1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
|
/* Cache and manage the values of registers for GDB, the GNU debugger.
Copyright (C) 1986-2018 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "inferior.h"
#include "target.h"
#include "gdbarch.h"
#include "gdbcmd.h"
#include "regcache.h"
#include "reggroups.h"
#include "observable.h"
#include "regset.h"
#include <forward_list>
/*
* DATA STRUCTURE
*
* Here is the actual register cache.
*/
/* Per-architecture object describing the layout of a register cache.
Computed once when the architecture is created. */
struct gdbarch_data *regcache_descr_handle;
struct regcache_descr
{
/* The architecture this descriptor belongs to. */
struct gdbarch *gdbarch;
/* The raw register cache. Each raw (or hard) register is supplied
by the target interface. The raw cache should not contain
redundant information - if the PC is constructed from two
registers then those registers and not the PC lives in the raw
cache. */
long sizeof_raw_registers;
/* The cooked register space. Each cooked register in the range
[0..NR_RAW_REGISTERS) is direct-mapped onto the corresponding raw
register. The remaining [NR_RAW_REGISTERS
.. NR_COOKED_REGISTERS) (a.k.a. pseudo registers) are mapped onto
both raw registers and memory by the architecture methods
gdbarch_pseudo_register_read and gdbarch_pseudo_register_write. */
int nr_cooked_registers;
long sizeof_cooked_registers;
/* Offset and size (in 8 bit bytes), of each register in the
register cache. All registers (including those in the range
[NR_RAW_REGISTERS .. NR_COOKED_REGISTERS) are given an
offset. */
long *register_offset;
long *sizeof_register;
/* Cached table containing the type of each register. */
struct type **register_type;
};
static void *
init_regcache_descr (struct gdbarch *gdbarch)
{
int i;
struct regcache_descr *descr;
gdb_assert (gdbarch != NULL);
/* Create an initial, zero filled, table. */
descr = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct regcache_descr);
descr->gdbarch = gdbarch;
/* Total size of the register space. The raw registers are mapped
directly onto the raw register cache while the pseudo's are
either mapped onto raw-registers or memory. */
descr->nr_cooked_registers = gdbarch_num_regs (gdbarch)
+ gdbarch_num_pseudo_regs (gdbarch);
/* Fill in a table of register types. */
descr->register_type
= GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers,
struct type *);
for (i = 0; i < descr->nr_cooked_registers; i++)
descr->register_type[i] = gdbarch_register_type (gdbarch, i);
/* Construct a strictly RAW register cache. Don't allow pseudo's
into the register cache. */
/* Lay out the register cache.
NOTE: cagney/2002-05-22: Only register_type() is used when
constructing the register cache. It is assumed that the
register's raw size, virtual size and type length are all the
same. */
{
long offset = 0;
descr->sizeof_register
= GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
descr->register_offset
= GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
{
descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
descr->register_offset[i] = offset;
offset += descr->sizeof_register[i];
}
/* Set the real size of the raw register cache buffer. */
descr->sizeof_raw_registers = offset;
for (; i < descr->nr_cooked_registers; i++)
{
descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
descr->register_offset[i] = offset;
offset += descr->sizeof_register[i];
}
/* Set the real size of the readonly register cache buffer. */
descr->sizeof_cooked_registers = offset;
}
return descr;
}
static struct regcache_descr *
regcache_descr (struct gdbarch *gdbarch)
{
return (struct regcache_descr *) gdbarch_data (gdbarch,
regcache_descr_handle);
}
/* Utility functions returning useful register attributes stored in
the regcache descr. */
struct type *
register_type (struct gdbarch *gdbarch, int regnum)
{
struct regcache_descr *descr = regcache_descr (gdbarch);
gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
return descr->register_type[regnum];
}
/* Utility functions returning useful register attributes stored in
the regcache descr. */
int
register_size (struct gdbarch *gdbarch, int regnum)
{
struct regcache_descr *descr = regcache_descr (gdbarch);
int size;
gdb_assert (regnum >= 0
&& regnum < (gdbarch_num_regs (gdbarch)
+ gdbarch_num_pseudo_regs (gdbarch)));
size = descr->sizeof_register[regnum];
return size;
}
/* See common/common-regcache.h. */
int
regcache_register_size (const struct regcache *regcache, int n)
{
return register_size (regcache->arch (), n);
}
reg_buffer::reg_buffer (gdbarch *gdbarch, bool has_pseudo)
: m_has_pseudo (has_pseudo)
{
gdb_assert (gdbarch != NULL);
m_descr = regcache_descr (gdbarch);
if (has_pseudo)
{
m_registers = XCNEWVEC (gdb_byte, m_descr->sizeof_cooked_registers);
m_register_status = XCNEWVEC (signed char,
m_descr->nr_cooked_registers);
}
else
{
m_registers = XCNEWVEC (gdb_byte, m_descr->sizeof_raw_registers);
m_register_status = XCNEWVEC (signed char, gdbarch_num_regs (gdbarch));
}
}
regcache::regcache (gdbarch *gdbarch, const address_space *aspace_)
/* The register buffers. A read/write register cache can only hold
[0 .. gdbarch_num_regs). */
: detached_regcache (gdbarch, false), m_aspace (aspace_)
{
m_ptid = minus_one_ptid;
}
static enum register_status
do_cooked_read (void *src, int regnum, gdb_byte *buf)
{
struct regcache *regcache = (struct regcache *) src;
return regcache_cooked_read (regcache, regnum, buf);
}
readonly_detached_regcache::readonly_detached_regcache (const regcache &src)
: readonly_detached_regcache (src.arch (), do_cooked_read, (void *) &src)
{
}
gdbarch *
reg_buffer::arch () const
{
return m_descr->gdbarch;
}
/* Cleanup class for invalidating a register. */
class regcache_invalidator
{
public:
regcache_invalidator (struct regcache *regcache, int regnum)
: m_regcache (regcache),
m_regnum (regnum)
{
}
~regcache_invalidator ()
{
if (m_regcache != nullptr)
regcache_invalidate (m_regcache, m_regnum);
}
DISABLE_COPY_AND_ASSIGN (regcache_invalidator);
void release ()
{
m_regcache = nullptr;
}
private:
struct regcache *m_regcache;
int m_regnum;
