powerpc-ibm-aix4.1.3 works correctly).  */
  prev_pc = regcache_read_pc (regcache);
  regcache_write_pc (regcache, DUMMY_INSN_ADDR);
  if (ARCH64 ())
    ret = rs6000_ptrace64 (PT_CONTINUE, PIDGET (inferior_ptid), 1, 0, NULL);
  else
    ret = rs6000_ptrace32 (PT_CONTINUE, PIDGET (inferior_ptid),
			   (int *) 1, 0, NULL);

  if (ret != 0)
    perror (_("pt_continue"));

  do
    {
      pid = waitpid (PIDGET (inferior_ptid), &status, 0);
    }
  while (pid != PIDGET (inferior_ptid));

  regcache_write_pc (regcache, prev_pc);
  deprecated_remove_raw_breakpoint (gdbarch, bp);
}


/* Copy information about text and data sections from LDI to VP for a 64-bit
   process if ARCH64 and for a 32-bit process otherwise.  */

static void
vmap_secs (struct vmap *vp, LdInfo *ldi, int arch64)
{
  if (arch64)
    {
      vp->tstart = (CORE_ADDR) ldi->l64.ldinfo_textorg;
      vp->tend = vp->tstart + ldi->l64.ldinfo_textsize;
      vp->dstart = (CORE_ADDR) ldi->l64.ldinfo_dataorg;
      vp->dend = vp->dstart + ldi->l64.ldinfo_datasize;
    }
  else
    {
      vp->tstart = (unsigned long) ldi->l32.ldinfo_textorg;
      vp->tend = vp->tstart + ldi->l32.ldinfo_textsize;
      vp->dstart = (unsigned long) ldi->l32.ldinfo_dataorg;
      vp->dend = vp->dstart + ldi->l32.ldinfo_datasize;
    }

  /* The run time loader maps the file header in addition to the text
     section and returns a pointer to the header in ldinfo_textorg.
     Adjust the text start address to point to the real start address
     of the text section.  */
  vp->tstart += vp->toffs;
}

/* If the .bss section's VMA is set to an address located before
   the end of the .data section, causing the two sections to overlap,
   return the overlap in bytes.  Otherwise, return zero.

   Motivation:

   The GNU linker sometimes sets the start address of the .bss session
   before the end of the .data section, making the 2 sections overlap.
   The loader appears to handle this situation gracefully, by simply
   loading the bss section right after the end of the .data section.

   This means that the .data and the .bss sections are sometimes
   no longer relocated by the same amount.  The problem is that
   the ldinfo data does not contain any information regarding
   the relocation of the .bss section, assuming that it would be
   identical to the information provided for the .data section
   (this is what would normally happen if the program was linked
   correctly).

   GDB therefore needs to detect those cases, and make the corresponding
   adjustment to the .bss section offset computed from the ldinfo data
   when necessary.  This function returns the adjustment amount  (or
   zero when no adjustment is needed).  */

static CORE_ADDR
bss_data_overlap (struct objfile *objfile)
{
  struct obj_section *osect;
  struct bfd_section *data = NULL;
  struct bfd_section *bss = NULL;

  /* First, find the .data and .bss sections.  */
  ALL_OBJFILE_OSECTIONS (objfile, osect)
    {
      if (strcmp (bfd_section_name (objfile->obfd,
				    osect->the_bfd_section),
		  ".data") == 0)
	data = osect->the_bfd_section;
      else if (strcmp (bfd_section_name (objfile->obfd,
					 osect->the_bfd_section),
		       ".bss") == 0)
	bss = osect->the_bfd_section;
    }

  /* If either section is not defined, there can be no overlap.  */
  if (data == NULL || bss == NULL)
    return 0;

  /* Assume the problem only occurs with linkers that place the .bss
     section after the .data section (the problem has only been
     observed when using the GNU linker, and the default linker
     script always places the .data and .bss sections in that order).  */
  if (bfd_section_vma (objfile->obfd, bss)
      < bfd_section_vma (objfile->obfd, data))
    return 0;

  if (bfd_section_vma (objfile->obfd, bss)
      < bfd_section_vma (objfile->obfd, data) + bfd_get_section_size (data))
    return ((bfd_section_vma (objfile->obfd, data)
	     + bfd_get_section_size (data))
	    - bfd_section_vma (objfile->obfd, bss));

  return 0;
}

/* Handle symbol translation on vmapping.  */

static void
vmap_symtab (struct vmap *vp)
{
  struct objfile *objfile;
  struct section_offsets *new_offsets;
  int i;

  objfile = vp->objfile;
  if (objfile == NULL)
    {
      /* OK, it's not an objfile we opened ourselves.
         Currently, that can only happen with the exec file, so
         relocate the symbols for the symfile.  */
      if (symfile_objfile == NULL)
	return;
      objfile = symfile_objfile;
    }
  else if (!vp->loaded)
    /* If symbols are not yet loaded, offsets are not yet valid.  */
    return;

  new_offsets =
    (struct section_offsets *)
    alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));

  for (i = 0; i < objfile->num_sections; ++i)
    new_offsets->offsets[i] = ANOFFSET (objfile->section_offsets, i);

