aboutsummaryrefslogtreecommitdiff
path: root/gdb/riscv-tdep.c
blob: 3a2891c2c9201510e653870e241bd1614df6104e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
/* Target-dependent code for the RISC-V architecture, for GDB.

   Copyright (C) 2018-2023 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "frame.h"
#include "inferior.h"
#include "symtab.h"
#include "value.h"
#include "gdbcmd.h"
#include "language.h"
#include "gdbcore.h"
#include "symfile.h"
#include "objfiles.h"
#include "gdbtypes.h"
#include "target.h"
#include "arch-utils.h"
#include "regcache.h"
#include "osabi.h"
#include "riscv-tdep.h"
#include "reggroups.h"
#include "opcode/riscv.h"
#include "elf/riscv.h"
#include "elf-bfd.h"
#include "symcat.h"
#include "dis-asm.h"
#include "frame-unwind.h"
#include "frame-base.h"
#include "trad-frame.h"
#include "infcall.h"
#include "floatformat.h"
#include "remote.h"
#include "target-descriptions.h"
#include "dwarf2/frame.h"
#include "user-regs.h"
#include "valprint.h"
#include "gdbsupport/common-defs.h"
#include "opcode/riscv-opc.h"
#include "cli/cli-decode.h"
#include "observable.h"
#include "prologue-value.h"
#include "arch/riscv.h"
#include "riscv-ravenscar-thread.h"
#include "gdbsupport/gdb-safe-ctype.h"

/* The stack must be 16-byte aligned.  */
#define SP_ALIGNMENT 16

/* The biggest alignment that the target supports.  */
#define BIGGEST_ALIGNMENT 16

/* Define a series of is_XXX_insn functions to check if the value INSN
   is an instance of instruction XXX.  */
#define DECLARE_INSN(INSN_NAME, INSN_MATCH, INSN_MASK) \
static inline bool is_ ## INSN_NAME ## _insn (long insn) \
{ \
  return (insn & INSN_MASK) == INSN_MATCH; \
}
#include "opcode/riscv-opc.h"
#undef DECLARE_INSN

/* When this is true debugging information about breakpoint kinds will be
   printed.  */

static bool riscv_debug_breakpoints = false;

/* Print a "riscv-breakpoints" debug statement.  */

#define riscv_breakpoints_debug_printf(fmt, ...)	\
  debug_prefixed_printf_cond (riscv_debug_breakpoints,	\
			      "riscv-breakpoints",	\
			      fmt, ##__VA_ARGS__)

/* When this is true debugging information about inferior calls will be
   printed.  */

static bool riscv_debug_infcall = false;

/* Print a "riscv-infcall" debug statement.  */

#define riscv_infcall_debug_printf(fmt, ...)				\
  debug_prefixed_printf_cond (riscv_debug_infcall, "riscv-infcall",	\
			      fmt, ##__VA_ARGS__)

/* Print "riscv-infcall" start/end debug statements.  */

#define RISCV_INFCALL_SCOPED_DEBUG_START_END(fmt, ...)		\
  scoped_debug_start_end (riscv_debug_infcall, "riscv-infcall", \
			  fmt, ##__VA_ARGS__)

/* When this is true debugging information about stack unwinding will be
   printed.  */

static bool riscv_debug_unwinder = false;

/* Print a "riscv-unwinder" debug statement.  */

#define riscv_unwinder_debug_printf(fmt, ...)				\
  debug_prefixed_printf_cond (riscv_debug_unwinder, "riscv-unwinder",	\
			      fmt, ##__VA_ARGS__)

/* When this is true debugging information about gdbarch initialisation
   will be printed.  */

static bool riscv_debug_gdbarch = false;

/* Print a "riscv-gdbarch" debug statement.  */

#define riscv_gdbarch_debug_printf(fmt, ...)				\
  debug_prefixed_printf_cond (riscv_debug_gdbarch, "riscv-gdbarch",	\
			      fmt, ##__VA_ARGS__)

/* The names of the RISC-V target description features.  */
const char *riscv_feature_name_csr = "org.gnu.gdb.riscv.csr";
static const char *riscv_feature_name_cpu = "org.gnu.gdb.riscv.cpu";
static const char *riscv_feature_name_fpu = "org.gnu.gdb.riscv.fpu";
static const char *riscv_feature_name_virtual = "org.gnu.gdb.riscv.virtual";
static const char *riscv_feature_name_vector = "org.gnu.gdb.riscv.vector";

/* The current set of options to be passed to the disassembler.  */
static char *riscv_disassembler_options;

/* Cached information about a frame.  */

struct riscv_unwind_cache
{
  /* The register from which we can calculate the frame base.  This is
     usually $sp or $fp.  */
  int frame_base_reg;

  /* The offset from the current value in register FRAME_BASE_REG to the
     actual frame base address.  */
  int frame_base_offset;

  /* Information about previous register values.  */
  trad_frame_saved_reg *regs;

  /* The id for this frame.  */
  struct frame_id this_id;

  /* The base (stack) address for this frame.  This is the stack pointer
     value on entry to this frame before any adjustments are made.  */
  CORE_ADDR frame_base;
};

/* RISC-V specific register group for CSRs.  */

static const reggroup *csr_reggroup = nullptr;

/* Callback function for user_reg_add.  */

static struct value *
value_of_riscv_user_reg (frame_info_ptr frame, const void *baton)
{
  const int *reg_p = (const int *) baton;
  return value_of_register (*reg_p, frame);
}

/* Information about a register alias that needs to be set up for this
   target.  These are collected when the target's XML description is
   analysed, and then processed later, once the gdbarch has been created.  */

class riscv_pending_register_alias
{
public:
  /* Constructor.  */

  riscv_pending_register_alias (const char *name, const void *baton)
    : m_name (name),
      m_baton (baton)
  { /* Nothing.  */ }

  /* Convert this into a user register for GDBARCH.  */

  void create (struct gdbarch *gdbarch) const
  {
    user_reg_add (gdbarch, m_name, value_of_riscv_user_reg, m_baton);
  }

private:
  /* The name for this alias.  */
  const char *m_name;

  /* The baton value for passing to user_reg_add.  This must point to some
     data that will live for at least as long as the gdbarch object to
     which the user register is attached.  */
  const void *m_baton;
};

/* A set of registers that we expect to find in a tdesc_feature.  These
   are use in RISCV_GDBARCH_INIT when processing the target description.  */

struct riscv_register_feature
{
  explicit riscv_register_feature (const char *feature_name)
    : m_feature_name (feature_name)
  { /* Delete.  */ }

  riscv_register_feature () = delete;
  DISABLE_COPY_AND_ASSIGN (riscv_register_feature);

  /* Information for a single register.  */
  struct register_info
  {
    /* The GDB register number for this register.  */
    int regnum;

    /* List of names for this register.  The first name in this list is the
       preferred name, the name GDB should use when describing this
       register.  */
    std::vector<const char *> names;

    /* Look in FEATURE for a register with a name from this classes names
       list.  If the register is found then register its number with
       TDESC_DATA and add all its aliases to the ALIASES list.
       PREFER_FIRST_NAME_P is used when deciding which aliases to create.  */
    bool check (struct tdesc_arch_data *tdesc_data,
		const struct tdesc_feature *feature,
		bool prefer_first_name_p,
		std::vector<riscv_pending_register_alias> *aliases) const;
  };

  /* Return the name of this feature.  */
  const char *name () const
  { return m_feature_name; }

protected:

  /* Return a target description feature extracted from TDESC for this
     register feature.  Will return nullptr if there is no feature in TDESC
     with the name M_FEATURE_NAME.  */
  const struct tdesc_feature *tdesc_feature (const struct target_desc *tdesc) const
  {
    return tdesc_find_feature (tdesc, name ());
  }

  /* List of all the registers that we expect that we might find in this
     register set.  */
  std::vector<struct register_info> m_registers;

private:

  /* The name for this feature.  This is the name used to find this feature
     within the target description.  */
  const char *m_feature_name;
};

/* See description in the class declaration above.  */

bool
riscv_register_feature::register_info::check
	(struct tdesc_arch_data *tdesc_data,
	 const struct tdesc_feature *feature,
	 bool prefer_first_name_p,
	 std::vector<riscv_pending_register_alias> *aliases) const
{
  for (const char *name : this->names)
    {
      bool found = tdesc_numbered_register (feature, tdesc_data,
					    this->regnum, name);
      if (found)
	{
	  /* We know that the target description mentions this
	     register.  In RISCV_REGISTER_NAME we ensure that GDB
	     always uses the first name for each register, so here we
	     add aliases for all of the remaining names.  */
	  int start_index = prefer_first_name_p ? 1 : 0;
	  for (int i = start_index; i < this->names.size (); ++i)
	    {
	      const char *alias = this->names[i];
	      if (alias == name && !prefer_first_name_p)
		continue;
	      aliases->emplace_back (alias, (void *) &this->regnum);
	    }
	  return true;
	}
    }
  return false;
}

/* Class representing the x-registers feature set.  */

struct riscv_xreg_feature : public riscv_register_feature
{
  riscv_xreg_feature ()
    : riscv_register_feature (riscv_feature_name_cpu)
  {
    m_registers =  {
      { RISCV_ZERO_REGNUM + 0, { "zero", "x0" } },
      { RISCV_ZERO_REGNUM + 1, { "ra", "x1" } },
      { RISCV_ZERO_REGNUM + 2, { "sp", "x2" } },
      { RISCV_ZERO_REGNUM + 3, { "gp", "x3" } },
      { RISCV_ZERO_REGNUM + 4, { "tp", "x4" } },
      { RISCV_ZERO_REGNUM + 5, { "t0", "x5" } },
      { RISCV_ZERO_REGNUM + 6, { "t1", "x6" } },
      { RISCV_ZERO_REGNUM + 7, { "t2", "x7" } },
      { RISCV_ZERO_REGNUM + 8, { "fp", "x8", "s0" } },
      { RISCV_ZERO_REGNUM + 9, { "s1", "x9" } },
      { RISCV_ZERO_REGNUM + 10, { "a0", "x10" } },
      { RISCV_ZERO_REGNUM + 11, { "a1", "x11" } },
      { RISCV_ZERO_REGNUM + 12, { "a2", "x12" } },
      { RISCV_ZERO_REGNUM + 13, { "a3", "x13" } },
      { RISCV_ZERO_REGNUM + 14, { "a4", "x14" } },
      { RISCV_ZERO_REGNUM + 15, { "a5", "x15" } },
      { RISCV_ZERO_REGNUM + 16, { "a6", "x16" } },
      { RISCV_ZERO_REGNUM + 17, { "a7", "x17" } },
      { RISCV_ZERO_REGNUM + 18, { "s2", "x18" } },
      { RISCV_ZERO_REGNUM + 19, { "s3", "x19" } },
      { RISCV_ZERO_REGNUM + 20, { "s4", "x20" } },
      { RISCV_ZERO_REGNUM + 21, { "s5", "x21" } },
      { RISCV_ZERO_REGNUM + 22, { "s6", "x22" } },
      { RISCV_ZERO_REGNUM + 23, { "s7", "x23" } },
      { RISCV_ZERO_REGNUM + 24, { "s8", "x24" } },
      { RISCV_ZERO_REGNUM + 25, { "s9", "x25" } },
      { RISCV_ZERO_REGNUM + 26, { "s10", "x26" } },
      { RISCV_ZERO_REGNUM + 27, { "s11", "x27" } },
      { RISCV_ZERO_REGNUM + 28, { "t3", "x28" } },
      { RISCV_ZERO_REGNUM + 29, { "t4", "x29" } },
      { RISCV_ZERO_REGNUM + 30, { "t5", "x30" } },
      { RISCV_ZERO_REGNUM + 31, { "t6", "x31" } },
      { RISCV_ZERO_REGNUM + 32, { "pc" } }
    };
  }

  /* Return the preferred name for the register with gdb register number
     REGNUM, which must be in the inclusive range RISCV_ZERO_REGNUM to
     RISCV_PC_REGNUM.  */
  const char *register_name (int regnum) const
  {
    gdb_assert (regnum >= RISCV_ZERO_REGNUM && regnum <= m_registers.size ());
    return m_registers[regnum].names[0];
  }

  /* Check this feature within TDESC, record the registers from this
     feature into TDESC_DATA and update ALIASES and FEATURES.  */
  bool check (const struct target_desc *tdesc,
	      struct tdesc_arch_data *tdesc_data,
	      std::vector<riscv_pending_register_alias> *aliases,
	      struct riscv_gdbarch_features *features) const
  {
    const struct tdesc_feature *feature_cpu = tdesc_feature (tdesc);

    if (feature_cpu == nullptr)
      return false;

    bool seen_an_optional_reg_p = false;
    for (const auto &reg : m_registers)
      {
	bool found = reg.check (tdesc_data, feature_cpu, true, aliases);

	bool is_optional_reg_p = (reg.regnum >= RISCV_ZERO_REGNUM + 16
				  && reg.regnum < RISCV_ZERO_REGNUM + 32);

	if (!found && (!is_optional_reg_p || seen_an_optional_reg_p))
	  return false;
	else if (found && is_optional_reg_p)
	  seen_an_optional_reg_p = true;
      }

    /* Check that all of the core cpu registers have the same bitsize.  */
    int xlen_bitsize = tdesc_register_bitsize (feature_cpu, "pc");

    bool valid_p = true;
    for (auto &tdesc_reg : feature_cpu->registers)
      valid_p &= (tdesc_reg->bitsize == xlen_bitsize);

    features->xlen = (xlen_bitsize / 8);
    features->embedded = !seen_an_optional_reg_p;

    return valid_p;
  }
};

/* An instance of the x-register feature set.  */

static const struct riscv_xreg_feature riscv_xreg_feature;

/* Class representing the f-registers feature set.  */

struct riscv_freg_feature : public riscv_register_feature
{
  riscv_freg_feature ()
    : riscv_register_feature (riscv_feature_name_fpu)
  {
    m_registers =  {
      { RISCV_FIRST_FP_REGNUM + 0, { "ft0", "f0" } },
      { RISCV_FIRST_FP_REGNUM + 1, { "ft1", "f1" } },
      { RISCV_FIRST_FP_REGNUM + 2, { "ft2", "f2" } },
      { RISCV_FIRST_FP_REGNUM + 3, { "ft3", "f3" } },
      { RISCV_FIRST_FP_REGNUM + 4, { "ft4", "f4" } },
      { RISCV_FIRST_FP_REGNUM + 5, { "ft5", "f5" } },
      { RISCV_FIRST_FP_REGNUM + 6, { "ft6", "f6" } },
      { RISCV_FIRST_FP_REGNUM + 7, { "ft7", "f7" } },
      { RISCV_FIRST_FP_REGNUM + 8, { "fs0", "f8" } },
      { RISCV_FIRST_FP_REGNUM + 9, { "fs1", "f9" } },
      { RISCV_FIRST_FP_REGNUM + 10, { "fa0", "f10" } },
      { RISCV_FIRST_FP_REGNUM + 11, { "fa1", "f11" } },
      { RISCV_FIRST_FP_REGNUM + 12, { "fa2", "f12" } },
      { RISCV_FIRST_FP_REGNUM + 13, { "fa3", "f13" } },
      { RISCV_FIRST_FP_REGNUM + 14, { "fa4", "f14" } },
      { RISCV_FIRST_FP_REGNUM + 15, { "fa5", "f15" } },
      { RISCV_FIRST_FP_REGNUM + 16, { "fa6", "f16" } },
      { RISCV_FIRST_FP_REGNUM + 17, { "fa7", "f17" } },
      { RISCV_FIRST_FP_REGNUM + 18, { "fs2", "f18" } },
      { RISCV_FIRST_FP_REGNUM + 19, { "fs3", "f19" } },
      { RISCV_FIRST_FP_REGNUM + 20, { "fs4", "f20" } },
      { RISCV_FIRST_FP_REGNUM + 21, { "fs5", "f21" } },
      { RISCV_FIRST_FP_REGNUM + 22, { "fs6", "f22" } },
      { RISCV_FIRST_FP_REGNUM + 23, { "fs7", "f23" } },
      { RISCV_FIRST_FP_REGNUM + 24, { "fs8", "f24" } },
      { RISCV_FIRST_FP_REGNUM + 25, { "fs9", "f25" } },
      { RISCV_FIRST_FP_REGNUM + 26, { "fs10", "f26" } },
      { RISCV_FIRST_FP_REGNUM + 27, { "fs11", "f27" } },
      { RISCV_FIRST_FP_REGNUM + 28, { "ft8", "f28" } },
      { RISCV_FIRST_FP_REGNUM + 29, { "ft9", "f29" } },
      { RISCV_FIRST_FP_REGNUM + 30, { "ft10", "f30" } },
      { RISCV_FIRST_FP_REGNUM + 31, { "ft11", "f31" } },
      { RISCV_CSR_FFLAGS_REGNUM, { "fflags", "csr1" } },
      { RISCV_CSR_FRM_REGNUM, { "frm", "csr2" } },
      { RISCV_CSR_FCSR_REGNUM, { "fcsr", "csr3" } },
    };
  }

  /* Return the preferred name for the register with gdb register number
     REGNUM, which must be in the inclusive range RISCV_FIRST_FP_REGNUM to
     RISCV_LAST_FP_REGNUM.  */
  const char *register_name (int regnum) const
  {
    gdb_static_assert (RISCV_LAST_FP_REGNUM == RISCV_FIRST_FP_REGNUM + 31);
    gdb_assert (regnum >= RISCV_FIRST_FP_REGNUM
		&& regnum <= RISCV_LAST_FP_REGNUM);
    regnum -= RISCV_FIRST_FP_REGNUM;
    return m_registers[regnum].names[0];
  }

  /* Check this feature within TDESC, record the registers from this
     feature into TDESC_DATA and update ALIASES and FEATURES.  */
  bool check (const struct target_desc *tdesc,
	      struct tdesc_arch_data *tdesc_data,
	      std::vector<riscv_pending_register_alias> *aliases,
	      struct riscv_gdbarch_features *features) const
  {
    const struct tdesc_feature *feature_fpu = tdesc_feature (tdesc);

    /* It's fine if this feature is missing.  Update the architecture
       feature set and return.  */
    if (feature_fpu == nullptr)
      {
	features->flen = 0;
	return true;
      }

    /* Check all of the floating pointer registers are present.  We also
       check that the floating point CSRs are present too, though if these
       are missing this is not fatal.  */
    for (const auto &reg : m_registers)
      {
	bool found = reg.check (tdesc_data, feature_fpu, true, aliases);

	bool is_ctrl_reg_p = reg.regnum > RISCV_LAST_FP_REGNUM;

	if (!found && !is_ctrl_reg_p)
	  return false;
      }

    /* Look through all of the floating point registers (not the FP CSRs
       though), and check they all have the same bitsize.  Use this bitsize
       to update the feature set for this gdbarch.  */
    int fp_bitsize = -1;
    for (const auto &reg : m_registers)
      {
	/* Stop once we get to the CSRs which are at the end of the
	   M_REGISTERS list.  */
	if (reg.regnum > RISCV_LAST_FP_REGNUM)
	  break;

	int reg_bitsize = -1;
	for (const char *name : reg.names)
	  {
	    if (tdesc_unnumbered_register (feature_fpu, name))
	      {
		reg_bitsize = tdesc_register_bitsize (feature_fpu, name);
		break;
	      }
	  }
	gdb_assert (reg_bitsize != -1);
	if (fp_bitsize == -1)
	  fp_bitsize = reg_bitsize;
	else if (fp_bitsize != reg_bitsize)
	  return false;
      }

    features->flen = (fp_bitsize / 8);
    return true;
  }
};

/* An instance of the f-register feature set.  */

static const struct riscv_freg_feature riscv_freg_feature;

/* Class representing the virtual registers.  These are not physical
   registers on the hardware, but might be available from the target.
   These are not pseudo registers, reading these really does result in a
   register read from the target, it is just that there might not be a
   physical register backing the result.  */

struct riscv_virtual_feature : public riscv_register_feature
{
  riscv_virtual_feature ()
    : riscv_register_feature (riscv_feature_name_virtual)
  {
    m_registers =  {
      { RISCV_PRIV_REGNUM, { "priv" } }
    };
  }

  bool check (const struct target_desc *tdesc,
	      struct tdesc_arch_data *tdesc_data,
	      std::vector<riscv_pending_register_alias> *aliases,
	      struct riscv_gdbarch_features *features) const
  {
    const struct tdesc_feature *feature_virtual = tdesc_feature (tdesc);

    /* It's fine if this feature is missing.  */
    if (feature_virtual == nullptr)
      return true;

    /* We don't check the return value from the call to check here, all the
       registers in this feature are optional.  */
    for (const auto &reg : m_registers)
      reg.check (tdesc_data, feature_virtual, true, aliases);

    return true;
  }
};

/* An instance of the virtual register feature.  */

static const struct riscv_virtual_feature riscv_virtual_feature;