};
/* Return a pointer to register REGNUM's buffer cache. */
gdb_byte *
reg_buffer::register_buffer (int regnum) const
{
return m_registers + m_descr->register_offset[regnum];
}
void
reg_buffer::save (regcache_cooked_read_ftype *cooked_read,
void *src)
{
struct gdbarch *gdbarch = m_descr->gdbarch;
int regnum;
/* It should have pseudo registers. */
gdb_assert (m_has_pseudo);
/* Clear the dest. */
memset (m_registers, 0, m_descr->sizeof_cooked_registers);
memset (m_register_status, 0, m_descr->nr_cooked_registers);
/* Copy over any registers (identified by their membership in the
save_reggroup) and mark them as valid. The full [0 .. gdbarch_num_regs +
gdbarch_num_pseudo_regs) range is checked since some architectures need
to save/restore `cooked' registers that live in memory. */
for (regnum = 0; regnum < m_descr->nr_cooked_registers; regnum++)
{
if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
{
gdb_byte *dst_buf = register_buffer (regnum);
enum register_status status = cooked_read (src, regnum, dst_buf);
gdb_assert (status != REG_UNKNOWN);
if (status != REG_VALID)
memset (dst_buf, 0, register_size (gdbarch, regnum));
m_register_status[regnum] = status;
}
}
}
void
regcache::restore (readonly_detached_regcache *src)
{
struct gdbarch *gdbarch = m_descr->gdbarch;
int regnum;
gdb_assert (src != NULL);
gdb_assert (src->m_has_pseudo);
gdb_assert (gdbarch == src->arch ());
/* Copy over any registers, being careful to only restore those that
were both saved and need to be restored. The full [0 .. gdbarch_num_regs
+ gdbarch_num_pseudo_regs) range is checked since some architectures need
to save/restore `cooked' registers that live in memory. */
for (regnum = 0; regnum < m_descr->nr_cooked_registers; regnum++)
{
if (gdbarch_register_reggroup_p (gdbarch, regnum, restore_reggroup))
{
if (src->m_register_status[regnum] == REG_VALID)
cooked_write (regnum, src->register_buffer (regnum));
}
}
}
enum register_status
reg_buffer::get_register_status (int regnum) const
{
assert_regnum (regnum);
return (enum register_status) m_register_status[regnum];
}
void
regcache_invalidate (struct regcache *regcache, int regnum)
{
gdb_assert (regcache != NULL);
regcache->invalidate (regnum);
}
void
detached_regcache::invalidate (int regnum)
{
assert_regnum (regnum);
m_register_status[regnum] = REG_UNKNOWN;
}
void
reg_buffer::assert_regnum (int regnum) const
{
gdb_assert (regnum >= 0);
if (m_has_pseudo)
gdb_assert (regnum < m_descr->nr_cooked_registers);
else
gdb_assert (regnum < gdbarch_num_regs (arch ()));
}
/* Global structure containing the current regcache. */
/* NOTE: this is a write-through cache. There is no "dirty" bit for
recording if the register values have been changed (eg. by the
user). Therefore all registers must be written back to the
target when appropriate. */
std::forward_list<regcache *> regcache::current_regcache;
struct regcache *
get_thread_arch_aspace_regcache (ptid_t ptid, struct gdbarch *gdbarch,
struct address_space *aspace)
{
for (const auto ®cache : regcache::current_regcache)
if (ptid_equal (regcache->ptid (), ptid) && regcache->arch () == gdbarch)
return regcache;
regcache *new_regcache = new regcache (gdbarch, aspace);
regcache::current_regcache.push_front (new_regcache);
new_regcache->set_ptid (ptid);
return new_regcache;
}
struct regcache *
get_thread_arch_regcache (ptid_t ptid, struct gdbarch *gdbarch)
{
address_space *aspace = target_thread_address_space (ptid);
return get_thread_arch_aspace_regcache (ptid, gdbarch, aspace);
}
static ptid_t current_thread_ptid;
static struct gdbarch *current_thread_arch;
struct regcache *
get_thread_regcache (ptid_t ptid)
{
if (!current_thread_arch || !ptid_equal (current_thread_ptid, ptid))
{
current_thread_ptid = ptid;
current_thread_arch = target_thread_architecture (ptid);
}
return get_thread_arch_regcache (ptid, current_thread_arch);
}
struct regcache *
get_current_regcache (void)
{
return get_thread_regcache (inferior_ptid);
}
/* See common/common-regcache.h. */
struct regcache *
get_thread_regcache_for_ptid (ptid_t ptid)
{
return get_thread_regcache (ptid);
}
/* Observer for the target_changed event. */
static void
regcache_observer_target_changed (struct target_ops *target)
{
registers_changed ();
}
/* Update global variables old ptids to hold NEW_PTID if they were
holding OLD_PTID. */
void
regcache::regcache_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
{
for (auto ®cache : regcache::current_regcache)
{
if (ptid_equal (regcache->ptid (), old_ptid))
regcache->set_ptid (new_ptid);
}
}
/* Low level examining and depositing of registers.
The caller is responsible for making sure that the inferior is
stopped before calling the fetching routines, or it will get
garbage. (a change from GDB version 3, in which the caller got the
value from the last stop). */
/* REGISTERS_CHANGED ()
Indicate that registers may have changed, so invalidate the cache. */
void
registers_changed_ptid (ptid_t ptid)
{
for (auto oit = regcache::current_regcache.before_begin (),
it = std::next (oit);
it != regcache::current_regcache.end ();
)
{
if (ptid_match ((*it)->ptid (), ptid))
{
delete *it;
it = regcache::current_regcache.erase_after (oit);
}
else
oit = it++;
}
if (ptid_match (current_thread_ptid, ptid))
{
current_thread_ptid = null_ptid;
current_thread_arch = NULL;
}
if (ptid_match (inferior_ptid, ptid))
{
/* We just deleted the regcache of the current thread. Need to
forget about any frames we have cached, too. */
reinit_frame_cache ();
}
}
void
registers_changed (void)
{
registers_changed_ptid (minus_one_ptid);
/* Force cleanup of any alloca areas if using C alloca instead of
a builtin alloca. This particular call is used to clean up
areas allocated by low level target code which may build up
during lengthy interactions between gdb and the target before
gdb gives control to the user (ie watchpoints). */
alloca (0);
}
void
regcache::raw_update (int regnum)
{
assert_regnum (regnum);
/* Make certain that the register cache is up-to-date with respect
to the current thread. This switching shouldn't be necessary
only there is still only one target side register cache. Sigh!
