1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
|
/* PPC GNU/Linux native support.
Copyright (C) 1988-2023 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "frame.h"
#include "inferior.h"
#include "gdbthread.h"
#include "gdbcore.h"
#include "regcache.h"
#include "regset.h"
#include "target.h"
#include "linux-nat.h"
#include <sys/types.h>
#include <signal.h>
#include <sys/user.h>
#include <sys/ioctl.h>
#include <sys/uio.h>
#include "gdbsupport/gdb_wait.h"
#include <fcntl.h>
#include <sys/procfs.h>
#include "nat/gdb_ptrace.h"
#include "nat/linux-ptrace.h"
#include "inf-ptrace.h"
#include <algorithm>
#include <unordered_map>
#include <list>
/* Prototypes for supply_gregset etc. */
#include "gregset.h"
#include "ppc-tdep.h"
#include "ppc-linux-tdep.h"
/* Required when using the AUXV. */
#include "elf/common.h"
#include "auxv.h"
#include "arch/ppc-linux-common.h"
#include "arch/ppc-linux-tdesc.h"
#include "nat/ppc-linux.h"
#include "linux-tdep.h"
#include "expop.h"
/* Similarly for the hardware watchpoint support. These requests are used
when the PowerPC HWDEBUG ptrace interface is not available. */
#ifndef PTRACE_GET_DEBUGREG
#define PTRACE_GET_DEBUGREG 25
#endif
#ifndef PTRACE_SET_DEBUGREG
#define PTRACE_SET_DEBUGREG 26
#endif
#ifndef PTRACE_GETSIGINFO
#define PTRACE_GETSIGINFO 0x4202
#endif
/* These requests are used when the PowerPC HWDEBUG ptrace interface is
available. It exposes the debug facilities of PowerPC processors, as well
as additional features of BookE processors, such as ranged breakpoints and
watchpoints and hardware-accelerated condition evaluation. */
#ifndef PPC_PTRACE_GETHWDBGINFO
/* Not having PPC_PTRACE_GETHWDBGINFO defined means that the PowerPC HWDEBUG
ptrace interface is not present in ptrace.h, so we'll have to pretty much
include it all here so that the code at least compiles on older systems. */
#define PPC_PTRACE_GETHWDBGINFO 0x89
#define PPC_PTRACE_SETHWDEBUG 0x88
#define PPC_PTRACE_DELHWDEBUG 0x87
struct ppc_debug_info
{
uint32_t version; /* Only version 1 exists to date. */
uint32_t num_instruction_bps;
uint32_t num_data_bps;
uint32_t num_condition_regs;
uint32_t data_bp_alignment;
uint32_t sizeof_condition; /* size of the DVC register. */
uint64_t features;
};
/* Features will have bits indicating whether there is support for: */
#define PPC_DEBUG_FEATURE_INSN_BP_RANGE 0x1
#define PPC_DEBUG_FEATURE_INSN_BP_MASK 0x2
#define PPC_DEBUG_FEATURE_DATA_BP_RANGE 0x4
#define PPC_DEBUG_FEATURE_DATA_BP_MASK 0x8
struct ppc_hw_breakpoint
{
uint32_t version; /* currently, version must be 1 */
uint32_t trigger_type; /* only some combinations allowed */
uint32_t addr_mode; /* address match mode */
uint32_t condition_mode; /* break/watchpoint condition flags */
uint64_t addr; /* break/watchpoint address */
uint64_t addr2; /* range end or mask */
uint64_t condition_value; /* contents of the DVC register */
};
/* Trigger type. */
#define PPC_BREAKPOINT_TRIGGER_EXECUTE 0x1
#define PPC_BREAKPOINT_TRIGGER_READ 0x2
#define PPC_BREAKPOINT_TRIGGER_WRITE 0x4
#define PPC_BREAKPOINT_TRIGGER_RW 0x6
/* Address mode. */
#define PPC_BREAKPOINT_MODE_EXACT 0x0
#define PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE 0x1
#define PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE 0x2
#define PPC_BREAKPOINT_MODE_MASK 0x3
/* Condition mode. */
#define PPC_BREAKPOINT_CONDITION_NONE 0x0
#define PPC_BREAKPOINT_CONDITION_AND 0x1
#define PPC_BREAKPOINT_CONDITION_EXACT 0x1
#define PPC_BREAKPOINT_CONDITION_OR 0x2
#define PPC_BREAKPOINT_CONDITION_AND_OR 0x3
#define PPC_BREAKPOINT_CONDITION_BE_ALL 0x00ff0000
#define PPC_BREAKPOINT_CONDITION_BE_SHIFT 16
#define PPC_BREAKPOINT_CONDITION_BE(n) \
(1<<((n)+PPC_BREAKPOINT_CONDITION_BE_SHIFT))
#endif /* PPC_PTRACE_GETHWDBGINFO */
/* Feature defined on Linux kernel v3.9: DAWR interface, that enables wider
watchpoint (up to 512 bytes). */
#ifndef PPC_DEBUG_FEATURE_DATA_BP_DAWR
#define PPC_DEBUG_FEATURE_DATA_BP_DAWR 0x10
#endif /* PPC_DEBUG_FEATURE_DATA_BP_DAWR */
/* Feature defined on Linux kernel v5.1: Second watchpoint support. */
#ifndef PPC_DEBUG_FEATURE_DATA_BP_ARCH_31
#define PPC_DEBUG_FEATURE_DATA_BP_ARCH_31 0x20
#endif /* PPC_DEBUG_FEATURE_DATA_BP_ARCH_31 */
/* The version of the PowerPC HWDEBUG kernel interface that we will use, if
available. */
#define PPC_DEBUG_CURRENT_VERSION 1
/* Similarly for the general-purpose (gp0 -- gp31)
and floating-point registers (fp0 -- fp31). */
#ifndef PTRACE_GETREGS
#define PTRACE_GETREGS 12
#endif
#ifndef PTRACE_SETREGS
#define PTRACE_SETREGS 13
#endif
#ifndef PTRACE_GETFPREGS
#define PTRACE_GETFPREGS 14
#endif
#ifndef PTRACE_SETFPREGS
#define PTRACE_SETFPREGS 15
#endif
/* This oddity is because the Linux kernel defines elf_vrregset_t as
an array of 33 16 bytes long elements. I.e. it leaves out vrsave.
However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
the vrsave as an extra 4 bytes at the end. I opted for creating a
flat array of chars, so that it is easier to manipulate for gdb.
There are 32 vector registers 16 bytes longs, plus a VSCR register
which is only 4 bytes long, but is fetched as a 16 bytes
quantity. Up to here we have the elf_vrregset_t structure.
Appended to this there is space for the VRSAVE register: 4 bytes.
Even though this vrsave register is not included in the regset
typedef, it is handled by the ptrace requests.
The layout is like this (where x is the actual value of the vscr reg): */
/*
Big-Endian:
|.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
<-------> <-------><-------><->
VR0 VR31 VSCR VRSAVE
Little-Endian:
|.|.|.|.|.....|.|.|.|.||X|.|.|.||.|
<-------> <-------><-------><->
VR0 VR31 VSCR VRSAVE
*/
typedef char gdb_vrregset_t[PPC_LINUX_SIZEOF_VRREGSET];
/* This is the layout of the POWER7 VSX registers and the way they overlap
with the existing FPR and VMX registers.
VSR doubleword 0 VSR doubleword 1
----------------------------------------------------------------
VSR[0] | FPR[0] | |
----------------------------------------------------------------
VSR[1] | FPR[1] | |
----------------------------------------------------------------
| ... | |
| ... | |
----------------------------------------------------------------
VSR[30] | FPR[30] | |
----------------------------------------------------------------
VSR[31] | FPR[31] | |
----------------------------------------------------------------
VSR[32] | VR[0] |
----------------------------------------------------------------
VSR[33] | VR[1] |
----------------------------------------------------------------
| ... |
| ... |
----------------------------------------------------------------
VSR[62] | VR[30] |
----------------------------------------------------------------
VSR[63] | VR[31] |
----------------------------------------------------------------
VSX has 64 128bit registers. The first 32 registers overlap with
the FP registers (doubleword 0) and hence extend them with additional
64 bits (doubleword 1). The other 32 regs overlap with the VMX
registers. */
typedef char gdb_vsxregset_t[PPC_LINUX_SIZEOF_VSXREGSET];
/* On PPC processors that support the Signal Processing Extension
(SPE) APU, the general-purpose registers are 64 bits long.
However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER
ptrace calls only access the lower half of each register, to allow
them to behave the same way they do on non-SPE systems. There's a
separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that
read and write the top halves of all the general-purpose registers
at once, along with some SPE-specific registers.
GDB itself continues to claim the general-purpose registers are 32
bits long. It has unnamed raw registers that hold the upper halves
of the gprs, and the full 64-bit SIMD views of the registers,
'ev0' -- 'ev31', are pseudo-registers that splice the top and
bottom halves together.
This is the structure filled in by PTRACE_GETEVRREGS and written to
the inferior's registers by PTRACE_SETEVRREGS. */
struct gdb_evrregset_t
{
unsigned long evr[32];
unsigned long long acc;
unsigned long spefscr;
};
/* Non-zero if our kernel may support the PTRACE_GETVSXREGS and
PTRACE_SETVSXREGS requests, for reading and writing the VSX
POWER7 registers 0 through 31. Zero if we've tried one of them and
gotten an error. Note that VSX registers 32 through 63 overlap
with VR registers 0 through 31. */
int have_ptrace_getsetvsxregs = 1;
/* Non-zero if our kernel may support the PTRACE_GETVRREGS and
PTRACE_SETVRREGS requests, for reading and writing the Altivec
registers. Zero if we've tried one of them and gotten an
error. */
int have_ptrace_getvrregs = 1;
/* Non-zero if our kernel may support the PTRACE_GETEVRREGS and
PTRACE_SETEVRREGS requests, for reading and writing the SPE
registers. Zero if we've tried one of them and gotten an
error. */
int have_ptrace_getsetevrregs = 1;
/* Non-zero if our kernel may support the PTRACE_GETREGS and
PTRACE_SETREGS requests, for reading and writing the
general-purpose registers. Zero if we've tried one of
them and gotten an error. */
int have_ptrace_getsetregs = 1;
/* Non-zero if our kernel may support the PTRACE_GETFPREGS and
PTRACE_SETFPREGS requests, for reading and writing the
floating-pointers registers. Zero if we've tried one of
them and gotten an error. */
int have_ptrace_getsetfpregs = 1;
/* Private arch info associated with each thread lwp_info object, used
for debug register handling. */
struct arch_lwp_info
{
/* When true, indicates that the debug registers installed in the
thread no longer correspond to the watchpoints and breakpoints
requested by GDB. */
bool debug_regs_stale;
/* We need a back-reference to the PTID of the thread so that we can
cleanup the debug register state of the thread in
low_delete_thread. */
ptid_t lwp_ptid;
};
/* Class used to detect which set of ptrace requests that
ppc_linux_nat_target will use to install and remove hardware
breakpoints and watchpoints.