  /* The symbols in the object file are linked to the VMA of the section,
     relocate them VMA relative.  */
  new_offsets->offsets[SECT_OFF_TEXT (objfile)] = vp->tstart - vp->tvma;
  new_offsets->offsets[SECT_OFF_DATA (objfile)] = vp->dstart - vp->dvma;
  new_offsets->offsets[SECT_OFF_BSS (objfile)] = vp->dstart - vp->dvma;

  /* Perform the same adjustment as the loader if the .data and
     .bss sections overlap.  */
  new_offsets->offsets[SECT_OFF_BSS (objfile)] += bss_data_overlap (objfile);

  objfile_relocate (objfile, new_offsets);
}

/* Add symbols for an objfile.  */

static int
objfile_symbol_add (void *arg)
{
  struct objfile *obj = (struct objfile *) arg;

  syms_from_objfile (obj, NULL, 0, 0, 0);
  new_symfile_objfile (obj, 0);
  return 1;
}

/* Add symbols for a vmap. Return zero upon error.  */

int
vmap_add_symbols (struct vmap *vp)
{
  if (catch_errors (objfile_symbol_add, vp->objfile,
		    "Error while reading shared library symbols:\n",
		    RETURN_MASK_ALL))
    {
      /* Note this is only done if symbol reading was successful.  */
      vp->loaded = 1;
      vmap_symtab (vp);
      return 1;
    }
  return 0;
}

/* Add a new vmap entry based on ldinfo() information.

   If ldi->ldinfo_fd is not valid (e.g. this struct ld_info is from a
   core file), the caller should set it to -1, and we will open the file.

   Return the vmap new entry.  */

static struct vmap *
add_vmap (LdInfo *ldi)
{
  bfd *abfd, *last;
  char *mem, *filename;
  struct objfile *obj;
  struct vmap *vp;
  int fd;
  ARCH64_DECL (arch64);

  /* This ldi structure was allocated using alloca() in 
     xcoff_relocate_symtab().  Now we need to have persistent object 
     and member names, so we should save them.  */

  filename = LDI_FILENAME (ldi, arch64);
  mem = filename + strlen (filename) + 1;
  mem = xstrdup (mem);

  fd = LDI_FD (ldi, arch64);
  abfd = gdb_bfd_open (filename, gnutarget, fd < 0 ? -1 : fd);
  if (!abfd)
    {
      warning (_("Could not open `%s' as an executable file: %s"),
	       filename, bfd_errmsg (bfd_get_error ()));
      return NULL;
    }

  /* Make sure we have an object file.  */

  if (bfd_check_format (abfd, bfd_object))
    vp = map_vmap (abfd, 0);

  else if (bfd_check_format (abfd, bfd_archive))
    {
      last = gdb_bfd_openr_next_archived_file (abfd, NULL);
      while (last != NULL)
	{
	  bfd *next;

	  if (strcmp (mem, last->filename) == 0)
	    break;

	  next = gdb_bfd_openr_next_archived_file (abfd, last);
	  gdb_bfd_unref (last);
	  last = next;
	}

      if (!last)
	{
	  warning (_("\"%s\": member \"%s\" missing."), filename, mem);
	  gdb_bfd_unref (abfd);
	  return NULL;
	}

      if (!bfd_check_format (last, bfd_object))
	{
	  warning (_("\"%s\": member \"%s\" not in executable format: %s."),
		   filename, mem, bfd_errmsg (bfd_get_error ()));
	  gdb_bfd_unref (last);
	  gdb_bfd_unref (abfd);
	  return NULL;
	}

      vp = map_vmap (last, abfd);
      /* map_vmap acquired a reference to LAST, so we can release
	 ours.  */
      gdb_bfd_unref (last);
    }
  else
    {
      warning (_("\"%s\": not in executable format: %s."),
	       filename, bfd_errmsg (bfd_get_error ()));
      gdb_bfd_unref (abfd);
      return NULL;
    }
  obj = allocate_objfile (vp->bfd, 0);
  vp->objfile = obj;