On the bright side, at least there is a regcache object. */
if (get_register_status (regnum) == REG_UNKNOWN)
{
target_fetch_registers (this, regnum);
/* A number of targets can't access the whole set of raw
registers (because the debug API provides no means to get at
them). */
if (m_register_status[regnum] == REG_UNKNOWN)
m_register_status[regnum] = REG_UNAVAILABLE;
}
}
enum register_status
readable_regcache::raw_read (int regnum, gdb_byte *buf)
{
gdb_assert (buf != NULL);
raw_update (regnum);
if (m_register_status[regnum] != REG_VALID)
memset (buf, 0, m_descr->sizeof_register[regnum]);
else
memcpy (buf, register_buffer (regnum),
m_descr->sizeof_register[regnum]);
return (enum register_status) m_register_status[regnum];
}
enum register_status
regcache_raw_read_signed (struct regcache *regcache, int regnum, LONGEST *val)
{
gdb_assert (regcache != NULL);
return regcache->raw_read (regnum, val);
}
template<typename T, typename>
enum register_status
readable_regcache::raw_read (int regnum, T *val)
{
gdb_byte *buf;
enum register_status status;
assert_regnum (regnum);
buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
status = raw_read (regnum, buf);
if (status == REG_VALID)
*val = extract_integer<T> (buf,
m_descr->sizeof_register[regnum],
gdbarch_byte_order (m_descr->gdbarch));
else
*val = 0;
return status;
}
enum register_status
regcache_raw_read_unsigned (struct regcache *regcache, int regnum,
ULONGEST *val)
{
gdb_assert (regcache != NULL);
return regcache->raw_read (regnum, val);
}
void
regcache_raw_write_signed (struct regcache *regcache, int regnum, LONGEST val)
{
gdb_assert (regcache != NULL);
regcache->raw_write (regnum, val);
}
template<typename T, typename>
void
regcache::raw_write (int regnum, T val)
{
gdb_byte *buf;
assert_regnum (regnum);
buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
store_integer (buf, m_descr->sizeof_register[regnum],
gdbarch_byte_order (m_descr->gdbarch), val);
raw_write (regnum, buf);
}
void
regcache_raw_write_unsigned (struct regcache *regcache, int regnum,
ULONGEST val)
{
gdb_assert (regcache != NULL);
regcache->raw_write (regnum, val);
}
LONGEST
regcache_raw_get_signed (struct regcache *regcache, int regnum)
{
LONGEST value;
enum register_status status;
status = regcache_raw_read_signed (regcache, regnum, &value);
if (status == REG_UNAVAILABLE)
throw_error (NOT_AVAILABLE_ERROR,
_("Register %d is not available"), regnum);
return value;
}
enum register_status
regcache_cooked_read (struct regcache *regcache, int regnum, gdb_byte *buf)
{
return regcache->cooked_read (regnum, buf);
}
enum register_status
readable_regcache::cooked_read (int regnum, gdb_byte *buf)
{
gdb_assert (regnum >= 0);
gdb_assert (regnum < m_descr->nr_cooked_registers);
if (regnum < num_raw_registers ())
return raw_read (regnum, buf);
else if (m_has_pseudo
&& m_register_status[regnum] != REG_UNKNOWN)
{
if (m_register_status[regnum] == REG_VALID)
memcpy (buf, register_buffer (regnum),
m_descr->sizeof_register[regnum]);
else
memset (buf, 0, m_descr->sizeof_register[regnum]);
return (enum register_status) m_register_status[regnum];
}
else if (gdbarch_pseudo_register_read_value_p (m_descr->gdbarch))
{
struct value *mark, *computed;
enum register_status result = REG_VALID;
mark = value_mark ();
computed = gdbarch_pseudo_register_read_value (m_descr->gdbarch,
this, regnum);
if (value_entirely_available (computed))
memcpy (buf, value_contents_raw (computed),
m_descr->sizeof_register[regnum]);
else
{
memset (buf, 0, m_descr->sizeof_register[regnum]);
result = REG_UNAVAILABLE;
}
value_free_to_mark (mark);
return result;
}
else
return gdbarch_pseudo_register_read (m_descr->gdbarch, this,
regnum, buf);
}
struct value *
regcache_cooked_read_value (struct regcache *regcache, int regnum)
{
return regcache->cooked_read_value (regnum);
}
struct value *
readable_regcache::cooked_read_value (int regnum)
{
gdb_assert (regnum >= 0);
gdb_assert (regnum < m_descr->nr_cooked_registers);
if (regnum < num_raw_registers ()
|| (m_has_pseudo && m_register_status[regnum] != REG_UNKNOWN)
|| !gdbarch_pseudo_register_read_value_p (m_descr->gdbarch))
{
struct value *result;
result = allocate_value (register_type (m_descr->gdbarch, regnum));
VALUE_LVAL (result) = lval_register;
VALUE_REGNUM (result) = regnum;
/* It is more efficient in general to do this delegation in this
direction than in the other one, even though the value-based
API is preferred. */
if (cooked_read (regnum,
value_contents_raw (result)) == REG_UNAVAILABLE)
mark_value_bytes_unavailable (result, 0,
TYPE_LENGTH (value_type (result)));
return result;
}
else
return gdbarch_pseudo_register_read_value (m_descr->gdbarch,
this, regnum);
}
enum register_status
regcache_cooked_read_signed (struct regcache *regcache, int regnum,
LONGEST *val)
{
gdb_assert (regcache != NULL);
return regcache->cooked_read (regnum, val);
}
template<typename T, typename>
enum register_status
readable_regcache::cooked_read (int regnum, T *val)
{
enum register_status status;
gdb_byte *buf;
gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers);
buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
status = cooked_read (regnum, buf);
if (status == REG_VALID)
*val = extract_integer<T> (buf, m_descr->sizeof_register[regnum],
gdbarch_byte_order (m_descr->gdbarch));
else
*val = 0;
return status;
}
enum register_status
regcache_cooked_read_unsigned (struct regcache *regcache, int regnum,
ULONGEST *val)
{
gdb_assert (regcache != NULL);
return regcache->cooked_read (regnum, val);
}
void
regcache_cooked_write_signed (struct regcache *regcache, int regnum,
LONGEST val)
{
gdb_assert (regcache != NULL);