The interface is only detected once, testing the ptrace calls. The
result can indicate that no interface is available.
The Linux kernel provides two different sets of ptrace requests to
handle hardware watchpoints and breakpoints for Power:
- PPC_PTRACE_GETHWDBGINFO, PPC_PTRACE_SETHWDEBUG, and
PPC_PTRACE_DELHWDEBUG.
Or
- PTRACE_SET_DEBUGREG and PTRACE_GET_DEBUGREG
The first set is the more flexible one and allows setting watchpoints
with a variable watched region length and, for BookE processors,
multiple types of debug registers (e.g. hardware breakpoints and
hardware-assisted conditions for watchpoints). The second one only
allows setting one debug register, a watchpoint, so we only use it if
the first one is not available. */
class ppc_linux_dreg_interface
{
public:
ppc_linux_dreg_interface ()
: m_interface (), m_hwdebug_info ()
{
};
DISABLE_COPY_AND_ASSIGN (ppc_linux_dreg_interface);
/* One and only one of these three functions returns true, indicating
whether the corresponding interface is the one we detected. The
interface must already have been detected as a precontidion. */
bool hwdebug_p ()
{
gdb_assert (detected_p ());
return *m_interface == HWDEBUG;
}
bool debugreg_p ()
{
gdb_assert (detected_p ());
return *m_interface == DEBUGREG;
}
bool unavailable_p ()
{
gdb_assert (detected_p ());
return *m_interface == UNAVAILABLE;
}
/* Returns the debug register capabilities of the target. Should only
be called if the interface is HWDEBUG. */
const struct ppc_debug_info &hwdebug_info ()
{
gdb_assert (hwdebug_p ());
return m_hwdebug_info;
}
/* Returns true if the interface has already been detected. This is
useful for cases when we know there is no work to be done if the
interface hasn't been detected yet. */
bool detected_p ()
{
return m_interface.has_value ();
}
/* Detect the available interface, if any, if it hasn't been detected
before, using PTID for the necessary ptrace calls. */
void detect (const ptid_t &ptid)
{
if (m_interface.has_value ())
return;
gdb_assert (ptid.lwp_p ());
bool no_features = false;
if (ptrace (PPC_PTRACE_GETHWDBGINFO, ptid.lwp (), 0, &m_hwdebug_info)
>= 0)
{
/* If there are no advertised features, we don't use the
HWDEBUG interface and try the DEBUGREG interface instead.
It shouldn't be necessary to do this, however, when the
kernel is configured without CONFIG_HW_BREAKPOINTS (selected
by CONFIG_PERF_EVENTS), there is a bug that causes
watchpoints installed with the HWDEBUG interface not to
trigger. When this is the case, features will be zero,
which we use as an indicator to fall back to the DEBUGREG
interface. */
if (m_hwdebug_info.features != 0)
{
m_interface.emplace (HWDEBUG);
return;
}
else
no_features = true;
}
/* EIO indicates that the request is invalid, so we try DEBUGREG
next. Technically, it can also indicate other failures, but we
can't differentiate those.
Other errors could happen for various reasons. We could get an
ESRCH if the traced thread was killed by a signal. Trying to
detect the interface with another thread in the future would be
complicated, as callers would have to handle an "unknown
interface" case. It's also unclear if raising an exception
here would be safe.
Other errors, such as ENODEV, could be more permanent and cause
a failure for any thread.
For simplicity, with all errors other than EIO, we set the
interface to UNAVAILABLE and don't try DEBUGREG. If DEBUGREG
fails too, we'll also set the interface to UNAVAILABLE. It's
unlikely that trying the DEBUGREG interface with this same thread
would work, for errors other than EIO. This means that these
errors will cause hardware watchpoints and breakpoints to become
unavailable throughout a GDB session. */
if (no_features || errno == EIO)
{
unsigned long wp;
if (ptrace (PTRACE_GET_DEBUGREG, ptid.lwp (), 0, &wp) >= 0)
{
m_interface.emplace (DEBUGREG);
return;
}
}
if (errno != EIO)
warning (_("Error when detecting the debug register interface. "
"Debug registers will be unavailable."));
m_interface.emplace (UNAVAILABLE);
return;
}
private:
/* HWDEBUG represents the set of calls PPC_PTRACE_GETHWDBGINFO,
PPC_PTRACE_SETHWDEBUG and PPC_PTRACE_DELHWDEBUG.
DEBUGREG represents the set of calls PTRACE_SET_DEBUGREG and
PTRACE_GET_DEBUGREG.
UNAVAILABLE can indicate that the kernel doesn't support any of the
two sets of requests or that there was an error when we tried to
detect which interface is available. */
enum debug_reg_interface
{
UNAVAILABLE,
HWDEBUG,
DEBUGREG
};
/* The interface option. Initialized if has_value () returns true. */
gdb::optional<enum debug_reg_interface> m_interface;
/* The info returned by the kernel with PPC_PTRACE_GETHWDBGINFO. Only
valid if we determined that the interface is HWDEBUG. */
struct ppc_debug_info m_hwdebug_info;
};
/* Per-process information. This includes the hardware watchpoints and
breakpoints that GDB requested to this target. */
struct ppc_linux_process_info
{
/* The list of hardware watchpoints and breakpoints that GDB requested
for this process.
Only used when the interface is HWDEBUG. */
std::list<struct ppc_hw_breakpoint> requested_hw_bps;
/* The watchpoint value that GDB requested for this process.
Only used when the interface is DEBUGREG. */
gdb::optional<long> requested_wp_val;
};
struct ppc_linux_nat_target final : public linux_nat_target
{
/* Add our register access methods. */
void fetch_registers (struct regcache *, int) override;
void store_registers (struct regcache *, int) override;
/* Add our breakpoint/watchpoint methods. */
int can_use_hw_breakpoint (enum bptype, int, int) override;
int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *)
override;
int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *)
override;
int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
struct expression *) override;
int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
struct expression *) override;
int insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, enum target_hw_bp_type)
override;
int remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, enum target_hw_bp_type)
override;
bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
bool can_accel_watchpoint_condition (CORE_ADDR, int, int, struct expression *)
override;
int masked_watch_num_registers (CORE_ADDR, CORE_ADDR) override;
int ranged_break_num_registers () override;
const struct target_desc *read_description () override;
int auxv_parse (const gdb_byte **readptr,
const gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
override;
/* Override linux_nat_target low methods. */
bool low_stopped_by_watchpoint () override;
bool low_stopped_data_address (CORE_ADDR *) override;
void low_new_thread (struct lwp_info *lp) override;
void low_delete_thread (arch_lwp_info *) override;
void low_new_fork (struct lwp_info *, pid_t) override;
void low_new_clone (struct lwp_info *, pid_t) override;
void low_forget_process (pid_t pid) override;
void low_prepare_to_resume (struct lwp_info *) override;
private:
void copy_thread_dreg_state (const ptid_t &parent_ptid,
const ptid_t &child_ptid);
void mark_thread_stale (struct lwp_info *lp);
void mark_debug_registers_changed (pid_t pid);
void register_hw_breakpoint (pid_t pid,
const struct ppc_hw_breakpoint &bp);
void clear_hw_breakpoint (pid_t pid,
const struct ppc_hw_breakpoint &a);
void register_wp (pid_t pid, long wp_value);
void clear_wp (pid_t pid);
bool can_use_watchpoint_cond_accel (void);
void calculate_dvc (CORE_ADDR addr, int len,
CORE_ADDR data_value,
uint32_t *condition_mode,
uint64_t *condition_value);
int check_condition (CORE_ADDR watch_addr,
struct expression *cond,
CORE_ADDR *data_value, int *len);
int num_memory_accesses (const std::vector<value_ref_ptr> &chain);
int get_trigger_type (enum target_hw_bp_type type);
void create_watchpoint_request (struct ppc_hw_breakpoint *p,
CORE_ADDR addr,
int len,
enum target_hw_bp_type type,
struct expression *cond,
int insert);
bool hwdebug_point_cmp (const struct ppc_hw_breakpoint &a,
const struct ppc_hw_breakpoint &b);
void init_arch_lwp_info (struct lwp_info *lp);
arch_lwp_info *get_arch_lwp_info (struct lwp_info *lp);
/* The ptrace interface we'll use to install hardware watchpoints and
breakpoints (debug registers). */
ppc_linux_dreg_interface m_dreg_interface;
/* A map from pids to structs containing info specific to each
process. */
std::unordered_map<pid_t, ppc_linux_process_info> m_process_info;
/* Callable object to hash ptids by their lwp number. */
struct ptid_hash
{
std::size_t operator() (const ptid_t &ptid) const
{
return std::hash<long>{} (ptid.lwp ());
}
};
/* A map from ptid_t objects to a list of pairs of slots and hardware
breakpoint objects. This keeps track of which hardware breakpoints
and watchpoints were last installed in each slot of each thread.
