aboutsummaryrefslogtreecommitdiff
path: root/gdb/rs6000-aix-nat.c
blob: 771fef407a74342c6727f6e4c84b9cef6f755990 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
/* IBM RS/6000 native-dependent code for GDB, the GNU debugger.

   Copyright (C) 1986-2023 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "inferior.h"
#include "target.h"
#include "gdbcore.h"
#include "symfile.h"
#include "objfiles.h"
#include "bfd.h"
#include "gdb-stabs.h"
#include "regcache.h"
#include "arch-utils.h"
#include "inf-child.h"
#include "inf-ptrace.h"
#include "ppc-tdep.h"
#include "rs6000-aix-tdep.h"
#include "exec.h"
#include "observable.h"
#include "xcoffread.h"

#include <sys/ptrace.h>
#include <sys/reg.h>

#include <sys/dir.h>
#include <sys/user.h>
#include <signal.h>
#include <sys/ioctl.h>
#include <fcntl.h>

#include <a.out.h>
#include <sys/file.h>
#include <sys/stat.h>
#include "gdb_bfd.h"
#include <sys/core.h>
#define __LDINFO_PTRACE32__	/* for __ld_info32 */
#define __LDINFO_PTRACE64__	/* for __ld_info64 */
#include <sys/ldr.h>
#include <sys/systemcfg.h>

/* Header files for getting ppid in AIX of a child process.  */
#include <procinfo.h>
#include <sys/types.h>

/* Header files for alti-vec reg.  */
#include <sys/context.h>

/* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for
   debugging 32-bit and 64-bit processes.  Define a typedef and macros for
   accessing fields in the appropriate structures.  */

/* In 32-bit compilation mode (which is the only mode from which ptrace()
   works on 4.3), __ld_info32 is #defined as equivalent to ld_info.  */

#if defined (__ld_info32) || defined (__ld_info64)
# define ARCH3264
#endif

/* Return whether the current architecture is 64-bit.  */

#ifndef ARCH3264
# define ARCH64() 0
#else
# define ARCH64() (register_size (current_inferior ()->arch (), 0) == 8)
#endif

class rs6000_nat_target final : public inf_ptrace_target
{
public:
  void fetch_registers (struct regcache *, int) override;
  void store_registers (struct regcache *, int) override;

  enum target_xfer_status xfer_partial (enum target_object object,
					const char *annex,
					gdb_byte *readbuf,
					const gdb_byte *writebuf,
					ULONGEST offset, ULONGEST len,
					ULONGEST *xfered_len) override;

  void create_inferior (const char *, const std::string &,
			char **, int) override;

  ptid_t wait (ptid_t, struct target_waitstatus *, target_wait_flags) override;

  /* Fork detection related functions, For adding multi process debugging
     support.  */
  void follow_fork (inferior *, ptid_t, target_waitkind, bool, bool) override;

  const struct target_desc *read_description ()  override;

protected:

  void post_startup_inferior (ptid_t ptid) override;

private:
  enum target_xfer_status
    xfer_shared_libraries (enum target_object object,
			   const char *annex, gdb_byte *readbuf,
			   const gdb_byte *writebuf,
			   ULONGEST offset, ULONGEST len,
			   ULONGEST *xfered_len);
};

static rs6000_nat_target the_rs6000_nat_target;

/* The below declaration is to track number of times, parent has
   reported fork event before its children.  */

static std::list<pid_t> aix_pending_parent;

/* The below declaration is for a child process event that
   is reported before its corresponding parent process in
   the event of a fork ().  */

static std::list<pid_t> aix_pending_children;

static void
aix_remember_child (pid_t pid)
{
  aix_pending_children.push_front (pid);
}

static void
aix_remember_parent (pid_t pid)
{
  aix_pending_parent.push_front (pid);
}

/* This function returns a parent of a child process.  */

static pid_t
find_my_aix_parent (pid_t child_pid)
{
  struct procsinfo ProcessBuffer1;

  if (getprocs (&ProcessBuffer1, sizeof (ProcessBuffer1),
		NULL, 0, &child_pid, 1) != 1)
    return 0;
  else
    return ProcessBuffer1.pi_ppid;
}