regcache->cooked_write (regnum, val);
}
template<typename T, typename>
void
regcache::cooked_write (int regnum, T val)
{
gdb_byte *buf;
gdb_assert (regnum >=0 && regnum < m_descr->nr_cooked_registers);
buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
store_integer (buf, m_descr->sizeof_register[regnum],
gdbarch_byte_order (m_descr->gdbarch), val);
cooked_write (regnum, buf);
}
void
regcache_cooked_write_unsigned (struct regcache *regcache, int regnum,
ULONGEST val)
{
gdb_assert (regcache != NULL);
regcache->cooked_write (regnum, val);
}
void
regcache_raw_write (struct regcache *regcache, int regnum,
const gdb_byte *buf)
{
gdb_assert (regcache != NULL && buf != NULL);
regcache->raw_write (regnum, buf);
}
void
regcache::raw_write (int regnum, const gdb_byte *buf)
{
gdb_assert (buf != NULL);
assert_regnum (regnum);
/* On the sparc, writing %g0 is a no-op, so we don't even want to
change the registers array if something writes to this register. */
if (gdbarch_cannot_store_register (arch (), regnum))
return;
/* If we have a valid copy of the register, and new value == old
value, then don't bother doing the actual store. */
if (get_register_status (regnum) == REG_VALID
&& (memcmp (register_buffer (regnum), buf,
m_descr->sizeof_register[regnum]) == 0))
return;
target_prepare_to_store (this);
raw_supply (regnum, buf);
/* Invalidate the register after it is written, in case of a
failure. */
regcache_invalidator invalidator (this, regnum);
target_store_registers (this, regnum);
/* The target did not throw an error so we can discard invalidating
the register. */
invalidator.release ();
}
void
regcache_cooked_write (struct regcache *regcache, int regnum,
const gdb_byte *buf)
{
regcache->cooked_write (regnum, buf);
}
void
regcache::cooked_write (int regnum, const gdb_byte *buf)
{
gdb_assert (regnum >= 0);
gdb_assert (regnum < m_descr->nr_cooked_registers);
if (regnum < num_raw_registers ())
raw_write (regnum, buf);
else
gdbarch_pseudo_register_write (m_descr->gdbarch, this,
regnum, buf);
}
/* Perform a partial register transfer using a read, modify, write
operation. */
enum register_status
readable_regcache::read_part (int regnum, int offset, int len, void *in,
bool is_raw)
{
struct gdbarch *gdbarch = arch ();
gdb_byte *reg = (gdb_byte *) alloca (register_size (gdbarch, regnum));
gdb_assert (in != NULL);
gdb_assert (offset >= 0 && offset <= m_descr->sizeof_register[regnum]);
gdb_assert (len >= 0 && offset + len <= m_descr->sizeof_register[regnum]);
/* Something to do? */
if (offset + len == 0)
return REG_VALID;
/* Read (when needed) ... */
enum register_status status;
if (is_raw)
status = raw_read (regnum, reg);
else
status = cooked_read (regnum, reg);
if (status != REG_VALID)
return status;
/* ... modify ... */
memcpy (in, reg + offset, len);
return REG_VALID;
}
enum register_status
regcache::write_part (int regnum, int offset, int len,
const void *out, bool is_raw)
{
struct gdbarch *gdbarch = arch ();
gdb_byte *reg = (gdb_byte *) alloca (register_size (gdbarch, regnum));
gdb_assert (out != NULL);
gdb_assert (offset >= 0 && offset <= m_descr->sizeof_register[regnum]);
gdb_assert (len >= 0 && offset + len <= m_descr->sizeof_register[regnum]);
/* Something to do? */
if (offset + len == 0)
return REG_VALID;
/* Read (when needed) ... */
if (offset > 0
|| offset + len < m_descr->sizeof_register[regnum])
{
enum register_status status;
if (is_raw)
status = raw_read (regnum, reg);
else
status = cooked_read (regnum, reg);
if (status != REG_VALID)
return status;
}
memcpy (reg + offset, out, len);
/* ... write (when needed). */
if (is_raw)
raw_write (regnum, reg);
else
cooked_write (regnum, reg);
return REG_VALID;
}
enum register_status
regcache_raw_read_part (struct regcache *regcache, int regnum,
int offset, int len, gdb_byte *buf)
{
return regcache->raw_read_part (regnum, offset, len, buf);
}
enum register_status
readable_regcache::raw_read_part (int regnum, int offset, int len, gdb_byte *buf)
{
assert_regnum (regnum);
return read_part (regnum, offset, len, buf, true);
}
void
regcache_raw_write_part (struct regcache *regcache, int regnum,
int offset, int len, const gdb_byte *buf)
{
regcache->raw_write_part (regnum, offset, len, buf);
}
void
regcache::raw_write_part (int regnum, int offset, int len,
const gdb_byte *buf)
{
assert_regnum (regnum);
write_part (regnum, offset, len, buf, true);
}
enum register_status
regcache_cooked_read_part (struct regcache *regcache, int regnum,
int offset, int len, gdb_byte *buf)
{
return regcache->cooked_read_part (regnum, offset, len, buf);
}
enum register_status
readable_regcache::cooked_read_part (int regnum, int offset, int len,
gdb_byte *buf)
{
gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers);
return read_part (regnum, offset, len, buf, false);
}
void
regcache_cooked_write_part (struct regcache *regcache, int regnum,
int offset, int len, const gdb_byte *buf)
{
regcache->cooked_write_part (regnum, offset, len, buf);
}
void
regcache::cooked_write_part (int regnum, int offset, int len,
const gdb_byte *buf)
{
gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers);
write_part (regnum, offset, len, buf, false);
}
/* Supply register REGNUM, whose contents are stored in BUF, to REGCACHE. */
void
regcache_raw_supply (struct regcache *regcache, int regnum, const void *buf)
{
gdb_assert (regcache != NULL);
regcache->raw_supply (regnum, buf);
}
void
detached_regcache::raw_supply (int regnum, const void *buf)
{
void *regbuf;
size_t size;
assert_regnum (regnum);
regbuf = register_buffer (regnum);
size = m_descr->sizeof_register[regnum];
if (buf)
{