Only used when the interface is HWDEBUG. */
std::unordered_map <ptid_t,
std::list<std::pair<long, ppc_hw_breakpoint>>,
ptid_hash> m_installed_hw_bps;
};
static ppc_linux_nat_target the_ppc_linux_nat_target;
/* registers layout, as presented by the ptrace interface:
PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6,
PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22,
PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38,
PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54,
PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
static int
ppc_register_u_addr (struct gdbarch *gdbarch, int regno)
{
int u_addr = -1;
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
/* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
interface, and not the wordsize of the program's ABI. */
int wordsize = sizeof (long);
/* General purpose registers occupy 1 slot each in the buffer. */
if (regno >= tdep->ppc_gp0_regnum
&& regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);
/* Floating point regs: eight bytes each in both 32- and 64-bit
ptrace interfaces. Thus, two slots each in 32-bit interface, one
slot each in 64-bit interface. */
if (tdep->ppc_fp0_regnum >= 0
&& regno >= tdep->ppc_fp0_regnum
&& regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);
/* UISA special purpose registers: 1 slot each. */
if (regno == gdbarch_pc_regnum (gdbarch))
u_addr = PT_NIP * wordsize;
if (regno == tdep->ppc_lr_regnum)
u_addr = PT_LNK * wordsize;
if (regno == tdep->ppc_cr_regnum)
u_addr = PT_CCR * wordsize;
if (regno == tdep->ppc_xer_regnum)
u_addr = PT_XER * wordsize;
if (regno == tdep->ppc_ctr_regnum)
u_addr = PT_CTR * wordsize;
#ifdef PT_MQ
if (regno == tdep->ppc_mq_regnum)
u_addr = PT_MQ * wordsize;
#endif
if (regno == tdep->ppc_ps_regnum)
u_addr = PT_MSR * wordsize;
if (regno == PPC_ORIG_R3_REGNUM)
u_addr = PT_ORIG_R3 * wordsize;
if (regno == PPC_TRAP_REGNUM)
u_addr = PT_TRAP * wordsize;
if (tdep->ppc_fpscr_regnum >= 0
&& regno == tdep->ppc_fpscr_regnum)
{
/* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the
kernel headers incorrectly contained the 32-bit definition of
PT_FPSCR. For the 32-bit definition, floating-point
registers occupy two 32-bit "slots", and the FPSCR lives in
the second half of such a slot-pair (hence +1). For 64-bit,
the FPSCR instead occupies the full 64-bit 2-word-slot and
hence no adjustment is necessary. Hack around this. */
if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1))
u_addr = (48 + 32) * wordsize;
/* If the FPSCR is 64-bit wide, we need to fetch the whole 64-bit
slot and not just its second word. The PT_FPSCR supplied when
GDB is compiled as a 32-bit app doesn't reflect this. */
else if (wordsize == 4 && register_size (gdbarch, regno) == 8
&& PT_FPSCR == (48 + 2*32 + 1))
u_addr = (48 + 2*32) * wordsize;
else
u_addr = PT_FPSCR * wordsize;
}
return u_addr;
}
/* The Linux kernel ptrace interface for POWER7 VSX registers uses the
registers set mechanism, as opposed to the interface for all the
other registers, that stores/fetches each register individually. */
static void
fetch_vsx_registers (struct regcache *regcache, int tid, int regno)
{
int ret;
gdb_vsxregset_t regs;
const struct regset *vsxregset = ppc_linux_vsxregset ();
ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s);
if (ret < 0)
{
if (errno == EIO)
{
have_ptrace_getsetvsxregs = 0;
return;
}
perror_with_name (_("Unable to fetch VSX registers"));
}
vsxregset->supply_regset (vsxregset, regcache, regno, ®s,
PPC_LINUX_SIZEOF_VSXREGSET);
}
/* The Linux kernel ptrace interface for AltiVec registers uses the
registers set mechanism, as opposed to the interface for all the
other registers, that stores/fetches each register individually. */
static void
fetch_altivec_registers (struct regcache *regcache, int tid,
int regno)
{
int ret;
gdb_vrregset_t regs;
struct gdbarch *gdbarch = regcache->arch ();
const struct regset *vrregset = ppc_linux_vrregset (gdbarch);
ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s);
if (ret < 0)
{
if (errno == EIO)
{
have_ptrace_getvrregs = 0;
return;
}
perror_with_name (_("Unable to fetch AltiVec registers"));
}
vrregset->supply_regset (vrregset, regcache, regno, ®s,
PPC_LINUX_SIZEOF_VRREGSET);
}
/* Fetch the top 32 bits of TID's general-purpose registers and the
SPE-specific registers, and place the results in EVRREGSET. If we
don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with
zeros.
All the logic to deal with whether or not the PTRACE_GETEVRREGS and
PTRACE_SETEVRREGS requests are supported is isolated here, and in
set_spe_registers. */
static void
get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
{
if (have_ptrace_getsetevrregs)
{
if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0)
return;
else
{
/* EIO means that the PTRACE_GETEVRREGS request isn't supported;
we just return zeros. */
if (errno == EIO)
have_ptrace_getsetevrregs = 0;
else
/* Anything else needs to be reported. */
perror_with_name (_("Unable to fetch SPE registers"));
}
}
memset (evrregset, 0, sizeof (*evrregset));
}
/* Supply values from TID for SPE-specific raw registers: the upper
halves of the GPRs, the accumulator, and the spefscr. REGNO must
be the number of an upper half register, acc, spefscr, or -1 to
supply the values of all registers. */
static void
fetch_spe_register (struct regcache *regcache, int tid, int regno)
{
struct gdbarch *gdbarch = regcache->arch ();
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
struct gdb_evrregset_t evrregs;
gdb_assert (sizeof (evrregs.evr[0])
== register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
gdb_assert (sizeof (evrregs.acc)
== register_size (gdbarch, tdep->ppc_acc_regnum));
gdb_assert (sizeof (evrregs.spefscr)
== register_size (gdbarch, tdep->ppc_spefscr_regnum));
get_spe_registers (tid, &evrregs);
if (regno == -1)
{
int i;
for (i = 0; i < ppc_num_gprs; i++)
regcache->raw_supply (tdep->ppc_ev0_upper_regnum + i, &evrregs.evr[i]);
}
else if (tdep->ppc_ev0_upper_regnum <= regno
&& regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
regcache->raw_supply (regno,
&evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
if (regno == -1
|| regno == tdep->ppc_acc_regnum)
regcache->raw_supply (tdep->ppc_acc_regnum, &evrregs.acc);
if (regno == -1
|| regno == tdep->ppc_spefscr_regnum)
regcache->raw_supply (tdep->ppc_spefscr_regnum, &evrregs.spefscr);
}
/* Use ptrace to fetch all registers from the register set with note
type REGSET_ID, size REGSIZE, and layout described by REGSET, from
process/thread TID and supply their values to REGCACHE. If ptrace
returns ENODATA to indicate the regset is unavailable, mark the
registers as unavailable in REGCACHE. */
static void
fetch_regset (struct regcache *regcache, int tid,
int regset_id, int regsetsize, const struct regset *regset)
{
void *buf = alloca (regsetsize);
struct iovec iov;
iov.iov_base = buf;
iov.iov_len = regsetsize;
if (ptrace (PTRACE_GETREGSET, tid, regset_id, &iov) < 0)
{
if (errno == ENODATA)
regset->supply_regset (regset, regcache, -1, NULL, regsetsize);
else
perror_with_name (_("Couldn't get register set"));
}
else
regset->supply_regset (regset, regcache, -1, buf, regsetsize);
}
/* Use ptrace to store register REGNUM of the regset with note type
REGSET_ID, size REGSETSIZE, and layout described by REGSET, from
REGCACHE back to process/thread TID. If REGNUM is -1 all registers
in the set are collected and stored. */
static void
store_regset (const struct regcache *regcache, int tid, int regnum,
int regset_id, int regsetsize, const struct regset *regset)
{
void *buf = alloca (regsetsize);
struct iovec iov;
iov.iov_base = buf;
iov.iov_len = regsetsize;
/* Make sure that the buffer that will be stored has up to date values
for the registers that won't be collected. */
if (ptrace (PTRACE_GETREGSET, tid, regset_id, &iov) < 0)
perror_with_name (_("Couldn't get register set"));
regset->collect_regset (regset, regcache, regnum, buf, regsetsize);
if (ptrace (PTRACE_SETREGSET, tid, regset_id, &iov) < 0)
perror_with_name (_("Couldn't set register set"));
}
/* Check whether the kernel provides a register set with number
REGSET_ID of size REGSETSIZE for process/thread TID. */
static bool
check_regset (int tid, int regset_id, int regsetsize)
{
void *buf = alloca (regsetsize);
struct iovec iov;
iov.iov_base = buf;
iov.iov_len = regsetsize;
if (ptrace (PTRACE_GETREGSET, tid, regset_id, &iov) >= 0
|| errno == ENODATA)
return true;
else
return false;
}
static void
fetch_register (struct regcache *regcache, int tid, int regno)
{
struct gdbarch *gdbarch = regcache->arch ();
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
/* This isn't really an address. But ptrace thinks of it as one. */
CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
int bytes_transferred;
gdb_byte buf[PPC_MAX_REGISTER_SIZE];
if (altivec_register_p (gdbarch, regno))
{
/* If this is the first time through, or if it is not the first
time through, and we have confirmed that there is kernel
support for such a ptrace request, then go and fetch the
register. */
if (have_ptrace_getvrregs)
{
fetch_altivec_registers (regcache, tid, regno);
return;
}
/* If we have discovered that there is no ptrace support for
AltiVec registers, fall through and return zeroes, because
regaddr will be -1 in this case. */
}
else if (vsx_register_p (gdbarch, regno))
{
if (have_ptrace_getsetvsxregs)
{
fetch_vsx_registers (regcache, tid, regno);
return;
}
}
else if (spe_register_p (gdbarch, regno))
{
fetch_spe_register (regcache, tid, regno);
return;
}
else if (regno == PPC_DSCR_REGNUM)
{
gdb_assert (tdep->ppc_dscr_regnum != -1);
fetch_regset (regcache, tid, NT_PPC_DSCR,
PPC_LINUX_SIZEOF_DSCRREGSET,
&ppc32_linux_dscrregset);
return;
}
else if (regno == PPC_PPR_REGNUM)
{
gdb_assert (tdep->ppc_ppr_regnum != -1);
fetch_regset (regcache, tid, NT_PPC_PPR,
PPC_LINUX_SIZEOF_PPRREGSET,
&ppc32_linux_pprregset);
return;
}
else if (regno == PPC_TAR_REGNUM)
{
gdb_assert (tdep->ppc_tar_regnum != -1);
fetch_regset (regcache, tid, NT_PPC_TAR,
PPC_LINUX_SIZEOF_TARREGSET,
&ppc32_linux_tarregset);
return;
}
else if (PPC_IS_EBB_REGNUM (regno))
{
gdb_assert (tdep->have_ebb);
fetch_regset (regcache, tid, NT_PPC_EBB,
PPC_LINUX_SIZEOF_EBBREGSET,
&ppc32_linux_ebbregset);
return;
}
else if (PPC_IS_PMU_REGNUM (regno))
{
gdb_assert (tdep->ppc_mmcr0_regnum != -1);
fetch_regset (regcache, tid, NT_PPC_PMU,
PPC_LINUX_SIZEOF_PMUREGSET,
&ppc32_linux_pmuregset);
return;
}
else if (PPC_IS_TMSPR_REGNUM (regno))
{
gdb_assert (tdep->have_htm_spr);
fetch_regset (regcache, tid, NT_PPC_TM_SPR,
PPC_LINUX_SIZEOF_TM_SPRREGSET,
&ppc32_linux_tm_sprregset);
return;
}
else if (PPC_IS_CKPTGP_REGNUM (regno))
{
gdb_assert (tdep->have_htm_core);
const struct regset *cgprregset = ppc_linux_cgprregset (gdbarch);
fetch_regset (regcache, tid, NT_PPC_TM_CGPR,
(tdep->wordsize == 4?
