1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
|
/* Target-dependent code for PowerPC systems using the SVR4 ABI
for GDB, the GNU debugger.
Copyright 2000, 2001, 2002 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "gdbcore.h"
#include "inferior.h"
#include "regcache.h"
#include "value.h"
#include "gdb_string.h"
#include "ppc-tdep.h"
/* Pass the arguments in either registers, or in the stack. Using the
ppc sysv ABI, the first eight words of the argument list (that might
be less than eight parameters if some parameters occupy more than one
word) are passed in r3..r10 registers. float and double parameters are
passed in fpr's, in addition to that. Rest of the parameters if any
are passed in user stack.
If the function is returning a structure, then the return address is passed
in r3, then the first 7 words of the parametes can be passed in registers,
starting from r4. */
CORE_ADDR
ppc_sysv_abi_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
struct regcache *regcache, CORE_ADDR bp_addr,
int nargs, struct value **args, CORE_ADDR sp,
int struct_return, CORE_ADDR struct_addr)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
const CORE_ADDR saved_sp = read_sp ();
int argspace = 0; /* 0 is an initial wrong guess. */
int write_pass;
/* Go through the argument list twice.
Pass 1: Figure out how much new stack space is required for
arguments and pushed values. Unlike the PowerOpen ABI, the SysV
ABI doesn't reserve any extra space for parameters which are put
in registers, but does always push structures and then pass their
address.
Pass 2: Replay the same computation but this time also write the
values out to the target. */
for (write_pass = 0; write_pass < 2; write_pass++)
{
int argno;
/* Next available floating point register for float and double
arguments. */
int freg = 1;
/* Next available general register for non-float, non-vector
arguments. */
int greg = 3;
/* Next available vector register for vector arguments. */
int vreg = 2;
/* Arguments start above the "LR save word" and "Back chain". */
int argoffset = 2 * tdep->wordsize;
/* Structures start after the arguments. */
int structoffset = argoffset + argspace;
/* If the function is returning a `struct', then the first word
(which will be passed in r3) is used for struct return
address. In that case we should advance one word and start
from r4 register to copy parameters. */
if (struct_return)
{
if (write_pass)
regcache_cooked_write_signed (regcache,
tdep->ppc_gp0_regnum + greg,
struct_addr);
greg++;
}
for (argno = 0; argno < nargs; argno++)
{
struct value *arg = args[argno];
struct type *type = check_typedef (VALUE_TYPE (arg));
int len = TYPE_LENGTH (type);
char *val = VALUE_CONTENTS (arg);
if (TYPE_CODE (type) == TYPE_CODE_FLT
&& ppc_floating_point_unit_p (current_gdbarch)
&& len <= 8)
{
/* Floating point value converted to "double" then
passed in an FP register, when the registers run out,
8 byte aligned stack is used. */
if (freg <= 8)
{
if (write_pass)
{
/* Always store the floating point value using
the register's floating-point format. */
char regval[MAX_REGISTER_SIZE];
struct type *regtype
= register_type (gdbarch, FP0_REGNUM + freg);
convert_typed_floating (val, type, regval, regtype);
regcache_cooked_write (regcache, FP0_REGNUM + freg,
regval);
}
freg++;
}
else
{
/* SysV ABI converts floats to doubles before
writing them to an 8 byte aligned stack location. */
argoffset = align_up (argoffset, 8);
if (write_pass)
{
char memval[8];
struct type *memtype;
switch (TARGET_BYTE_ORDER)
{
case BFD_ENDIAN_BIG:
memtype = builtin_type_ieee_double_big;
break;
case BFD_ENDIAN_LITTLE:
memtype = builtin_type_ieee_double_little;
break;
default:
internal_error (__FILE__, __LINE__, "bad switch");
}
convert_typed_floating (val, type, memval, memtype);
write_memory (sp + argoffset, val, len);
}
argoffset += 8;
}
}
else if (len == 8
&& (TYPE_CODE (type) == TYPE_CODE_INT /* long long */
|| (!ppc_floating_point_unit_p (current_gdbarch)
&& TYPE_CODE (type) == TYPE_CODE_FLT))) /* double */
{
/* "long long" or "double" passed in an odd/even