  /* Always add symbols for the main objfile.  */
  if (vp == vmap || auto_solib_add)
    vmap_add_symbols (vp);

  /* Anything needing a reference to ABFD has already acquired it, so
     release our local reference.  */
  gdb_bfd_unref (abfd);

  return vp;
}

/* update VMAP info with ldinfo() information
   Input is ptr to ldinfo() results.  */

static void
vmap_ldinfo (LdInfo *ldi)
{
  struct stat ii, vi;
  struct vmap *vp;
  int got_one, retried;
  int got_exec_file = 0;
  uint next;
  int arch64 = ARCH64 ();

  /* For each *ldi, see if we have a corresponding *vp.
     If so, update the mapping, and symbol table.
     If not, add an entry and symbol table.  */

  do
    {
      char *name = LDI_FILENAME (ldi, arch64);
      char *memb = name + strlen (name) + 1;
      int fd = LDI_FD (ldi, arch64);

      retried = 0;

      if (fstat (fd, &ii) < 0)
	{
	  /* The kernel sets ld_info to -1, if the process is still using the
	     object, and the object is removed.  Keep the symbol info for the
	     removed object and issue a warning.  */
	  warning (_("%s (fd=%d) has disappeared, keeping its symbols"),
		   name, fd);
	  continue;
	}
    retry:
      for (got_one = 0, vp = vmap; vp; vp = vp->nxt)
	{
	  struct objfile *objfile;

	  /* First try to find a `vp', which is the same as in ldinfo.
	     If not the same, just continue and grep the next `vp'.  If same,
	     relocate its tstart, tend, dstart, dend values.  If no such `vp'
	     found, get out of this for loop, add this ldi entry as a new vmap
	     (add_vmap) and come back, find its `vp' and so on...  */

	  /* The filenames are not always sufficient to match on.  */

	  if ((name[0] == '/' && strcmp (name, vp->name) != 0)
	      || (memb[0] && strcmp (memb, vp->member) != 0))
	    continue;

	  /* See if we are referring to the same file.
	     We have to check objfile->obfd, symfile.c:reread_symbols might
	     have updated the obfd after a change.  */
	  objfile = vp->objfile == NULL ? symfile_objfile : vp->objfile;
	  if (objfile == NULL
	      || objfile->obfd == NULL
	      || bfd_stat (objfile->obfd, &vi) < 0)
	    {
	      warning (_("Unable to stat %s, keeping its symbols"), name);
	      continue;
	    }

	  if (ii.st_dev != vi.st_dev || ii.st_ino != vi.st_ino)
	    continue;

	  if (!retried)
	    close (fd);

	  ++got_one;

	  /* Found a corresponding VMAP.  Remap!  */

	  vmap_secs (vp, ldi, arch64);

	  /* The objfile is only NULL for the exec file.  */
	  if (vp->objfile == NULL)
	    got_exec_file = 1;

	  /* relocate symbol table(s).  */
	  vmap_symtab (vp);

	  /* Announce new object files.  Doing this after symbol relocation
	     makes aix-thread.c's job easier.  */
	  if (vp->objfile)
	    observer_notify_new_objfile (vp->objfile);

	  /* There may be more, so we don't break out of the loop.  */
	}

      /* If there was no matching *vp, we must perforce create the
	 sucker(s). */
      if (!got_one && !retried)
	{
	  add_vmap (ldi);
	  ++retried;
	  goto retry;
	}
    }
  while ((next = LDI_NEXT (ldi, arch64))
	 && (ldi = (void *) (next + (char *) ldi)));

  /* If we don't find the symfile_objfile anywhere in the ldinfo, it
     is unlikely that the symbol file is relocated to the proper
     address.  And we might have attached to a process which is
     running a different copy of the same executable.  */
  if (symfile_objfile != NULL && !got_exec_file)
    {
      warning (_("Symbol file %s\nis not mapped; discarding it.\n\
If in fact that file has symbols which the mapped files listed by\n\
\"info files\" lack, you can load symbols with the \"symbol-file\" or\n\
\"add-symbol-file\" commands (note that you must take care of relocating\n\
symbols to the proper address)."),
	       symfile_objfile->name);
      free_objfile (symfile_objfile);
      gdb_assert (symfile_objfile == NULL);
    }
  breakpoint_re_set ();
}

/* As well as symbol tables, exec_sections need relocation.  After
   the inferior process' termination, there will be a relocated symbol
   table exist with no corresponding inferior process.  At that time, we
   need to use `exec' bfd, rather than the inferior process's memory space
   to look up symbols.