PPC32_LINUX_SIZEOF_CGPRREGSET
: PPC64_LINUX_SIZEOF_CGPRREGSET),
cgprregset);
return;
}
else if (PPC_IS_CKPTFP_REGNUM (regno))
{
gdb_assert (tdep->have_htm_fpu);
fetch_regset (regcache, tid, NT_PPC_TM_CFPR,
PPC_LINUX_SIZEOF_CFPRREGSET,
&ppc32_linux_cfprregset);
return;
}
else if (PPC_IS_CKPTVMX_REGNUM (regno))
{
gdb_assert (tdep->have_htm_altivec);
const struct regset *cvmxregset = ppc_linux_cvmxregset (gdbarch);
fetch_regset (regcache, tid, NT_PPC_TM_CVMX,
PPC_LINUX_SIZEOF_CVMXREGSET,
cvmxregset);
return;
}
else if (PPC_IS_CKPTVSX_REGNUM (regno))
{
gdb_assert (tdep->have_htm_vsx);
fetch_regset (regcache, tid, NT_PPC_TM_CVSX,
PPC_LINUX_SIZEOF_CVSXREGSET,
&ppc32_linux_cvsxregset);
return;
}
else if (regno == PPC_CPPR_REGNUM)
{
gdb_assert (tdep->ppc_cppr_regnum != -1);
fetch_regset (regcache, tid, NT_PPC_TM_CPPR,
PPC_LINUX_SIZEOF_CPPRREGSET,
&ppc32_linux_cpprregset);
return;
}
else if (regno == PPC_CDSCR_REGNUM)
{
gdb_assert (tdep->ppc_cdscr_regnum != -1);
fetch_regset (regcache, tid, NT_PPC_TM_CDSCR,
PPC_LINUX_SIZEOF_CDSCRREGSET,
&ppc32_linux_cdscrregset);
return;
}
else if (regno == PPC_CTAR_REGNUM)
{
gdb_assert (tdep->ppc_ctar_regnum != -1);
fetch_regset (regcache, tid, NT_PPC_TM_CTAR,
PPC_LINUX_SIZEOF_CTARREGSET,
&ppc32_linux_ctarregset);
return;
}
if (regaddr == -1)
{
memset (buf, '\0', register_size (gdbarch, regno)); /* Supply zeroes */
regcache->raw_supply (regno, buf);
return;
}
/* Read the raw register using sizeof(long) sized chunks. On a
32-bit platform, 64-bit floating-point registers will require two
transfers. */
for (bytes_transferred = 0;
bytes_transferred < register_size (gdbarch, regno);
bytes_transferred += sizeof (long))
{
long l;
errno = 0;
l = ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0);
regaddr += sizeof (long);
if (errno != 0)
{
char message[128];
xsnprintf (message, sizeof (message), "reading register %s (#%d)",
gdbarch_register_name (gdbarch, regno), regno);
perror_with_name (message);
}
memcpy (&buf[bytes_transferred], &l, sizeof (l));
}
/* Now supply the register. Keep in mind that the regcache's idea
of the register's size may not be a multiple of sizeof
(long). */
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
{
/* Little-endian values are always found at the left end of the
bytes transferred. */
regcache->raw_supply (regno, buf);
}
else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
{
/* Big-endian values are found at the right end of the bytes
transferred. */
size_t padding = (bytes_transferred - register_size (gdbarch, regno));
regcache->raw_supply (regno, buf + padding);
}
else
internal_error (_("fetch_register: unexpected byte order: %d"),
gdbarch_byte_order (gdbarch));
}
/* This function actually issues the request to ptrace, telling
it to get all general-purpose registers and put them into the
specified regset.
If the ptrace request does not exist, this function returns 0
and properly sets the have_ptrace_* flag. If the request fails,
this function calls perror_with_name. Otherwise, if the request
succeeds, then the regcache gets filled and 1 is returned. */
static int
fetch_all_gp_regs (struct regcache *regcache, int tid)
{
gdb_gregset_t gregset;
if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
{
if (errno == EIO)
{
have_ptrace_getsetregs = 0;
return 0;
}
perror_with_name (_("Couldn't get general-purpose registers"));
}
supply_gregset (regcache, (const gdb_gregset_t *) &gregset);
return 1;
}
/* This is a wrapper for the fetch_all_gp_regs function. It is
responsible for verifying if this target has the ptrace request
that can be used to fetch all general-purpose registers at one
shot. If it doesn't, then we should fetch them using the
old-fashioned way, which is to iterate over the registers and
request them one by one. */
static void
fetch_gp_regs (struct regcache *regcache, int tid)
{
struct gdbarch *gdbarch = regcache->arch ();
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
int i;
if (have_ptrace_getsetregs)
if (fetch_all_gp_regs (regcache, tid))
return;
/* If we've hit this point, it doesn't really matter which
architecture we are using. We just need to read the
registers in the "old-fashioned way". */
for (i = 0; i < ppc_num_gprs; i++)
fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i);
}
/* This function actually issues the request to ptrace, telling
it to get all floating-point registers and put them into the
specified regset.
If the ptrace request does not exist, this function returns 0
and properly sets the have_ptrace_* flag. If the request fails,
this function calls perror_with_name. Otherwise, if the request
succeeds, then the regcache gets filled and 1 is returned. */
static int
fetch_all_fp_regs (struct regcache *regcache, int tid)
{
gdb_fpregset_t fpregs;
if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
{
if (errno == EIO)
{
have_ptrace_getsetfpregs = 0;
return 0;
}
perror_with_name (_("Couldn't get floating-point registers"));
}
supply_fpregset (regcache, (const gdb_fpregset_t *) &fpregs);
return 1;
}
/* This is a wrapper for the fetch_all_fp_regs function. It is
responsible for verifying if this target has the ptrace request
that can be used to fetch all floating-point registers at one
shot. If it doesn't, then we should fetch them using the
old-fashioned way, which is to iterate over the registers and
request them one by one. */
static void
fetch_fp_regs (struct regcache *regcache, int tid)
{
struct gdbarch *gdbarch = regcache->arch ();
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
int i;
if (have_ptrace_getsetfpregs)
if (fetch_all_fp_regs (regcache, tid))
return;
/* If we've hit this point, it doesn't really matter which
architecture we are using. We just need to read the
registers in the "old-fashioned way". */
for (i = 0; i < ppc_num_fprs; i++)
fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i);
}
static void
fetch_ppc_registers (struct regcache *regcache, int tid)
{
struct gdbarch *gdbarch = regcache->arch ();
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
fetch_gp_regs (regcache, tid);
if (tdep->ppc_fp0_regnum >= 0)
fetch_fp_regs (regcache, tid);
fetch_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
if (tdep->ppc_ps_regnum != -1)
fetch_register (regcache, tid, tdep->ppc_ps_regnum);
if (tdep->ppc_cr_regnum != -1)
fetch_register (regcache, tid, tdep->ppc_cr_regnum);
if (tdep->ppc_lr_regnum != -1)
fetch_register (regcache, tid, tdep->ppc_lr_regnum);
if (tdep->ppc_ctr_regnum != -1)
fetch_register (regcache, tid, tdep->ppc_ctr_regnum);
if (tdep->ppc_xer_regnum != -1)
fetch_register (regcache, tid, tdep->ppc_xer_regnum);
if (tdep->ppc_mq_regnum != -1)
fetch_register (regcache, tid, tdep->ppc_mq_regnum);
if (ppc_linux_trap_reg_p (gdbarch))
{
fetch_register (regcache, tid, PPC_ORIG_R3_REGNUM);
fetch_register (regcache, tid, PPC_TRAP_REGNUM);
}
if (tdep->ppc_fpscr_regnum != -1)
fetch_register (regcache, tid, tdep->ppc_fpscr_regnum);
if (have_ptrace_getvrregs)
if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
fetch_altivec_registers (regcache, tid, -1);
if (have_ptrace_getsetvsxregs)
if (tdep->ppc_vsr0_upper_regnum != -1)
fetch_vsx_registers (regcache, tid, -1);
if (tdep->ppc_ev0_upper_regnum >= 0)
fetch_spe_register (regcache, tid, -1);
if (tdep->ppc_ppr_regnum != -1)
fetch_regset (regcache, tid, NT_PPC_PPR,
PPC_LINUX_SIZEOF_PPRREGSET,
&ppc32_linux_pprregset);
if (tdep->ppc_dscr_regnum != -1)
fetch_regset (regcache, tid, NT_PPC_DSCR,
PPC_LINUX_SIZEOF_DSCRREGSET,
&ppc32_linux_dscrregset);
if (tdep->ppc_tar_regnum != -1)
fetch_regset (regcache, tid, NT_PPC_TAR,
PPC_LINUX_SIZEOF_TARREGSET,
&ppc32_linux_tarregset);
if (tdep->have_ebb)
fetch_regset (regcache, tid, NT_PPC_EBB,
PPC_LINUX_SIZEOF_EBBREGSET,
&ppc32_linux_ebbregset);
if (tdep->ppc_mmcr0_regnum != -1)
fetch_regset (regcache, tid, NT_PPC_PMU,
PPC_LINUX_SIZEOF_PMUREGSET,
&ppc32_linux_pmuregset);
if (tdep->have_htm_spr)
fetch_regset (regcache, tid, NT_PPC_TM_SPR,
PPC_LINUX_SIZEOF_TM_SPRREGSET,
&ppc32_linux_tm_sprregset);
if (tdep->have_htm_core)
{
const struct regset *cgprregset = ppc_linux_cgprregset (gdbarch);
fetch_regset (regcache, tid, NT_PPC_TM_CGPR,
(tdep->wordsize == 4?
PPC32_LINUX_SIZEOF_CGPRREGSET
: PPC64_LINUX_SIZEOF_CGPRREGSET),
cgprregset);
}
if (tdep->have_htm_fpu)
fetch_regset (regcache, tid, NT_PPC_TM_CFPR,
PPC_LINUX_SIZEOF_CFPRREGSET,
&ppc32_linux_cfprregset);
if (tdep->have_htm_altivec)
{
const struct regset *cvmxregset = ppc_linux_cvmxregset (gdbarch);
fetch_regset (regcache, tid, NT_PPC_TM_CVMX,
PPC_LINUX_SIZEOF_CVMXREGSET,
cvmxregset);
}
if (tdep->have_htm_vsx)
fetch_regset (regcache, tid, NT_PPC_TM_CVSX,
PPC_LINUX_SIZEOF_CVSXREGSET,
&ppc32_linux_cvsxregset);
if (tdep->ppc_cppr_regnum != -1)
fetch_regset (regcache, tid, NT_PPC_TM_CPPR,
PPC_LINUX_SIZEOF_CPPRREGSET,
&ppc32_linux_cpprregset);
if (tdep->ppc_cdscr_regnum != -1)
fetch_regset (regcache, tid, NT_PPC_TM_CDSCR,
PPC_LINUX_SIZEOF_CDSCRREGSET,
&ppc32_linux_cdscrregset);
if (tdep->ppc_ctar_regnum != -1)
fetch_regset (regcache, tid, NT_PPC_TM_CTAR,
PPC_LINUX_SIZEOF_CTARREGSET,
&ppc32_linux_ctarregset);
}
/* Fetch registers from the child process. Fetch all registers if
regno == -1, otherwise fetch all general registers or all floating
point registers depending upon the value of regno. */
void
ppc_linux_nat_target::fetch_registers (struct regcache *regcache, int regno)
{
pid_t tid = get_ptrace_pid (regcache->ptid ());
if (regno == -1)
fetch_ppc_registers (regcache, tid);
else
fetch_register (regcache, tid, regno);
}
static void
store_vsx_registers (const struct regcache *regcache, int tid, int regno)
{
int ret;
gdb_vsxregset_t regs;
const struct regset *vsxregset = ppc_linux_vsxregset ();
ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s);
if (ret < 0)
{
if (errno == EIO)
{
have_ptrace_getsetvsxregs = 0;
return;
}
perror_with_name (_("Unable to fetch VSX registers"));
}
vsxregset->collect_regset (vsxregset, regcache, regno, ®s,
PPC_LINUX_SIZEOF_VSXREGSET);
ret = ptrace (PTRACE_SETVSXREGS, tid, 0, ®s);
if (ret < 0)
perror_with_name (_("Unable to store VSX registers"));
}
static void
store_altivec_registers (const struct regcache *regcache, int tid,
int regno)
{
int ret;
gdb_vrregset_t regs;
struct gdbarch *gdbarch = regcache->arch ();
const struct regset *vrregset = ppc_linux_vrregset (gdbarch);
ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s);
if (ret < 0)
{
if (errno == EIO)
{
have_ptrace_getvrregs = 0;
return;
}
perror_with_name (_("Unable to fetch AltiVec registers"));
}
vrregset->collect_regset (vrregset, regcache, regno, ®s,
PPC_LINUX_SIZEOF_VRREGSET);
ret = ptrace (PTRACE_SETVRREGS, tid, 0, ®s);
if (ret < 0)
perror_with_name (_("Unable to store AltiVec registers"));
}
/* Assuming TID refers to an SPE process, set the top halves of TID's
general-purpose registers and its SPE-specific registers to the
values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do
nothing.