register pair with the low addressed word in the odd
register and the high addressed word in the even
register, or when the registers run out an 8 byte
aligned stack location. */
if (greg > 9)
{
/* Just in case GREG was 10. */
greg = 11;
argoffset = align_up (argoffset, 8);
if (write_pass)
write_memory (sp + argoffset, val, len);
argoffset += 8;
}
else if (tdep->wordsize == 8)
{
if (write_pass)
regcache_cooked_write (regcache,
tdep->ppc_gp0_regnum + greg,
val);
greg += 1;
}
else
{
/* Must start on an odd register - r3/r4 etc. */
if ((greg & 1) == 0)
greg++;
if (write_pass)
{
regcache_cooked_write (regcache,
tdep->ppc_gp0_regnum + greg + 0,
val + 0);
regcache_cooked_write (regcache,
tdep->ppc_gp0_regnum + greg + 1,
val + 4);
}
greg += 2;
}
}
else if (len == 16
&& TYPE_CODE (type) == TYPE_CODE_ARRAY
&& TYPE_VECTOR (type)
&& tdep->ppc_vr0_regnum >= 0)
{
/* Vector parameter passed in an Altivec register, or
when that runs out, 16 byte aligned stack location. */
if (vreg <= 13)
{
if (write_pass)
regcache_cooked_write (current_regcache,
tdep->ppc_vr0_regnum + vreg,
val);
vreg++;
}
else
{
argoffset = align_up (argoffset, 16);
if (write_pass)
write_memory (sp + argoffset, val, 16);
argoffset += 16;
}
}
else if (len == 8
&& TYPE_CODE (type) == TYPE_CODE_ARRAY
&& TYPE_VECTOR (type)
&& tdep->ppc_ev0_regnum >= 0)
{
/* Vector parameter passed in an e500 register, or when
that runs out, 8 byte aligned stack location. Note
that since e500 vector and general purpose registers
both map onto the same underlying register set, a
"greg" and not a "vreg" is consumed here. A cooked
write stores the value in the correct locations
within the raw register cache. */
if (greg <= 10)
{
if (write_pass)
regcache_cooked_write (current_regcache,
tdep->ppc_ev0_regnum + greg,
val);
greg++;
}
else
{
argoffset = align_up (argoffset, 8);
if (write_pass)
write_memory (sp + argoffset, val, 8);
argoffset += 8;
}
}
else
{
/* Reduce the parameter down to something that fits in a
"word". */
char word[MAX_REGISTER_SIZE];
memset (word, 0, MAX_REGISTER_SIZE);
if (len > tdep->wordsize
|| TYPE_CODE (type) == TYPE_CODE_STRUCT
|| TYPE_CODE (type) == TYPE_CODE_UNION)
{
/* Structs and large values are put on an 8 byte
aligned stack ... */
structoffset = align_up (structoffset, 8);
if (write_pass)
write_memory (sp + structoffset, val, len);
/* ... and then a "word" pointing to that address is
passed as the parameter. */
store_unsigned_integer (word, tdep->wordsize,
sp + structoffset);
structoffset += len;
}
else if (TYPE_CODE (type) == TYPE_CODE_INT)
/* Sign or zero extend the "int" into a "word". */
store_unsigned_integer (word, tdep->wordsize,
unpack_long (type, val));
else
/* Always goes in the low address. */
memcpy (word, val, len);
/* Store that "word" in a register, or on the stack.
The words have "4" byte alignment. */
if (greg <= 10)
{
if (write_pass)
regcache_cooked_write (regcache,
tdep->ppc_gp0_regnum + greg,
word);
greg++;
}
else
{
argoffset = align_up (argoffset, tdep->wordsize);
if (write_pass)
write_memory (sp + argoffset, word, tdep->wordsize);
argoffset += tdep->wordsize;
}
}
}
/* Compute the actual stack space requirements. */
if (!write_pass)
{
/* Remember the amount of space needed by the arguments. */
argspace = argoffset;
/* Allocate space for both the arguments and the structures. */
sp -= (argoffset + structoffset);
/* Ensure that the stack is still 16 byte aligned. */
sp = align_down (sp, 16);
}
}
/* Update %sp. */
regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
/* Write the backchain (it occupies WORDSIZED bytes). */
write_memory_signed_integer (sp, tdep->wordsize, saved_sp);
/* Point the inferior function call's return address at the dummy's
breakpoint. */
regcache_cooked_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
return sp;
}
/* Structures 8 bytes or less long are returned in the r3 & r4
registers, according to the SYSV ABI. */
int
ppc_sysv_abi_use_struct_convention (int gcc_p, struct type *value_type)
{
if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8)
&& TYPE_VECTOR (value_type))
return 0;
return (TYPE_LENGTH (value_type) > 8);
}
|