/* Class representing the CSR feature.  */

struct riscv_csr_feature : public riscv_register_feature
{
  riscv_csr_feature ()
    : riscv_register_feature (riscv_feature_name_csr)
  {
    m_registers = {
#define DECLARE_CSR(NAME,VALUE,CLASS,DEFINE_VER,ABORT_VER)		\
      { RISCV_ ## VALUE ## _REGNUM, { # NAME } },
#include "opcode/riscv-opc.h"
#undef DECLARE_CSR
    };
    riscv_create_csr_aliases ();
  }

  bool check (const struct target_desc *tdesc,
	      struct tdesc_arch_data *tdesc_data,
	      std::vector<riscv_pending_register_alias> *aliases,
	      struct riscv_gdbarch_features *features) const
  {
    const struct tdesc_feature *feature_csr = tdesc_feature (tdesc);

    /* It's fine if this feature is missing.  */
    if (feature_csr == nullptr)
      return true;

    /* We don't check the return value from the call to check here, all the
       registers in this feature are optional.  */
    for (const auto &reg : m_registers)
      reg.check (tdesc_data, feature_csr, true, aliases);

    return true;
  }

private:

  /* Complete RISCV_CSR_FEATURE, building the CSR alias names and adding them
     to the name list for each register.  */

  void
  riscv_create_csr_aliases ()
  {
    for (auto &reg : m_registers)
      {
	int csr_num = reg.regnum - RISCV_FIRST_CSR_REGNUM;
	gdb::unique_xmalloc_ptr<char> alias = xstrprintf ("csr%d", csr_num);
	reg.names.push_back (alias.release ());
      }
  }
};

/* An instance of the csr register feature.  */

static const struct riscv_csr_feature riscv_csr_feature;

/* Class representing the v-registers feature set.  */

struct riscv_vector_feature : public riscv_register_feature
{
  riscv_vector_feature ()
    : riscv_register_feature (riscv_feature_name_vector)
  {
    m_registers =  {
      { RISCV_V0_REGNUM + 0, { "v0" } },
      { RISCV_V0_REGNUM + 1, { "v1" } },
      { RISCV_V0_REGNUM + 2, { "v2" } },
      { RISCV_V0_REGNUM + 3, { "v3" } },
      { RISCV_V0_REGNUM + 4, { "v4" } },
      { RISCV_V0_REGNUM + 5, { "v5" } },
      { RISCV_V0_REGNUM + 6, { "v6" } },
      { RISCV_V0_REGNUM + 7, { "v7" } },
      { RISCV_V0_REGNUM + 8, { "v8" } },
      { RISCV_V0_REGNUM + 9, { "v9" } },
      { RISCV_V0_REGNUM + 10, { "v10" } },
      { RISCV_V0_REGNUM + 11, { "v11" } },
      { RISCV_V0_REGNUM + 12, { "v12" } },
      { RISCV_V0_REGNUM + 13, { "v13" } },
      { RISCV_V0_REGNUM + 14, { "v14" } },
      { RISCV_V0_REGNUM + 15, { "v15" } },
      { RISCV_V0_REGNUM + 16, { "v16" } },
      { RISCV_V0_REGNUM + 17, { "v17" } },
      { RISCV_V0_REGNUM + 18, { "v18" } },
      { RISCV_V0_REGNUM + 19, { "v19" } },
      { RISCV_V0_REGNUM + 20, { "v20" } },
      { RISCV_V0_REGNUM + 21, { "v21" } },
      { RISCV_V0_REGNUM + 22, { "v22" } },
      { RISCV_V0_REGNUM + 23, { "v23" } },
      { RISCV_V0_REGNUM + 24, { "v24" } },
      { RISCV_V0_REGNUM + 25, { "v25" } },
      { RISCV_V0_REGNUM + 26, { "v26" } },
      { RISCV_V0_REGNUM + 27, { "v27" } },
      { RISCV_V0_REGNUM + 28, { "v28" } },
      { RISCV_V0_REGNUM + 29, { "v29" } },
      { RISCV_V0_REGNUM + 30, { "v30" } },
      { RISCV_V0_REGNUM + 31, { "v31" } },
    };
  }

  /* Return the preferred name for the register with gdb register number
     REGNUM, which must be in the inclusive range RISCV_V0_REGNUM to
     RISCV_V0_REGNUM + 31.  */
  const char *register_name (int regnum) const
  {
    gdb_assert (regnum >= RISCV_V0_REGNUM
		&& regnum <= RISCV_V0_REGNUM + 31);
    regnum -= RISCV_V0_REGNUM;
    return m_registers[regnum].names[0];
  }

  /* Check this feature within TDESC, record the registers from this
     feature into TDESC_DATA and update ALIASES and FEATURES.  */
  bool check (const struct target_desc *tdesc,
	      struct tdesc_arch_data *tdesc_data,
	      std::vector<riscv_pending_register_alias> *aliases,
	      struct riscv_gdbarch_features *features) const
  {
    const struct tdesc_feature *feature_vector = tdesc_feature (tdesc);

    /* It's fine if this feature is missing.  Update the architecture
       feature set and return.  */
    if (feature_vector == nullptr)
      {
	features->vlen = 0;
	return true;
      }

    /* Check all of the vector registers are present.  */
    for (const auto &reg : m_registers)
      {
	if (!reg.check (tdesc_data, feature_vector, true, aliases))
	  return false;
      }

    /* Look through all of the vector registers and check they all have the
       same bitsize.  Use this bitsize to update the feature set for this
       gdbarch.  */
    int vector_bitsize = -1;
    for (const auto &reg : m_registers)
      {
	int reg_bitsize = -1;
	for (const char *name : reg.names)
	  {
	    if (tdesc_unnumbered_register (feature_vector, name))
	      {
		reg_bitsize = tdesc_register_bitsize (feature_vector, name);
		break;
	      }
	  }
	gdb_assert (reg_bitsize != -1);
	if (vector_bitsize == -1)
	  vector_bitsize = reg_bitsize;
	else if (vector_bitsize != reg_bitsize)
	  return false;
      }

    features->vlen = (vector_bitsize / 8);
    return true;
  }
};

/* An instance of the v-register feature set.  */

static const struct riscv_vector_feature riscv_vector_feature;

/* Controls whether we place compressed breakpoints or not.  When in auto
   mode GDB tries to determine if the target supports compressed
   breakpoints, and uses them if it does.  */

static enum auto_boolean use_compressed_breakpoints;

/* The show callback for 'show riscv use-compressed-breakpoints'.  */

static void
show_use_compressed_breakpoints (struct ui_file *file, int from_tty,
				 struct cmd_list_element *c,
				 const char *value)
{
  gdb_printf (file,
	      _("Debugger's use of compressed breakpoints is set "
		"to %s.\n"), value);
}

/* The set and show lists for 'set riscv' and 'show riscv' prefixes.  */

static struct cmd_list_element *setriscvcmdlist = NULL;
static struct cmd_list_element *showriscvcmdlist = NULL;

/* The set and show lists for 'set riscv' and 'show riscv' prefixes.  */

static struct cmd_list_element *setdebugriscvcmdlist = NULL;
static struct cmd_list_element *showdebugriscvcmdlist = NULL;

/* The show callback for all 'show debug riscv VARNAME' variables.  */

static void
show_riscv_debug_variable (struct ui_file *file, int from_tty,
			   struct cmd_list_element *c,
			   const char *value)
{
  gdb_printf (file,
	      _("RiscV debug variable `%s' is set to: %s\n"),
	      c->name, value);
}

/* See riscv-tdep.h.  */

int
riscv_isa_xlen (struct gdbarch *gdbarch)
{
  riscv_gdbarch_tdep *tdep = gdbarch_tdep<riscv_gdbarch_tdep> (gdbarch);
  return tdep->isa_features.xlen;
}

/* See riscv-tdep.h.  */

int
riscv_abi_xlen (struct gdbarch *gdbarch)
{
  riscv_gdbarch_tdep *tdep = gdbarch_tdep<riscv_gdbarch_tdep> (gdbarch);
  return tdep->abi_features.xlen;
}

/* See riscv-tdep.h.  */

int
riscv_isa_flen (struct gdbarch *gdbarch)
{
  riscv_gdbarch_tdep *tdep = gdbarch_tdep<riscv_gdbarch_tdep> (gdbarch);
  return tdep->isa_features.flen;
}

/* See riscv-tdep.h.  */

int
riscv_abi_flen (struct gdbarch *gdbarch)
{
  riscv_gdbarch_tdep *tdep = gdbarch_tdep<riscv_gdbarch_tdep> (gdbarch);
  return tdep->abi_features.flen;
}

/* See riscv-tdep.h.  */

bool
riscv_abi_embedded (struct gdbarch *gdbarch)
{
  riscv_gdbarch_tdep *tdep = gdbarch_tdep<riscv_gdbarch_tdep> (gdbarch);
  return tdep->abi_features.embedded;
}

/* Return true if the target for GDBARCH has floating point hardware.  */

static bool
riscv_has_fp_regs (struct gdbarch *gdbarch)
{
  return (riscv_isa_flen (gdbarch) > 0);
}

/* Return true if GDBARCH is using any of the floating point hardware ABIs.  */

static bool
riscv_has_fp_abi (struct gdbarch *gdbarch)
{
  riscv_gdbarch_tdep *tdep = gdbarch_tdep<riscv_gdbarch_tdep> (gdbarch);
  return tdep->abi_features.flen > 0;
}

/* Return true if REGNO is a floating pointer register.  */

static bool
riscv_is_fp_regno_p (int regno)
{
  return (regno >= RISCV_FIRST_FP_REGNUM
	  && regno <= RISCV_LAST_FP_REGNUM);
}

/* Implement the breakpoint_kind_from_pc gdbarch method.  */

static int
riscv_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
{
  if (use_compressed_breakpoints == AUTO_BOOLEAN_AUTO)
    {
      bool unaligned_p = false;
      gdb_byte buf[1];

      /* Some targets don't support unaligned reads.  The address can only
	 be unaligned if the C extension is supported.  So it is safe to
	 use a compressed breakpoint in this case.  */
      if (*pcptr & 0x2)
	unaligned_p = true;
      else
	{
	  /* Read the opcode byte to determine the instruction length.  If
	     the read fails this may be because we tried to set the
	     breakpoint at an invalid address, in this case we provide a
	     fake result which will give a breakpoint length of 4.
	     Hopefully when we try to actually insert the breakpoint we
	     will see a failure then too which will be reported to the
	     user.  */
	  if (target_read_code (*pcptr, buf, 1) == -1)
	    buf[0] = 0;
	}

      if (riscv_debug_breakpoints)
	{
	  const char *bp = (unaligned_p || riscv_insn_length (buf[0]) == 2
			    ? "C.EBREAK" : "EBREAK");

	  std::string suffix;
	  if (unaligned_p)
	    suffix = "(unaligned address)";
	  else
	    suffix = string_printf ("(instruction length %d)",
				    riscv_insn_length (buf[0]));
	  riscv_breakpoints_debug_printf ("Using %s for breakpoint at %s %s",
					  bp, paddress (gdbarch, *pcptr),
					  suffix.c_str ());
	}
      if (unaligned_p || riscv_insn_length (buf[0]) == 2)
	return 2;
      else
	return 4;
    }
  else if (use_compressed_breakpoints == AUTO_BOOLEAN_TRUE)
    return 2;
  else
    return 4;
}

/* Implement the sw_breakpoint_from_kind gdbarch method.  */

static const gdb_byte *
riscv_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
{
  static const gdb_byte ebreak[] = { 0x73, 0x00, 0x10, 0x00, };
  static const gdb_byte c_ebreak[] = { 0x02, 0x90 };

  *size = kind;
  switch (kind)
    {
    case 2:
      return c_ebreak;
    case 4:
      return ebreak;
    default:
      gdb_assert_not_reached ("unhandled breakpoint kind");
    }
}

/* Implement the register_name gdbarch method.  This is used instead of
   the function supplied by calling TDESC_USE_REGISTERS so that we can
   ensure the preferred names are offered for x-regs and f-regs.  */

static const char *
riscv_register_name (struct gdbarch *gdbarch, int regnum)
{
  /* Lookup the name through the target description.  If we get back NULL
     then this is an unknown register.  If we do get a name back then we
     look up the registers preferred name below.  */
  const char *name = tdesc_register_name (gdbarch, regnum);
  gdb_assert (name != nullptr);
  if (name[0] == '\0')
    return name;

  /* We want GDB to use the ABI names for registers even if the target
     gives us a target description with the architectural name.  For
     example we want to see 'ra' instead of 'x1' whatever the target
     description called it.  */
  if (regnum >= RISCV_ZERO_REGNUM && regnum < RISCV_FIRST_FP_REGNUM)
    return riscv_xreg_feature.register_name (regnum);

  /* Like with the x-regs we prefer the abi names for the floating point
     registers.  If the target doesn't have floating point registers then
     the tdesc_register_name call above should have returned an empty
     string.  */
  if (regnum >= RISCV_FIRST_FP_REGNUM && regnum <= RISCV_LAST_FP_REGNUM)
    {
      gdb_assert (riscv_has_fp_regs (gdbarch));
      return riscv_freg_feature.register_name (regnum);
    }

  /* Some targets (QEMU) are reporting these three registers twice, once
     in the FPU feature, and once in the CSR feature.  Both of these read
     the same underlying state inside the target, but naming the register
     twice in the target description results in GDB having two registers
     with the same name, only one of which can ever be accessed, but both
     will show up in 'info register all'.  Unless, we identify the
     duplicate copies of these registers (in riscv_tdesc_unknown_reg) and
     then hide the registers here by giving them no name.  */
  riscv_gdbarch_tdep *tdep = gdbarch_tdep<riscv_gdbarch_tdep> (gdbarch);
  if (tdep->duplicate_fflags_regnum == regnum
      || tdep->duplicate_frm_regnum == regnum
      || tdep->duplicate_fcsr_regnum == regnum)
    return "";

  /* The remaining registers are different.  For all other registers on the
     machine we prefer to see the names that the target description
     provides.  This is particularly important for CSRs which might be
     renamed over time.  If GDB keeps track of the "latest" name, but a
     particular target provides an older name then we don't want to force
     users to see the newer name in register output.

     The other case that reaches here are any registers that the target
     provided that GDB is completely unaware of.  For these we have no
     choice but to accept the target description name.

     Just accept whatever name TDESC_REGISTER_NAME returned.  */
  return name;
}

/* Implement gdbarch_pseudo_register_read.  Read pseudo-register REGNUM
   from REGCACHE and place the register value into BUF.  BUF is sized
   based on the type of register REGNUM, all of BUF should be written too,
   the result should be sign or zero extended as appropriate.  */

static enum register_status
riscv_pseudo_register_read (struct gdbarch *gdbarch,
			    readable_regcache *regcache,
			    int regnum, gdb_byte *buf)
{
  riscv_gdbarch_tdep *tdep = gdbarch_tdep<riscv_gdbarch_tdep> (gdbarch);

  if (regnum == tdep->fflags_regnum || regnum == tdep->frm_regnum)
    {
      /* Clear BUF.  */
      memset (buf, 0, register_size (gdbarch, regnum));

      /* Read the first byte of the fcsr register, this contains both frm
	 and fflags.  */
      enum register_status status
	= regcache->raw_read_part (RISCV_CSR_FCSR_REGNUM, 0, 1, buf);

      if (status != REG_VALID)
	return status;

      /* Extract the appropriate parts.  */
      if (regnum == tdep->fflags_regnum)
	buf[0] &= 0x1f;
      else if (regnum == tdep->frm_regnum)
	buf[0] = (buf[0] >> 5) & 0x7;

      return REG_VALID;
    }

  return REG_UNKNOWN;
}

/* Implement gdbarch_pseudo_register_write.  Write the contents of BUF into
   pseudo-register REGNUM in REGCACHE.  BUF is sized based on the type of
   register REGNUM.  */

static void
riscv_pseudo_register_write (struct gdbarch *gdbarch,
			     struct regcache *regcache, int regnum,
			     const gdb_byte *buf)
{
  riscv_gdbarch_tdep *tdep = gdbarch_tdep<riscv_gdbarch_tdep> (gdbarch);

  if (regnum == tdep->fflags_regnum || regnum == tdep->frm_regnum)
    {
      int fcsr_regnum = RISCV_CSR_FCSR_REGNUM;
      gdb_byte raw_buf[register_size (gdbarch, fcsr_regnum)];

      regcache->raw_read (fcsr_regnum, raw_buf);

      if (regnum == tdep->fflags_regnum)
	raw_buf[0] = (raw_buf[0] & ~0x1f) | (buf[0] & 0x1f);
      else if (regnum == tdep->frm_regnum)
	raw_buf[0] = (raw_buf[0] & ~(0x7 << 5)) | ((buf[0] & 0x7) << 5);

      regcache->raw_write (fcsr_regnum, raw_buf);
    }
  else
    gdb_assert_not_reached ("unknown pseudo register %d", regnum);
}

/* Implement the cannot_store_register gdbarch method.  The zero register
   (x0) is read-only on RISC-V.  */

static int
riscv_cannot_store_register (struct gdbarch *gdbarch, int regnum)
{
  return regnum == RISCV_ZERO_REGNUM;
}

/* Construct a type for 64-bit FP registers.  */

static struct type *
riscv_fpreg_d_type (struct gdbarch *gdbarch)
{
  riscv_gdbarch_tdep *tdep = gdbarch_tdep<riscv_gdbarch_tdep> (gdbarch);

  if (tdep->riscv_fpreg_d_type == nullptr)
    {
      const struct builtin_type *bt = builtin_type (gdbarch);

      /* The type we're building is this: */
#if 0
      union __gdb_builtin_type_fpreg_d
      {
	float f;
	double d;
      };
#endif

      struct type *t;

      t = arch_composite_type (gdbarch,
			       "__gdb_builtin_type_fpreg_d", TYPE_CODE_UNION);
      append_composite_type_field (t, "float", bt->builtin_float);
      append_composite_type_field (t, "double", bt->builtin_double);
      t->set_is_vector (true);
      t->set_name ("builtin_type_fpreg_d");
      tdep->riscv_fpreg_d_type = t;
    }

  return tdep->riscv_fpreg_d_type;
}

/* Implement the register_type gdbarch method.  This is installed as an
   for the override setup by TDESC_USE_REGISTERS, for most registers we
   delegate the type choice to the target description, but for a few
   registers we try to improve the types if the target description has
   taken a simplistic approach.  */

static struct type *
riscv_register_type (struct gdbarch *gdbarch, int regnum)
{
  struct type *type = tdesc_register_type (gdbarch, regnum);
  int xlen = riscv_isa_xlen (gdbarch);

  /* We want to perform some specific type "fixes" in cases where we feel
     that we really can do better than the target description.  For all
     other cases we just return what the target description says.  */
  if (riscv_is_fp_regno_p (regnum))
    {
      /* This spots the case for RV64 where the double is defined as
	 either 'ieee_double' or 'float' (which is the generic name that
	 converts to 'double' on 64-bit).  In these cases its better to
	 present the registers using a union type.  */
      int flen = riscv_isa_flen (gdbarch);
      if (flen == 8
	  && type->code () == TYPE_CODE_FLT
	  && type->length () == flen
	  && (strcmp (type->name (), "builtin_type_ieee_double") == 0
	      || strcmp (type->name (), "double") == 0))
	type = riscv_fpreg_d_type (gdbarch);
    }

  if ((regnum == gdbarch_pc_regnum (gdbarch)
       || regnum == RISCV_RA_REGNUM
       || regnum == RISCV_FP_REGNUM
       || regnum == RISCV_SP_REGNUM
       || regnum == RISCV_GP_REGNUM
       || regnum == RISCV_TP_REGNUM)
      && type->code () == TYPE_CODE_INT
      && type->length () == xlen)
    {
      /* This spots the case where some interesting registers are defined
	 as simple integers of the expected size, we force these registers
	 to be pointers as we believe that is more useful.  */
      if (regnum == gdbarch_pc_regnum (gdbarch)
	  || regnum == RISCV_RA_REGNUM)
	type = builtin_type (gdbarch)->builtin_func_ptr;
      else if (regnum == RISCV_FP_REGNUM
	       || regnum == RISCV_SP_REGNUM
	       || regnum == RISCV_GP_REGNUM
	       || regnum == RISCV_TP_REGNUM)
	type = builtin_type (gdbarch)->builtin_data_ptr;
    }

  return type;
}

/* Helper for riscv_print_registers_info, prints info for a single register
   REGNUM.  */

static void
riscv_print_one_register_info (struct gdbarch *gdbarch,
			       struct ui_file *file,
			       frame_info_ptr frame,
			       int regnum)
{
  const char *name = gdbarch_register_name (gdbarch, regnum);
  struct value *val;
  struct type *regtype;
  int print_raw_format;
  enum tab_stops { value_column_1 = 15 };

  gdb_puts (name, file);
  print_spaces (std::max<int> (1, value_column_1 - strlen (name)), file);

  try
    {
      val = value_of_register (regnum, frame);
      regtype = val->type ();
    }
  catch (const gdb_exception_error &ex)
    {
      /* Handle failure to read a register without interrupting the entire
	 'info registers' flow.  */
      gdb_printf (file, "%s\n", ex.what ());
      return;
    }

  print_raw_format = (val->entirely_available ()
		      && !val->optimized_out ());

  if (regtype->code () == TYPE_CODE_FLT
      || (regtype->code () == TYPE_CODE_UNION
	  && regtype->num_fields () == 2
	  && regtype->field (0).type ()->code () == TYPE_CODE_FLT
	  && regtype->field (1).type ()->code () == TYPE_CODE_FLT)
      || (regtype->code () == TYPE_CODE_UNION
	  && regtype->num_fields () == 3
	  && regtype->field (0).type ()->code () == TYPE_CODE_FLT
	  && regtype->field (1).type ()->code () == TYPE_CODE_FLT
	  && regtype->field (2).type ()->code () == TYPE_CODE_FLT))
    {
      struct value_print_options opts;
      const gdb_byte *valaddr = val->contents_for_printing ().data ();
      enum bfd_endian byte_order = type_byte_order (regtype);

      get_user_print_options (&opts);
      opts.deref_ref = true;

      common_val_print (val, file, 0, &opts, current_language);

      if (print_raw_format)
	{
	  gdb_printf (file, "\t(raw ");
	  print_hex_chars (file, valaddr, regtype->length (), byte_order,
			   true);
	  gdb_printf (file, ")");
	}
    }
  else
    {
      struct value_print_options opts;
      riscv_gdbarch_tdep *tdep = gdbarch_tdep<riscv_gdbarch_tdep> (gdbarch);