All the logic to deal with whether or not the PTRACE_GETEVRREGS and
PTRACE_SETEVRREGS requests are supported is isolated here, and in
get_spe_registers. */
static void
set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
{
if (have_ptrace_getsetevrregs)
{
if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0)
return;
else
{
/* EIO means that the PTRACE_SETEVRREGS request isn't
supported; we fail silently, and don't try the call
again. */
if (errno == EIO)
have_ptrace_getsetevrregs = 0;
else
/* Anything else needs to be reported. */
perror_with_name (_("Unable to set SPE registers"));
}
}
}
/* Write GDB's value for the SPE-specific raw register REGNO to TID.
If REGNO is -1, write the values of all the SPE-specific
registers. */
static void
store_spe_register (const struct regcache *regcache, int tid, int regno)
{
struct gdbarch *gdbarch = regcache->arch ();
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
struct gdb_evrregset_t evrregs;
gdb_assert (sizeof (evrregs.evr[0])
== register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
gdb_assert (sizeof (evrregs.acc)
== register_size (gdbarch, tdep->ppc_acc_regnum));
gdb_assert (sizeof (evrregs.spefscr)
== register_size (gdbarch, tdep->ppc_spefscr_regnum));
if (regno == -1)
/* Since we're going to write out every register, the code below
should store to every field of evrregs; if that doesn't happen,
make it obvious by initializing it with suspicious values. */
memset (&evrregs, 42, sizeof (evrregs));
else
/* We can only read and write the entire EVR register set at a
time, so to write just a single register, we do a
read-modify-write maneuver. */
get_spe_registers (tid, &evrregs);
if (regno == -1)
{
int i;
for (i = 0; i < ppc_num_gprs; i++)
regcache->raw_collect (tdep->ppc_ev0_upper_regnum + i,
&evrregs.evr[i]);
}
else if (tdep->ppc_ev0_upper_regnum <= regno
&& regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
regcache->raw_collect (regno,
&evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
if (regno == -1
|| regno == tdep->ppc_acc_regnum)
regcache->raw_collect (tdep->ppc_acc_regnum,
&evrregs.acc);
if (regno == -1
|| regno == tdep->ppc_spefscr_regnum)
regcache->raw_collect (tdep->ppc_spefscr_regnum,
&evrregs.spefscr);
/* Write back the modified register set. */
set_spe_registers (tid, &evrregs);
}
static void
store_register (const struct regcache *regcache, int tid, int regno)
{
struct gdbarch *gdbarch = regcache->arch ();
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
/* This isn't really an address. But ptrace thinks of it as one. */
CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
int i;
size_t bytes_to_transfer;
gdb_byte buf[PPC_MAX_REGISTER_SIZE];
if (altivec_register_p (gdbarch, regno))
{
store_altivec_registers (regcache, tid, regno);
return;
}
else if (vsx_register_p (gdbarch, regno))
{
store_vsx_registers (regcache, tid, regno);
return;
}
else if (spe_register_p (gdbarch, regno))
{
store_spe_register (regcache, tid, regno);
return;
}
else if (regno == PPC_DSCR_REGNUM)
{
gdb_assert (tdep->ppc_dscr_regnum != -1);
store_regset (regcache, tid, regno, NT_PPC_DSCR,
PPC_LINUX_SIZEOF_DSCRREGSET,
&ppc32_linux_dscrregset);
return;
}
else if (regno == PPC_PPR_REGNUM)
{
gdb_assert (tdep->ppc_ppr_regnum != -1);
store_regset (regcache, tid, regno, NT_PPC_PPR,
PPC_LINUX_SIZEOF_PPRREGSET,
&ppc32_linux_pprregset);
return;
}
else if (regno == PPC_TAR_REGNUM)
{
gdb_assert (tdep->ppc_tar_regnum != -1);
store_regset (regcache, tid, regno, NT_PPC_TAR,
PPC_LINUX_SIZEOF_TARREGSET,
&ppc32_linux_tarregset);
return;
}
else if (PPC_IS_EBB_REGNUM (regno))
{
gdb_assert (tdep->have_ebb);
store_regset (regcache, tid, regno, NT_PPC_EBB,
PPC_LINUX_SIZEOF_EBBREGSET,
&ppc32_linux_ebbregset);
return;
}
else if (PPC_IS_PMU_REGNUM (regno))
{
gdb_assert (tdep->ppc_mmcr0_regnum != -1);
store_regset (regcache, tid, regno, NT_PPC_PMU,
PPC_LINUX_SIZEOF_PMUREGSET,
&ppc32_linux_pmuregset);
return;
}
else if (PPC_IS_TMSPR_REGNUM (regno))
{
gdb_assert (tdep->have_htm_spr);
store_regset (regcache, tid, regno, NT_PPC_TM_SPR,
PPC_LINUX_SIZEOF_TM_SPRREGSET,
&ppc32_linux_tm_sprregset);
return;
}
else if (PPC_IS_CKPTGP_REGNUM (regno))
{
gdb_assert (tdep->have_htm_core);
const struct regset *cgprregset = ppc_linux_cgprregset (gdbarch);
store_regset (regcache, tid, regno, NT_PPC_TM_CGPR,
(tdep->wordsize == 4?
PPC32_LINUX_SIZEOF_CGPRREGSET
: PPC64_LINUX_SIZEOF_CGPRREGSET),
cgprregset);
return;
}
else if (PPC_IS_CKPTFP_REGNUM (regno))
{
gdb_assert (tdep->have_htm_fpu);
store_regset (regcache, tid, regno, NT_PPC_TM_CFPR,
PPC_LINUX_SIZEOF_CFPRREGSET,
&ppc32_linux_cfprregset);
return;
}
else if (PPC_IS_CKPTVMX_REGNUM (regno))
{
gdb_assert (tdep->have_htm_altivec);
const struct regset *cvmxregset = ppc_linux_cvmxregset (gdbarch);
store_regset (regcache, tid, regno, NT_PPC_TM_CVMX,
PPC_LINUX_SIZEOF_CVMXREGSET,
cvmxregset);
return;
}
else if (PPC_IS_CKPTVSX_REGNUM (regno))
{
gdb_assert (tdep->have_htm_vsx);
store_regset (regcache, tid, regno, NT_PPC_TM_CVSX,
PPC_LINUX_SIZEOF_CVSXREGSET,
&ppc32_linux_cvsxregset);
return;
}
else if (regno == PPC_CPPR_REGNUM)
{
gdb_assert (tdep->ppc_cppr_regnum != -1);
store_regset (regcache, tid, regno, NT_PPC_TM_CPPR,
PPC_LINUX_SIZEOF_CPPRREGSET,
&ppc32_linux_cpprregset);
return;
}
else if (regno == PPC_CDSCR_REGNUM)
{
gdb_assert (tdep->ppc_cdscr_regnum != -1);
store_regset (regcache, tid, regno, NT_PPC_TM_CDSCR,
PPC_LINUX_SIZEOF_CDSCRREGSET,
&ppc32_linux_cdscrregset);
return;
}
else if (regno == PPC_CTAR_REGNUM)
{
gdb_assert (tdep->ppc_ctar_regnum != -1);
store_regset (regcache, tid, regno, NT_PPC_TM_CTAR,
PPC_LINUX_SIZEOF_CTARREGSET,
&ppc32_linux_ctarregset);
return;
}
if (regaddr == -1)
return;
/* First collect the register. Keep in mind that the regcache's
idea of the register's size may not be a multiple of sizeof
(long). */
memset (buf, 0, sizeof buf);
bytes_to_transfer = align_up (register_size (gdbarch, regno), sizeof (long));
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
{
/* Little-endian values always sit at the left end of the buffer. */
regcache->raw_collect (regno, buf);
}
else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
{
/* Big-endian values sit at the right end of the buffer. */
size_t padding = (bytes_to_transfer - register_size (gdbarch, regno));
regcache->raw_collect (regno, buf + padding);
}
for (i = 0; i < bytes_to_transfer; i += sizeof (long))
{
long l;
memcpy (&l, &buf[i], sizeof (l));
errno = 0;
ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr, l);
regaddr += sizeof (long);
if (errno == EIO
&& (regno == tdep->ppc_fpscr_regnum
|| regno == PPC_ORIG_R3_REGNUM
|| regno == PPC_TRAP_REGNUM))
{
/* Some older kernel versions don't allow fpscr, orig_r3
or trap to be written. */
continue;
}
if (errno != 0)
{
char message[128];
xsnprintf (message, sizeof (message), "writing register %s (#%d)",
gdbarch_register_name (gdbarch, regno), regno);
perror_with_name (message);
}
}
}
/* This function actually issues the request to ptrace, telling
it to store all general-purpose registers present in the specified
regset.