memcpy (regbuf, buf, size);
m_register_status[regnum] = REG_VALID;
}
else
{
/* This memset not strictly necessary, but better than garbage
in case the register value manages to escape somewhere (due
to a bug, no less). */
memset (regbuf, 0, size);
m_register_status[regnum] = REG_UNAVAILABLE;
}
}
/* Supply register REGNUM to REGCACHE. Value to supply is an integer stored at
address ADDR, in target endian, with length ADDR_LEN and sign IS_SIGNED. If
the register size is greater than ADDR_LEN, then the integer will be sign or
zero extended. If the register size is smaller than the integer, then the
most significant bytes of the integer will be truncated. */
void
detached_regcache::raw_supply_integer (int regnum, const gdb_byte *addr,
int addr_len, bool is_signed)
{
enum bfd_endian byte_order = gdbarch_byte_order (m_descr->gdbarch);
gdb_byte *regbuf;
size_t regsize;
assert_regnum (regnum);
regbuf = register_buffer (regnum);
regsize = m_descr->sizeof_register[regnum];
copy_integer_to_size (regbuf, regsize, addr, addr_len, is_signed,
byte_order);
m_register_status[regnum] = REG_VALID;
}
/* Supply register REGNUM with zeroed value to REGCACHE. This is not the same
as calling raw_supply with NULL (which will set the state to
unavailable). */
void
detached_regcache::raw_supply_zeroed (int regnum)
{
void *regbuf;
size_t size;
assert_regnum (regnum);
regbuf = register_buffer (regnum);
size = m_descr->sizeof_register[regnum];
memset (regbuf, 0, size);
m_register_status[regnum] = REG_VALID;
}
/* Collect register REGNUM from REGCACHE and store its contents in BUF. */
void
regcache_raw_collect (const struct regcache *regcache, int regnum, void *buf)
{
gdb_assert (regcache != NULL && buf != NULL);
regcache->raw_collect (regnum, buf);
}
void
regcache::raw_collect (int regnum, void *buf) const
{
const void *regbuf;
size_t size;
gdb_assert (buf != NULL);
assert_regnum (regnum);
regbuf = register_buffer (regnum);
size = m_descr->sizeof_register[regnum];
memcpy (buf, regbuf, size);
}
/* Transfer a single or all registers belonging to a certain register
set to or from a buffer. This is the main worker function for
regcache_supply_regset and regcache_collect_regset. */
/* Collect register REGNUM from REGCACHE. Store collected value as an integer
at address ADDR, in target endian, with length ADDR_LEN and sign IS_SIGNED.
If ADDR_LEN is greater than the register size, then the integer will be sign
or zero extended. If ADDR_LEN is smaller than the register size, then the
most significant bytes of the integer will be truncated. */
void
regcache::raw_collect_integer (int regnum, gdb_byte *addr, int addr_len,
bool is_signed) const
{
enum bfd_endian byte_order = gdbarch_byte_order (m_descr->gdbarch);
const gdb_byte *regbuf;
size_t regsize;
assert_regnum (regnum);
regbuf = register_buffer (regnum);
regsize = m_descr->sizeof_register[regnum];
copy_integer_to_size (addr, addr_len, regbuf, regsize, is_signed,
byte_order);
}
void
regcache::transfer_regset (const struct regset *regset,
struct regcache *out_regcache,
int regnum, const void *in_buf,
void *out_buf, size_t size) const
{
const struct regcache_map_entry *map;
int offs = 0, count;
for (map = (const struct regcache_map_entry *) regset->regmap;
(count = map->count) != 0;
map++)
{
int regno = map->regno;
int slot_size = map->size;
if (slot_size == 0 && regno != REGCACHE_MAP_SKIP)
slot_size = m_descr->sizeof_register[regno];
if (regno == REGCACHE_MAP_SKIP
|| (regnum != -1
&& (regnum < regno || regnum >= regno + count)))
offs += count * slot_size;
else if (regnum == -1)
for (; count--; regno++, offs += slot_size)
{
if (offs + slot_size > size)
break;
if (out_buf)
raw_collect (regno, (gdb_byte *) out_buf + offs);
else
out_regcache->raw_supply (regno, in_buf
? (const gdb_byte *) in_buf + offs
: NULL);
}
else
{
/* Transfer a single register and return. */
offs += (regnum - regno) * slot_size;
if (offs + slot_size > size)
return;
if (out_buf)
raw_collect (regnum, (gdb_byte *) out_buf + offs);
else
out_regcache->raw_supply (regnum, in_buf
? (const gdb_byte *) in_buf + offs
: NULL);
return;
}
}
}
/* Supply register REGNUM from BUF to REGCACHE, using the register map
in REGSET. If REGNUM is -1, do this for all registers in REGSET.
If BUF is NULL, set the register(s) to "unavailable" status. */
void
regcache_supply_regset (const struct regset *regset,
struct regcache *regcache,
int regnum, const void *buf, size_t size)
{
regcache->supply_regset (regset, regnum, buf, size);
}
void
regcache::supply_regset (const struct regset *regset,
int regnum, const void *buf, size_t size)
{
transfer_regset (regset, this, regnum, buf, NULL, size);
}
/* Collect register REGNUM from REGCACHE to BUF, using the register
map in REGSET. If REGNUM is -1, do this for all registers in
REGSET. */
void
regcache_collect_regset (const struct regset *regset,
const struct regcache *regcache,
int regnum, void *buf, size_t size)
{
regcache->collect_regset (regset, regnum, buf, size);
}
void
regcache::collect_regset (const struct regset *regset,
int regnum, void *buf, size_t size) const
{
transfer_regset (regset, NULL, regnum, NULL, buf, size);
}
/* Special handling for register PC. */
CORE_ADDR
regcache_read_pc (struct regcache *regcache)
{
struct gdbarch *gdbarch = regcache->arch ();
CORE_ADDR pc_val;
if (gdbarch_read_pc_p (gdbarch))
pc_val = gdbarch_read_pc (gdbarch, regcache);
/* Else use per-frame method on get_current_frame. */
else if (gdbarch_pc_regnum (gdbarch) >= 0)
{
ULONGEST raw_val;
if (regcache_cooked_read_unsigned (regcache,
gdbarch_pc_regnum (gdbarch),
&raw_val) == REG_UNAVAILABLE)