      /* Print the register in hex.  */
      get_formatted_print_options (&opts, 'x');
      opts.deref_ref = true;
      common_val_print (val, file, 0, &opts, current_language);

      if (print_raw_format)
	{
	  if (regnum == RISCV_CSR_MSTATUS_REGNUM)
	    {
	      LONGEST d;
	      int size = register_size (gdbarch, regnum);
	      unsigned xlen;

	      /* The SD field is always in the upper bit of MSTATUS, regardless
		 of the number of bits in MSTATUS.  */
	      d = value_as_long (val);
	      xlen = size * 8;
	      gdb_printf (file,
			  "\tSD:%X VM:%02X MXR:%X PUM:%X MPRV:%X XS:%X "
			  "FS:%X MPP:%x HPP:%X SPP:%X MPIE:%X HPIE:%X "
			  "SPIE:%X UPIE:%X MIE:%X HIE:%X SIE:%X UIE:%X",
			  (int) ((d >> (xlen - 1)) & 0x1),
			  (int) ((d >> 24) & 0x1f),
			  (int) ((d >> 19) & 0x1),
			  (int) ((d >> 18) & 0x1),
			  (int) ((d >> 17) & 0x1),
			  (int) ((d >> 15) & 0x3),
			  (int) ((d >> 13) & 0x3),
			  (int) ((d >> 11) & 0x3),
			  (int) ((d >> 9) & 0x3),
			  (int) ((d >> 8) & 0x1),
			  (int) ((d >> 7) & 0x1),
			  (int) ((d >> 6) & 0x1),
			  (int) ((d >> 5) & 0x1),
			  (int) ((d >> 4) & 0x1),
			  (int) ((d >> 3) & 0x1),
			  (int) ((d >> 2) & 0x1),
			  (int) ((d >> 1) & 0x1),
			  (int) ((d >> 0) & 0x1));
	    }
	  else if (regnum == RISCV_CSR_MISA_REGNUM)
	    {
	      int base;
	      unsigned xlen, i;
	      LONGEST d;
	      int size = register_size (gdbarch, regnum);

	      /* The MXL field is always in the upper two bits of MISA,
		 regardless of the number of bits in MISA.  Mask out other
		 bits to ensure we have a positive value.  */
	      d = value_as_long (val);
	      base = (d >> ((size * 8) - 2)) & 0x3;
	      xlen = 16;

	      for (; base > 0; base--)
		xlen *= 2;
	      gdb_printf (file, "\tRV%d", xlen);

	      for (i = 0; i < 26; i++)
		{
		  if (d & (1 << i))
		    gdb_printf (file, "%c", 'A' + i);
		}
	    }
	  else if (regnum == RISCV_CSR_FCSR_REGNUM
		   || regnum == tdep->fflags_regnum
		   || regnum == tdep->frm_regnum)
	    {
	      LONGEST d = value_as_long (val);

	      gdb_printf (file, "\t");
	      if (regnum != tdep->frm_regnum)
		gdb_printf (file,
			    "NV:%d DZ:%d OF:%d UF:%d NX:%d",
			    (int) ((d >> 4) & 0x1),
			    (int) ((d >> 3) & 0x1),
			    (int) ((d >> 2) & 0x1),
			    (int) ((d >> 1) & 0x1),
			    (int) ((d >> 0) & 0x1));

	      if (regnum != tdep->fflags_regnum)
		{
		  static const char * const sfrm[] =
		    {
		      _("RNE (round to nearest; ties to even)"),
		      _("RTZ (Round towards zero)"),
		      _("RDN (Round down towards -INF)"),
		      _("RUP (Round up towards +INF)"),
		      _("RMM (Round to nearest; ties to max magnitude)"),
		      _("INVALID[5]"),
		      _("INVALID[6]"),
		      /* A value of 0x7 indicates dynamic rounding mode when
			 used within an instructions rounding-mode field, but
			 is invalid within the FRM register.  */
		      _("INVALID[7] (Dynamic rounding mode)"),
		    };
		  int frm = ((regnum == RISCV_CSR_FCSR_REGNUM)
			     ? (d >> 5) : d) & 0x7;

		  gdb_printf (file, "%sFRM:%i [%s]",
			      (regnum == RISCV_CSR_FCSR_REGNUM
			       ? " " : ""),
			      frm, sfrm[frm]);
		}
	    }
	  else if (regnum == RISCV_PRIV_REGNUM)
	    {
	      LONGEST d;
	      uint8_t priv;

	      d = value_as_long (val);
	      priv = d & 0xff;

	      if (priv < 4)
		{
		  static const char * const sprv[] =
		    {
		      "User/Application",
		      "Supervisor",
		      "Hypervisor",
		      "Machine"
		    };
		  gdb_printf (file, "\tprv:%d [%s]",
			      priv, sprv[priv]);
		}
	      else
		gdb_printf (file, "\tprv:%d [INVALID]", priv);
	    }
	  else
	    {
	      /* If not a vector register, print it also according to its
		 natural format.  */
	      if (regtype->is_vector () == 0)
		{
		  get_user_print_options (&opts);
		  opts.deref_ref = true;
		  gdb_printf (file, "\t");
		  common_val_print (val, file, 0, &opts, current_language);
		}
	    }
	}
    }
  gdb_printf (file, "\n");
}

/* Return true if REGNUM is a valid CSR register.  The CSR register space
   is sparsely populated, so not every number is a named CSR.  */

static bool
riscv_is_regnum_a_named_csr (int regnum)
{
  gdb_assert (regnum >= RISCV_FIRST_CSR_REGNUM
	      && regnum <= RISCV_LAST_CSR_REGNUM);

  switch (regnum)
    {
#define DECLARE_CSR(name, num, class, define_ver, abort_ver) case RISCV_ ## num ## _REGNUM:
#include "opcode/riscv-opc.h"
#undef DECLARE_CSR
      return true;

    default:
      return false;
    }
}

/* Return true if REGNUM is an unknown CSR identified in
   riscv_tdesc_unknown_reg for GDBARCH.  */

static bool
riscv_is_unknown_csr (struct gdbarch *gdbarch, int regnum)
{
  riscv_gdbarch_tdep *tdep = gdbarch_tdep<riscv_gdbarch_tdep> (gdbarch);
  return (regnum >= tdep->unknown_csrs_first_regnum
	  && regnum < (tdep->unknown_csrs_first_regnum
		       + tdep->unknown_csrs_count));
}

/* Implement the register_reggroup_p gdbarch method.  Is REGNUM a member
   of REGGROUP?  */

static int
riscv_register_reggroup_p (struct gdbarch  *gdbarch, int regnum,
			   const struct reggroup *reggroup)
{
  riscv_gdbarch_tdep *tdep = gdbarch_tdep<riscv_gdbarch_tdep> (gdbarch);

  /* Used by 'info registers' and 'info registers <groupname>'.  */

  if (gdbarch_register_name (gdbarch, regnum)[0] == '\0')
    return 0;

  if (regnum > RISCV_LAST_REGNUM && regnum < gdbarch_num_regs (gdbarch))
    {
      /* Any extra registers from the CSR tdesc_feature (identified in
	 riscv_tdesc_unknown_reg) are removed from the save/restore groups
	 as some targets (QEMU) report CSRs which then can't be read and
	 having unreadable registers in the save/restore group breaks
	 things like inferior calls.

	 The unknown CSRs are also removed from the general group, and
	 added into both the csr and system group.  This is inline with the
	 known CSRs (see below).  */
      if (riscv_is_unknown_csr (gdbarch, regnum))
	{
	  if (reggroup == restore_reggroup || reggroup == save_reggroup
	       || reggroup == general_reggroup)
	    return 0;
	  else if (reggroup == system_reggroup || reggroup == csr_reggroup)
	    return 1;
	}

      /* This is some other unknown register from the target description.
	 In this case we trust whatever the target description says about
	 which groups this register should be in.  */
      int ret = tdesc_register_in_reggroup_p (gdbarch, regnum, reggroup);
      if (ret != -1)
	return ret;

      return default_register_reggroup_p (gdbarch, regnum, reggroup);
    }

  if (reggroup == all_reggroup)
    {
      if (regnum < RISCV_FIRST_CSR_REGNUM || regnum >= RISCV_PRIV_REGNUM)
	return 1;
      if (riscv_is_regnum_a_named_csr (regnum))
	return 1;
      return 0;
    }
  else if (reggroup == float_reggroup)
    return (riscv_is_fp_regno_p (regnum)
	    || regnum == RISCV_CSR_FCSR_REGNUM
	    || regnum == tdep->fflags_regnum
	    || regnum == tdep->frm_regnum);
  else if (reggroup == general_reggroup)
    return regnum < RISCV_FIRST_FP_REGNUM;
  else if (reggroup == restore_reggroup || reggroup == save_reggroup)
    {
      if (riscv_has_fp_regs (gdbarch))
	return (regnum <= RISCV_LAST_FP_REGNUM
		|| regnum == RISCV_CSR_FCSR_REGNUM
		|| regnum == tdep->fflags_regnum
		|| regnum == tdep->frm_regnum);
      else
	return regnum < RISCV_FIRST_FP_REGNUM;
    }
  else if (reggroup == system_reggroup || reggroup == csr_reggroup)
    {
      if (regnum == RISCV_PRIV_REGNUM)
	return 1;
      if (regnum < RISCV_FIRST_CSR_REGNUM || regnum > RISCV_LAST_CSR_REGNUM)
	return 0;
      if (riscv_is_regnum_a_named_csr (regnum))
	return 1;
      return 0;
    }
  else if (reggroup == vector_reggroup)
    return (regnum >= RISCV_V0_REGNUM && regnum <= RISCV_V31_REGNUM);
  else
    return 0;
}

/* Return the name for pseudo-register REGNUM for GDBARCH.  */

static const char *
riscv_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
{
  riscv_gdbarch_tdep *tdep = gdbarch_tdep<riscv_gdbarch_tdep> (gdbarch);

  if (regnum == tdep->fflags_regnum)
    return "fflags";
  else if (regnum == tdep->frm_regnum)
    return "frm";
  else
    gdb_assert_not_reached ("unknown pseudo register number %d", regnum);
}

/* Return the type for pseudo-register REGNUM for GDBARCH.  */

static struct type *
riscv_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
{
  riscv_gdbarch_tdep *tdep = gdbarch_tdep<riscv_gdbarch_tdep> (gdbarch);

  if (regnum == tdep->fflags_regnum || regnum == tdep->frm_regnum)
   return builtin_type (gdbarch)->builtin_int32;
  else
    gdb_assert_not_reached ("unknown pseudo register number %d", regnum);
}

/* Return true (non-zero) if pseudo-register REGNUM from GDBARCH is a
   member of REGGROUP, otherwise return false (zero).  */

static int
riscv_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
				  const struct reggroup *reggroup)
{
  /* The standard function will also work for pseudo-registers.  */
  return riscv_register_reggroup_p (gdbarch, regnum, reggroup);
}

/* Implement the print_registers_info gdbarch method.  This is used by
   'info registers' and 'info all-registers'.  */

static void
riscv_print_registers_info (struct gdbarch *gdbarch,
			    struct ui_file *file,
			    frame_info_ptr frame,
			    int regnum, int print_all)
{
  if (regnum != -1)
    {
      /* Print one specified register.  */
      if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
	error (_("Not a valid register for the current processor type"));
      riscv_print_one_register_info (gdbarch, file, frame, regnum);
    }
  else
    {
      const struct reggroup *reggroup;

      if (print_all)
	reggroup = all_reggroup;
      else
	reggroup = general_reggroup;

      for (regnum = 0; regnum < gdbarch_num_cooked_regs (gdbarch); ++regnum)
	{
	  /* Zero never changes, so might as well hide by default.  */
	  if (regnum == RISCV_ZERO_REGNUM && !print_all)
	    continue;

	  /* Registers with no name are not valid on this ISA.  */
	  if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
	    continue;

	  /* Is the register in the group we're interested in?  */
	  if (!gdbarch_register_reggroup_p (gdbarch, regnum, reggroup))
	    continue;

	  riscv_print_one_register_info (gdbarch, file, frame, regnum);
	}
    }
}

/* Class that handles one decoded RiscV instruction.  */

class riscv_insn
{
public:

  /* Enum of all the opcodes that GDB cares about during the prologue scan.  */
  enum opcode
    {
      /* Unknown value is used at initialisation time.  */
      UNKNOWN = 0,

      /* These instructions are all the ones we are interested in during the
	 prologue scan.  */
      ADD,
      ADDI,
      ADDIW,
      ADDW,
      AUIPC,
      LUI,
      LI,
      SD,
      SW,
      LD,
      LW,
      MV,
      /* These are needed for software breakpoint support.  */
      JAL,
      JALR,
      BEQ,
      BNE,
      BLT,
      BGE,
      BLTU,
      BGEU,
      /* These are needed for stepping over atomic sequences.  */
      LR,
      SC,
      /* This instruction is used to do a syscall.  */
      ECALL,

      /* Other instructions are not interesting during the prologue scan, and
	 are ignored.  */
      OTHER
    };

  riscv_insn ()
    : m_length (0),
      m_opcode (OTHER),
      m_rd (0),
      m_rs1 (0),
      m_rs2 (0)
  {
    /* Nothing.  */
  }

  void decode (struct gdbarch *gdbarch, CORE_ADDR pc);

  /* Get the length of the instruction in bytes.  */
  int length () const
  { return m_length; }

  /* Get the opcode for this instruction.  */
  enum opcode opcode () const
  { return m_opcode; }

  /* Get destination register field for this instruction.  This is only
     valid if the OPCODE implies there is such a field for this
     instruction.  */
  int rd () const
  { return m_rd; }

  /* Get the RS1 register field for this instruction.  This is only valid
     if the OPCODE implies there is such a field for this instruction.  */
  int rs1 () const
  { return m_rs1; }

  /* Get the RS2 register field for this instruction.  This is only valid
     if the OPCODE implies there is such a field for this instruction.  */
  int rs2 () const
  { return m_rs2; }

  /* Get the immediate for this instruction in signed form.  This is only
     valid if the OPCODE implies there is such a field for this
     instruction.  */
  int imm_signed () const
  { return m_imm.s; }

private:

  /* Extract 5 bit register field at OFFSET from instruction OPCODE.  */
  int decode_register_index (unsigned long opcode, int offset)
  {
    return (opcode >> offset) & 0x1F;
  }

  /* Extract 5 bit register field at OFFSET from instruction OPCODE.  */
  int decode_register_index_short (unsigned long opcode, int offset)
  {
    return ((opcode >> offset) & 0x7) + 8;
  }

  /* Helper for DECODE, decode 32-bit R-type instruction.  */
  void decode_r_type_insn (enum opcode opcode, ULONGEST ival)
  {
    m_opcode = opcode;
    m_rd = decode_register_index (ival, OP_SH_RD);
    m_rs1 = decode_register_index (ival, OP_SH_RS1);
    m_rs2 = decode_register_index (ival, OP_SH_RS2);
  }

  /* Helper for DECODE, decode 16-bit compressed R-type instruction.  */
  void decode_cr_type_insn (enum opcode opcode, ULONGEST ival)
  {
    m_opcode = opcode;
    m_rd = m_rs1 = decode_register_index (ival, OP_SH_CRS1S);
    m_rs2 = decode_register_index (ival, OP_SH_CRS2);
  }

  /* Helper for DECODE, decode 32-bit I-type instruction.  */
  void decode_i_type_insn (enum opcode opcode, ULONGEST ival)
  {
    m_opcode = opcode;
    m_rd = decode_register_index (ival, OP_SH_RD);
    m_rs1 = decode_register_index (ival, OP_SH_RS1);
    m_imm.s = EXTRACT_ITYPE_IMM (ival);
  }

  /* Helper for DECODE, decode 16-bit compressed I-type instruction.  Some
     of the CI instruction have a hard-coded rs1 register, while others
     just use rd for both the source and destination.  RS1_REGNUM, if
     passed, is the value to place in rs1, otherwise rd is duplicated into
     rs1.  */
  void decode_ci_type_insn (enum opcode opcode, ULONGEST ival,
			    gdb::optional<int> rs1_regnum = {})
  {
    m_opcode = opcode;
    m_rd = decode_register_index (ival, OP_SH_CRS1S);
    if (rs1_regnum.has_value ())
      m_rs1 = *rs1_regnum;
    else
      m_rs1 = m_rd;
    m_imm.s = EXTRACT_CITYPE_IMM (ival);
  }

  /* Helper for DECODE, decode 16-bit compressed CL-type instruction.  */
  void decode_cl_type_insn (enum opcode opcode, ULONGEST ival)
  {
    m_opcode = opcode;
    m_rd = decode_register_index_short (ival, OP_SH_CRS2S);
    m_rs1 = decode_register_index_short (ival, OP_SH_CRS1S);
    m_imm.s = EXTRACT_CLTYPE_IMM (ival);
  }

  /* Helper for DECODE, decode 32-bit S-type instruction.  */
  void decode_s_type_insn (enum opcode opcode, ULONGEST ival)
  {
    m_opcode = opcode;
    m_rs1 = decode_register_index (ival, OP_SH_RS1);
    m_rs2 = decode_register_index (ival, OP_SH_RS2);
    m_imm.s = EXTRACT_STYPE_IMM (ival);
  }

  /* Helper for DECODE, decode 16-bit CS-type instruction.  The immediate
     encoding is different for each CS format instruction, so extracting
     the immediate is left up to the caller, who should pass the extracted
     immediate value through in IMM.  */
  void decode_cs_type_insn (enum opcode opcode, ULONGEST ival, int imm)
  {
    m_opcode = opcode;
    m_imm.s = imm;
    m_rs1 = decode_register_index_short (ival, OP_SH_CRS1S);
    m_rs2 = decode_register_index_short (ival, OP_SH_CRS2S);
  }

  /* Helper for DECODE, decode 16-bit CSS-type instruction.  The immediate
     encoding is different for each CSS format instruction, so extracting
     the immediate is left up to the caller, who should pass the extracted
     immediate value through in IMM.  */
  void decode_css_type_insn (enum opcode opcode, ULONGEST ival, int imm)
  {
    m_opcode = opcode;
    m_imm.s = imm;
    m_rs1 = RISCV_SP_REGNUM;
    /* Not a compressed register number in this case.  */
    m_rs2 = decode_register_index (ival, OP_SH_CRS2);
  }

  /* Helper for DECODE, decode 32-bit U-type instruction.  */
  void decode_u_type_insn (enum opcode opcode, ULONGEST ival)
  {
    m_opcode = opcode;
    m_rd = decode_register_index (ival, OP_SH_RD);
    m_imm.s = EXTRACT_UTYPE_IMM (ival);
  }

  /* Helper for DECODE, decode 32-bit J-type instruction.  */
  void decode_j_type_insn (enum opcode opcode, ULONGEST ival)
  {
    m_opcode = opcode;
    m_rd = decode_register_index (ival, OP_SH_RD);
    m_imm.s = EXTRACT_JTYPE_IMM (ival);
  }