/* In the below function we check if there was any child
   process pending.  If it exists we return it from the
   list, otherwise we return a null.  */

static pid_t
has_my_aix_child_reported (pid_t parent_pid)
{
  pid_t child = 0;
  auto it = std::find_if (aix_pending_children.begin (),
			  aix_pending_children.end (),
			  [=] (pid_t child_pid)
			  {
			    return find_my_aix_parent (child_pid) == parent_pid;
			  });
  if (it != aix_pending_children.end ())
    {
      child = *it;
      aix_pending_children.erase (it);
    }
  return child;
}

/* In the below function we check if there was any parent
   process pending.  If it exists we return it from the
   list, otherwise we return a null.  */

static pid_t
has_my_aix_parent_reported (pid_t child_pid)
{
  pid_t my_parent = find_my_aix_parent (child_pid);
  auto it = std::find (aix_pending_parent.begin (),
		       aix_pending_parent.end (),
		       my_parent);
  if (it != aix_pending_parent.end ())
    {
      aix_pending_parent.erase (it);
      return my_parent;
    }
  return 0;
}

/* Given REGNO, a gdb register number, return the corresponding
   number suitable for use as a ptrace() parameter.  Return -1 if
   there's no suitable mapping.  Also, set the int pointed to by
   ISFLOAT to indicate whether REGNO is a floating point register.  */

static int
regmap (struct gdbarch *gdbarch, int regno, int *isfloat)
{
  ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);

  *isfloat = 0;
  if (tdep->ppc_gp0_regnum <= regno
      && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
    return regno;
  else if (tdep->ppc_fp0_regnum >= 0
	   && tdep->ppc_fp0_regnum <= regno
	   && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
    {
      *isfloat = 1;
      return regno - tdep->ppc_fp0_regnum + FPR0;
    }
  else if (regno == gdbarch_pc_regnum (gdbarch))
    return IAR;
  else if (regno == tdep->ppc_ps_regnum)
    return MSR;
  else if (regno == tdep->ppc_cr_regnum)
    return CR;
  else if (regno == tdep->ppc_lr_regnum)
    return LR;
  else if (regno == tdep->ppc_ctr_regnum)
    return CTR;
  else if (regno == tdep->ppc_xer_regnum)
    return XER;
  else if (tdep->ppc_fpscr_regnum >= 0
	   && regno == tdep->ppc_fpscr_regnum)
    return FPSCR;
  else if (tdep->ppc_mq_regnum >= 0 && regno == tdep->ppc_mq_regnum)
    return MQ;
  else
    return -1;
}

/* Call ptrace(REQ, ID, ADDR, DATA, BUF).  */

static int
rs6000_ptrace32 (int req, int id, int *addr, int data, int *buf)
{
#ifdef HAVE_PTRACE64
  int ret = ptrace64 (req, id, (uintptr_t) addr, data, buf);
#else
  int ret = ptrace (req, id, (int *)addr, data, buf);
#endif
#if 0
  printf ("rs6000_ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n",
	  req, id, (unsigned int)addr, data, (unsigned int)buf, ret);
#endif
  return ret;
}

/* Call ptracex(REQ, ID, ADDR, DATA, BUF).  */

static int
rs6000_ptrace64 (int req, int id, long long addr, int data, void *buf)
{
#ifdef ARCH3264
#  ifdef HAVE_PTRACE64
  int ret = ptrace64 (req, id, addr, data, (PTRACE_TYPE_ARG5) buf);
#  else
  int ret = ptracex (req, id, addr, data, (PTRACE_TYPE_ARG5) buf);
#  endif
#else
  int ret = 0;
#endif
#if 0
  printf ("rs6000_ptrace64 (%d, %d, %s, %08x, 0x%x) = 0x%x\n",
	  req, id, hex_string (addr), data, (unsigned int)buf, ret);
#endif
  return ret;
}