throw_error (NOT_AVAILABLE_ERROR, _("PC register is not available"));
pc_val = gdbarch_addr_bits_remove (gdbarch, raw_val);
}
else
internal_error (__FILE__, __LINE__,
_("regcache_read_pc: Unable to find PC"));
return pc_val;
}
void
regcache_write_pc (struct regcache *regcache, CORE_ADDR pc)
{
struct gdbarch *gdbarch = regcache->arch ();
if (gdbarch_write_pc_p (gdbarch))
gdbarch_write_pc (gdbarch, regcache, pc);
else if (gdbarch_pc_regnum (gdbarch) >= 0)
regcache_cooked_write_unsigned (regcache,
gdbarch_pc_regnum (gdbarch), pc);
else
internal_error (__FILE__, __LINE__,
_("regcache_write_pc: Unable to update PC"));
/* Writing the PC (for instance, from "load") invalidates the
current frame. */
reinit_frame_cache ();
}
int
reg_buffer::num_raw_registers () const
{
return gdbarch_num_regs (arch ());
}
void
regcache::debug_print_register (const char *func, int regno)
{
struct gdbarch *gdbarch = arch ();
fprintf_unfiltered (gdb_stdlog, "%s ", func);
if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
&& gdbarch_register_name (gdbarch, regno) != NULL
&& gdbarch_register_name (gdbarch, regno)[0] != '\0')
fprintf_unfiltered (gdb_stdlog, "(%s)",
gdbarch_register_name (gdbarch, regno));
else
fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
{
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
int size = register_size (gdbarch, regno);
gdb_byte *buf = register_buffer (regno);
fprintf_unfiltered (gdb_stdlog, " = ");
for (int i = 0; i < size; i++)
{
fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
}
if (size <= sizeof (LONGEST))
{
ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
fprintf_unfiltered (gdb_stdlog, " %s %s",
core_addr_to_string_nz (val), plongest (val));
}
}
fprintf_unfiltered (gdb_stdlog, "\n");
}
static void
reg_flush_command (const char *command, int from_tty)
{
/* Force-flush the register cache. */
registers_changed ();
if (from_tty)
printf_filtered (_("Register cache flushed.\n"));
}
void
register_dump::dump (ui_file *file)
{
auto descr = regcache_descr (m_gdbarch);
int regnum;
int footnote_nr = 0;
int footnote_register_offset = 0;
int footnote_register_type_name_null = 0;
long register_offset = 0;
gdb_assert (descr->nr_cooked_registers
== (gdbarch_num_regs (m_gdbarch)
+ gdbarch_num_pseudo_regs (m_gdbarch)));
for (regnum = -1; regnum < descr->nr_cooked_registers; regnum++)
{
/* Name. */
if (regnum < 0)
fprintf_unfiltered (file, " %-10s", "Name");
else
{
const char *p = gdbarch_register_name (m_gdbarch, regnum);
if (p == NULL)
p = "";
else if (p[0] == '\0')
p = "''";
fprintf_unfiltered (file, " %-10s", p);
}
/* Number. */
if (regnum < 0)
fprintf_unfiltered (file, " %4s", "Nr");
else
fprintf_unfiltered (file, " %4d", regnum);
/* Relative number. */
if (regnum < 0)
fprintf_unfiltered (file, " %4s", "Rel");
else if (regnum < gdbarch_num_regs (m_gdbarch))
fprintf_unfiltered (file, " %4d", regnum);
else
fprintf_unfiltered (file, " %4d",
(regnum - gdbarch_num_regs (m_gdbarch)));
/* Offset. */
if (regnum < 0)
fprintf_unfiltered (file, " %6s ", "Offset");
else
{
fprintf_unfiltered (file, " %6ld",
descr->register_offset[regnum]);
if (register_offset != descr->register_offset[regnum]
|| (regnum > 0
&& (descr->register_offset[regnum]
!= (descr->register_offset[regnum - 1]
+ descr->sizeof_register[regnum - 1])))
)
{
if (!footnote_register_offset)
footnote_register_offset = ++footnote_nr;
fprintf_unfiltered (file, "*%d", footnote_register_offset);
}
else
fprintf_unfiltered (file, " ");
register_offset = (descr->register_offset[regnum]
+ descr->sizeof_register[regnum]);
}
/* Size. */
if (regnum < 0)
fprintf_unfiltered (file, " %5s ", "Size");
else
fprintf_unfiltered (file, " %5ld", descr->sizeof_register[regnum]);
/* Type. */
{
const char *t;
std::string name_holder;
if (regnum < 0)
t = "Type";
else
{
static const char blt[] = "builtin_type";
t = TYPE_NAME (register_type (m_gdbarch, regnum));
if (t == NULL)
{
if (!footnote_register_type_name_null)
footnote_register_type_name_null = ++footnote_nr;
name_holder = string_printf ("*%d",
footnote_register_type_name_null);
t = name_holder.c_str ();
}
/* Chop a leading builtin_type. */
if (startswith (t, blt))
t += strlen (blt);
}
fprintf_unfiltered (file, " %-15s", t);
}
/* Leading space always present. */
fprintf_unfiltered (file, " ");
dump_reg (file, regnum);
fprintf_unfiltered (file, "\n");
}
if (footnote_register_offset)
fprintf_unfiltered (file, "*%d: Inconsistent register offsets.\n",
footnote_register_offset);
if (footnote_register_type_name_null)
fprintf_unfiltered (file,
"*%d: Register type's name NULL.\n",
footnote_register_type_name_null);
}
#if GDB_SELF_TEST
#include "selftest.h"
#include "selftest-arch.h"
#include "gdbthread.h"
#include "target-float.h"
namespace selftests {
class regcache_access : public regcache
{
public:
/* Return the number of elements in current_regcache. */
static size_t
current_regcache_size ()
{
return std::distance (regcache::current_regcache.begin (),
regcache::current_regcache.end ());
}
};
static void
current_regcache_test (void)
{
/* It is empty at the start. */
SELF_CHECK (regcache_access::current_regcache_size () == 0);
ptid_t ptid1 (1), ptid2 (2), ptid3 (3);
/* Get regcache from ptid1, a new regcache is added to
current_regcache. */
regcache *regcache = get_thread_arch_aspace_regcache (ptid1,
target_gdbarch (),
NULL);
SELF_CHECK (regcache != NULL);
SELF_CHECK (regcache->ptid () == ptid1);
SELF_CHECK (regcache_access::current_regcache_size () == 1);
/* Get regcache from ptid2, a new regcache is added to
current_regcache. */
regcache = get_thread_arch_aspace_regcache (ptid2,
target_gdbarch (),
NULL);
SELF_CHECK (regcache != NULL);