  /* Helper for DECODE, decode 32-bit J-type instruction.  */
  void decode_cj_type_insn (enum opcode opcode, ULONGEST ival)
  {
    m_opcode = opcode;
    m_imm.s = EXTRACT_CJTYPE_IMM (ival);
  }

  void decode_b_type_insn (enum opcode opcode, ULONGEST ival)
  {
    m_opcode = opcode;
    m_rs1 = decode_register_index (ival, OP_SH_RS1);
    m_rs2 = decode_register_index (ival, OP_SH_RS2);
    m_imm.s = EXTRACT_BTYPE_IMM (ival);
  }

  void decode_cb_type_insn (enum opcode opcode, ULONGEST ival)
  {
    m_opcode = opcode;
    m_rs1 = decode_register_index_short (ival, OP_SH_CRS1S);
    m_imm.s = EXTRACT_CBTYPE_IMM (ival);
  }

  /* Fetch instruction from target memory at ADDR, return the content of
     the instruction, and update LEN with the instruction length.  */
  static ULONGEST fetch_instruction (struct gdbarch *gdbarch,
				     CORE_ADDR addr, int *len);

  /* The length of the instruction in bytes.  Should be 2 or 4.  */
  int m_length;

  /* The instruction opcode.  */
  enum opcode m_opcode;

  /* The three possible registers an instruction might reference.  Not
     every instruction fills in all of these registers.  Which fields are
     valid depends on the opcode.  The naming of these fields matches the
     naming in the riscv isa manual.  */
  int m_rd;
  int m_rs1;
  int m_rs2;

  /* Possible instruction immediate.  This is only valid if the instruction
     format contains an immediate, not all instruction, whether this is
     valid depends on the opcode.  Despite only having one format for now
     the immediate is packed into a union, later instructions might require
     an unsigned formatted immediate, having the union in place now will
     reduce the need for code churn later.  */
  union riscv_insn_immediate
  {
    riscv_insn_immediate ()
      : s (0)
    {
      /* Nothing.  */
    }

    int s;
  } m_imm;
};

/* Fetch instruction from target memory at ADDR, return the content of the
   instruction, and update LEN with the instruction length.  */

ULONGEST
riscv_insn::fetch_instruction (struct gdbarch *gdbarch,
			       CORE_ADDR addr, int *len)
{
  gdb_byte buf[RISCV_MAX_INSN_LEN];
  int instlen, status;

  /* All insns are at least 16 bits.  */
  status = target_read_memory (addr, buf, 2);
  if (status)
    memory_error (TARGET_XFER_E_IO, addr);

  /* If we need more, grab it now.  */
  instlen = riscv_insn_length (buf[0]);
  gdb_assert (instlen <= sizeof (buf));
  *len = instlen;

  if (instlen > 2)
    {
      status = target_read_memory (addr + 2, buf + 2, instlen - 2);
      if (status)
	memory_error (TARGET_XFER_E_IO, addr + 2);
    }

  /* RISC-V Specification states instructions are always little endian */
  return extract_unsigned_integer (buf, instlen, BFD_ENDIAN_LITTLE);
}

/* Fetch from target memory an instruction at PC and decode it.  This can
   throw an error if the memory access fails, callers are responsible for
   handling this error if that is appropriate.  */

void
riscv_insn::decode (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  ULONGEST ival;

  /* Fetch the instruction, and the instructions length.  */
  ival = fetch_instruction (gdbarch, pc, &m_length);

  if (m_length == 4)
    {
      if (is_add_insn (ival))
	decode_r_type_insn (ADD, ival);
      else if (is_addw_insn (ival))
	decode_r_type_insn (ADDW, ival);
      else if (is_addi_insn (ival))
	decode_i_type_insn (ADDI, ival);
      else if (is_addiw_insn (ival))
	decode_i_type_insn (ADDIW, ival);
      else if (is_auipc_insn (ival))
	decode_u_type_insn (AUIPC, ival);
      else if (is_lui_insn (ival))
	decode_u_type_insn (LUI, ival);
      else if (is_sd_insn (ival))
	decode_s_type_insn (SD, ival);
      else if (is_sw_insn (ival))
	decode_s_type_insn (SW, ival);
      else if (is_jal_insn (ival))
	decode_j_type_insn (JAL, ival);
      else if (is_jalr_insn (ival))
	decode_i_type_insn (JALR, ival);
      else if (is_beq_insn (ival))
	decode_b_type_insn (BEQ, ival);
      else if (is_bne_insn (ival))
	decode_b_type_insn (BNE, ival);
      else if (is_blt_insn (ival))
	decode_b_type_insn (BLT, ival);
      else if (is_bge_insn (ival))
	decode_b_type_insn (BGE, ival);
      else if (is_bltu_insn (ival))
	decode_b_type_insn (BLTU, ival);
      else if (is_bgeu_insn (ival))
	decode_b_type_insn (BGEU, ival);
      else if (is_lr_w_insn (ival))
	decode_r_type_insn (LR, ival);
      else if (is_lr_d_insn (ival))
	decode_r_type_insn (LR, ival);
      else if (is_sc_w_insn (ival))
	decode_r_type_insn (SC, ival);
      else if (is_sc_d_insn (ival))
	decode_r_type_insn (SC, ival);
      else if (is_ecall_insn (ival))
	decode_i_type_insn (ECALL, ival);
      else if (is_ld_insn (ival))
	decode_i_type_insn (LD, ival);
      else if (is_lw_insn (ival))
	decode_i_type_insn (LW, ival);
      else
	/* None of the other fields are valid in this case.  */
	m_opcode = OTHER;
    }
  else if (m_length == 2)
    {
      int xlen = riscv_isa_xlen (gdbarch);

      /* C_ADD and C_JALR have the same opcode.  If RS2 is 0, then this is a
	 C_JALR.  So must try to match C_JALR first as it has more bits in
	 mask.  */
      if (is_c_jalr_insn (ival))
	decode_cr_type_insn (JALR, ival);
      else if (is_c_add_insn (ival))
	decode_cr_type_insn (ADD, ival);
      /* C_ADDW is RV64 and RV128 only.  */
      else if (xlen != 4 && is_c_addw_insn (ival))
	decode_cr_type_insn (ADDW, ival);
      else if (is_c_addi_insn (ival))
	decode_ci_type_insn (ADDI, ival);
      /* C_ADDIW and C_JAL have the same opcode.  C_ADDIW is RV64 and RV128
	 only and C_JAL is RV32 only.  */
      else if (xlen != 4 && is_c_addiw_insn (ival))
	decode_ci_type_insn (ADDIW, ival);
      else if (xlen == 4 && is_c_jal_insn (ival))
	decode_cj_type_insn (JAL, ival);
      /* C_ADDI16SP and C_LUI have the same opcode.  If RD is 2, then this is a
	 C_ADDI16SP.  So must try to match C_ADDI16SP first as it has more bits
	 in mask.  */
      else if (is_c_addi16sp_insn (ival))
	{
	  m_opcode = ADDI;
	  m_rd = m_rs1 = decode_register_index (ival, OP_SH_RD);
	  m_imm.s = EXTRACT_CITYPE_ADDI16SP_IMM (ival);
	}
      else if (is_c_addi4spn_insn (ival))
	{
	  m_opcode = ADDI;
	  m_rd = decode_register_index_short (ival, OP_SH_CRS2S);
	  m_rs1 = RISCV_SP_REGNUM;
	  m_imm.s = EXTRACT_CIWTYPE_ADDI4SPN_IMM (ival);
	}
      else if (is_c_lui_insn (ival))
	{
	  m_opcode = LUI;
	  m_rd = decode_register_index (ival, OP_SH_CRS1S);
	  m_imm.s = EXTRACT_CITYPE_LUI_IMM (ival);
	}
      else if (is_c_li_insn (ival))
	decode_ci_type_insn (LI, ival);
      /* C_SD and C_FSW have the same opcode.  C_SD is RV64 and RV128 only,
	 and C_FSW is RV32 only.  */
      else if (xlen != 4 && is_c_sd_insn (ival))
	decode_cs_type_insn (SD, ival, EXTRACT_CLTYPE_LD_IMM (ival));
      else if (is_c_sw_insn (ival))
	decode_cs_type_insn (SW, ival, EXTRACT_CLTYPE_LW_IMM (ival));
      else if (is_c_swsp_insn (ival))
	decode_css_type_insn (SW, ival, EXTRACT_CSSTYPE_SWSP_IMM (ival));
      else if (xlen != 4 && is_c_sdsp_insn (ival))
	decode_css_type_insn (SD, ival, EXTRACT_CSSTYPE_SDSP_IMM (ival));
      /* C_JR and C_MV have the same opcode.  If RS2 is 0, then this is a C_JR.
	 So must try to match C_JR first as it has more bits in mask.  */
      else if (is_c_jr_insn (ival))
	decode_cr_type_insn (JALR, ival);
      else if (is_c_mv_insn (ival))
	decode_cr_type_insn (MV, ival);
      else if (is_c_j_insn (ival))
	decode_cj_type_insn (JAL, ival);
      else if (is_c_beqz_insn (ival))
	decode_cb_type_insn (BEQ, ival);
      else if (is_c_bnez_insn (ival))
	decode_cb_type_insn (BNE, ival);
      else if (is_c_ld_insn (ival))
	decode_cl_type_insn (LD, ival);
      else if (is_c_lw_insn (ival))
	decode_cl_type_insn (LW, ival);
      else if (is_c_ldsp_insn (ival))
	decode_ci_type_insn (LD, ival, RISCV_SP_REGNUM);
      else if (is_c_lwsp_insn (ival))
	decode_ci_type_insn (LW, ival, RISCV_SP_REGNUM);
      else
	/* None of the other fields of INSN are valid in this case.  */
	m_opcode = OTHER;
    }
  else
    {
      /* 6 bytes or more.  If the instruction is longer than 8 bytes, we don't
	 have full instruction bits in ival.  At least, such long instructions
	 are not defined yet, so just ignore it.  */
      gdb_assert (m_length > 0 && m_length % 2 == 0);
      m_opcode = OTHER;
    }
}

/* Return true if INSN represents an instruction something like:

   ld fp,IMMEDIATE(sp)

   That is, a load from stack-pointer plus some immediate offset, with the
   result stored into the frame pointer.  We also accept 'lw' as well as
   'ld'.  */

static bool
is_insn_load_of_fp_from_sp (const struct riscv_insn &insn)
{
  return ((insn.opcode () == riscv_insn::LD
	   || insn.opcode () == riscv_insn::LW)
	  && insn.rd () == RISCV_FP_REGNUM
	  && insn.rs1 () == RISCV_SP_REGNUM);
}

/* Return true if INSN represents an instruction something like:

   add sp,sp,IMMEDIATE

   That is, an add of an immediate to the value in the stack pointer
   register, with the result stored back to the stack pointer register.  */

static bool
is_insn_addi_of_sp_to_sp (const struct riscv_insn &insn)
{
  return ((insn.opcode () == riscv_insn::ADDI
	   || insn.opcode () == riscv_insn::ADDIW)
	  && insn.rd () == RISCV_SP_REGNUM
	  && insn.rs1 () == RISCV_SP_REGNUM);
}

/* Is the instruction in code memory prior to address PC a load from stack
   instruction?  Return true if it is, otherwise, return false.

   This is a best effort that is used as part of the function prologue
   scanning logic.  With compressed instructions and arbitrary control
   flow in the inferior, we can never be certain what the instruction
   prior to PC is.

   This function first looks for a compressed instruction, then looks for
   a 32-bit non-compressed instruction.  */

static bool
previous_insn_is_load_fp_from_stack (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  struct riscv_insn insn;
  insn.decode (gdbarch, pc - 2);
  gdb_assert (insn.length () > 0);

  if (insn.length () != 2 || !is_insn_load_of_fp_from_sp (insn))
    {
      insn.decode (gdbarch, pc - 4);
      gdb_assert (insn.length () > 0);

      if (insn.length () != 4 || !is_insn_load_of_fp_from_sp (insn))
	return false;
    }

  riscv_unwinder_debug_printf
    ("previous instruction at %s (length %d) was 'ld'",
     core_addr_to_string (pc - insn.length ()), insn.length ());
  return true;
}

/* Is the instruction in code memory prior to address PC an add of an
   immediate to the stack pointer, with the result being written back into
   the stack pointer?  Return true and set *PREV_PC to the address of the
   previous instruction if we believe the previous instruction is such an
   add, otherwise return false and *PREV_PC is undefined.

   This is a best effort that is used as part of the function prologue
   scanning logic.  With compressed instructions and arbitrary control
   flow in the inferior, we can never be certain what the instruction
   prior to PC is.

   This function first looks for a compressed instruction, then looks for
   a 32-bit non-compressed instruction.  */

static bool
previous_insn_is_add_imm_to_sp (struct gdbarch *gdbarch, CORE_ADDR pc,
				CORE_ADDR *prev_pc)
{
  struct riscv_insn insn;
  insn.decode (gdbarch, pc - 2);
  gdb_assert (insn.length () > 0);

  if (insn.length () != 2 || !is_insn_addi_of_sp_to_sp (insn))
    {
      insn.decode (gdbarch, pc - 4);
      gdb_assert (insn.length () > 0);

      if (insn.length () != 4 || !is_insn_addi_of_sp_to_sp (insn))
	return false;
    }

  riscv_unwinder_debug_printf
    ("previous instruction at %s (length %d) was 'add'",
     core_addr_to_string (pc - insn.length ()), insn.length ());
  *prev_pc = pc - insn.length ();
  return true;
}

/* Try to spot when PC is located in an exit sequence for a particular
   function.  Detecting an exit sequence involves a limited amount of
   scanning backwards through the disassembly, and so, when considering
   compressed instructions, we can never be certain that we have
   disassembled the preceding instructions correctly.  On top of that, we
   can't be certain that the inferior arrived at PC by passing through the
   preceding instructions.

   With all that said, we know that using prologue scanning to figure a
   functions unwind information starts to fail when we consider returns
   from an instruction -- we must pass through some instructions that
   restore the previous state prior to the final return instruction, and
   with state partially restored, our prologue derived unwind information
   is no longer valid.

   This function then, aims to spot instruction sequences like this:

     ld     fp, IMM_1(sp)
     add    sp, sp, IMM_2
     ret

   The first instruction restores the previous frame-pointer value, the
   second restores the previous stack pointer value, and the final
   instruction is the actual return.

   We need to consider that some or all of these instructions might be
   compressed.

   This function makes the assumption that, when the inferior reaches the
   'ret' instruction the stack pointer will have been restored to its value
   on entry to this function.  This assumption will be true in most well
   formed programs.

   Return true if we detect that we are in such an instruction sequence,
   that is PC points at one of the three instructions given above.  In this
   case, set *OFFSET to IMM_2 if PC points to either of the first
   two instructions (the 'ld' or 'add'), otherwise set *OFFSET to 0.

   Otherwise, this function returns false, and the contents of *OFFSET are
   undefined.  */

static bool
riscv_detect_end_of_function (struct gdbarch *gdbarch, CORE_ADDR pc,
			      int *offset)
{
  *offset = 0;

  /* We only want to scan a maximum of 3 instructions.  */
  for (int i = 0; i < 3; ++i)
    {
      struct riscv_insn insn;
      insn.decode (gdbarch, pc);
      gdb_assert (insn.length () > 0);

      if (is_insn_load_of_fp_from_sp (insn))
	{
	  riscv_unwinder_debug_printf ("found 'ld' instruction at %s",
				       core_addr_to_string (pc));
	  if (i > 0)
	    return false;
	  pc += insn.length ();
	}
      else if (is_insn_addi_of_sp_to_sp (insn))
	{
	  riscv_unwinder_debug_printf ("found 'add' instruction at %s",
				       core_addr_to_string (pc));
	  if (i > 1)
	    return false;
	  if (i == 0)
	    {
	      if (!previous_insn_is_load_fp_from_stack (gdbarch, pc))
		return false;

	      i = 1;
	    }
	  *offset = insn.imm_signed ();
	  pc += insn.length ();
	}
      else if (insn.opcode () == riscv_insn::JALR
	       && insn.rs1 () == RISCV_RA_REGNUM
	       && insn.rs2 () == RISCV_ZERO_REGNUM)
	{
	  riscv_unwinder_debug_printf ("found 'ret' instruction at %s",
				       core_addr_to_string (pc));
	  gdb_assert (i != 1);
	  if (i == 0)
	    {
	      CORE_ADDR prev_pc;
	      if (!previous_insn_is_add_imm_to_sp (gdbarch, pc, &prev_pc))
		return false;
	      if (!previous_insn_is_load_fp_from_stack (gdbarch, prev_pc))
		return false;
	      i = 2;
	    }

	  pc += insn.length ();
	}
      else
	return false;
    }

  return true;
}

/* The prologue scanner.  This is currently only used for skipping the
   prologue of a function when the DWARF information is not sufficient.
   However, it is written with filling of the frame cache in mind, which
   is why different groups of stack setup instructions are split apart
   during the core of the inner loop.  In the future, the intention is to
   extend this function to fully support building up a frame cache that
   can unwind register values when there is no DWARF information.  */

static CORE_ADDR
riscv_scan_prologue (struct gdbarch *gdbarch,
		     CORE_ADDR start_pc, CORE_ADDR end_pc,
		     struct riscv_unwind_cache *cache)
{
  CORE_ADDR cur_pc, next_pc, after_prologue_pc;
  CORE_ADDR original_end_pc = end_pc;
  CORE_ADDR end_prologue_addr = 0;

  /* Find an upper limit on the function prologue using the debug
     information.  If the debug information could not be used to provide
     that bound, then use an arbitrary large number as the upper bound.  */
  after_prologue_pc = skip_prologue_using_sal (gdbarch, start_pc);
  if (after_prologue_pc == 0)
    after_prologue_pc = start_pc + 100;   /* Arbitrary large number.  */
  if (after_prologue_pc < end_pc)
    end_pc = after_prologue_pc;

  pv_t regs[RISCV_NUM_INTEGER_REGS]; /* Number of GPR.  */
  for (int regno = 0; regno < RISCV_NUM_INTEGER_REGS; regno++)
    regs[regno] = pv_register (regno, 0);
  pv_area stack (RISCV_SP_REGNUM, gdbarch_addr_bit (gdbarch));

  riscv_unwinder_debug_printf ("function starting at %s (limit %s)",
			       core_addr_to_string (start_pc),
			       core_addr_to_string (end_pc));

  for (next_pc = cur_pc = start_pc; cur_pc < end_pc; cur_pc = next_pc)
    {
      struct riscv_insn insn;

      /* Decode the current instruction, and decide where the next
	 instruction lives based on the size of this instruction.  */
      insn.decode (gdbarch, cur_pc);
      gdb_assert (insn.length () > 0);
      next_pc = cur_pc + insn.length ();