/* Store the vsx registers.  */

static void
store_vsx_register_aix (struct regcache *regcache, int regno)
{
  int ret;
  struct gdbarch *gdbarch = regcache->arch ();
  ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
  struct thrdentry64 thrdentry;
  __vsx_context_t vsx;
  pid_t pid = inferior_ptid.pid ();
  tid64_t thrd_i = 0;

  if (getthrds64(pid, &thrdentry, sizeof(struct thrdentry64),
		 &thrd_i, 1) == 1)
    thrd_i = thrdentry.ti_tid;

  memset(&vsx, 0, sizeof(__vsx_context_t));
  if (__power_vsx() && thrd_i > 0)
    {
      if (ARCH64 ())
	ret = rs6000_ptrace64 (PTT_READ_VSX, thrd_i, (long long) &vsx, 0, 0);
      else
	ret = rs6000_ptrace32 (PTT_READ_VSX, thrd_i, (int *)&vsx, 0, 0);
      if (ret < 0)
	return;

      regcache->raw_collect (regno, &(vsx.__vsr_dw1[0])+
			     regno - tdep->ppc_vsr0_upper_regnum);

      if (ARCH64 ())
	ret = rs6000_ptrace64 (PTT_WRITE_VSX, thrd_i, (long long) &vsx, 0, 0);
      else
	ret = rs6000_ptrace32 (PTT_WRITE_VSX, thrd_i, (int *) &vsx, 0, 0);

      if (ret < 0)
	perror_with_name (_("Unable to write VSX registers after reading it"));
    }
}

/* Store Altivec registers.  */

static void
store_altivec_register_aix (struct regcache *regcache, int regno)
{
  int ret;
  struct gdbarch *gdbarch = regcache->arch ();
  ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
  struct thrdentry64 thrdentry;
  __vmx_context_t vmx;
  pid_t pid = inferior_ptid.pid ();
  tid64_t  thrd_i = 0;

  if (getthrds64(pid, &thrdentry, sizeof(struct thrdentry64),
		 &thrd_i, 1) == 1)
    thrd_i = thrdentry.ti_tid;

  memset(&vmx, 0, sizeof(__vmx_context_t));
  if (__power_vmx() && thrd_i > 0)
    {
      if (ARCH64 ())
	ret = rs6000_ptrace64 (PTT_READ_VEC, thrd_i, (long long) &vmx, 0, 0);
      else
	ret = rs6000_ptrace32 (PTT_READ_VEC, thrd_i, (int *) &vmx, 0, 0);
      if (ret < 0)
	return;

      regcache->raw_collect (regno, &(vmx.__vr[0]) + regno
			     - tdep->ppc_vr0_regnum);

      if (ARCH64 ())
	ret = rs6000_ptrace64 (PTT_WRITE_VEC, thrd_i, (long long) &vmx, 0, 0);
      else
	ret = rs6000_ptrace32 (PTT_WRITE_VEC, thrd_i, (int *) &vmx, 0, 0);
      if (ret < 0)
	perror_with_name (_("Unable to store AltiVec register after reading it"));
    }
}

/* Supply altivec registers.  */

static void
supply_vrregset_aix (struct regcache *regcache, __vmx_context_t *vmx)
{
  int i;
  struct gdbarch *gdbarch = regcache->arch ();
  ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
  int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1;

  for (i = 0; i < num_of_vrregs; i++)
    regcache->raw_supply (tdep->ppc_vr0_regnum + i,
			  &(vmx->__vr[i]));
  regcache->raw_supply (tdep->ppc_vrsave_regnum, &(vmx->__vrsave));
  regcache->raw_supply (tdep->ppc_vrsave_regnum - 1, &(vmx->__vscr));
}

/* Fetch altivec register.  */

static void
fetch_altivec_registers_aix (struct regcache *regcache)
{
  struct thrdentry64 thrdentry;
  __vmx_context_t vmx;
  pid_t pid = current_inferior ()->pid;
  tid64_t  thrd_i = 0;

  if (getthrds64(pid, &thrdentry, sizeof(struct thrdentry64),
		 &thrd_i, 1) == 1)
    thrd_i = thrdentry.ti_tid;

  memset(&vmx, 0, sizeof(__vmx_context_t));
  if (__power_vmx() && thrd_i > 0)
    {
      if (ARCH64 ())
	rs6000_ptrace64 (PTT_READ_VEC, thrd_i, (long long) &vmx, 0, 0);
      else
	rs6000_ptrace32 (PTT_READ_VEC, thrd_i, (int *) &vmx, 0, 0);
      supply_vrregset_aix (regcache, &vmx);
    }
}