If the ptrace request does not exist, this function returns 0
and properly sets the have_ptrace_* flag. If the request fails,
this function calls perror_with_name. Otherwise, if the request
succeeds, then the regcache is stored and 1 is returned. */
static int
store_all_gp_regs (const struct regcache *regcache, int tid, int regno)
{
gdb_gregset_t gregset;
if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
{
if (errno == EIO)
{
have_ptrace_getsetregs = 0;
return 0;
}
perror_with_name (_("Couldn't get general-purpose registers"));
}
fill_gregset (regcache, &gregset, regno);
if (ptrace (PTRACE_SETREGS, tid, 0, (void *) &gregset) < 0)
{
if (errno == EIO)
{
have_ptrace_getsetregs = 0;
return 0;
}
perror_with_name (_("Couldn't set general-purpose registers"));
}
return 1;
}
/* This is a wrapper for the store_all_gp_regs function. It is
responsible for verifying if this target has the ptrace request
that can be used to store all general-purpose registers at one
shot. If it doesn't, then we should store them using the
old-fashioned way, which is to iterate over the registers and
store them one by one. */
static void
store_gp_regs (const struct regcache *regcache, int tid, int regno)
{
struct gdbarch *gdbarch = regcache->arch ();
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
int i;
if (have_ptrace_getsetregs)
if (store_all_gp_regs (regcache, tid, regno))
return;
/* If we hit this point, it doesn't really matter which
architecture we are using. We just need to store the
registers in the "old-fashioned way". */
for (i = 0; i < ppc_num_gprs; i++)
store_register (regcache, tid, tdep->ppc_gp0_regnum + i);
}
/* This function actually issues the request to ptrace, telling
it to store all floating-point registers present in the specified
regset.
If the ptrace request does not exist, this function returns 0
and properly sets the have_ptrace_* flag. If the request fails,
this function calls perror_with_name. Otherwise, if the request
succeeds, then the regcache is stored and 1 is returned. */
static int
store_all_fp_regs (const struct regcache *regcache, int tid, int regno)
{
gdb_fpregset_t fpregs;
if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
{
if (errno == EIO)
{
have_ptrace_getsetfpregs = 0;
return 0;
}
perror_with_name (_("Couldn't get floating-point registers"));
}
fill_fpregset (regcache, &fpregs, regno);
if (ptrace (PTRACE_SETFPREGS, tid, 0, (void *) &fpregs) < 0)
{
if (errno == EIO)
{
have_ptrace_getsetfpregs = 0;
return 0;
}
perror_with_name (_("Couldn't set floating-point registers"));
}
return 1;
}
/* This is a wrapper for the store_all_fp_regs function. It is
responsible for verifying if this target has the ptrace request
that can be used to store all floating-point registers at one
shot. If it doesn't, then we should store them using the
old-fashioned way, which is to iterate over the registers and
store them one by one. */
static void
store_fp_regs (const struct regcache *regcache, int tid, int regno)
{
struct gdbarch *gdbarch = regcache->arch ();
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
int i;
if (have_ptrace_getsetfpregs)
if (store_all_fp_regs (regcache, tid, regno))
return;
/* If we hit this point, it doesn't really matter which
architecture we are using. We just need to store the
registers in the "old-fashioned way". */
for (i = 0; i < ppc_num_fprs; i++)
store_register (regcache, tid, tdep->ppc_fp0_regnum + i);
}
static void
store_ppc_registers (const struct regcache *regcache, int tid)
{
struct gdbarch *gdbarch = regcache->arch ();
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
store_gp_regs (regcache, tid, -1);
if (tdep->ppc_fp0_regnum >= 0)
store_fp_regs (regcache, tid, -1);
store_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
if (tdep->ppc_ps_regnum != -1)
store_register (regcache, tid, tdep->ppc_ps_regnum);
if (tdep->ppc_cr_regnum != -1)
store_register (regcache, tid, tdep->ppc_cr_regnum);
if (tdep->ppc_lr_regnum != -1)
store_register (regcache, tid, tdep->ppc_lr_regnum);
if (tdep->ppc_ctr_regnum != -1)
store_register (regcache, tid, tdep->ppc_ctr_regnum);
if (tdep->ppc_xer_regnum != -1)
store_register (regcache, tid, tdep->ppc_xer_regnum);
if (tdep->ppc_mq_regnum != -1)
store_register (regcache, tid, tdep->ppc_mq_regnum);
if (tdep->ppc_fpscr_regnum != -1)
store_register (regcache, tid, tdep->ppc_fpscr_regnum);
if (ppc_linux_trap_reg_p (gdbarch))
{
store_register (regcache, tid, PPC_ORIG_R3_REGNUM);
store_register (regcache, tid, PPC_TRAP_REGNUM);
}
if (have_ptrace_getvrregs)
if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
store_altivec_registers (regcache, tid, -1);
if (have_ptrace_getsetvsxregs)
if (tdep->ppc_vsr0_upper_regnum != -1)
store_vsx_registers (regcache, tid, -1);
if (tdep->ppc_ev0_upper_regnum >= 0)
store_spe_register (regcache, tid, -1);
if (tdep->ppc_ppr_regnum != -1)
store_regset (regcache, tid, -1, NT_PPC_PPR,
PPC_LINUX_SIZEOF_PPRREGSET,
&ppc32_linux_pprregset);
if (tdep->ppc_dscr_regnum != -1)
store_regset (regcache, tid, -1, NT_PPC_DSCR,
PPC_LINUX_SIZEOF_DSCRREGSET,
&ppc32_linux_dscrregset);
if (tdep->ppc_tar_regnum != -1)
store_regset (regcache, tid, -1, NT_PPC_TAR,
PPC_LINUX_SIZEOF_TARREGSET,
&ppc32_linux_tarregset);
if (tdep->ppc_mmcr0_regnum != -1)
store_regset (regcache, tid, -1, NT_PPC_PMU,
PPC_LINUX_SIZEOF_PMUREGSET,
&ppc32_linux_pmuregset);
if (tdep->have_htm_spr)
store_regset (regcache, tid, -1, NT_PPC_TM_SPR,
PPC_LINUX_SIZEOF_TM_SPRREGSET,
&ppc32_linux_tm_sprregset);
/* Because the EBB and checkpointed HTM registers can be
unavailable, attempts to store them here would cause this
function to fail most of the time, so we ignore them. */
}
void
ppc_linux_nat_target::store_registers (struct regcache *regcache, int regno)
{
pid_t tid = get_ptrace_pid (regcache->ptid ());
if (regno >= 0)
store_register (regcache, tid, regno);
else
store_ppc_registers (regcache, tid);
}
/* Functions for transferring registers between a gregset_t or fpregset_t
(see sys/ucontext.h) and gdb's regcache. The word size is that used
by the ptrace interface, not the current program's ABI. Eg. if a
powerpc64-linux gdb is being used to debug a powerpc32-linux app, we
read or write 64-bit gregsets. This is to suit the host libthread_db. */
void
supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
{
const struct regset *regset = ppc_linux_gregset (sizeof (long));
ppc_supply_gregset (regset, regcache, -1, gregsetp, sizeof (*gregsetp));
}
void
fill_gregset (const struct regcache *regcache,
gdb_gregset_t *gregsetp, int regno)
{
const struct regset *regset = ppc_linux_gregset (sizeof (long));
if (regno == -1)
memset (gregsetp, 0, sizeof (*gregsetp));
ppc_collect_gregset (regset, regcache, regno, gregsetp, sizeof (*gregsetp));
}
void
supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp)
{
const struct regset *regset = ppc_linux_fpregset ();
ppc_supply_fpregset (regset, regcache, -1,
fpregsetp, sizeof (*fpregsetp));
}
void
fill_fpregset (const struct regcache *regcache,
gdb_fpregset_t *fpregsetp, int regno)
{
const struct regset *regset = ppc_linux_fpregset ();
ppc_collect_fpregset (regset, regcache, regno,
fpregsetp, sizeof (*fpregsetp));
}
int
ppc_linux_nat_target::auxv_parse (const gdb_byte **readptr,
const gdb_byte *endptr, CORE_ADDR *typep,
CORE_ADDR *valp)
{
int tid = inferior_ptid.lwp ();
if (tid == 0)
tid = inferior_ptid.pid ();
int sizeof_auxv_field = ppc_linux_target_wordsize (tid);
enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
const gdb_byte *ptr = *readptr;
if (endptr == ptr)
return 0;
if (endptr - ptr < sizeof_auxv_field * 2)
return -1;
*typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
ptr += sizeof_auxv_field;
*valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
ptr += sizeof_auxv_field;
*readptr = ptr;
return 1;
}
const struct target_desc *
ppc_linux_nat_target::read_description ()
{
int tid = inferior_ptid.pid ();
if (have_ptrace_getsetevrregs)
{
struct gdb_evrregset_t evrregset;
if (ptrace (PTRACE_GETEVRREGS, tid, 0, &evrregset) >= 0)
return tdesc_powerpc_e500l;
/* EIO means that the PTRACE_GETEVRREGS request isn't supported.
Anything else needs to be reported. */
else if (errno != EIO)
perror_with_name (_("Unable to fetch SPE registers"));
}
struct ppc_linux_features features = ppc_linux_no_features;
features.wordsize = ppc_linux_target_wordsize (tid);
CORE_ADDR hwcap = linux_get_hwcap ();
CORE_ADDR hwcap2 = linux_get_hwcap2 ();
if (have_ptrace_getsetvsxregs
&& (hwcap & PPC_FEATURE_HAS_VSX))
{
gdb_vsxregset_t vsxregset;
if (ptrace (PTRACE_GETVSXREGS, tid, 0, &vsxregset) >= 0)
features.vsx = true;
/* EIO means that the PTRACE_GETVSXREGS request isn't supported.
Anything else needs to be reported. */
else if (errno != EIO)
perror_with_name (_("Unable to fetch VSX registers"));
}
if (have_ptrace_getvrregs
&& (hwcap & PPC_FEATURE_HAS_ALTIVEC))
{
gdb_vrregset_t vrregset;
if (ptrace (PTRACE_GETVRREGS, tid, 0, &vrregset) >= 0)
features.altivec = true;
/* EIO means that the PTRACE_GETVRREGS request isn't supported.
Anything else needs to be reported. */
else if (errno != EIO)
perror_with_name (_("Unable to fetch AltiVec registers"));
}
features.isa205 = ppc_linux_has_isa205 (hwcap);
if ((hwcap2 & PPC_FEATURE2_DSCR)
&& check_regset (tid, NT_PPC_PPR, PPC_LINUX_SIZEOF_PPRREGSET)
&& check_regset (tid, NT_PPC_DSCR, PPC_LINUX_SIZEOF_DSCRREGSET))
{
features.ppr_dscr = true;
if ((hwcap2 & PPC_FEATURE2_ARCH_2_07)
&& (hwcap2 & PPC_FEATURE2_TAR)
&& (hwcap2 & PPC_FEATURE2_EBB)
&& check_regset (tid, NT_PPC_TAR, PPC_LINUX_SIZEOF_TARREGSET)
&& check_regset (tid, NT_PPC_EBB, PPC_LINUX_SIZEOF_EBBREGSET)
&& check_regset (tid, NT_PPC_PMU, PPC_LINUX_SIZEOF_PMUREGSET))
{
features.isa207 = true;
if ((hwcap2 & PPC_FEATURE2_HTM)
&& check_regset (tid, NT_PPC_TM_SPR,
PPC_LINUX_SIZEOF_TM_SPRREGSET))
features.htm = true;
}
}
return ppc_linux_match_description (features);
}
/* Routines for installing hardware watchpoints and breakpoints. When
GDB requests a hardware watchpoint or breakpoint to be installed, we
register the request for the pid of inferior_ptid in a map with one
entry per process. We then issue a stop request to all the threads of
this process, and mark a per-thread flag indicating that their debug
registers should be updated. Right before they are next resumed, we
remove all previously installed debug registers and install all the
ones GDB requested. We then update a map with one entry per thread
that keeps track of what debug registers were last installed in each
thread.