   `exec_sections' need to be relocated only once, as long as the exec
   file remains unchanged.  */

static void
vmap_exec (void)
{
  static bfd *execbfd;
  int i;
  struct target_section_table *table = target_get_section_table (&exec_ops);

  if (execbfd == exec_bfd)
    return;

  execbfd = exec_bfd;

  if (!vmap || !table->sections)
    error (_("vmap_exec: vmap or table->sections == 0."));

  for (i = 0; &table->sections[i] < table->sections_end; i++)
    {
      if (strcmp (".text", table->sections[i].the_bfd_section->name) == 0)
	{
	  table->sections[i].addr += vmap->tstart - vmap->tvma;
	  table->sections[i].endaddr += vmap->tstart - vmap->tvma;
	}
      else if (strcmp (".data", table->sections[i].the_bfd_section->name) == 0)
	{
	  table->sections[i].addr += vmap->dstart - vmap->dvma;
	  table->sections[i].endaddr += vmap->dstart - vmap->dvma;
	}
      else if (strcmp (".bss", table->sections[i].the_bfd_section->name) == 0)
	{
	  table->sections[i].addr += vmap->dstart - vmap->dvma;
	  table->sections[i].endaddr += vmap->dstart - vmap->dvma;
	}
    }
}

/* Set the current architecture from the host running GDB.  Called when
   starting a child process.  */

static void (*super_create_inferior) (struct target_ops *,char *exec_file, 
				      char *allargs, char **env, int from_tty);
static void
rs6000_create_inferior (struct target_ops * ops, char *exec_file,
			char *allargs, char **env, int from_tty)
{
  enum bfd_architecture arch;
  unsigned long mach;
  bfd abfd;
  struct gdbarch_info info;

  super_create_inferior (ops, exec_file, allargs, env, from_tty);

  if (__power_rs ())
    {
      arch = bfd_arch_rs6000;
      mach = bfd_mach_rs6k;
    }
  else
    {
      arch = bfd_arch_powerpc;
      mach = bfd_mach_ppc;
    }

  /* FIXME: schauer/2002-02-25:
     We don't know if we are executing a 32 or 64 bit executable,
     and have no way to pass the proper word size to rs6000_gdbarch_init.
     So we have to avoid switching to a new architecture, if the architecture
     matches already.
     Blindly calling rs6000_gdbarch_init used to work in older versions of
     GDB, as rs6000_gdbarch_init incorrectly used the previous tdep to
     determine the wordsize.  */
  if (exec_bfd)
    {
      const struct bfd_arch_info *exec_bfd_arch_info;

      exec_bfd_arch_info = bfd_get_arch_info (exec_bfd);
      if (arch == exec_bfd_arch_info->arch)
	return;
    }

  bfd_default_set_arch_mach (&abfd, arch, mach);

  gdbarch_info_init (&info);
  info.bfd_arch_info = bfd_get_arch_info (&abfd);
  info.abfd = exec_bfd;

  if (!gdbarch_update_p (info))
    internal_error (__FILE__, __LINE__,
		    _("rs6000_create_inferior: failed "
		      "to select architecture"));
}


/* xcoff_relocate_symtab -      hook for symbol table relocation.
   
   This is only applicable to live processes, and is a no-op when
   debugging a core file.  */

void
xcoff_relocate_symtab (unsigned int pid)
{
  int load_segs = 64; /* number of load segments */
  int rc;
  LdInfo *ldi = NULL;
  int arch64 = ARCH64 ();
  int ldisize = arch64 ? sizeof (ldi->l64) : sizeof (ldi->l32);
  int size;

  /* Nothing to do if we are debugging a core file.  */
  if (!target_has_execution)
    return;

  do
    {
      size = load_segs * ldisize;
      ldi = (void *) xrealloc (ldi, size);

#if 0
      /* According to my humble theory, AIX has some timing problems and
         when the user stack grows, kernel doesn't update stack info in time
         and ptrace calls step on user stack.  That is why we sleep here a
         little, and give kernel to update its internals.  */
      usleep (36000);
#endif

      if (arch64)
	rc = rs6000_ptrace64 (PT_LDINFO, pid, (unsigned long) ldi, size, NULL);
      else
	rc = rs6000_ptrace32 (PT_LDINFO, pid, (int *) ldi, size, NULL);

      if (rc == -1)
        {
          if (errno == ENOMEM)
            load_segs *= 2;
          else
            perror_with_name (_("ptrace ldinfo"));
        }
      else
	{
          vmap_ldinfo (ldi);
          vmap_exec (); /* relocate the exec and core sections as well.  */
	}
    } while (rc == -1);
  if (ldi)
    xfree (ldi);
}