/* supply vsx register.  */

static void
supply_vsxregset_aix (struct regcache *regcache, __vsx_context_t *vsx)
{
  int i;
  struct gdbarch *gdbarch = regcache->arch ();
  ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);

  for (i = 0; i < ppc_num_vshrs; i++)
   regcache->raw_supply (tdep->ppc_vsr0_upper_regnum + i,
			 &(vsx->__vsr_dw1[i]));
}

/* Fetch vsx registers.  */
static void
fetch_vsx_registers_aix (struct regcache *regcache)
{
  struct thrdentry64 thrdentry;
  __vsx_context_t vsx;
  pid_t pid = current_inferior ()->pid;
  tid64_t  thrd_i = 0;

  if (getthrds64(pid, &thrdentry, sizeof(struct thrdentry64),
		 &thrd_i, 1) == 1)
    thrd_i = thrdentry.ti_tid;

  memset(&vsx, 0, sizeof(__vsx_context_t));
  if (__power_vsx() && thrd_i > 0)
    {
      if (ARCH64 ())
	rs6000_ptrace64 (PTT_READ_VSX, thrd_i, (long long) &vsx, 0, 0);
      else
	rs6000_ptrace32 (PTT_READ_VSX, thrd_i, (int *) &vsx, 0, 0);
      supply_vsxregset_aix (regcache, &vsx);
    }
}

void rs6000_nat_target::post_startup_inferior (ptid_t ptid)
{

  /* In AIX to turn on multi process debugging in ptrace
     PT_MULTI is the option to be passed,
     with the process ID which can fork () and
     the data parameter [fourth parameter] must be 1.  */

  if (!ARCH64 ())
    rs6000_ptrace32 (PT_MULTI, ptid.pid(), 0, 1, 0);
  else
    rs6000_ptrace64 (PT_MULTI, ptid.pid(), 0, 1, 0);
}

void
rs6000_nat_target::follow_fork (inferior *child_inf, ptid_t child_ptid,
				target_waitkind fork_kind, bool follow_child,
				bool detach_fork)
{

  /* Once the fork event is detected the infrun.c code
     calls the target_follow_fork to take care of
     follow child and detach the child activity which is
     done using the function below.  */

  inf_ptrace_target::follow_fork (child_inf, child_ptid, fork_kind,
				  follow_child, detach_fork);

  /* If we detach fork and follow child we do not want the child
     process to generate events that ptrace can trace.  Hence we
     detach it.  */

  if (detach_fork && !follow_child)
  {
    if (ARCH64 ())
      rs6000_ptrace64 (PT_DETACH, child_ptid.pid (), 0, 0, 0);
    else
      rs6000_ptrace32 (PT_DETACH, child_ptid.pid (), 0, 0, 0);
  }
}

/* Fetch register REGNO from the inferior.  */

static void
fetch_register (struct regcache *regcache, int regno)
{
  struct gdbarch *gdbarch = regcache->arch ();
  int addr[PPC_MAX_REGISTER_SIZE];
  int nr, isfloat;
  pid_t pid = regcache->ptid ().pid ();

  /* Retrieved values may be -1, so infer errors from errno.  */
  errno = 0;

  /* Alti-vec register.  */
  if (altivec_register_p (gdbarch, regno))
    {
      fetch_altivec_registers_aix (regcache);
      return;
    }

  /* VSX register.  */
  if (vsx_register_p (gdbarch, regno))
    {
      fetch_vsx_registers_aix (regcache);
      return;
    }

  nr = regmap (gdbarch, regno, &isfloat);

  /* Floating-point registers.  */
  if (isfloat)
    rs6000_ptrace32 (PT_READ_FPR, pid, addr, nr, 0);