We use this second map to remove installed registers before installing
the ones requested by GDB, and to copy the debug register state after
a thread clones or forks, since depending on the kernel configuration,
debug registers can be inherited. */
/* Check if we support and have enough resources to install a hardware
watchpoint or breakpoint. See the description in target.h. */
int
ppc_linux_nat_target::can_use_hw_breakpoint (enum bptype type, int cnt,
int ot)
{
int total_hw_wp, total_hw_bp;
m_dreg_interface.detect (inferior_ptid);
if (m_dreg_interface.unavailable_p ())
return 0;
if (m_dreg_interface.hwdebug_p ())
{
/* When PowerPC HWDEBUG ptrace interface is available, the number of
available hardware watchpoints and breakpoints is stored at the
hwdebug_info struct. */
total_hw_bp = m_dreg_interface.hwdebug_info ().num_instruction_bps;
total_hw_wp = m_dreg_interface.hwdebug_info ().num_data_bps;
}
else
{
gdb_assert (m_dreg_interface.debugreg_p ());
/* With the DEBUGREG ptrace interface, we should consider having 1
hardware watchpoint and no hardware breakpoints. */
total_hw_bp = 0;
total_hw_wp = 1;
}
if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
|| type == bp_access_watchpoint || type == bp_watchpoint)
{
if (total_hw_wp == 0)
return 0;
else if (cnt + ot > total_hw_wp)
return -1;
else
return 1;
}
else if (type == bp_hardware_breakpoint)
{
if (total_hw_bp == 0)
return 0;
else if (cnt > total_hw_bp)
return -1;
else
return 1;
}
return 0;
}
/* Returns 1 if we can watch LEN bytes at address ADDR, 0 otherwise. */
int
ppc_linux_nat_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
{
/* Handle sub-8-byte quantities. */
if (len <= 0)
return 0;
m_dreg_interface.detect (inferior_ptid);
if (m_dreg_interface.unavailable_p ())
return 0;
/* The PowerPC HWDEBUG ptrace interface tells if there are alignment
restrictions for watchpoints in the processors. In that case, we use that
information to determine the hardcoded watchable region for
watchpoints. */
if (m_dreg_interface.hwdebug_p ())
{
const struct ppc_debug_info &hwdebug_info = (m_dreg_interface
.hwdebug_info ());
int region_size = hwdebug_info.data_bp_alignment;
int region_align = region_size;
/* Embedded DAC-based processors, like the PowerPC 440 have ranged
watchpoints and can watch any access within an arbitrary memory
region. This is useful to watch arrays and structs, for instance. It
takes two hardware watchpoints though. */
if (len > 1
&& hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE
&& (linux_get_hwcap () & PPC_FEATURE_BOOKE))
return 2;
/* Check if the processor provides DAWR interface. */
if (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_DAWR)
{
/* DAWR interface allows to watch up to 512 byte wide ranges. */
region_size = 512;
/* DAWR interface allows to watch up to 512 byte wide ranges which
can't cross a 512 byte bondary on machines that doesn't have a
second DAWR (P9 or less). */
if (!(hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_ARCH_31))
region_align = 512;
}
/* Server processors provide one hardware watchpoint and addr+len should
fall in the watchable region provided by the ptrace interface. */
if (region_align
&& (addr + len > (addr & ~(region_align - 1)) + region_size))
return 0;
}
/* addr+len must fall in the 8 byte watchable region for DABR-based
processors (i.e., server processors). Without the new PowerPC HWDEBUG
ptrace interface, DAC-based processors (i.e., embedded processors) will
use addresses aligned to 4-bytes due to the way the read/write flags are
passed in the old ptrace interface. */
else
{
gdb_assert (m_dreg_interface.debugreg_p ());
if (((linux_get_hwcap () & PPC_FEATURE_BOOKE)
&& (addr + len) > (addr & ~3) + 4)
|| (addr + len) > (addr & ~7) + 8)
return 0;
}
return 1;
}
/* This function compares two ppc_hw_breakpoint structs
field-by-field. */
bool
ppc_linux_nat_target::hwdebug_point_cmp (const struct ppc_hw_breakpoint &a,
const struct ppc_hw_breakpoint &b)
{
return (a.trigger_type == b.trigger_type
&& a.addr_mode == b.addr_mode
&& a.condition_mode == b.condition_mode
&& a.addr == b.addr
&& a.addr2 == b.addr2
&& a.condition_value == b.condition_value);
}
/* Return the number of registers needed for a ranged breakpoint. */
int
ppc_linux_nat_target::ranged_break_num_registers ()
{
m_dreg_interface.detect (inferior_ptid);
return ((m_dreg_interface.hwdebug_p ()
&& (m_dreg_interface.hwdebug_info ().features
& PPC_DEBUG_FEATURE_INSN_BP_RANGE))?
2 : -1);
}
/* Register the hardware breakpoint described by BP_TGT, to be inserted
when the threads of inferior_ptid are resumed. Returns 0 for success,
or -1 if the HWDEBUG interface that we need for hardware breakpoints
is not available. */
int
ppc_linux_nat_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
struct bp_target_info *bp_tgt)
{
struct ppc_hw_breakpoint p;
m_dreg_interface.detect (inferior_ptid);
if (!m_dreg_interface.hwdebug_p ())
return -1;
p.version = PPC_DEBUG_CURRENT_VERSION;
p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
p.addr = (uint64_t) (bp_tgt->placed_address = bp_tgt->reqstd_address);
p.condition_value = 0;
if (bp_tgt->length)
{
p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
/* The breakpoint will trigger if the address of the instruction is
within the defined range, as follows: p.addr <= address < p.addr2. */
p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
}
else
{
p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
p.addr2 = 0;
}
register_hw_breakpoint (inferior_ptid.pid (), p);
return 0;
}
/* Clear a registration for the hardware breakpoint given by type BP_TGT.
It will be removed from the threads of inferior_ptid when they are
next resumed. Returns 0 for success, or -1 if the HWDEBUG interface
that we need for hardware breakpoints is not available. */
int
ppc_linux_nat_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
struct bp_target_info *bp_tgt)
{
struct ppc_hw_breakpoint p;
m_dreg_interface.detect (inferior_ptid);
if (!m_dreg_interface.hwdebug_p ())
return -1;
p.version = PPC_DEBUG_CURRENT_VERSION;
p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
p.addr = (uint64_t) bp_tgt->placed_address;
p.condition_value = 0;
if (bp_tgt->length)
{
p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
/* The breakpoint will trigger if the address of the instruction is within
the defined range, as follows: p.addr <= address < p.addr2. */
p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
}
else
{
p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
p.addr2 = 0;
}
clear_hw_breakpoint (inferior_ptid.pid (), p);
return 0;
}
/* Return the trigger value to set in a ppc_hw_breakpoint object for a
given hardware watchpoint TYPE. We assume type is not hw_execute. */
int
ppc_linux_nat_target::get_trigger_type (enum target_hw_bp_type type)
{
int t;
if (type == hw_read)
t = PPC_BREAKPOINT_TRIGGER_READ;
else if (type == hw_write)
t = PPC_BREAKPOINT_TRIGGER_WRITE;
else
t = PPC_BREAKPOINT_TRIGGER_READ | PPC_BREAKPOINT_TRIGGER_WRITE;
return t;
}
/* Register a new masked watchpoint at ADDR using the mask MASK, to be
inserted when the threads of inferior_ptid are resumed. RW may be
hw_read for a read watchpoint, hw_write for a write watchpoint or
hw_access for an access watchpoint. */
int
ppc_linux_nat_target::insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
target_hw_bp_type rw)
{
struct ppc_hw_breakpoint p;
gdb_assert (m_dreg_interface.hwdebug_p ());
p.version = PPC_DEBUG_CURRENT_VERSION;
p.trigger_type = get_trigger_type (rw);
p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
p.addr = addr;
p.addr2 = mask;
p.condition_value = 0;
register_hw_breakpoint (inferior_ptid.pid (), p);
return 0;
}
/* Clear a registration for a masked watchpoint at ADDR with the mask
MASK. It will be removed from the threads of inferior_ptid when they
are next resumed. RW may be hw_read for a read watchpoint, hw_write
for a write watchpoint or hw_access for an access watchpoint. */
int
ppc_linux_nat_target::remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
target_hw_bp_type rw)
{
struct ppc_hw_breakpoint p;
gdb_assert (m_dreg_interface.hwdebug_p ());
p.version = PPC_DEBUG_CURRENT_VERSION;
p.trigger_type = get_trigger_type (rw);
p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
p.addr = addr;
p.addr2 = mask;
p.condition_value = 0;
clear_hw_breakpoint (inferior_ptid.pid (), p);
return 0;
}
/* Check whether we have at least one free DVC register for the threads
of the pid of inferior_ptid. */
bool
ppc_linux_nat_target::can_use_watchpoint_cond_accel (void)
{
m_dreg_interface.detect (inferior_ptid);
if (!m_dreg_interface.hwdebug_p ())
return false;
int cnt = m_dreg_interface.hwdebug_info ().num_condition_regs;
if (cnt == 0)
return false;
auto process_it = m_process_info.find (inferior_ptid.pid ());
/* No breakpoints or watchpoints have been requested for this process,
we have at least one free DVC register. */
if (process_it == m_process_info.end ())
return true;
for (const ppc_hw_breakpoint &bp : process_it->second.requested_hw_bps)
if (bp.condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
cnt--;
if (cnt <= 0)
return false;
return true;
}
/* Calculate the enable bits and the contents of the Data Value Compare
debug register present in BookE processors.
ADDR is the address to be watched, LEN is the length of watched data
and DATA_VALUE is the value which will trigger the watchpoint.
On exit, CONDITION_MODE will hold the enable bits for the DVC, and
CONDITION_VALUE will hold the value which should be put in the
DVC register. */
void
ppc_linux_nat_target::calculate_dvc (CORE_ADDR addr, int len,
CORE_ADDR data_value,
uint32_t *condition_mode,
uint64_t *condition_value)
{
const struct ppc_debug_info &hwdebug_info = (m_dreg_interface.
hwdebug_info ());
int i, num_byte_enable, align_offset, num_bytes_off_dvc,
rightmost_enabled_byte;
CORE_ADDR addr_end_data, addr_end_dvc;
/* The DVC register compares bytes within fixed-length windows which
are word-aligned, with length equal to that of the DVC register.