      /* Look for common stack adjustment insns.  */
      if (is_insn_addi_of_sp_to_sp (insn))
	{
	  /* Handle: addi sp, sp, -i
	     or:     addiw sp, sp, -i  */
	  gdb_assert (insn.rd () < RISCV_NUM_INTEGER_REGS);
	  gdb_assert (insn.rs1 () < RISCV_NUM_INTEGER_REGS);
	  regs[insn.rd ()]
	    = pv_add_constant (regs[insn.rs1 ()], insn.imm_signed ());
	}
      else if ((insn.opcode () == riscv_insn::SW
		|| insn.opcode () == riscv_insn::SD)
	       && (insn.rs1 () == RISCV_SP_REGNUM
		   || insn.rs1 () == RISCV_FP_REGNUM))
	{
	  /* Handle: sw reg, offset(sp)
	     or:     sd reg, offset(sp)
	     or:     sw reg, offset(s0)
	     or:     sd reg, offset(s0)  */
	  /* Instruction storing a register onto the stack.  */
	  gdb_assert (insn.rs1 () < RISCV_NUM_INTEGER_REGS);
	  gdb_assert (insn.rs2 () < RISCV_NUM_INTEGER_REGS);
	  stack.store (pv_add_constant (regs[insn.rs1 ()], insn.imm_signed ()),
			(insn.opcode () == riscv_insn::SW ? 4 : 8),
			regs[insn.rs2 ()]);
	}
      else if (insn.opcode () == riscv_insn::ADDI
	       && insn.rd () == RISCV_FP_REGNUM
	       && insn.rs1 () == RISCV_SP_REGNUM)
	{
	  /* Handle: addi s0, sp, size  */
	  /* Instructions setting up the frame pointer.  */
	  gdb_assert (insn.rd () < RISCV_NUM_INTEGER_REGS);
	  gdb_assert (insn.rs1 () < RISCV_NUM_INTEGER_REGS);
	  regs[insn.rd ()]
	    = pv_add_constant (regs[insn.rs1 ()], insn.imm_signed ());
	}
      else if ((insn.opcode () == riscv_insn::ADD
		|| insn.opcode () == riscv_insn::ADDW)
	       && insn.rd () == RISCV_FP_REGNUM
	       && insn.rs1 () == RISCV_SP_REGNUM
	       && insn.rs2 () == RISCV_ZERO_REGNUM)
	{
	  /* Handle: add s0, sp, 0
	     or:     addw s0, sp, 0  */
	  /* Instructions setting up the frame pointer.  */
	  gdb_assert (insn.rd () < RISCV_NUM_INTEGER_REGS);
	  gdb_assert (insn.rs1 () < RISCV_NUM_INTEGER_REGS);
	  regs[insn.rd ()] = pv_add_constant (regs[insn.rs1 ()], 0);
	}
      else if ((insn.opcode () == riscv_insn::ADDI
		&& insn.rd () == RISCV_ZERO_REGNUM
		&& insn.rs1 () == RISCV_ZERO_REGNUM
		&& insn.imm_signed () == 0))
	{
	  /* Handle: add x0, x0, 0   (NOP)  */
	}
      else if (insn.opcode () == riscv_insn::AUIPC)
	{
	  gdb_assert (insn.rd () < RISCV_NUM_INTEGER_REGS);
	  regs[insn.rd ()] = pv_constant (cur_pc + insn.imm_signed ());
	}
      else if (insn.opcode () == riscv_insn::LUI
	       || insn.opcode () == riscv_insn::LI)
	{
	  /* Handle: lui REG, n
	     or:     li  REG, n  */
	  gdb_assert (insn.rd () < RISCV_NUM_INTEGER_REGS);
	  regs[insn.rd ()] = pv_constant (insn.imm_signed ());
	}
      else if (insn.opcode () == riscv_insn::ADDI)
	{
	  /* Handle: addi REG1, REG2, IMM  */
	  gdb_assert (insn.rd () < RISCV_NUM_INTEGER_REGS);
	  gdb_assert (insn.rs1 () < RISCV_NUM_INTEGER_REGS);
	  regs[insn.rd ()]
	    = pv_add_constant (regs[insn.rs1 ()], insn.imm_signed ());
	}
      else if (insn.opcode () == riscv_insn::ADD)
	{
	  /* Handle: add REG1, REG2, REG3  */
	  gdb_assert (insn.rd () < RISCV_NUM_INTEGER_REGS);
	  gdb_assert (insn.rs1 () < RISCV_NUM_INTEGER_REGS);
	  gdb_assert (insn.rs2 () < RISCV_NUM_INTEGER_REGS);
	  regs[insn.rd ()] = pv_add (regs[insn.rs1 ()], regs[insn.rs2 ()]);
	}
      else if (insn.opcode () == riscv_insn::LD
	       || insn.opcode () == riscv_insn::LW)
	{
	  /* Handle: ld reg, offset(rs1)
	     or:     c.ld reg, offset(rs1)
	     or:     lw reg, offset(rs1)
	     or:     c.lw reg, offset(rs1)  */
	  gdb_assert (insn.rd () < RISCV_NUM_INTEGER_REGS);
	  gdb_assert (insn.rs1 () < RISCV_NUM_INTEGER_REGS);
	  regs[insn.rd ()]
	    = stack.fetch (pv_add_constant (regs[insn.rs1 ()],
					    insn.imm_signed ()),
			   (insn.opcode () == riscv_insn::LW ? 4 : 8));
	}
      else if (insn.opcode () == riscv_insn::MV)
	{
	  /* Handle: c.mv RD, RS2  */
	  gdb_assert (insn.rd () < RISCV_NUM_INTEGER_REGS);
	  gdb_assert (insn.rs2 () < RISCV_NUM_INTEGER_REGS);
	  gdb_assert (insn.rs2 () > 0);
	  regs[insn.rd ()] = regs[insn.rs2 ()];
	}
      else
	{
	  end_prologue_addr = cur_pc;
	  break;
	}
    }

  if (end_prologue_addr == 0)
    end_prologue_addr = cur_pc;

  riscv_unwinder_debug_printf ("end of prologue at %s",
			       core_addr_to_string (end_prologue_addr));

  if (cache != NULL)
    {
      /* Figure out if it is a frame pointer or just a stack pointer.  Also
	 the offset held in the pv_t is from the original register value to
	 the current value, which for a grows down stack means a negative
	 value.  The FRAME_BASE_OFFSET is the negation of this, how to get
	 from the current value to the original value.  */
      if (pv_is_register (regs[RISCV_FP_REGNUM], RISCV_SP_REGNUM))
	{
	  cache->frame_base_reg = RISCV_FP_REGNUM;
	  cache->frame_base_offset = -regs[RISCV_FP_REGNUM].k;
	}
      else
	{
	  cache->frame_base_reg = RISCV_SP_REGNUM;
	  cache->frame_base_offset = -regs[RISCV_SP_REGNUM].k;
	}

      /* Check to see if we are located near to a return instruction in
	 this function.  If we are then the one or both of the stack
	 pointer and frame pointer may have been restored to their previous
	 value.  If we can spot this situation then we can adjust which
	 register and offset we use for the frame base.  */
      if (cache->frame_base_reg != RISCV_SP_REGNUM
	  || cache->frame_base_offset != 0)
	{
	  int sp_offset;

	  if (riscv_detect_end_of_function (gdbarch, original_end_pc,
					    &sp_offset))
	    {
	      riscv_unwinder_debug_printf
		("in function epilogue at %s, stack offset is %d",
		 core_addr_to_string (original_end_pc), sp_offset);
	      cache->frame_base_reg= RISCV_SP_REGNUM;
	      cache->frame_base_offset = sp_offset;
	    }
	}

      /* Assign offset from old SP to all saved registers.  As we don't
	 have the previous value for the frame base register at this
	 point, we store the offset as the address in the trad_frame, and
	 then convert this to an actual address later.  */
      for (int i = 0; i <= RISCV_NUM_INTEGER_REGS; i++)
	{
	  CORE_ADDR offset;
	  if (stack.find_reg (gdbarch, i, &offset))
	    {
	      /* Display OFFSET as a signed value, the offsets are from the
		 frame base address to the registers location on the stack,
		 with a descending stack this means the offsets are always
		 negative.  */
	      riscv_unwinder_debug_printf ("register $%s at stack offset %s",
					   gdbarch_register_name (gdbarch, i),
					   plongest ((LONGEST) offset));
	      cache->regs[i].set_addr (offset);
	    }
	}
    }

  return end_prologue_addr;
}

/* Implement the riscv_skip_prologue gdbarch method.  */

static CORE_ADDR
riscv_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  CORE_ADDR func_addr;

  /* See if we can determine the end of the prologue via the symbol
     table.  If so, then return either PC, or the PC after the
     prologue, whichever is greater.  */
  if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
    {
      CORE_ADDR post_prologue_pc
	= skip_prologue_using_sal (gdbarch, func_addr);

      if (post_prologue_pc != 0)
	return std::max (pc, post_prologue_pc);
    }

  /* Can't determine prologue from the symbol table, need to examine
     instructions.  Pass -1 for the end address to indicate the prologue
     scanner can scan as far as it needs to find the end of the prologue.  */
  return riscv_scan_prologue (gdbarch, pc, ((CORE_ADDR) -1), NULL);
}

/* Implement the gdbarch push dummy code callback.  */

static CORE_ADDR
riscv_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
		       CORE_ADDR funaddr, struct value **args, int nargs,
		       struct type *value_type, CORE_ADDR *real_pc,
		       CORE_ADDR *bp_addr, struct regcache *regcache)
{
  /* A nop instruction is 'add x0, x0, 0'.  */
  static const gdb_byte nop_insn[] = { 0x13, 0x00, 0x00, 0x00 };

  /* Allocate space for a breakpoint, and keep the stack correctly
     aligned.  The space allocated here must be at least big enough to
     accommodate the NOP_INSN defined above.  */
  sp -= 16;
  *bp_addr = sp;
  *real_pc = funaddr;

  /* When we insert a breakpoint we select whether to use a compressed
     breakpoint or not based on the existing contents of the memory.

     If the breakpoint is being placed onto the stack as part of setting up
     for an inferior call from GDB, then the existing stack contents may
     randomly appear to be a compressed instruction, causing GDB to insert
     a compressed breakpoint.  If this happens on a target that does not
     support compressed instructions then this could cause problems.

     To prevent this issue we write an uncompressed nop onto the stack at
     the location where the breakpoint will be inserted.  In this way we
     ensure that we always use an uncompressed breakpoint, which should
     work on all targets.

     We call TARGET_WRITE_MEMORY here so that if the write fails we don't
     throw an exception.  Instead we ignore the error and move on.  The
     assumption is that either GDB will error later when actually trying to
     insert a software breakpoint, or GDB will use hardware breakpoints and
     there will be no need to write to memory later.  */
  int status = target_write_memory (*bp_addr, nop_insn, sizeof (nop_insn));

  riscv_infcall_debug_printf ("writing %s-byte nop instruction to %s: %s",
			      plongest (sizeof (nop_insn)),
			      paddress (gdbarch, *bp_addr),
			      (status == 0 ? "success" : "failed"));

  return sp;
}

/* Implement the gdbarch type alignment method, overrides the generic
   alignment algorithm for anything that is RISC-V specific.  */

static ULONGEST
riscv_type_align (gdbarch *gdbarch, type *type)
{
  type = check_typedef (type);
  if (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
    return std::min (type->length (), (ULONGEST) BIGGEST_ALIGNMENT);

  /* Anything else will be aligned by the generic code.  */
  return 0;
}

/* Holds information about a single argument either being passed to an
   inferior function, or returned from an inferior function.  This includes
   information about the size, type, etc of the argument, and also
   information about how the argument will be passed (or returned).  */

struct riscv_arg_info
{
  /* Contents of the argument.  */
  const gdb_byte *contents;

  /* Length of argument.  */
  int length;

  /* Alignment required for an argument of this type.  */
  int align;

  /* The type for this argument.  */
  struct type *type;

  /* Each argument can have either 1 or 2 locations assigned to it.  Each
     location describes where part of the argument will be placed.  The
     second location is valid based on the LOC_TYPE and C_LENGTH fields
     of the first location (which is always valid).  */
  struct location
  {
    /* What type of location this is.  */
    enum location_type
      {
       /* Argument passed in a register.  */
       in_reg,

       /* Argument passed as an on stack argument.  */
       on_stack,

       /* Argument passed by reference.  The second location is always
	  valid for a BY_REF argument, and describes where the address
	  of the BY_REF argument should be placed.  */
       by_ref
      } loc_type;

    /* Information that depends on the location type.  */
    union
    {
      /* Which register number to use.  */
      int regno;

      /* The offset into the stack region.  */
      int offset;
    } loc_data;

    /* The length of contents covered by this location.  If this is less
       than the total length of the argument, then the second location
       will be valid, and will describe where the rest of the argument
       will go.  */
    int c_length;

    /* The offset within CONTENTS for this part of the argument.  This can
       be non-zero even for the first part (the first field of a struct can
       have a non-zero offset due to padding).  For the second part of the
       argument, this might be the C_LENGTH value of the first part,
       however, if we are passing a structure in two registers, and there's
       is padding between the first and second field, then this offset
       might be greater than the length of the first argument part.  When
       the second argument location is not holding part of the argument
       value, but is instead holding the address of a reference argument,
       then this offset will be set to 0.  */
    int c_offset;
  } argloc[2];

  /* TRUE if this is an unnamed argument.  */
  bool is_unnamed;
};

/* Information about a set of registers being used for passing arguments as
   part of a function call.  The register set must be numerically
   sequential from NEXT_REGNUM to LAST_REGNUM.  The register set can be
   disabled from use by setting NEXT_REGNUM greater than LAST_REGNUM.  */

struct riscv_arg_reg
{
  riscv_arg_reg (int first, int last)
    : next_regnum (first),
      last_regnum (last)
  {
    /* Nothing.  */
  }

  /* The GDB register number to use in this set.  */
  int next_regnum;

  /* The last GDB register number to use in this set.  */
  int last_regnum;
};

/* Arguments can be passed as on stack arguments, or by reference.  The
   on stack arguments must be in a continuous region starting from $sp,
   while the by reference arguments can be anywhere, but we'll put them
   on the stack after (at higher address) the on stack arguments.

   This might not be the right approach to take.  The ABI is clear that
   an argument passed by reference can be modified by the callee, which
   us placing the argument (temporarily) onto the stack will not achieve
   (changes will be lost).  There's also the possibility that very large
   arguments could overflow the stack.

   This struct is used to track offset into these two areas for where
   arguments are to be placed.  */
struct riscv_memory_offsets
{
  riscv_memory_offsets ()
    : arg_offset (0),
      ref_offset (0)
  {
    /* Nothing.  */
  }

  /* Offset into on stack argument area.  */
  int arg_offset;

  /* Offset into the pass by reference area.  */
  int ref_offset;
};

/* Holds information about where arguments to a call will be placed.  This
   is updated as arguments are added onto the call, and can be used to
   figure out where the next argument should be placed.  */

struct riscv_call_info
{
  riscv_call_info (struct gdbarch *gdbarch)
    : int_regs (RISCV_A0_REGNUM, RISCV_A0_REGNUM + 7),
      float_regs (RISCV_FA0_REGNUM, RISCV_FA0_REGNUM + 7)
  {
    xlen = riscv_abi_xlen (gdbarch);
    flen = riscv_abi_flen (gdbarch);

    /* Reduce the number of integer argument registers when using the
       embedded abi (i.e. rv32e).  */
    if (riscv_abi_embedded (gdbarch))
      int_regs.last_regnum = RISCV_A0_REGNUM + 5;

    /* Disable use of floating point registers if needed.  */
    if (!riscv_has_fp_abi (gdbarch))
      float_regs.next_regnum = float_regs.last_regnum + 1;
  }

  /* Track the memory areas used for holding in-memory arguments to a
     call.  */
  struct riscv_memory_offsets memory;

  /* Holds information about the next integer register to use for passing
     an argument.  */
  struct riscv_arg_reg int_regs;

  /* Holds information about the next floating point register to use for
     passing an argument.  */
  struct riscv_arg_reg float_regs;

  /* The XLEN and FLEN are copied in to this structure for convenience, and
     are just the results of calling RISCV_ABI_XLEN and RISCV_ABI_FLEN.  */
  int xlen;
  int flen;
};

/* Return the number of registers available for use as parameters in the
   register set REG.  Returned value can be 0 or more.  */

static int
riscv_arg_regs_available (struct riscv_arg_reg *reg)
{
  if (reg->next_regnum > reg->last_regnum)
    return 0;

  return (reg->last_regnum - reg->next_regnum + 1);
}

/* If there is at least one register available in the register set REG then
   the next register from REG is assigned to LOC and the length field of
   LOC is updated to LENGTH.  The register set REG is updated to indicate
   that the assigned register is no longer available and the function
   returns true.

   If there are no registers available in REG then the function returns
   false, and LOC and REG are unchanged.  */

static bool
riscv_assign_reg_location (struct riscv_arg_info::location *loc,
			   struct riscv_arg_reg *reg,
			   int length, int offset)
{
  if (reg->next_regnum <= reg->last_regnum)
    {
      loc->loc_type = riscv_arg_info::location::in_reg;
      loc->loc_data.regno = reg->next_regnum;
      reg->next_regnum++;
      loc->c_length = length;
      loc->c_offset = offset;
      return true;
    }

  return false;
}

/* Assign LOC a location as the next stack parameter, and update MEMORY to
   record that an area of stack has been used to hold the parameter
   described by LOC.

   The length field of LOC is updated to LENGTH, the length of the
   parameter being stored, and ALIGN is the alignment required by the
   parameter, which will affect how memory is allocated out of MEMORY.  */

static void
riscv_assign_stack_location (struct riscv_arg_info::location *loc,
			     struct riscv_memory_offsets *memory,
			     int length, int align)
{
  loc->loc_type = riscv_arg_info::location::on_stack;
  memory->arg_offset
    = align_up (memory->arg_offset, align);
  loc->loc_data.offset = memory->arg_offset;
  memory->arg_offset += length;
  loc->c_length = length;

  /* Offset is always 0, either we're the first location part, in which
     case we're reading content from the start of the argument, or we're
     passing the address of a reference argument, so 0.  */
  loc->c_offset = 0;
}

/* Update AINFO, which describes an argument that should be passed or
   returned using the integer ABI.  The argloc fields within AINFO are
   updated to describe the location in which the argument will be passed to
   a function, or returned from a function.

   The CINFO structure contains the ongoing call information, the holds
   information such as which argument registers are remaining to be
   assigned to parameter, and how much memory has been used by parameters
   so far.

   By examining the state of CINFO a suitable location can be selected,
   and assigned to AINFO.  */

static void
riscv_call_arg_scalar_int (struct riscv_arg_info *ainfo,
			   struct riscv_call_info *cinfo)
{
  if (TYPE_HAS_DYNAMIC_LENGTH (ainfo->type)
      || ainfo->length > (2 * cinfo->xlen))
    {
      /* Argument is going to be passed by reference.  */
      ainfo->argloc[0].loc_type
	= riscv_arg_info::location::by_ref;
      cinfo->memory.ref_offset
	= align_up (cinfo->memory.ref_offset, ainfo->align);
      ainfo->argloc[0].loc_data.offset = cinfo->memory.ref_offset;
      cinfo->memory.ref_offset += ainfo->length;
      ainfo->argloc[0].c_length = ainfo->length;

      /* The second location for this argument is given over to holding the
	 address of the by-reference data.  Pass 0 for the offset as this
	 is not part of the actual argument value.  */
      if (!riscv_assign_reg_location (&ainfo->argloc[1],
				      &cinfo->int_regs,
				      cinfo->xlen, 0))
	riscv_assign_stack_location (&ainfo->argloc[1],
				     &cinfo->memory, cinfo->xlen,
				     cinfo->xlen);
    }
  else
    {
      int len = std::min (ainfo->length, cinfo->xlen);
      int align = std::max (ainfo->align, cinfo->xlen);

      /* Unnamed arguments in registers that require 2*XLEN alignment are
	 passed in an aligned register pair.  */
      if (ainfo->is_unnamed && (align == cinfo->xlen * 2)
	  && cinfo->int_regs.next_regnum & 1)
	cinfo->int_regs.next_regnum++;

      if (!riscv_assign_reg_location (&ainfo->argloc[0],
				      &cinfo->int_regs, len, 0))
	riscv_assign_stack_location (&ainfo->argloc[0],
				     &cinfo->memory, len, align);

      if (len < ainfo->length)
	{
	  len = ainfo->length - len;
	  if (!riscv_assign_reg_location (&ainfo->argloc[1],
					  &cinfo->int_regs, len,
					  cinfo->xlen))
	    riscv_assign_stack_location (&ainfo->argloc[1],
					 &cinfo->memory, len, cinfo->xlen);
	}
    }
}

/* Like RISCV_CALL_ARG_SCALAR_INT, except the argument described by AINFO
   is being passed with the floating point ABI.  */

static void
riscv_call_arg_scalar_float (struct riscv_arg_info *ainfo,
			     struct riscv_call_info *cinfo)
{
  if (ainfo->length > cinfo->flen || ainfo->is_unnamed)
    return riscv_call_arg_scalar_int (ainfo, cinfo);
  else
    {
      if (!riscv_assign_reg_location (&ainfo->argloc[0],
				      &cinfo->float_regs,
				      ainfo->length, 0))
	return riscv_call_arg_scalar_int (ainfo, cinfo);
    }
}

/* Like RISCV_CALL_ARG_SCALAR_INT, except the argument described by AINFO
   is a complex floating point argument, and is therefore handled
   differently to other argument types.  */

static void
riscv_call_arg_complex_float (struct riscv_arg_info *ainfo,
			      struct riscv_call_info *cinfo)
{
  if (ainfo->length <= (2 * cinfo->flen)
      && riscv_arg_regs_available (&cinfo->float_regs) >= 2
      && !ainfo->is_unnamed)
    {
      bool result;
      int len = ainfo->length / 2;

      result = riscv_assign_reg_location (&ainfo->argloc[0],
					  &cinfo->float_regs, len, 0);
      gdb_assert (result);

      result = riscv_assign_reg_location (&ainfo->argloc[1],
					  &cinfo->float_regs, len, len);
      gdb_assert (result);
    }
  else
    return riscv_call_arg_scalar_int (ainfo, cinfo);
}

/* A structure used for holding information about a structure type within
   the inferior program.  The RiscV ABI has special rules for handling some
   structures with a single field or with two fields.  The counting of
   fields here is done after flattening out all nested structures.  */

class riscv_struct_info
{
public:
  riscv_struct_info ()
    : m_number_of_fields (0),
      m_types { nullptr, nullptr },
      m_offsets { 0, 0 }
  {
    /* Nothing.  */
  }

  /* Analyse TYPE descending into nested structures, count the number of
     scalar fields and record the types of the first two fields found.  */
  void analyse (struct type *type)
  {
    analyse_inner (type, 0);
  }

  /* The number of scalar fields found in the analysed type.  This is
     currently only accurate if the value returned is 0, 1, or 2 as the
     analysis stops counting when the number of fields is 3.  This is
     because the RiscV ABI only has special cases for 1 or 2 fields,
     anything else we just don't care about.  */
  int number_of_fields () const
  { return m_number_of_fields; }