  /* Bogus register number.  */
  else if (nr < 0)
    {
      if (regno >= gdbarch_num_regs (gdbarch))
	gdb_printf (gdb_stderr,
		    "gdb error: register no %d not implemented.\n",
		    regno);
      return;
    }

  /* Fixed-point registers.  */
  else
    {
      if (!ARCH64 ())
	*addr = rs6000_ptrace32 (PT_READ_GPR, pid, (int *) nr, 0, 0);
      else
	{
	  /* PT_READ_GPR requires the buffer parameter to point to long long,
	     even if the register is really only 32 bits.  */
	  long long buf;
	  rs6000_ptrace64 (PT_READ_GPR, pid, nr, 0, &buf);
	  if (register_size (gdbarch, regno) == 8)
	    memcpy (addr, &buf, 8);
	  else
	    *addr = buf;
	}
    }

  if (!errno)
    regcache->raw_supply (regno, (char *) addr);
  else
    {
#if 0
      /* FIXME: this happens 3 times at the start of each 64-bit program.  */
      perror (_("ptrace read"));
#endif
      errno = 0;
    }
}

/* Store register REGNO back into the inferior.  */

static void
store_register (struct regcache *regcache, int regno)
{
  struct gdbarch *gdbarch = regcache->arch ();
  int addr[PPC_MAX_REGISTER_SIZE];
  int nr, isfloat;
  pid_t pid = regcache->ptid ().pid ();

  /* Fetch the register's value from the register cache.  */
  regcache->raw_collect (regno, addr);

  /* -1 can be a successful return value, so infer errors from errno.  */
  errno = 0;

  if (altivec_register_p (gdbarch, regno))
    {
      store_altivec_register_aix (regcache, regno);
      return;
    }

  if (vsx_register_p (gdbarch, regno))
    {
      store_vsx_register_aix (regcache, regno);
      return;
    }

  nr = regmap (gdbarch, regno, &isfloat);

  /* Floating-point registers.  */
  if (isfloat)
    rs6000_ptrace32 (PT_WRITE_FPR, pid, addr, nr, 0);

  /* Bogus register number.  */
  else if (nr < 0)
    {
      if (regno >= gdbarch_num_regs (gdbarch))
	gdb_printf (gdb_stderr,
		    "gdb error: register no %d not implemented.\n",
		    regno);
    }

  /* Fixed-point registers.  */
  else
    {
      /* The PT_WRITE_GPR operation is rather odd.  For 32-bit inferiors,
	 the register's value is passed by value, but for 64-bit inferiors,
	 the address of a buffer containing the value is passed.  */
      if (!ARCH64 ())
	rs6000_ptrace32 (PT_WRITE_GPR, pid, (int *) nr, *addr, 0);
      else
	{
	  /* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte
	     area, even if the register is really only 32 bits.  */
	  long long buf;
	  if (register_size (gdbarch, regno) == 8)
	    memcpy (&buf, addr, 8);
	  else
	    buf = *addr;
	  rs6000_ptrace64 (PT_WRITE_GPR, pid, nr, 0, &buf);
	}
    }

  if (errno)
    {
      perror (_("ptrace write"));
      errno = 0;
    }
}

/* Read from the inferior all registers if REGNO == -1 and just register
   REGNO otherwise.  */

void
rs6000_nat_target::fetch_registers (struct regcache *regcache, int regno)
{
  struct gdbarch *gdbarch = regcache->arch ();
  if (regno != -1)
    fetch_register (regcache, regno);

  else
    {
      ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);

      /* Read 32 general purpose registers.  */
      for (regno = tdep->ppc_gp0_regnum;
	   regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
	   regno++)
	{
	  fetch_register (regcache, regno);
	}

      /* Read general purpose floating point registers.  */
      if (tdep->ppc_fp0_regnum >= 0)
	for (regno = 0; regno < ppc_num_fprs; regno++)
	  fetch_register (regcache, tdep->ppc_fp0_regnum + regno);

      if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
	fetch_altivec_registers_aix (regcache);

      if (tdep->ppc_vsr0_upper_regnum != -1)
	fetch_vsx_registers_aix (regcache);