SELF_CHECK (regcache->ptid () == ptid2);
SELF_CHECK (regcache_access::current_regcache_size () == 2);
/* Get regcache from ptid3, a new regcache is added to
current_regcache. */
regcache = get_thread_arch_aspace_regcache (ptid3,
target_gdbarch (),
NULL);
SELF_CHECK (regcache != NULL);
SELF_CHECK (regcache->ptid () == ptid3);
SELF_CHECK (regcache_access::current_regcache_size () == 3);
/* Get regcache from ptid2 again, nothing is added to
current_regcache. */
regcache = get_thread_arch_aspace_regcache (ptid2,
target_gdbarch (),
NULL);
SELF_CHECK (regcache != NULL);
SELF_CHECK (regcache->ptid () == ptid2);
SELF_CHECK (regcache_access::current_regcache_size () == 3);
/* Mark ptid2 is changed, so regcache of ptid2 should be removed from
current_regcache. */
registers_changed_ptid (ptid2);
SELF_CHECK (regcache_access::current_regcache_size () == 2);
}
class target_ops_no_register : public test_target_ops
{
public:
target_ops_no_register ()
: test_target_ops {}
{}
void reset ()
{
fetch_registers_called = 0;
store_registers_called = 0;
xfer_partial_called = 0;
}
void fetch_registers (regcache *regs, int regno) override;
void store_registers (regcache *regs, int regno) override;
enum target_xfer_status xfer_partial (enum target_object object,
const char *annex, gdb_byte *readbuf,
const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len,
ULONGEST *xfered_len) override;
unsigned int fetch_registers_called = 0;
unsigned int store_registers_called = 0;
unsigned int xfer_partial_called = 0;
};
void
target_ops_no_register::fetch_registers (regcache *regs, int regno)
{
/* Mark register available. */
regs->raw_supply_zeroed (regno);
this->fetch_registers_called++;
}
void
target_ops_no_register::store_registers (regcache *regs, int regno)
{
this->store_registers_called++;
}
enum target_xfer_status
target_ops_no_register::xfer_partial (enum target_object object,
const char *annex, gdb_byte *readbuf,
const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len,
ULONGEST *xfered_len)
{
this->xfer_partial_called++;
*xfered_len = len;
return TARGET_XFER_OK;
}
class readwrite_regcache : public regcache
{
public:
readwrite_regcache (struct gdbarch *gdbarch)
: regcache (gdbarch, nullptr)
{}
};
/* Test regcache::cooked_read gets registers from raw registers and
memory instead of target to_{fetch,store}_registers. */
static void
cooked_read_test (struct gdbarch *gdbarch)
{
/* Error out if debugging something, because we're going to push the
test target, which would pop any existing target. */
if (target_stack->to_stratum >= process_stratum)
error (_("target already pushed"));
/* Create a mock environment. An inferior with a thread, with a
process_stratum target pushed. */
target_ops_no_register mock_target;
ptid_t mock_ptid (1, 1);
inferior mock_inferior (mock_ptid.pid ());
address_space mock_aspace {};
mock_inferior.gdbarch = gdbarch;
mock_inferior.aspace = &mock_aspace;
thread_info mock_thread (&mock_inferior, mock_ptid);
scoped_restore restore_thread_list
= make_scoped_restore (&thread_list, &mock_thread);
/* Add the mock inferior to the inferior list so that look ups by
target+ptid can find it. */
scoped_restore restore_inferior_list
= make_scoped_restore (&inferior_list);
inferior_list = &mock_inferior;
/* Switch to the mock inferior. */
scoped_restore_current_inferior restore_current_inferior;
set_current_inferior (&mock_inferior);
/* Push the process_stratum target so we can mock accessing
registers. */
push_target (&mock_target);
/* Pop it again on exit (return/exception). */
struct on_exit
{
~on_exit ()
{
pop_all_targets_at_and_above (process_stratum);
}
} pop_targets;
/* Switch to the mock thread. */
scoped_restore restore_inferior_ptid
= make_scoped_restore (&inferior_ptid, mock_ptid);
/* Test that read one raw register from regcache_no_target will go
to the target layer. */
int regnum;
/* Find a raw register which size isn't zero. */
for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
{
if (register_size (gdbarch, regnum) != 0)
break;
}
readwrite_regcache readwrite (gdbarch);
gdb::def_vector<gdb_byte> buf (register_size (gdbarch, regnum));
readwrite.raw_read (regnum, buf.data ());
/* raw_read calls target_fetch_registers. */
SELF_CHECK (mock_target.fetch_registers_called > 0);
mock_target.reset ();
/* Mark all raw registers valid, so the following raw registers
accesses won't go to target. */
for (auto i = 0; i < gdbarch_num_regs (gdbarch); i++)
readwrite.raw_update (i);
mock_target.reset ();
/* Then, read all raw and pseudo registers, and don't expect calling
to_{fetch,store}_registers. */
for (int regnum = 0;
regnum < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
regnum++)
{
if (register_size (gdbarch, regnum) == 0)
continue;
gdb::def_vector<gdb_byte> buf (register_size (gdbarch, regnum));
SELF_CHECK (REG_VALID == readwrite.cooked_read (regnum, buf.data ()));
SELF_CHECK (mock_target.fetch_registers_called == 0);
SELF_CHECK (mock_target.store_registers_called == 0);
/* Some SPU pseudo registers are got via TARGET_OBJECT_SPU. */
if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
SELF_CHECK (mock_target.xfer_partial_called == 0);
mock_target.reset ();
}
readonly_detached_regcache readonly (readwrite);
/* GDB may go to target layer to fetch all registers and memory for
readonly regcache. */
mock_target.reset ();
for (int regnum = 0;
regnum < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
regnum++)
{
if (register_size (gdbarch, regnum) == 0)
continue;
gdb::def_vector<gdb_byte> buf (register_size (gdbarch, regnum));
enum register_status status = readonly.cooked_read (regnum,
buf.data ());