  /* Return the type for scalar field INDEX within the analysed type.  Will
     return nullptr if there is no field at that index.  Only INDEX values
     0 and 1 can be requested as the RiscV ABI only has special cases for
     structures with 1 or 2 fields.  */
  struct type *field_type (int index) const
  {
    gdb_assert (index < (sizeof (m_types) / sizeof (m_types[0])));
    return m_types[index];
  }

  /* Return the offset of scalar field INDEX within the analysed type. Will
     return 0 if there is no field at that index.  Only INDEX values 0 and
     1 can be requested as the RiscV ABI only has special cases for
     structures with 1 or 2 fields.  */
  int field_offset (int index) const
  {
    gdb_assert (index < (sizeof (m_offsets) / sizeof (m_offsets[0])));
    return m_offsets[index];
  }

private:
  /* The number of scalar fields found within the structure after recursing
     into nested structures.  */
  int m_number_of_fields;

  /* The types of the first two scalar fields found within the structure
     after recursing into nested structures.  */
  struct type *m_types[2];

  /* The offsets of the first two scalar fields found within the structure
     after recursing into nested structures.  */
  int m_offsets[2];

  /* Recursive core for ANALYSE, the OFFSET parameter tracks the byte
     offset from the start of the top level structure being analysed.  */
  void analyse_inner (struct type *type, int offset);
};

/* See description in class declaration.  */

void
riscv_struct_info::analyse_inner (struct type *type, int offset)
{
  unsigned int count = type->num_fields ();
  unsigned int i;

  for (i = 0; i < count; ++i)
    {
      if (type->field (i).loc_kind () != FIELD_LOC_KIND_BITPOS)
	continue;

      struct type *field_type = type->field (i).type ();
      field_type = check_typedef (field_type);
      int field_offset
	= offset + type->field (i).loc_bitpos () / TARGET_CHAR_BIT;

      switch (field_type->code ())
	{
	case TYPE_CODE_STRUCT:
	  analyse_inner (field_type, field_offset);
	  break;

	default:
	  /* RiscV only flattens out structures.  Anything else does not
	     need to be flattened, we just record the type, and when we
	     look at the analysis results we'll realise this is not a
	     structure we can special case, and pass the structure in
	     memory.  */
	  if (m_number_of_fields < 2)
	    {
	      m_types[m_number_of_fields] = field_type;
	      m_offsets[m_number_of_fields] = field_offset;
	    }
	  m_number_of_fields++;
	  break;
	}

      /* RiscV only has special handling for structures with 1 or 2 scalar
	 fields, any more than that and the structure is just passed in
	 memory.  We can safely drop out early when we find 3 or more
	 fields then.  */

      if (m_number_of_fields > 2)
	return;
    }
}

/* Like RISCV_CALL_ARG_SCALAR_INT, except the argument described by AINFO
   is a structure.  Small structures on RiscV have some special case
   handling in order that the structure might be passed in register.
   Larger structures are passed in memory.  After assigning location
   information to AINFO, CINFO will have been updated.  */

static void
riscv_call_arg_struct (struct riscv_arg_info *ainfo,
		       struct riscv_call_info *cinfo)
{
  if (riscv_arg_regs_available (&cinfo->float_regs) >= 1)
    {
      struct riscv_struct_info sinfo;

      sinfo.analyse (ainfo->type);
      if (sinfo.number_of_fields () == 1
	  && sinfo.field_type(0)->code () == TYPE_CODE_COMPLEX)
	{
	  /* The following is similar to RISCV_CALL_ARG_COMPLEX_FLOAT,
	     except we use the type of the complex field instead of the
	     type from AINFO, and the first location might be at a non-zero
	     offset.  */
	  if (sinfo.field_type (0)->length () <= (2 * cinfo->flen)
	      && riscv_arg_regs_available (&cinfo->float_regs) >= 2
	      && !ainfo->is_unnamed)
	    {
	      bool result;
	      int len = sinfo.field_type (0)->length () / 2;
	      int offset = sinfo.field_offset (0);

	      result = riscv_assign_reg_location (&ainfo->argloc[0],
						  &cinfo->float_regs, len,
						  offset);
	      gdb_assert (result);

	      result = riscv_assign_reg_location (&ainfo->argloc[1],
						  &cinfo->float_regs, len,
						  (offset + len));
	      gdb_assert (result);
	    }
	  else
	    riscv_call_arg_scalar_int (ainfo, cinfo);
	  return;
	}

      if (sinfo.number_of_fields () == 1
	  && sinfo.field_type(0)->code () == TYPE_CODE_FLT)
	{
	  /* The following is similar to RISCV_CALL_ARG_SCALAR_FLOAT,
	     except we use the type of the first scalar field instead of
	     the type from AINFO.  Also the location might be at a non-zero
	     offset.  */
	  if (sinfo.field_type (0)->length () > cinfo->flen
	      || ainfo->is_unnamed)
	    riscv_call_arg_scalar_int (ainfo, cinfo);
	  else
	    {
	      int offset = sinfo.field_offset (0);
	      int len = sinfo.field_type (0)->length ();

	      if (!riscv_assign_reg_location (&ainfo->argloc[0],
					      &cinfo->float_regs,
					      len, offset))
		riscv_call_arg_scalar_int (ainfo, cinfo);
	    }
	  return;
	}

      if (sinfo.number_of_fields () == 2
	  && sinfo.field_type(0)->code () == TYPE_CODE_FLT
	  && sinfo.field_type (0)->length () <= cinfo->flen
	  && sinfo.field_type(1)->code () == TYPE_CODE_FLT
	  && sinfo.field_type (1)->length () <= cinfo->flen
	  && riscv_arg_regs_available (&cinfo->float_regs) >= 2)
	{
	  int len0 = sinfo.field_type (0)->length ();
	  int offset = sinfo.field_offset (0);
	  if (!riscv_assign_reg_location (&ainfo->argloc[0],
					  &cinfo->float_regs, len0, offset))
	    error (_("failed during argument setup"));

	  int len1 = sinfo.field_type (1)->length ();
	  offset = sinfo.field_offset (1);
	  gdb_assert (len1 <= (ainfo->type->length ()
			       - sinfo.field_type (0)->length ()));

	  if (!riscv_assign_reg_location (&ainfo->argloc[1],
					  &cinfo->float_regs,
					  len1, offset))
	    error (_("failed during argument setup"));
	  return;
	}

      if (sinfo.number_of_fields () == 2
	  && riscv_arg_regs_available (&cinfo->int_regs) >= 1
	  && (sinfo.field_type(0)->code () == TYPE_CODE_FLT
	      && sinfo.field_type (0)->length () <= cinfo->flen
	      && is_integral_type (sinfo.field_type (1))
	      && sinfo.field_type (1)->length () <= cinfo->xlen))
	{
	  int  len0 = sinfo.field_type (0)->length ();
	  int offset = sinfo.field_offset (0);
	  if (!riscv_assign_reg_location (&ainfo->argloc[0],
					  &cinfo->float_regs, len0, offset))
	    error (_("failed during argument setup"));

	  int len1 = sinfo.field_type (1)->length ();
	  offset = sinfo.field_offset (1);
	  gdb_assert (len1 <= cinfo->xlen);
	  if (!riscv_assign_reg_location (&ainfo->argloc[1],
					  &cinfo->int_regs, len1, offset))
	    error (_("failed during argument setup"));
	  return;
	}

      if (sinfo.number_of_fields () == 2
	  && riscv_arg_regs_available (&cinfo->int_regs) >= 1
	  && (is_integral_type (sinfo.field_type (0))
	      && sinfo.field_type (0)->length () <= cinfo->xlen
	      && sinfo.field_type(1)->code () == TYPE_CODE_FLT
	      && sinfo.field_type (1)->length () <= cinfo->flen))
	{
	  int len0 = sinfo.field_type (0)->length ();
	  int len1 = sinfo.field_type (1)->length ();

	  gdb_assert (len0 <= cinfo->xlen);
	  gdb_assert (len1 <= cinfo->flen);

	  int offset = sinfo.field_offset (0);
	  if (!riscv_assign_reg_location (&ainfo->argloc[0],
					  &cinfo->int_regs, len0, offset))
	    error (_("failed during argument setup"));

	  offset = sinfo.field_offset (1);
	  if (!riscv_assign_reg_location (&ainfo->argloc[1],
					  &cinfo->float_regs,
					  len1, offset))
	    error (_("failed during argument setup"));

	  return;
	}
    }

  /* Non of the structure flattening cases apply, so we just pass using
     the integer ABI.  */
  riscv_call_arg_scalar_int (ainfo, cinfo);
}

/* Assign a location to call (or return) argument AINFO, the location is
   selected from CINFO which holds information about what call argument
   locations are available for use next.  The TYPE is the type of the
   argument being passed, this information is recorded into AINFO (along
   with some additional information derived from the type).  IS_UNNAMED
   is true if this is an unnamed (stdarg) argument, this info is also
   recorded into AINFO.

   After assigning a location to AINFO, CINFO will have been updated.  */

static void
riscv_arg_location (struct gdbarch *gdbarch,
		    struct riscv_arg_info *ainfo,
		    struct riscv_call_info *cinfo,
		    struct type *type, bool is_unnamed)
{
  ainfo->type = type;
  ainfo->length = ainfo->type->length ();
  ainfo->align = type_align (ainfo->type);
  ainfo->is_unnamed = is_unnamed;
  ainfo->contents = nullptr;
  ainfo->argloc[0].c_length = 0;
  ainfo->argloc[1].c_length = 0;

  switch (ainfo->type->code ())
    {
    case TYPE_CODE_INT:
    case TYPE_CODE_BOOL:
    case TYPE_CODE_CHAR:
    case TYPE_CODE_RANGE:
    case TYPE_CODE_ENUM:
    case TYPE_CODE_PTR:
    case TYPE_CODE_FIXED_POINT:
      if (ainfo->length <= cinfo->xlen)
	{
	  ainfo->type = builtin_type (gdbarch)->builtin_long;
	  ainfo->length = cinfo->xlen;
	}
      else if (ainfo->length <= (2 * cinfo->xlen))
	{
	  ainfo->type = builtin_type (gdbarch)->builtin_long_long;
	  ainfo->length = 2 * cinfo->xlen;
	}

      /* Recalculate the alignment requirement.  */
      ainfo->align = type_align (ainfo->type);
      riscv_call_arg_scalar_int (ainfo, cinfo);
      break;

    case TYPE_CODE_FLT:
      riscv_call_arg_scalar_float (ainfo, cinfo);
      break;

    case TYPE_CODE_COMPLEX:
      riscv_call_arg_complex_float (ainfo, cinfo);
      break;

    case TYPE_CODE_STRUCT:
      if (!TYPE_HAS_DYNAMIC_LENGTH (ainfo->type))
	{
	  riscv_call_arg_struct (ainfo, cinfo);
	  break;
	}
      /* FALLTHROUGH */

    default:
      riscv_call_arg_scalar_int (ainfo, cinfo);
      break;
    }
}

/* Used for printing debug information about the call argument location in
   INFO to STREAM.  The addresses in SP_REFS and SP_ARGS are the base
   addresses for the location of pass-by-reference and
   arguments-on-the-stack memory areas.  */

static void
riscv_print_arg_location (ui_file *stream, struct gdbarch *gdbarch,
			  struct riscv_arg_info *info,
			  CORE_ADDR sp_refs, CORE_ADDR sp_args)
{
  gdb_printf (stream, "type: '%s', length: 0x%x, alignment: 0x%x",
	      TYPE_SAFE_NAME (info->type), info->length, info->align);
  switch (info->argloc[0].loc_type)
    {
    case riscv_arg_info::location::in_reg:
      gdb_printf
	(stream, ", register %s",
	 gdbarch_register_name (gdbarch, info->argloc[0].loc_data.regno));
      if (info->argloc[0].c_length < info->length)
	{
	  switch (info->argloc[1].loc_type)
	    {
	    case riscv_arg_info::location::in_reg:
	      gdb_printf
		(stream, ", register %s",
		 gdbarch_register_name (gdbarch,
					info->argloc[1].loc_data.regno));
	      break;

	    case riscv_arg_info::location::on_stack:
	      gdb_printf (stream, ", on stack at offset 0x%x",
			  info->argloc[1].loc_data.offset);
	      break;

	    case riscv_arg_info::location::by_ref:
	    default:
	      /* The second location should never be a reference, any
		 argument being passed by reference just places its address
		 in the first location and is done.  */
	      error (_("invalid argument location"));
	      break;
	    }

	  if (info->argloc[1].c_offset > info->argloc[0].c_length)
	    gdb_printf (stream, " (offset 0x%x)",
			info->argloc[1].c_offset);
	}
      break;

    case riscv_arg_info::location::on_stack:
      gdb_printf (stream, ", on stack at offset 0x%x",
		  info->argloc[0].loc_data.offset);
      break;

    case riscv_arg_info::location::by_ref:
      gdb_printf
	(stream, ", by reference, data at offset 0x%x (%s)",
	 info->argloc[0].loc_data.offset,
	 core_addr_to_string (sp_refs + info->argloc[0].loc_data.offset));
      if (info->argloc[1].loc_type
	  == riscv_arg_info::location::in_reg)
	gdb_printf
	  (stream, ", address in register %s",
	   gdbarch_register_name (gdbarch, info->argloc[1].loc_data.regno));
      else
	{
	  gdb_assert (info->argloc[1].loc_type
		      == riscv_arg_info::location::on_stack);
	  gdb_printf
	    (stream, ", address on stack at offset 0x%x (%s)",
	     info->argloc[1].loc_data.offset,
	     core_addr_to_string (sp_args + info->argloc[1].loc_data.offset));
	}
      break;

    default:
      gdb_assert_not_reached ("unknown argument location type");
    }
}

/* Wrapper around REGCACHE->cooked_write.  Places the LEN bytes of DATA
   into a buffer that is at least as big as the register REGNUM, padding
   out the DATA with either 0x00, or 0xff.  For floating point registers
   0xff is used, for everyone else 0x00 is used.  */

static void
riscv_regcache_cooked_write (int regnum, const gdb_byte *data, int len,
			     struct regcache *regcache, int flen)
{
  gdb_byte tmp [sizeof (ULONGEST)];

  /* FP values in FP registers must be NaN-boxed.  */
  if (riscv_is_fp_regno_p (regnum) && len < flen)
    memset (tmp, -1, sizeof (tmp));
  else
    memset (tmp, 0, sizeof (tmp));
  memcpy (tmp, data, len);
  regcache->cooked_write (regnum, tmp);
}

/* Implement the push dummy call gdbarch callback.  */

static CORE_ADDR
riscv_push_dummy_call (struct gdbarch *gdbarch,
		       struct value *function,
		       struct regcache *regcache,
		       CORE_ADDR bp_addr,
		       int nargs,
		       struct value **args,
		       CORE_ADDR sp,
		       function_call_return_method return_method,
		       CORE_ADDR struct_addr)
{
  int i;
  CORE_ADDR sp_args, sp_refs;
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);

  struct riscv_arg_info *arg_info =
    (struct riscv_arg_info *) alloca (nargs * sizeof (struct riscv_arg_info));

  struct riscv_call_info call_info (gdbarch);

  CORE_ADDR osp = sp;

  struct type *ftype = check_typedef (function->type ());

  if (ftype->code () == TYPE_CODE_PTR)
    ftype = check_typedef (ftype->target_type ());

  /* We'll use register $a0 if we're returning a struct.  */
  if (return_method == return_method_struct)
    ++call_info.int_regs.next_regnum;

  for (i = 0; i < nargs; ++i)
    {
      struct value *arg_value;
      struct type *arg_type;
      struct riscv_arg_info *info = &arg_info[i];

      arg_value = args[i];
      arg_type = check_typedef (arg_value->type ());

      riscv_arg_location (gdbarch, info, &call_info, arg_type,
			  ftype->has_varargs () && i >= ftype->num_fields ());

      if (info->type != arg_type)
	arg_value = value_cast (info->type, arg_value);
      info->contents = arg_value->contents ().data ();
    }

  /* Adjust the stack pointer and align it.  */
  sp = sp_refs = align_down (sp - call_info.memory.ref_offset, SP_ALIGNMENT);
  sp = sp_args = align_down (sp - call_info.memory.arg_offset, SP_ALIGNMENT);

  if (riscv_debug_infcall)
    {
      RISCV_INFCALL_SCOPED_DEBUG_START_END ("dummy call args");
      riscv_infcall_debug_printf ("floating point ABI %s in use",
				  (riscv_has_fp_abi (gdbarch)
				   ? "is" : "is not"));
      riscv_infcall_debug_printf ("xlen: %d", call_info.xlen);
      riscv_infcall_debug_printf ("flen: %d", call_info.flen);
      if (return_method == return_method_struct)
	riscv_infcall_debug_printf
	  ("[**] struct return pointer in register $A0");
      for (i = 0; i < nargs; ++i)
	{
	  struct riscv_arg_info *info = &arg_info [i];
	  string_file tmp;

	  riscv_print_arg_location (&tmp, gdbarch, info, sp_refs, sp_args);
	  riscv_infcall_debug_printf ("[%2d] %s", i, tmp.string ().c_str ());
	}
      if (call_info.memory.arg_offset > 0
	  || call_info.memory.ref_offset > 0)
	{
	  riscv_infcall_debug_printf ("              Original sp: %s",
				      core_addr_to_string (osp));
	  riscv_infcall_debug_printf ("Stack required (for args): 0x%x",
				      call_info.memory.arg_offset);
	  riscv_infcall_debug_printf ("Stack required (for refs): 0x%x",
				      call_info.memory.ref_offset);
	  riscv_infcall_debug_printf ("          Stack allocated: %s",
				      core_addr_to_string_nz (osp - sp));
	}
    }

  /* Now load the argument into registers, or onto the stack.  */

  if (return_method == return_method_struct)
    {
      gdb_byte buf[sizeof (LONGEST)];

      store_unsigned_integer (buf, call_info.xlen, byte_order, struct_addr);
      regcache->cooked_write (RISCV_A0_REGNUM, buf);
    }

  for (i = 0; i < nargs; ++i)
    {
      CORE_ADDR dst;
      int second_arg_length = 0;
      const gdb_byte *second_arg_data;
      struct riscv_arg_info *info = &arg_info [i];

      gdb_assert (info->length > 0);

      switch (info->argloc[0].loc_type)
	{
	case riscv_arg_info::location::in_reg:
	  {
	    gdb_assert (info->argloc[0].c_length <= info->length);

	    riscv_regcache_cooked_write (info->argloc[0].loc_data.regno,
					 (info->contents
					  + info->argloc[0].c_offset),
					 info->argloc[0].c_length,
					 regcache, call_info.flen);
	    second_arg_length =
	      (((info->argloc[0].c_length + info->argloc[0].c_offset) < info->length)
	       ? info->argloc[1].c_length : 0);
	    second_arg_data = info->contents + info->argloc[1].c_offset;
	  }
	  break;

	case riscv_arg_info::location::on_stack:
	  dst = sp_args + info->argloc[0].loc_data.offset;
	  write_memory (dst, info->contents, info->length);
	  second_arg_length = 0;
	  break;

	case riscv_arg_info::location::by_ref:
	  dst = sp_refs + info->argloc[0].loc_data.offset;
	  write_memory (dst, info->contents, info->length);

	  second_arg_length = call_info.xlen;
	  second_arg_data = (gdb_byte *) &dst;
	  break;

	default:
	  gdb_assert_not_reached ("unknown argument location type");
	}

      if (second_arg_length > 0)
	{
	  switch (info->argloc[1].loc_type)
	    {
	    case riscv_arg_info::location::in_reg:
	      {
		gdb_assert ((riscv_is_fp_regno_p (info->argloc[1].loc_data.regno)
			     && second_arg_length <= call_info.flen)
			    || second_arg_length <= call_info.xlen);
		riscv_regcache_cooked_write (info->argloc[1].loc_data.regno,
					     second_arg_data,
					     second_arg_length,
					     regcache, call_info.flen);
	      }
	      break;

	    case riscv_arg_info::location::on_stack:
	      {
		CORE_ADDR arg_addr;

		arg_addr = sp_args + info->argloc[1].loc_data.offset;
		write_memory (arg_addr, second_arg_data, second_arg_length);
		break;
	      }

	    case riscv_arg_info::location::by_ref:
	    default:
	      /* The second location should never be a reference, any
		 argument being passed by reference just places its address
		 in the first location and is done.  */
	      error (_("invalid argument location"));
	      break;
	    }
	}
    }

  /* Set the dummy return value to bp_addr.
     A dummy breakpoint will be setup to execute the call.  */

  riscv_infcall_debug_printf ("writing $ra = %s",
			      core_addr_to_string (bp_addr));
  regcache_cooked_write_unsigned (regcache, RISCV_RA_REGNUM, bp_addr);