      /* Read special registers.  */
      fetch_register (regcache, gdbarch_pc_regnum (gdbarch));
      fetch_register (regcache, tdep->ppc_ps_regnum);
      fetch_register (regcache, tdep->ppc_cr_regnum);
      fetch_register (regcache, tdep->ppc_lr_regnum);
      fetch_register (regcache, tdep->ppc_ctr_regnum);
      fetch_register (regcache, tdep->ppc_xer_regnum);
      if (tdep->ppc_fpscr_regnum >= 0)
	fetch_register (regcache, tdep->ppc_fpscr_regnum);
      if (tdep->ppc_mq_regnum >= 0)
	fetch_register (regcache, tdep->ppc_mq_regnum);
    }
}

const struct target_desc *
rs6000_nat_target::read_description ()
{
   if (ARCH64())
     {
       if (__power_vsx ())
	 return tdesc_powerpc_vsx64;
       else if (__power_vmx ())
	 return tdesc_powerpc_altivec64;
     }
   else
     {
       if (__power_vsx ())
	 return tdesc_powerpc_vsx32;
       else if (__power_vmx ())
	 return tdesc_powerpc_altivec32;
     }
   return NULL;
}

/* Store our register values back into the inferior.
   If REGNO is -1, do this for all registers.
   Otherwise, REGNO specifies which register (so we can save time).  */

void
rs6000_nat_target::store_registers (struct regcache *regcache, int regno)
{
  struct gdbarch *gdbarch = regcache->arch ();
  if (regno != -1)
    store_register (regcache, regno);

  else
    {
      ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);

      /* Write general purpose registers first.  */
      for (regno = tdep->ppc_gp0_regnum;
	   regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
	   regno++)
	{
	  store_register (regcache, regno);
	}

      /* Write floating point registers.  */
      if (tdep->ppc_fp0_regnum >= 0)
	for (regno = 0; regno < ppc_num_fprs; regno++)
	  store_register (regcache, tdep->ppc_fp0_regnum + regno);

      /* Write special registers.  */
      store_register (regcache, gdbarch_pc_regnum (gdbarch));
      store_register (regcache, tdep->ppc_ps_regnum);
      store_register (regcache, tdep->ppc_cr_regnum);
      store_register (regcache, tdep->ppc_lr_regnum);
      store_register (regcache, tdep->ppc_ctr_regnum);
      store_register (regcache, tdep->ppc_xer_regnum);
      if (tdep->ppc_fpscr_regnum >= 0)
	store_register (regcache, tdep->ppc_fpscr_regnum);
      if (tdep->ppc_mq_regnum >= 0)
	store_register (regcache, tdep->ppc_mq_regnum);
    }
}

/* Implement the to_xfer_partial target_ops method.  */

enum target_xfer_status
rs6000_nat_target::xfer_partial (enum target_object object,
				 const char *annex, gdb_byte *readbuf,
				 const gdb_byte *writebuf,
				 ULONGEST offset, ULONGEST len,
				 ULONGEST *xfered_len)
{
  pid_t pid = inferior_ptid.pid ();
  int arch64 = ARCH64 ();

  switch (object)
    {
    case TARGET_OBJECT_LIBRARIES_AIX:
      return xfer_shared_libraries (object, annex,
				    readbuf, writebuf,
				    offset, len, xfered_len);
    case TARGET_OBJECT_MEMORY:
      {
	union
	{
	  PTRACE_TYPE_RET word;
	  gdb_byte byte[sizeof (PTRACE_TYPE_RET)];
	} buffer;
	ULONGEST rounded_offset;
	LONGEST partial_len;

	/* Round the start offset down to the next long word
	   boundary.  */
	rounded_offset = offset & -(ULONGEST) sizeof (PTRACE_TYPE_RET);