if (regnum < gdbarch_num_regs (gdbarch))
{
auto bfd_arch = gdbarch_bfd_arch_info (gdbarch)->arch;
if (bfd_arch == bfd_arch_frv || bfd_arch == bfd_arch_h8300
|| bfd_arch == bfd_arch_m32c || bfd_arch == bfd_arch_sh
|| bfd_arch == bfd_arch_alpha || bfd_arch == bfd_arch_v850
|| bfd_arch == bfd_arch_msp430 || bfd_arch == bfd_arch_mep
|| bfd_arch == bfd_arch_mips || bfd_arch == bfd_arch_v850_rh850
|| bfd_arch == bfd_arch_tic6x || bfd_arch == bfd_arch_mn10300
|| bfd_arch == bfd_arch_rl78 || bfd_arch == bfd_arch_score
|| bfd_arch == bfd_arch_riscv)
{
/* Raw registers. If raw registers are not in save_reggroup,
their status are unknown. */
if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
SELF_CHECK (status == REG_VALID);
else
SELF_CHECK (status == REG_UNKNOWN);
}
else
SELF_CHECK (status == REG_VALID);
}
else
{
if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
SELF_CHECK (status == REG_VALID);
else
{
/* If pseudo registers are not in save_reggroup, some of
them can be computed from saved raw registers, but some
of them are unknown. */
auto bfd_arch = gdbarch_bfd_arch_info (gdbarch)->arch;
if (bfd_arch == bfd_arch_frv
|| bfd_arch == bfd_arch_m32c
|| bfd_arch == bfd_arch_mep
|| bfd_arch == bfd_arch_sh)
SELF_CHECK (status == REG_VALID || status == REG_UNKNOWN);
else if (bfd_arch == bfd_arch_mips
|| bfd_arch == bfd_arch_h8300)
SELF_CHECK (status == REG_UNKNOWN);
else
SELF_CHECK (status == REG_VALID);
}
}
SELF_CHECK (mock_target.fetch_registers_called == 0);
SELF_CHECK (mock_target.store_registers_called == 0);
SELF_CHECK (mock_target.xfer_partial_called == 0);
mock_target.reset ();
}
}
/* Test regcache::cooked_write by writing some expected contents to
registers, and checking that contents read from registers and the
expected contents are the same. */
static void
cooked_write_test (struct gdbarch *gdbarch)
{
/* Error out if debugging something, because we're going to push the
test target, which would pop any existing target. */
if (target_stack->to_stratum >= process_stratum)
error (_("target already pushed"));
/* Create a mock environment. A process_stratum target pushed. */
target_ops_no_register mock_target;
/* Push the process_stratum target so we can mock accessing
registers. */
push_target (&mock_target);
/* Pop it again on exit (return/exception). */
struct on_exit
{
~on_exit ()
{
pop_all_targets_at_and_above (process_stratum);
}
} pop_targets;
readwrite_regcache readwrite (gdbarch);
const int num_regs = (gdbarch_num_regs (gdbarch)
+ gdbarch_num_pseudo_regs (gdbarch));
for (auto regnum = 0; regnum < num_regs; regnum++)
{
if (register_size (gdbarch, regnum) == 0
|| gdbarch_cannot_store_register (gdbarch, regnum))
continue;
auto bfd_arch = gdbarch_bfd_arch_info (gdbarch)->arch;
if ((bfd_arch == bfd_arch_sparc
/* SPARC64_CWP_REGNUM, SPARC64_PSTATE_REGNUM,
SPARC64_ASI_REGNUM and SPARC64_CCR_REGNUM are hard to test. */
&& gdbarch_ptr_bit (gdbarch) == 64
&& (regnum >= gdbarch_num_regs (gdbarch)
&& regnum <= gdbarch_num_regs (gdbarch) + 4))
|| (bfd_arch == bfd_arch_spu
/* SPU pseudo registers except SPU_SP_REGNUM are got by
TARGET_OBJECT_SPU. */
&& regnum >= gdbarch_num_regs (gdbarch) && regnum != 130))
continue;
std::vector<gdb_byte> expected (register_size (gdbarch, regnum), 0);
std::vector<gdb_byte> buf (register_size (gdbarch, regnum), 0);
const auto type = register_type (gdbarch, regnum);
if (TYPE_CODE (type) == TYPE_CODE_FLT
|| TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
{
/* Generate valid float format. */
target_float_from_string (expected.data (), type, "1.25");
}
else if (TYPE_CODE (type) == TYPE_CODE_INT
|| TYPE_CODE (type) == TYPE_CODE_ARRAY
|| TYPE_CODE (type) == TYPE_CODE_PTR
|| TYPE_CODE (type) == TYPE_CODE_UNION
|| TYPE_CODE (type) == TYPE_CODE_STRUCT)
{
if (bfd_arch == bfd_arch_ia64
|| (regnum >= gdbarch_num_regs (gdbarch)
&& (bfd_arch == bfd_arch_xtensa
|| bfd_arch == bfd_arch_bfin
|| bfd_arch == bfd_arch_m32c
/* m68hc11 pseudo registers are in memory. */
|| bfd_arch == bfd_arch_m68hc11
|| bfd_arch == bfd_arch_m68hc12
|| bfd_arch == bfd_arch_s390))
|| (bfd_arch == bfd_arch_frv
/* FRV pseudo registers except iacc0. */
&& regnum > gdbarch_num_regs (gdbarch)))
{
/* Skip setting the expected values for some architecture
registers. */
}
else if (bfd_arch == bfd_arch_rl78 && regnum == 40)
{
/* RL78_PC_REGNUM */
for (auto j = 0; j < register_size (gdbarch, regnum) - 1; j++)
expected[j] = j;
}
else
{
for (auto j = 0; j < register_size (gdbarch, regnum); j++)
expected[j] = j;
}
}
else if (TYPE_CODE (type) == TYPE_CODE_FLAGS)
{
/* No idea how to test flags. */
continue;
}
else
{
/* If we don't know how to create the expected value for the
this type, make it fail. */
SELF_CHECK (0);
}
readwrite.cooked_write (regnum, expected.data ());
SELF_CHECK (readwrite.cooked_read (regnum, buf.data ()) == REG_VALID);
SELF_CHECK (expected == buf);
}
}
} // namespace selftests
#endif /* GDB_SELF_TEST */
void
_initialize_regcache (void)
{
regcache_descr_handle
= gdbarch_data_register_post_init (init_regcache_descr);
gdb::observers::target_changed.attach (regcache_observer_target_changed);
gdb::observers::thread_ptid_changed.attach
(regcache::regcache_thread_ptid_changed);
add_com ("flushregs", class_maintenance, reg_flush_command,
_("Force gdb to flush its register cache (maintainer command)"));
#if GDB_SELF_TEST
selftests::register_test ("current_regcache", selftests::current_regcache_test);
selftests::register_test_foreach_arch ("regcache::cooked_read_test",
selftests::cooked_read_test);
selftests::register_test_foreach_arch ("regcache::cooked_write_test",
selftests::cooked_write_test);
#endif
}
|