  /* Finally, update the stack pointer.  */

  riscv_infcall_debug_printf ("writing $sp = %s", core_addr_to_string (sp));
  regcache_cooked_write_unsigned (regcache, RISCV_SP_REGNUM, sp);

  return sp;
}

/* Implement the return_value gdbarch method.  */

static enum return_value_convention
riscv_return_value (struct gdbarch  *gdbarch,
		    struct value *function,
		    struct type *type,
		    struct regcache *regcache,
		    struct value **read_value,
		    const gdb_byte *writebuf)
{
  struct riscv_call_info call_info (gdbarch);
  struct riscv_arg_info info;
  struct type *arg_type;

  arg_type = check_typedef (type);
  riscv_arg_location (gdbarch, &info, &call_info, arg_type, false);

  if (riscv_debug_infcall)
    {
      string_file tmp;
      riscv_print_arg_location (&tmp, gdbarch, &info, 0, 0);
      riscv_infcall_debug_printf ("[R] %s", tmp.string ().c_str ());
    }

  if (read_value != nullptr || writebuf != nullptr)
    {
      unsigned int arg_len;
      struct value *abi_val;
      gdb_byte *readbuf = nullptr;
      int regnum;

      /* We only do one thing at a time.  */
      gdb_assert (read_value == nullptr || writebuf == nullptr);

      /* In some cases the argument is not returned as the declared type,
	 and we need to cast to or from the ABI type in order to
	 correctly access the argument.  When writing to the machine we
	 do the cast here, when reading from the machine the cast occurs
	 later, after extracting the value.  As the ABI type can be
	 larger than the declared type, then the read or write buffers
	 passed in might be too small.  Here we ensure that we are using
	 buffers of sufficient size.  */
      if (writebuf != nullptr)
	{
	  struct value *arg_val;

	  if (is_fixed_point_type (arg_type))
	    {
	      /* Convert the argument to the type used to pass
		 the return value, but being careful to preserve
		 the fact that the value needs to be returned
		 unscaled.  */
	      gdb_mpz unscaled;

	      unscaled.read (gdb::make_array_view (writebuf,
						   arg_type->length ()),
			     type_byte_order (arg_type),
			     arg_type->is_unsigned ());
	      abi_val = value::allocate (info.type);
	      unscaled.write (abi_val->contents_raw (),
			      type_byte_order (info.type),
			      info.type->is_unsigned ());
	    }
	  else
	    {
	      arg_val = value_from_contents (arg_type, writebuf);
	      abi_val = value_cast (info.type, arg_val);
	    }
	  writebuf = abi_val->contents_raw ().data ();
	}
      else
	{
	  abi_val = value::allocate (info.type);
	  readbuf = abi_val->contents_raw ().data ();
	}
      arg_len = info.type->length ();

      switch (info.argloc[0].loc_type)
	{
	  /* Return value in register(s).  */
	case riscv_arg_info::location::in_reg:
	  {
	    regnum = info.argloc[0].loc_data.regno;
	    gdb_assert (info.argloc[0].c_length <= arg_len);
	    gdb_assert (info.argloc[0].c_length
			<= register_size (gdbarch, regnum));

	    if (readbuf)
	      {
		gdb_byte *ptr = readbuf + info.argloc[0].c_offset;
		regcache->cooked_read_part (regnum, 0,
					    info.argloc[0].c_length,
					    ptr);
	      }

	    if (writebuf)
	      {
		const gdb_byte *ptr = writebuf + info.argloc[0].c_offset;
		riscv_regcache_cooked_write (regnum, ptr,
					     info.argloc[0].c_length,
					     regcache, call_info.flen);
	      }

	    /* A return value in register can have a second part in a
	       second register.  */
	    if (info.argloc[1].c_length > 0)
	      {
		switch (info.argloc[1].loc_type)
		  {
		  case riscv_arg_info::location::in_reg:
		    regnum = info.argloc[1].loc_data.regno;

		    gdb_assert ((info.argloc[0].c_length
				 + info.argloc[1].c_length) <= arg_len);
		    gdb_assert (info.argloc[1].c_length
				<= register_size (gdbarch, regnum));

		    if (readbuf)
		      {
			readbuf += info.argloc[1].c_offset;
			regcache->cooked_read_part (regnum, 0,
						    info.argloc[1].c_length,
						    readbuf);
		      }

		    if (writebuf)
		      {
			const gdb_byte *ptr
			  = writebuf + info.argloc[1].c_offset;
			riscv_regcache_cooked_write
			  (regnum, ptr, info.argloc[1].c_length,
			   regcache, call_info.flen);
		      }
		    break;

		  case riscv_arg_info::location::by_ref:
		  case riscv_arg_info::location::on_stack:
		  default:
		    error (_("invalid argument location"));
		    break;
		  }
	      }
	  }
	  break;

	  /* Return value by reference will have its address in A0.  */
	case riscv_arg_info::location::by_ref:
	  {
	    ULONGEST addr;

	    regcache_cooked_read_unsigned (regcache, RISCV_A0_REGNUM,
					   &addr);
	    if (read_value != nullptr)
	      {
		abi_val = value_at_non_lval (type, addr);
		/* Also reset the expected type, so that the cast
		   later on is a no-op.  If the cast is not a no-op,
		   and if the return type is variably-sized, then the
		   type of ABI_VAL will differ from ARG_TYPE due to
		   dynamic type resolution, and so will most likely
		   fail.  */
		arg_type = abi_val->type ();
	      }
	    if (writebuf != nullptr)
	      write_memory (addr, writebuf, info.length);
	  }
	  break;

	case riscv_arg_info::location::on_stack:
	default:
	  error (_("invalid argument location"));
	  break;
	}

      /* This completes the cast from abi type back to the declared type
	 in the case that we are reading from the machine.  See the
	 comment at the head of this block for more details.  */
      if (read_value != nullptr)
	{
	  if (is_fixed_point_type (arg_type))
	    {
	      /* Convert abi_val to the actual return type, but
		 being careful to preserve the fact that abi_val
		 is unscaled.  */
	      gdb_mpz unscaled;

	      unscaled.read (abi_val->contents (),
			     type_byte_order (info.type),
			     info.type->is_unsigned ());
	      *read_value = value::allocate (arg_type);
	      unscaled.write ((*read_value)->contents_raw (),
			      type_byte_order (arg_type),
			      arg_type->is_unsigned ());
	    }
	  else
	    *read_value = value_cast (arg_type, abi_val);
	}
    }

  switch (info.argloc[0].loc_type)
    {
    case riscv_arg_info::location::in_reg:
      return RETURN_VALUE_REGISTER_CONVENTION;
    case riscv_arg_info::location::by_ref:
      return RETURN_VALUE_ABI_PRESERVES_ADDRESS;
    case riscv_arg_info::location::on_stack:
    default:
      error (_("invalid argument location"));
    }
}

/* Implement the frame_align gdbarch method.  */

static CORE_ADDR
riscv_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
{
  return align_down (addr, 16);
}

/* Generate, or return the cached frame cache for the RiscV frame
   unwinder.  */

static struct riscv_unwind_cache *
riscv_frame_cache (frame_info_ptr this_frame, void **this_cache)
{
  CORE_ADDR pc, start_addr;
  struct riscv_unwind_cache *cache;
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  int numregs, regno;

  if ((*this_cache) != NULL)
    return (struct riscv_unwind_cache *) *this_cache;

  cache = FRAME_OBSTACK_ZALLOC (struct riscv_unwind_cache);
  cache->regs = trad_frame_alloc_saved_regs (this_frame);
  (*this_cache) = cache;

  /* Scan the prologue, filling in the cache.  */
  start_addr = get_frame_func (this_frame);
  pc = get_frame_pc (this_frame);
  riscv_scan_prologue (gdbarch, start_addr, pc, cache);

  /* We can now calculate the frame base address.  */
  cache->frame_base
    = (get_frame_register_unsigned (this_frame, cache->frame_base_reg)
       + cache->frame_base_offset);
  riscv_unwinder_debug_printf ("frame base is %s ($%s + 0x%x)",
			       core_addr_to_string (cache->frame_base),
			       gdbarch_register_name (gdbarch,
						      cache->frame_base_reg),
			       cache->frame_base_offset);

  /* The prologue scanner sets the address of registers stored to the stack
     as the offset of that register from the frame base.  The prologue
     scanner doesn't know the actual frame base value, and so is unable to
     compute the exact address.  We do now know the frame base value, so
     update the address of registers stored to the stack.  */
  numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
  for (regno = 0; regno < numregs; ++regno)
    {
      if (cache->regs[regno].is_addr ())
	cache->regs[regno].set_addr (cache->regs[regno].addr ()
				     + cache->frame_base);
    }

  /* The previous $pc can be found wherever the $ra value can be found.
     The previous $ra value is gone, this would have been stored be the
     previous frame if required.  */
  cache->regs[gdbarch_pc_regnum (gdbarch)] = cache->regs[RISCV_RA_REGNUM];
  cache->regs[RISCV_RA_REGNUM].set_unknown ();

  /* Build the frame id.  */
  cache->this_id = frame_id_build (cache->frame_base, start_addr);

  /* The previous $sp value is the frame base value.  */
  cache->regs[gdbarch_sp_regnum (gdbarch)].set_value (cache->frame_base);

  return cache;
}

/* Implement the this_id callback for RiscV frame unwinder.  */

static void
riscv_frame_this_id (frame_info_ptr this_frame,
		     void **prologue_cache,
		     struct frame_id *this_id)
{
  struct riscv_unwind_cache *cache;

  try
    {
      cache = riscv_frame_cache (this_frame, prologue_cache);
      *this_id = cache->this_id;
    }
  catch (const gdb_exception_error &ex)
    {
      /* Ignore errors, this leaves the frame id as the predefined outer
	 frame id which terminates the backtrace at this point.  */
    }
}

/* Implement the prev_register callback for RiscV frame unwinder.  */

static struct value *
riscv_frame_prev_register (frame_info_ptr this_frame,
			   void **prologue_cache,
			   int regnum)
{
  struct riscv_unwind_cache *cache;

  cache = riscv_frame_cache (this_frame, prologue_cache);
  return trad_frame_get_prev_register (this_frame, cache->regs, regnum);
}

/* Structure defining the RiscV normal frame unwind functions.  Since we
   are the fallback unwinder (DWARF unwinder is used first), we use the
   default frame sniffer, which always accepts the frame.  */

static const struct frame_unwind riscv_frame_unwind =
{
  /*.name          =*/ "riscv prologue",
  /*.type          =*/ NORMAL_FRAME,
  /*.stop_reason   =*/ default_frame_unwind_stop_reason,
  /*.this_id       =*/ riscv_frame_this_id,
  /*.prev_register =*/ riscv_frame_prev_register,
  /*.unwind_data   =*/ NULL,
  /*.sniffer       =*/ default_frame_sniffer,
  /*.dealloc_cache =*/ NULL,
  /*.prev_arch     =*/ NULL,
};

/* Extract a set of required target features out of ABFD.  If ABFD is
   nullptr then a RISCV_GDBARCH_FEATURES is returned in its default state.  */

static struct riscv_gdbarch_features
riscv_features_from_bfd (const bfd *abfd)
{
  struct riscv_gdbarch_features features;

  /* Now try to improve on the defaults by looking at the binary we are
     going to execute.  We assume the user knows what they are doing and
     that the target will match the binary.  Remember, this code path is
     only used at all if the target hasn't given us a description, so this
     is really a last ditched effort to do something sane before giving
     up.  */
  if (abfd != nullptr && bfd_get_flavour (abfd) == bfd_target_elf_flavour)
    {
      unsigned char eclass = elf_elfheader (abfd)->e_ident[EI_CLASS];
      int e_flags = elf_elfheader (abfd)->e_flags;

      if (eclass == ELFCLASS32)
	features.xlen = 4;
      else if (eclass == ELFCLASS64)
	features.xlen = 8;
      else
	internal_error (_("unknown ELF header class %d"), eclass);

      if (e_flags & EF_RISCV_FLOAT_ABI_DOUBLE)
	features.flen = 8;
      else if (e_flags & EF_RISCV_FLOAT_ABI_SINGLE)
	features.flen = 4;

      if (e_flags & EF_RISCV_RVE)
	{
	  if (features.xlen == 8)
	    {
	      warning (_("64-bit ELF with RV32E flag set!  Assuming 32-bit"));
	      features.xlen = 4;
	    }
	  features.embedded = true;
	}
    }

  return features;
}

/* Find a suitable default target description.  Use the contents of INFO,
   specifically the bfd object being executed, to guide the selection of a
   suitable default target description.  */

static const struct target_desc *
riscv_find_default_target_description (const struct gdbarch_info info)
{
  /* Extract desired feature set from INFO.  */
  struct riscv_gdbarch_features features
    = riscv_features_from_bfd (info.abfd);

  /* If the XLEN field is still 0 then we got nothing useful from INFO.BFD,
     maybe there was no bfd object.  In this case we fall back to a minimal
     useful target with no floating point, the x-register size is selected
     based on the architecture from INFO.  */
  if (features.xlen == 0)
    features.xlen = info.bfd_arch_info->bits_per_word == 32 ? 4 : 8;

  /* Now build a target description based on the feature set.  */
  return riscv_lookup_target_description (features);
}

/* Add all the RISC-V specific register groups into GDBARCH.  */

static void
riscv_add_reggroups (struct gdbarch *gdbarch)
{
  reggroup_add (gdbarch, csr_reggroup);
}

/* Implement the "dwarf2_reg_to_regnum" gdbarch method.  */

static int
riscv_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
{
  if (reg <= RISCV_DWARF_REGNUM_X31)
    return RISCV_ZERO_REGNUM + (reg - RISCV_DWARF_REGNUM_X0);

  else if (reg <= RISCV_DWARF_REGNUM_F31)
    return RISCV_FIRST_FP_REGNUM + (reg - RISCV_DWARF_REGNUM_F0);

  else if (reg >= RISCV_DWARF_FIRST_CSR && reg <= RISCV_DWARF_LAST_CSR)
    return RISCV_FIRST_CSR_REGNUM + (reg - RISCV_DWARF_FIRST_CSR);

  else if (reg >= RISCV_DWARF_REGNUM_V0 && reg <= RISCV_DWARF_REGNUM_V31)
    return RISCV_V0_REGNUM + (reg - RISCV_DWARF_REGNUM_V0);

  return -1;
}

/* Implement the gcc_target_options method.  We have to select the arch and abi
   from the feature info.  We have enough feature info to select the abi, but
   not enough info for the arch given all of the possible architecture
   extensions.  So choose reasonable defaults for now.  */

static std::string
riscv_gcc_target_options (struct gdbarch *gdbarch)
{
  int isa_xlen = riscv_isa_xlen (gdbarch);
  int isa_flen = riscv_isa_flen (gdbarch);
  int abi_xlen = riscv_abi_xlen (gdbarch);
  int abi_flen = riscv_abi_flen (gdbarch);
  std::string target_options;

  target_options = "-march=rv";
  if (isa_xlen == 8)
    target_options += "64";
  else
    target_options += "32";
  if (isa_flen == 8)
    target_options += "gc";
  else if (isa_flen == 4)
    target_options += "imafc";
  else
    target_options += "imac";

  target_options += " -mabi=";
  if (abi_xlen == 8)
    target_options += "lp64";
  else
    target_options += "ilp32";
  if (abi_flen == 8)
    target_options += "d";
  else if (abi_flen == 4)
    target_options += "f";

  /* The gdb loader doesn't handle link-time relaxation relocations.  */
  target_options += " -mno-relax";

  return target_options;
}

/* Call back from tdesc_use_registers, called for each unknown register
   found in the target description.

   See target-description.h (typedef tdesc_unknown_register_ftype) for a
   discussion of the arguments and return values.  */

static int
riscv_tdesc_unknown_reg (struct gdbarch *gdbarch, tdesc_feature *feature,
			 const char *reg_name, int possible_regnum)
{
  /* At one point in time GDB had an incorrect default target description
     that duplicated the fflags, frm, and fcsr registers in both the FPU
     and CSR register sets.

     Some targets (QEMU) copied these target descriptions into their source
     tree, and so we're now stuck working with some versions of QEMU that
     declare the same registers twice.

     To make matters worse, if GDB tries to read or write to these
     registers using the register number assigned in the FPU feature set,
     then QEMU will fail to read the register, so we must use the register
     number declared in the CSR feature set.

     Luckily, GDB scans the FPU feature first, and then the CSR feature,
     which means that the CSR feature will be the one we end up using, the
     versions of these registers in the FPU feature will appear as unknown
     registers and will be passed through to this code.

     To prevent these duplicate registers showing up in any of the register
     lists, and to prevent GDB every trying to access the FPU feature copies,
     we spot the three problematic registers here, and record the register
     number that GDB has assigned them.  Then in riscv_register_name we will
     return no name for the three duplicates, this hides the duplicates from
     the user.  */
  if (strcmp (tdesc_feature_name (feature), riscv_freg_feature.name ()) == 0)
    {
      riscv_gdbarch_tdep *tdep = gdbarch_tdep<riscv_gdbarch_tdep> (gdbarch);
      int *regnum_ptr = nullptr;

      if (strcmp (reg_name, "fflags") == 0)
	regnum_ptr = &tdep->duplicate_fflags_regnum;
      else if (strcmp (reg_name, "frm") == 0)
	regnum_ptr = &tdep->duplicate_frm_regnum;
      else if (strcmp (reg_name, "fcsr") == 0)
	regnum_ptr = &tdep->duplicate_fcsr_regnum;

      if (regnum_ptr != nullptr)
	{
	  /* This means the register appears more than twice in the target
	     description.  Just let GDB add this as another register.
	     We'll have duplicates in the register name list, but there's
	     not much more we can do.  */
	  if (*regnum_ptr != -1)
	    return -1;

	  /* Record the number assigned to this register, then return the
	     number (so it actually gets assigned to this register).  */
	  *regnum_ptr = possible_regnum;
	  return possible_regnum;
	}
    }

  /* Any unknown registers in the CSR feature are recorded within a single
     block so we can easily identify these registers when making choices
     about register groups in riscv_register_reggroup_p.  */
  if (strcmp (tdesc_feature_name (feature), riscv_csr_feature.name ()) == 0)
    {
      riscv_gdbarch_tdep *tdep = gdbarch_tdep<riscv_gdbarch_tdep> (gdbarch);
      if (tdep->unknown_csrs_first_regnum == -1)
	tdep->unknown_csrs_first_regnum = possible_regnum;
      gdb_assert (tdep->unknown_csrs_first_regnum
		  + tdep->unknown_csrs_count == possible_regnum);
      tdep->unknown_csrs_count++;
      return possible_regnum;
    }

  /* Some other unknown register.  Don't assign this a number now, it will
     be assigned a number automatically later by the target description
     handling code.  */
  return -1;
}

/* Implement the gnu_triplet_regexp method.  A single compiler supports both
   32-bit and 64-bit code, and may be named riscv32 or riscv64 or (not
   recommended) riscv.  */

static const char *
riscv_gnu_triplet_regexp (struct gdbarch *gdbarch)
{
  return "riscv(32|64)?";
}

/* Implementation of `gdbarch_stap_is_single_operand', as defined in
   gdbarch.h.  */

static int
riscv_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
{
  return (ISDIGIT (*s) /* Literal number.  */
	  || *s == '(' /* Register indirection.  */
	  || ISALPHA (*s)); /* Register value.  */
}

/* String that appears before a register name in a SystemTap register
   indirect expression.  */

static const char *const stap_register_indirection_prefixes[] =
{
  "(", nullptr
};

/* String that appears after a register name in a SystemTap register
   indirect expression.  */

static const char *const stap_register_indirection_suffixes[] =
{
  ")", nullptr
};

/* Initialize the current architecture based on INFO.  If possible,
   re-use an architecture from ARCHES, which is a list of
   architectures already created during this debugging session.