	/* Since ptrace will transfer a single word starting at that
	   rounded_offset the partial_len needs to be adjusted down to
	   that (remember this function only does a single transfer).
	   Should the required length be even less, adjust it down
	   again.  */
	partial_len = (rounded_offset + sizeof (PTRACE_TYPE_RET)) - offset;
	if (partial_len > len)
	  partial_len = len;

	if (writebuf)
	  {
	    /* If OFFSET:PARTIAL_LEN is smaller than
	       ROUNDED_OFFSET:WORDSIZE then a read/modify write will
	       be needed.  Read in the entire word.  */
	    if (rounded_offset < offset
		|| (offset + partial_len
		    < rounded_offset + sizeof (PTRACE_TYPE_RET)))
	      {
		/* Need part of initial word -- fetch it.  */
		if (arch64)
		  buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
						 rounded_offset, 0, NULL);
		else
		  buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
						 (int *) (uintptr_t)
						 rounded_offset,
						 0, NULL);
	      }

	    /* Copy data to be written over corresponding part of
	       buffer.  */
	    memcpy (buffer.byte + (offset - rounded_offset),
		    writebuf, partial_len);

	    errno = 0;
	    if (arch64)
	      rs6000_ptrace64 (PT_WRITE_D, pid,
			       rounded_offset, buffer.word, NULL);
	    else
	      rs6000_ptrace32 (PT_WRITE_D, pid,
			       (int *) (uintptr_t) rounded_offset,
			       buffer.word, NULL);
	    if (errno)
	      return TARGET_XFER_EOF;
	  }

	if (readbuf)
	  {
	    errno = 0;
	    if (arch64)
	      buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
					     rounded_offset, 0, NULL);
	    else
	      buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
					     (int *)(uintptr_t)rounded_offset,
					     0, NULL);
	    if (errno)
	      return TARGET_XFER_EOF;

	    /* Copy appropriate bytes out of the buffer.  */
	    memcpy (readbuf, buffer.byte + (offset - rounded_offset),
		    partial_len);
	  }

	*xfered_len = (ULONGEST) partial_len;
	return TARGET_XFER_OK;
      }

    default:
      return TARGET_XFER_E_IO;
    }
}

/* Wait for the child specified by PTID to do something.  Return the
   process ID of the child, or MINUS_ONE_PTID in case of error; store
   the status in *OURSTATUS.  */

ptid_t
rs6000_nat_target::wait (ptid_t ptid, struct target_waitstatus *ourstatus,
			 target_wait_flags options)
{
  pid_t pid;
  int status, save_errno;

  while (1)
    {
      set_sigint_trap ();

      do
	{
	  pid = waitpid (ptid.pid (), &status, 0);
	  save_errno = errno;
	}
      while (pid == -1 && errno == EINTR);

      clear_sigint_trap ();

      if (pid == -1)
	{
	  gdb_printf (gdb_stderr,
		      _("Child process unexpectedly missing: %s.\n"),
		      safe_strerror (save_errno));

	  ourstatus->set_ignore ();
	  return minus_one_ptid;
	}

      /* Ignore terminated detached child processes.  */
      if (!WIFSTOPPED (status) && find_inferior_pid (this, pid) == nullptr)
	continue;

      /* Check for a fork () event.  */
      if ((status & 0xff) == W_SFWTED)
	{
	  /* Checking whether it is a parent or a child event.  */

	  /* If the event is a child we check if there was a parent
	     event recorded before.  If yes we got the parent child
	     relationship.  If not we push this child and wait for
	     the next fork () event.  */
	  if (find_inferior_pid (this, pid) == nullptr)
	    {
	      pid_t parent_pid = has_my_aix_parent_reported (pid);
	      if (parent_pid > 0)
		{
		  ourstatus->set_forked (ptid_t (pid));
		  return ptid_t (parent_pid);
		}
	      aix_remember_child (pid);
	    }