/* Core file stuff.  */

/* Relocate symtabs and read in shared library info, based on symbols
   from the core file.  */

void
xcoff_relocate_core (struct target_ops *target)
{
  struct bfd_section *ldinfo_sec;
  int offset = 0;
  LdInfo *ldi;
  struct vmap *vp;
  int arch64 = ARCH64 ();

  /* Size of a struct ld_info except for the variable-length filename.  */
  int nonfilesz = (int)LDI_FILENAME ((LdInfo *)0, arch64);

  /* Allocated size of buffer.  */
  int buffer_size = nonfilesz;
  char *buffer = xmalloc (buffer_size);
  struct cleanup *old = make_cleanup (free_current_contents, &buffer);

  ldinfo_sec = bfd_get_section_by_name (core_bfd, ".ldinfo");
  if (ldinfo_sec == NULL)
    {
    bfd_err:
      fprintf_filtered (gdb_stderr, "Couldn't get ldinfo from core file: %s\n",
			bfd_errmsg (bfd_get_error ()));
      do_cleanups (old);
      return;
    }
  do
    {
      int i;
      int names_found = 0;

      /* Read in everything but the name.  */
      if (bfd_get_section_contents (core_bfd, ldinfo_sec, buffer,
				    offset, nonfilesz) == 0)
	goto bfd_err;

      /* Now the name.  */
      i = nonfilesz;
      do
	{
	  if (i == buffer_size)
	    {
	      buffer_size *= 2;
	      buffer = xrealloc (buffer, buffer_size);
	    }
	  if (bfd_get_section_contents (core_bfd, ldinfo_sec, &buffer[i],
					offset + i, 1) == 0)
	    goto bfd_err;
	  if (buffer[i++] == '\0')
	    ++names_found;
	}
      while (names_found < 2);

      ldi = (LdInfo *) buffer;

      /* Can't use a file descriptor from the core file; need to open it.  */
      if (arch64)
	ldi->l64.ldinfo_fd = -1;
      else
	ldi->l32.ldinfo_fd = -1;

      /* The first ldinfo is for the exec file, allocated elsewhere.  */
      if (offset == 0 && vmap != NULL)
	vp = vmap;
      else
	vp = add_vmap (ldi);

      /* Process next shared library upon error.  */
      offset += LDI_NEXT (ldi, arch64);
      if (vp == NULL)
	continue;

      vmap_secs (vp, ldi, arch64);

      /* Unless this is the exec file,
         add our sections to the section table for the core target.  */
      if (vp != vmap)
	{
	  struct target_section *stp;

	  stp = deprecated_core_resize_section_table (2);

	  stp->bfd = vp->bfd;
	  stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".text");
	  stp->addr = vp->tstart;
	  stp->endaddr = vp->tend;
	  stp++;

	  stp->bfd = vp->bfd;
	  stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".data");
	  stp->addr = vp->dstart;
	  stp->endaddr = vp->dend;
	}

      vmap_symtab (vp);

      if (vp != vmap && vp->objfile)
	observer_notify_new_objfile (vp->objfile);
    }
  while (LDI_NEXT (ldi, arch64) != 0);
  vmap_exec ();
  breakpoint_re_set ();
  do_cleanups (old);
}

/* Under AIX, we have to pass the correct TOC pointer to a function
   when calling functions in the inferior.
   We try to find the relative toc offset of the objfile containing PC
   and add the current load address of the data segment from the vmap.  */

static CORE_ADDR
find_toc_address (CORE_ADDR pc)
{
  struct vmap *vp;

  for (vp = vmap; vp; vp = vp->nxt)
    {
      if (pc >= vp->tstart && pc < vp->tend)
	{
	  /* vp->objfile is only NULL for the exec file.  */
	  return vp->dstart + xcoff_get_toc_offset (vp->objfile == NULL
						    ? symfile_objfile
						    : vp->objfile);
	}
    }
  error (_("Unable to find TOC entry for pc %s."), hex_string (pc));
}


void _initialize_rs6000_nat (void);

void
_initialize_rs6000_nat (void)
{
  struct target_ops *t;

  t = inf_ptrace_target ();
  t->to_fetch_registers = rs6000_fetch_inferior_registers;
  t->to_store_registers = rs6000_store_inferior_registers;
  t->to_xfer_partial = rs6000_xfer_partial;

  super_create_inferior = t->to_create_inferior;
  t->to_create_inferior = rs6000_create_inferior;

  t->to_wait = rs6000_wait;

  add_target (t);

  /* Initialize hook in rs6000-tdep.c for determining the TOC address
     when calling functions in the inferior.  */
  rs6000_find_toc_address_hook = find_toc_address;
}