   Called e.g. at program startup, when reading a core file, and when
   reading a binary file.  */

static struct gdbarch *
riscv_gdbarch_init (struct gdbarch_info info,
		    struct gdbarch_list *arches)
{
  struct riscv_gdbarch_features features;
  const struct target_desc *tdesc = info.target_desc;

  /* Ensure we always have a target description.  */
  if (!tdesc_has_registers (tdesc))
    tdesc = riscv_find_default_target_description (info);
  gdb_assert (tdesc != nullptr);

  riscv_gdbarch_debug_printf ("have got a target description");

  tdesc_arch_data_up tdesc_data = tdesc_data_alloc ();
  std::vector<riscv_pending_register_alias> pending_aliases;

  bool valid_p = (riscv_xreg_feature.check (tdesc, tdesc_data.get (),
					    &pending_aliases, &features)
		  && riscv_freg_feature.check (tdesc, tdesc_data.get (),
					       &pending_aliases, &features)
		  && riscv_virtual_feature.check (tdesc, tdesc_data.get (),
						  &pending_aliases, &features)
		  && riscv_csr_feature.check (tdesc, tdesc_data.get (),
					      &pending_aliases, &features)
		  && riscv_vector_feature.check (tdesc, tdesc_data.get (),
						 &pending_aliases, &features));
  if (!valid_p)
    {
      riscv_gdbarch_debug_printf ("target description is not valid");
      return NULL;
    }

  if (tdesc_found_register (tdesc_data.get (), RISCV_CSR_FFLAGS_REGNUM))
    features.has_fflags_reg = true;
  if (tdesc_found_register (tdesc_data.get (), RISCV_CSR_FRM_REGNUM))
    features.has_frm_reg = true;
  if (tdesc_found_register (tdesc_data.get (), RISCV_CSR_FCSR_REGNUM))
    features.has_fcsr_reg = true;

  /* Have a look at what the supplied (if any) bfd object requires of the
     target, then check that this matches with what the target is
     providing.  */
  struct riscv_gdbarch_features abi_features
    = riscv_features_from_bfd (info.abfd);

  /* If the ABI_FEATURES xlen is 0 then this indicates we got no useful abi
     features from the INFO object.  In this case we just treat the
     hardware features as defining the abi.  */
  if (abi_features.xlen == 0)
    abi_features = features;

  /* In theory a binary compiled for RV32 could run on an RV64 target,
     however, this has not been tested in GDB yet, so for now we require
     that the requested xlen match the targets xlen.  */
  if (abi_features.xlen != features.xlen)
    error (_("bfd requires xlen %d, but target has xlen %d"),
	    abi_features.xlen, features.xlen);
  /* We do support running binaries compiled for 32-bit float on targets
     with 64-bit float, so we only complain if the binary requires more
     than the target has available.  */
  if (abi_features.flen > features.flen)
    error (_("bfd requires flen %d, but target has flen %d"),
	    abi_features.flen, features.flen);

  /* Find a candidate among the list of pre-declared architectures.  */
  for (arches = gdbarch_list_lookup_by_info (arches, &info);
       arches != NULL;
       arches = gdbarch_list_lookup_by_info (arches->next, &info))
    {
      /* Check that the feature set of the ARCHES matches the feature set
	 we are looking for.  If it doesn't then we can't reuse this
	 gdbarch.  */
      riscv_gdbarch_tdep *other_tdep
	= gdbarch_tdep<riscv_gdbarch_tdep> (arches->gdbarch);

      if (other_tdep->isa_features != features
	  || other_tdep->abi_features != abi_features)
	continue;

      break;
    }

  if (arches != NULL)
    return arches->gdbarch;

  /* None found, so create a new architecture from the information provided.  */
  gdbarch *gdbarch
    = gdbarch_alloc (&info, gdbarch_tdep_up (new riscv_gdbarch_tdep));
  riscv_gdbarch_tdep *tdep = gdbarch_tdep<riscv_gdbarch_tdep> (gdbarch);

  tdep->isa_features = features;
  tdep->abi_features = abi_features;

  /* Target data types.  */
  set_gdbarch_short_bit (gdbarch, 16);
  set_gdbarch_int_bit (gdbarch, 32);
  set_gdbarch_long_bit (gdbarch, riscv_isa_xlen (gdbarch) * 8);
  set_gdbarch_long_long_bit (gdbarch, 64);
  set_gdbarch_float_bit (gdbarch, 32);
  set_gdbarch_double_bit (gdbarch, 64);
  set_gdbarch_long_double_bit (gdbarch, 128);
  set_gdbarch_long_double_format (gdbarch, floatformats_ieee_quad);
  set_gdbarch_ptr_bit (gdbarch, riscv_isa_xlen (gdbarch) * 8);
  set_gdbarch_char_signed (gdbarch, 0);
  set_gdbarch_type_align (gdbarch, riscv_type_align);

  /* Information about the target architecture.  */
  set_gdbarch_return_value_as_value (gdbarch, riscv_return_value);
  set_gdbarch_breakpoint_kind_from_pc (gdbarch, riscv_breakpoint_kind_from_pc);
  set_gdbarch_sw_breakpoint_from_kind (gdbarch, riscv_sw_breakpoint_from_kind);
  set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);

  /* Functions to analyze frames.  */
  set_gdbarch_skip_prologue (gdbarch, riscv_skip_prologue);
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
  set_gdbarch_frame_align (gdbarch, riscv_frame_align);

  /* Functions handling dummy frames.  */
  set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
  set_gdbarch_push_dummy_code (gdbarch, riscv_push_dummy_code);
  set_gdbarch_push_dummy_call (gdbarch, riscv_push_dummy_call);

  /* Frame unwinders.  Use DWARF debug info if available, otherwise use our own
     unwinder.  */
  dwarf2_append_unwinders (gdbarch);
  frame_unwind_append_unwinder (gdbarch, &riscv_frame_unwind);

  /* Register architecture.  */
  riscv_add_reggroups (gdbarch);

  /* Internal <-> external register number maps.  */
  set_gdbarch_dwarf2_reg_to_regnum (gdbarch, riscv_dwarf_reg_to_regnum);

  /* We reserve all possible register numbers for the known registers.
     This means the target description mechanism will add any target
     specific registers after this number.  This helps make debugging GDB
     just a little easier.  */
  set_gdbarch_num_regs (gdbarch, RISCV_LAST_REGNUM + 1);

  /* Some specific register numbers GDB likes to know about.  */
  set_gdbarch_sp_regnum (gdbarch, RISCV_SP_REGNUM);
  set_gdbarch_pc_regnum (gdbarch, RISCV_PC_REGNUM);

  set_gdbarch_print_registers_info (gdbarch, riscv_print_registers_info);

  set_tdesc_pseudo_register_name (gdbarch, riscv_pseudo_register_name);
  set_tdesc_pseudo_register_type (gdbarch, riscv_pseudo_register_type);
  set_tdesc_pseudo_register_reggroup_p (gdbarch,
					riscv_pseudo_register_reggroup_p);
  set_gdbarch_pseudo_register_read (gdbarch, riscv_pseudo_register_read);
  set_gdbarch_pseudo_register_write (gdbarch, riscv_pseudo_register_write);

  /* Finalise the target description registers.  */
  tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data),
		       riscv_tdesc_unknown_reg);

  /* Calculate the number of pseudo registers we need.  The fflags and frm
     registers are sub-fields of the fcsr CSR register (csr3).  However,
     these registers can also be accessed directly as separate CSR
     registers (fflags is csr1, and frm is csr2).  And so, some targets
     might choose to offer direct access to all three registers in the
     target description, while other targets might choose to only offer
     access to fcsr.

     As we scan the target description we spot which of fcsr, fflags, and
     frm are available.  If fcsr is available but either of fflags and/or
     frm are not available, then we add pseudo-registers to provide the
     missing functionality.

     This has to be done after the call to tdesc_use_registers as we don't
     know the final register number until after that call, and the pseudo
     register numbers need to be after the physical registers.  */
  int num_pseudo_regs = 0;
  int next_pseudo_regnum = gdbarch_num_regs (gdbarch);

  if (features.has_fflags_reg)
    tdep->fflags_regnum = RISCV_CSR_FFLAGS_REGNUM;
  else if (features.has_fcsr_reg)
    {
      tdep->fflags_regnum = next_pseudo_regnum;
      pending_aliases.emplace_back ("csr1", (void *) &tdep->fflags_regnum);
      next_pseudo_regnum++;
      num_pseudo_regs++;
    }

  if (features.has_frm_reg)
    tdep->frm_regnum = RISCV_CSR_FRM_REGNUM;
  else if (features.has_fcsr_reg)
    {
      tdep->frm_regnum = next_pseudo_regnum;
      pending_aliases.emplace_back ("csr2", (void *) &tdep->frm_regnum);
      next_pseudo_regnum++;
      num_pseudo_regs++;
    }

  set_gdbarch_num_pseudo_regs (gdbarch, num_pseudo_regs);

  /* Override the register type callback setup by the target description
     mechanism.  This allows us to provide special type for floating point
     registers.  */
  set_gdbarch_register_type (gdbarch, riscv_register_type);

  /* Override the register name callback setup by the target description
     mechanism.  This allows us to force our preferred names for the
     registers, no matter what the target description called them.  */
  set_gdbarch_register_name (gdbarch, riscv_register_name);

  /* Tell GDB which RISC-V registers are read-only. */
  set_gdbarch_cannot_store_register (gdbarch, riscv_cannot_store_register);

  /* Override the register group callback setup by the target description
     mechanism.  This allows us to force registers into the groups we
     want, ignoring what the target tells us.  */
  set_gdbarch_register_reggroup_p (gdbarch, riscv_register_reggroup_p);

  /* Create register aliases for alternative register names.  We only
     create aliases for registers which were mentioned in the target
     description.  */
  for (const auto &alias : pending_aliases)
    alias.create (gdbarch);

  /* Compile command hooks.  */
  set_gdbarch_gcc_target_options (gdbarch, riscv_gcc_target_options);
  set_gdbarch_gnu_triplet_regexp (gdbarch, riscv_gnu_triplet_regexp);

  /* Disassembler options support.  */
  set_gdbarch_valid_disassembler_options (gdbarch,
					  disassembler_options_riscv ());
  set_gdbarch_disassembler_options (gdbarch, &riscv_disassembler_options);

  /* SystemTap Support.  */
  set_gdbarch_stap_is_single_operand (gdbarch, riscv_stap_is_single_operand);
  set_gdbarch_stap_register_indirection_prefixes
    (gdbarch, stap_register_indirection_prefixes);
  set_gdbarch_stap_register_indirection_suffixes
    (gdbarch, stap_register_indirection_suffixes);

  /* Hook in OS ABI-specific overrides, if they have been registered.  */
  gdbarch_init_osabi (info, gdbarch);

  register_riscv_ravenscar_ops (gdbarch);

  return gdbarch;
}

/* This decodes the current instruction and determines the address of the
   next instruction.  */

static CORE_ADDR
riscv_next_pc (struct regcache *regcache, CORE_ADDR pc)
{
  struct gdbarch *gdbarch = regcache->arch ();
  const riscv_gdbarch_tdep *tdep
    = gdbarch_tdep<riscv_gdbarch_tdep> (gdbarch);
  struct riscv_insn insn;
  CORE_ADDR next_pc;

  insn.decode (gdbarch, pc);
  next_pc = pc + insn.length ();

  if (insn.opcode () == riscv_insn::JAL)
    next_pc = pc + insn.imm_signed ();
  else if (insn.opcode () == riscv_insn::JALR)
    {
      LONGEST source;
      regcache->cooked_read (insn.rs1 (), &source);
      next_pc = (source + insn.imm_signed ()) & ~(CORE_ADDR) 0x1;
    }
  else if (insn.opcode () == riscv_insn::BEQ)
    {
      LONGEST src1, src2;
      regcache->cooked_read (insn.rs1 (), &src1);
      regcache->cooked_read (insn.rs2 (), &src2);
      if (src1 == src2)
	next_pc = pc + insn.imm_signed ();
    }
  else if (insn.opcode () == riscv_insn::BNE)
    {
      LONGEST src1, src2;
      regcache->cooked_read (insn.rs1 (), &src1);
      regcache->cooked_read (insn.rs2 (), &src2);
      if (src1 != src2)
	next_pc = pc + insn.imm_signed ();
    }
  else if (insn.opcode () == riscv_insn::BLT)
    {
      LONGEST src1, src2;
      regcache->cooked_read (insn.rs1 (), &src1);
      regcache->cooked_read (insn.rs2 (), &src2);
      if (src1 < src2)
	next_pc = pc + insn.imm_signed ();
    }
  else if (insn.opcode () == riscv_insn::BGE)
    {
      LONGEST src1, src2;
      regcache->cooked_read (insn.rs1 (), &src1);
      regcache->cooked_read (insn.rs2 (), &src2);
      if (src1 >= src2)
	next_pc = pc + insn.imm_signed ();
    }
  else if (insn.opcode () == riscv_insn::BLTU)
    {
      ULONGEST src1, src2;
      regcache->cooked_read (insn.rs1 (), &src1);
      regcache->cooked_read (insn.rs2 (), &src2);
      if (src1 < src2)
	next_pc = pc + insn.imm_signed ();
    }
  else if (insn.opcode () == riscv_insn::BGEU)
    {
      ULONGEST src1, src2;
      regcache->cooked_read (insn.rs1 (), &src1);
      regcache->cooked_read (insn.rs2 (), &src2);
      if (src1 >= src2)
	next_pc = pc + insn.imm_signed ();
    }
  else if (insn.opcode () == riscv_insn::ECALL)
    {
      if (tdep->syscall_next_pc != nullptr)
	next_pc = tdep->syscall_next_pc (get_current_frame ());
    }

  return next_pc;
}

/* We can't put a breakpoint in the middle of a lr/sc atomic sequence, so look
   for the end of the sequence and put the breakpoint there.  */

static bool
riscv_next_pc_atomic_sequence (struct regcache *regcache, CORE_ADDR pc,
			       CORE_ADDR *next_pc)
{
  struct gdbarch *gdbarch = regcache->arch ();
  struct riscv_insn insn;
  CORE_ADDR cur_step_pc = pc;
  CORE_ADDR last_addr = 0;

  /* First instruction has to be a load reserved.  */
  insn.decode (gdbarch, cur_step_pc);
  if (insn.opcode () != riscv_insn::LR)
    return false;
  cur_step_pc = cur_step_pc + insn.length ();

  /* Next instruction should be branch to exit.  */
  insn.decode (gdbarch, cur_step_pc);
  if (insn.opcode () != riscv_insn::BNE)
    return false;
  last_addr = cur_step_pc + insn.imm_signed ();
  cur_step_pc = cur_step_pc + insn.length ();

  /* Next instruction should be store conditional.  */
  insn.decode (gdbarch, cur_step_pc);
  if (insn.opcode () != riscv_insn::SC)
    return false;
  cur_step_pc = cur_step_pc + insn.length ();

  /* Next instruction should be branch to start.  */
  insn.decode (gdbarch, cur_step_pc);
  if (insn.opcode () != riscv_insn::BNE)
    return false;
  if (pc != (cur_step_pc + insn.imm_signed ()))
    return false;
  cur_step_pc = cur_step_pc + insn.length ();

  /* We should now be at the end of the sequence.  */
  if (cur_step_pc != last_addr)
    return false;

  *next_pc = cur_step_pc;
  return true;
}

/* This is called just before we want to resume the inferior, if we want to
   single-step it but there is no hardware or kernel single-step support.  We
   find the target of the coming instruction and breakpoint it.  */

std::vector<CORE_ADDR>
riscv_software_single_step (struct regcache *regcache)
{
  CORE_ADDR pc, next_pc;

  pc = regcache_read_pc (regcache);

  if (riscv_next_pc_atomic_sequence (regcache, pc, &next_pc))
    return {next_pc};

  next_pc = riscv_next_pc (regcache, pc);

  return {next_pc};
}

/* Create RISC-V specific reggroups.  */

static void
riscv_init_reggroups ()
{
  csr_reggroup = reggroup_new ("csr", USER_REGGROUP);
}

/* See riscv-tdep.h.  */

void
riscv_supply_regset (const struct regset *regset,
		     struct regcache *regcache, int regnum,
		     const void *regs, size_t len)
{
  regcache->supply_regset (regset, regnum, regs, len);

  if (regnum == -1 || regnum == RISCV_ZERO_REGNUM)
    regcache->raw_supply_zeroed (RISCV_ZERO_REGNUM);

  struct gdbarch *gdbarch = regcache->arch ();
  riscv_gdbarch_tdep *tdep = gdbarch_tdep<riscv_gdbarch_tdep> (gdbarch);

  if (regnum == -1
      || regnum == tdep->fflags_regnum
      || regnum == tdep->frm_regnum)
    {
      int fcsr_regnum = RISCV_CSR_FCSR_REGNUM;

      /* Ensure that FCSR has been read into REGCACHE.  */
      if (regnum != -1)
	regcache->supply_regset (regset, fcsr_regnum, regs, len);

      /* Grab the FCSR value if it is now in the regcache.  We must check
	 the status first as, if the register was not supplied by REGSET,
	 this call will trigger a recursive attempt to fetch the
	 registers.  */
      if (regcache->get_register_status (fcsr_regnum) == REG_VALID)
	{
	  /* If we have an fcsr register then we should have fflags and frm
	     too, either provided by the target, or provided as a pseudo
	     register by GDB.  */
	  gdb_assert (tdep->fflags_regnum >= 0);
	  gdb_assert (tdep->frm_regnum >= 0);

	  ULONGEST fcsr_val;
	  regcache->raw_read (fcsr_regnum, &fcsr_val);

	  /* Extract the fflags and frm values.  */
	  ULONGEST fflags_val = fcsr_val & 0x1f;
	  ULONGEST frm_val = (fcsr_val >> 5) & 0x7;

	  /* And supply these if needed.  We can only supply real
	     registers, so don't try to supply fflags or frm if they are
	     implemented as pseudo-registers.  */
	  if ((regnum == -1 || regnum == tdep->fflags_regnum)
	      && tdep->fflags_regnum < gdbarch_num_regs (gdbarch))
	    regcache->raw_supply_integer (tdep->fflags_regnum,
					  (gdb_byte *) &fflags_val,
					  sizeof (fflags_val),
					  /* is_signed */ false);

	  if ((regnum == -1 || regnum == tdep->frm_regnum)
	      && tdep->frm_regnum < gdbarch_num_regs (gdbarch))
	    regcache->raw_supply_integer (tdep->frm_regnum,
					  (gdb_byte *)&frm_val,
					  sizeof (fflags_val),
					  /* is_signed */ false);
	}
    }
}

void _initialize_riscv_tdep ();
void
_initialize_riscv_tdep ()
{
  riscv_init_reggroups ();

  gdbarch_register (bfd_arch_riscv, riscv_gdbarch_init, NULL);

  /* Add root prefix command for all "set debug riscv" and "show debug
     riscv" commands.  */
  add_setshow_prefix_cmd ("riscv", no_class,
			  _("RISC-V specific debug commands."),
			  _("RISC-V specific debug commands."),
			  &setdebugriscvcmdlist, &showdebugriscvcmdlist,
			  &setdebuglist, &showdebuglist);

  add_setshow_boolean_cmd ("breakpoints", class_maintenance,
			   &riscv_debug_breakpoints,  _("\
Set riscv breakpoint debugging."), _("\
Show riscv breakpoint debugging."), _("\
When non-zero, print debugging information for the riscv specific parts\n\
of the breakpoint mechanism."),
			   nullptr,
			   show_riscv_debug_variable,
			   &setdebugriscvcmdlist, &showdebugriscvcmdlist);

  add_setshow_boolean_cmd ("infcall", class_maintenance,
			   &riscv_debug_infcall,  _("\
Set riscv inferior call debugging."), _("\
Show riscv inferior call debugging."), _("\
When non-zero, print debugging information for the riscv specific parts\n\
of the inferior call mechanism."),
			   nullptr,
			   show_riscv_debug_variable,
			   &setdebugriscvcmdlist, &showdebugriscvcmdlist);

  add_setshow_boolean_cmd ("unwinder", class_maintenance,
			   &riscv_debug_unwinder,  _("\
Set riscv stack unwinding debugging."), _("\
Show riscv stack unwinding debugging."), _("\
When on, print debugging information for the riscv specific parts\n\
of the stack unwinding mechanism."),
			   nullptr,
			   show_riscv_debug_variable,
			   &setdebugriscvcmdlist, &showdebugriscvcmdlist);

  add_setshow_boolean_cmd ("gdbarch", class_maintenance,
			   &riscv_debug_gdbarch,  _("\
Set riscv gdbarch initialisation debugging."), _("\
Show riscv gdbarch initialisation debugging."), _("\
When non-zero, print debugging information for the riscv gdbarch\n\
initialisation process."),
			   nullptr,
			   show_riscv_debug_variable,
			   &setdebugriscvcmdlist, &showdebugriscvcmdlist);

  /* Add root prefix command for all "set riscv" and "show riscv" commands.  */
  add_setshow_prefix_cmd ("riscv", no_class,
			  _("RISC-V specific commands."),
			  _("RISC-V specific commands."),
			  &setriscvcmdlist, &showriscvcmdlist,
			  &setlist, &showlist);


  use_compressed_breakpoints = AUTO_BOOLEAN_AUTO;
  add_setshow_auto_boolean_cmd ("use-compressed-breakpoints", no_class,
				&use_compressed_breakpoints,
				_("\
Set debugger's use of compressed breakpoints."), _("	\
Show debugger's use of compressed breakpoints."), _("\
Debugging compressed code requires compressed breakpoints to be used. If\n\
left to 'auto' then gdb will use them if the existing instruction is a\n\
compressed instruction. If that doesn't give the correct behavior, then\n\
this option can be used."),
				NULL,
				show_use_compressed_breakpoints,
				&setriscvcmdlist,
				&showriscvcmdlist);
}