	  /* If the event is a parent we check if there was a child
	     event recorded before.  If yes we got the parent child
	     relationship.  If not we push this parent and wait for
	     the next fork () event.  */
	  else
	    {
	      pid_t child_pid = has_my_aix_child_reported (pid);
	      if (child_pid > 0)
		{
		  ourstatus->set_forked (ptid_t (child_pid));
		  return ptid_t (pid);
		}
	      aix_remember_parent (pid);
	    }
	  continue;
	}

      break;
    }

  /* AIX has a couple of strange returns from wait().  */

  /* stop after load" status.  */
  if (status == 0x57c)
    ourstatus->set_loaded ();
  /* 0x7f is signal 0.  */
  else if (status == 0x7f)
    ourstatus->set_spurious ();
  /* A normal waitstatus.  Let the usual macros deal with it.  */
  else
    *ourstatus = host_status_to_waitstatus (status);

  return ptid_t (pid);
}


/* Set the current architecture from the host running GDB.  Called when
   starting a child process.  */

void
rs6000_nat_target::create_inferior (const char *exec_file,
				    const std::string &allargs,
				    char **env, int from_tty)
{
  enum bfd_architecture arch;
  unsigned long mach;
  bfd abfd;

  inf_ptrace_target::create_inferior (exec_file, allargs, env, from_tty);

  if (__power_rs ())
    {
      arch = bfd_arch_rs6000;
      mach = bfd_mach_rs6k;
    }
  else
    {
      arch = bfd_arch_powerpc;
      mach = bfd_mach_ppc;
    }

  /* FIXME: schauer/2002-02-25:
     We don't know if we are executing a 32 or 64 bit executable,
     and have no way to pass the proper word size to rs6000_gdbarch_init.
     So we have to avoid switching to a new architecture, if the architecture
     matches already.
     Blindly calling rs6000_gdbarch_init used to work in older versions of
     GDB, as rs6000_gdbarch_init incorrectly used the previous tdep to
     determine the wordsize.  */
  if (current_program_space->exec_bfd ())
    {
      const struct bfd_arch_info *exec_bfd_arch_info;

      exec_bfd_arch_info
	= bfd_get_arch_info (current_program_space->exec_bfd ());
      if (arch == exec_bfd_arch_info->arch)
	return;
    }

  bfd_default_set_arch_mach (&abfd, arch, mach);

  gdbarch_info info;
  info.bfd_arch_info = bfd_get_arch_info (&abfd);
  info.abfd = current_program_space->exec_bfd ();

  if (!gdbarch_update_p (info))
    internal_error (_("rs6000_create_inferior: failed "
		      "to select architecture"));
}


/* Shared Object support.  */

/* Return the LdInfo data for the given process.  Raises an error
   if the data could not be obtained.  */

static gdb::byte_vector
rs6000_ptrace_ldinfo (ptid_t ptid)
{
  const int pid = ptid.pid ();
  gdb::byte_vector ldi (1024);
  int rc = -1;

  while (1)
    {
      if (ARCH64 ())
	rc = rs6000_ptrace64 (PT_LDINFO, pid, (unsigned long) ldi.data (),
			      ldi.size (), NULL);
      else
	rc = rs6000_ptrace32 (PT_LDINFO, pid, (int *) ldi.data (),
			      ldi.size (), NULL);

      if (rc != -1)
	break; /* Success, we got the entire ld_info data.  */

      if (errno != ENOMEM)
	perror_with_name (_("ptrace ldinfo"));

      /* ldi is not big enough.  Double it and try again.  */
      ldi.resize (ldi.size () * 2);
    }

  return ldi;
}

/* Implement the to_xfer_partial target_ops method for
   TARGET_OBJECT_LIBRARIES_AIX objects.  */

enum target_xfer_status
rs6000_nat_target::xfer_shared_libraries
  (enum target_object object,
   const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf,
   ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
{
  ULONGEST result;

  /* This function assumes that it is being run with a live process.
     Core files are handled via gdbarch.  */
  gdb_assert (target_has_execution ());

  if (writebuf)
    return TARGET_XFER_E_IO;

  gdb::byte_vector ldi_buf = rs6000_ptrace_ldinfo (inferior_ptid);
  result = rs6000_aix_ld_info_to_xml (current_inferior ()->arch (),
				      ldi_buf.data (),
				      readbuf, offset, len, 1);

  if (result == 0)
    return TARGET_XFER_EOF;
  else
    {
      *xfered_len = result;
      return TARGET_XFER_OK;
    }
}

void _initialize_rs6000_nat ();
void
_initialize_rs6000_nat ()
{
  add_inf_child_target (&the_rs6000_nat_target);
}