We need to calculate where our watch region is relative to that
window and enable comparison of the bytes which fall within it. */
align_offset = addr % hwdebug_info.sizeof_condition;
addr_end_data = addr + len;
addr_end_dvc = (addr - align_offset
+ hwdebug_info.sizeof_condition);
num_bytes_off_dvc = (addr_end_data > addr_end_dvc)?
addr_end_data - addr_end_dvc : 0;
num_byte_enable = len - num_bytes_off_dvc;
/* Here, bytes are numbered from right to left. */
rightmost_enabled_byte = (addr_end_data < addr_end_dvc)?
addr_end_dvc - addr_end_data : 0;
*condition_mode = PPC_BREAKPOINT_CONDITION_AND;
for (i = 0; i < num_byte_enable; i++)
*condition_mode
|= PPC_BREAKPOINT_CONDITION_BE (i + rightmost_enabled_byte);
/* Now we need to match the position within the DVC of the comparison
value with where the watch region is relative to the window
(i.e., the ALIGN_OFFSET). */
*condition_value = ((uint64_t) data_value >> num_bytes_off_dvc * 8
<< rightmost_enabled_byte * 8);
}
/* Return the number of memory locations that need to be accessed to
evaluate the expression which generated the given value chain.
Returns -1 if there's any register access involved, or if there are
other kinds of values which are not acceptable in a condition
expression (e.g., lval_computed or lval_internalvar). */
int
ppc_linux_nat_target::num_memory_accesses (const std::vector<value_ref_ptr>
&chain)
{
int found_memory_cnt = 0;
/* The idea here is that evaluating an expression generates a series
of values, one holding the value of every subexpression. (The
expression a*b+c has five subexpressions: a, b, a*b, c, and
a*b+c.) GDB's values hold almost enough information to establish
the criteria given above --- they identify memory lvalues,
register lvalues, computed values, etcetera. So we can evaluate
the expression, and then scan the chain of values that leaves
behind to determine the memory locations involved in the evaluation
of an expression.
However, I don't think that the values returned by inferior
function calls are special in any way. So this function may not
notice that an expression contains an inferior function call.
FIXME. */
for (const value_ref_ptr &iter : chain)
{
struct value *v = iter.get ();
/* Constants and values from the history are fine. */
if (v->lval () == not_lval || !v->deprecated_modifiable ())
continue;
else if (v->lval () == lval_memory)
{
/* A lazy memory lvalue is one that GDB never needed to fetch;
we either just used its address (e.g., `a' in `a.b') or
we never needed it at all (e.g., `a' in `a,b'). */
if (!v->lazy ())
found_memory_cnt++;
}
/* Other kinds of values are not fine. */
else
return -1;
}
return found_memory_cnt;
}
/* Verifies whether the expression COND can be implemented using the
DVC (Data Value Compare) register in BookE processors. The expression
must test the watch value for equality with a constant expression.
If the function returns 1, DATA_VALUE will contain the constant against
which the watch value should be compared and LEN will contain the size
of the constant. */
int
ppc_linux_nat_target::check_condition (CORE_ADDR watch_addr,
struct expression *cond,
CORE_ADDR *data_value, int *len)
{
int num_accesses_left, num_accesses_right;
struct value *left_val, *right_val;
std::vector<value_ref_ptr> left_chain, right_chain;
expr::equal_operation *eqop
= dynamic_cast<expr::equal_operation *> (cond->op.get ());
if (eqop == nullptr)
return 0;
expr::operation *lhs = eqop->get_lhs ();
expr::operation *rhs = eqop->get_rhs ();
fetch_subexp_value (cond, lhs, &left_val, NULL, &left_chain, false);
num_accesses_left = num_memory_accesses (left_chain);
if (left_val == NULL || num_accesses_left < 0)
return 0;
fetch_subexp_value (cond, rhs, &right_val, NULL, &right_chain, false);
num_accesses_right = num_memory_accesses (right_chain);
if (right_val == NULL || num_accesses_right < 0)
return 0;
if (num_accesses_left == 1 && num_accesses_right == 0
&& left_val->lval () == lval_memory
&& left_val->address () == watch_addr)
{
*data_value = value_as_long (right_val);
/* DATA_VALUE is the constant in RIGHT_VAL, but actually has
the same type as the memory region referenced by LEFT_VAL. */
*len = check_typedef (left_val->type ())->length ();
}
else if (num_accesses_left == 0 && num_accesses_right == 1
&& right_val->lval () == lval_memory
&& right_val->address () == watch_addr)
{
*data_value = value_as_long (left_val);
/* DATA_VALUE is the constant in LEFT_VAL, but actually has
the same type as the memory region referenced by RIGHT_VAL. */
*len = check_typedef (right_val->type ())->length ();
}
else
return 0;
return 1;
}
/* Return true if the target is capable of using hardware to evaluate the
condition expression, thus only triggering the watchpoint when it is
true. */
bool
ppc_linux_nat_target::can_accel_watchpoint_condition (CORE_ADDR addr,
int len, int rw,
struct expression *cond)
{
CORE_ADDR data_value;
m_dreg_interface.detect (inferior_ptid);
return (m_dreg_interface.hwdebug_p ()
&& (m_dreg_interface.hwdebug_info ().num_condition_regs > 0)
&& check_condition (addr, cond, &data_value, &len));
}
/* Set up P with the parameters necessary to request a watchpoint covering
LEN bytes starting at ADDR and if possible with condition expression COND
evaluated by hardware. INSERT tells if we are creating a request for
inserting or removing the watchpoint. */
void
ppc_linux_nat_target::create_watchpoint_request (struct ppc_hw_breakpoint *p,
CORE_ADDR addr, int len,
enum target_hw_bp_type type,
struct expression *cond,
int insert)
{
const struct ppc_debug_info &hwdebug_info = (m_dreg_interface
.hwdebug_info ());
if (len == 1
|| !(hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE))
{
int use_condition;
CORE_ADDR data_value;
use_condition = (insert? can_use_watchpoint_cond_accel ()
: hwdebug_info.num_condition_regs > 0);
if (cond && use_condition && check_condition (addr, cond,
&data_value, &len))
calculate_dvc (addr, len, data_value, &p->condition_mode,
&p->condition_value);
else
{
p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
p->condition_value = 0;
}
p->addr_mode = PPC_BREAKPOINT_MODE_EXACT;
p->addr2 = 0;
}
else
{
p->addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
p->condition_value = 0;
/* The watchpoint will trigger if the address of the memory access is
within the defined range, as follows: p->addr <= address < p->addr2.
Note that the above sentence just documents how ptrace interprets
its arguments; the watchpoint is set to watch the range defined by
the user _inclusively_, as specified by the user interface. */
p->addr2 = (uint64_t) addr + len;
}
p->version = PPC_DEBUG_CURRENT_VERSION;
p->trigger_type = get_trigger_type (type);
p->addr = (uint64_t) addr;
}
/* Register a watchpoint, to be inserted when the threads of the group of
inferior_ptid are next resumed. Returns 0 on success, and -1 if there
is no ptrace interface available to install the watchpoint. */
int
ppc_linux_nat_target::insert_watchpoint (CORE_ADDR addr, int len,
enum target_hw_bp_type type,
struct expression *cond)
{
m_dreg_interface.detect (inferior_ptid);
if (m_dreg_interface.unavailable_p ())
return -1;
if (m_dreg_interface.hwdebug_p ())
{
struct ppc_hw_breakpoint p;
create_watchpoint_request (&p, addr, len, type, cond, 1);
register_hw_breakpoint (inferior_ptid.pid (), p);
}
else
{
gdb_assert (m_dreg_interface.debugreg_p ());
long wp_value;
long read_mode, write_mode;
if (linux_get_hwcap () & PPC_FEATURE_BOOKE)
{
/* PowerPC 440 requires only the read/write flags to be passed
to the kernel. */
read_mode = 1;
write_mode = 2;
}
else
{
/* PowerPC 970 and other DABR-based processors are required to pass
the Breakpoint Translation bit together with the flags. */
read_mode = 5;
write_mode = 6;
}
wp_value = addr & ~(read_mode | write_mode);
switch (type)
{
case hw_read:
/* Set read and translate bits. */
wp_value |= read_mode;
break;
case hw_write:
/* Set write and translate bits. */
wp_value |= write_mode;
break;
case hw_access:
/* Set read, write and translate bits. */
wp_value |= read_mode | write_mode;
break;
}
register_wp (inferior_ptid.pid (), wp_value);
}
return 0;
}
/* Clear a registration for a hardware watchpoint. It will be removed
from the threads of the group of inferior_ptid when they are next
resumed. */
int
ppc_linux_nat_target::remove_watchpoint (CORE_ADDR addr, int len,
enum target_hw_bp_type type,
struct expression *cond)
{
gdb_assert (!m_dreg_interface.unavailable_p ());
if (m_dreg_interface.hwdebug_p ())
{
struct ppc_hw_breakpoint p;
create_watchpoint_request (&p, addr, len, type, cond, 0);
clear_hw_breakpoint (inferior_ptid.pid (), p);
}
else
{
gdb_assert (m_dreg_interface.debugreg_p ());
clear_wp (inferior_ptid.pid ());
}
return 0;
}
/* Clean up the per-process info associated with PID. When using the
HWDEBUG interface, we also erase the per-thread state of installed
debug registers for all the threads that belong to the group of PID.
Usually the thread state is cleaned up by low_delete_thread. We also
do it here because low_new_thread is not called for the initial LWP,
so low_delete_thread won't be able to clean up this state. */
void
ppc_linux_nat_target::low_forget_process (pid_t pid)
{
if ((!m_dreg_interface.detected_p ())
|| (m_dreg_interface.unavailable_p ()))
return;
ptid_t pid_ptid (pid, 0, 0);
m_process_info.erase (pid);
if (m_dreg_interface.hwdebug_p ())
{
for (auto it = m_installed_hw_bps.begin ();
it != m_installed_hw_bps.end ();)
{
if (it->first.matches (pid_ptid))
it = m_installed_hw_bps.erase (it);
else
it++;
}
}
}
/* Copy the per-process state associated with the pid of PARENT to the
sate of CHILD_PID. GDB expects that a forked process will have the
same hardware breakpoints and watchpoints as the parent.
If we're using the HWDEBUG interface, also copy the thread debug
register state for the ptid of PARENT to the state for CHILD_PID.
Like for clone events, we assume the kernel will copy the debug
registers from the parent thread to the child. The
low_prepare_to_resume function is made to work even if it doesn't.
We copy the thread state here and not in low_new_thread since we don't
have the pid of the parent in low_new_thread. Even if we did,
low_new_thread might not be called immediately after the fork event is
detected. For instance, with the checkpointing system (see
linux-fork.c), the thread won't be added until GDB decides to switch
to a new checkpointed process. At that point, the debug register
state of the parent thread is unlikely to correspond to the state it
had at the point when it forked. */
void
ppc_linux_nat_target::low_new_fork (struct lwp_info *parent,
pid_t child_pid)
{
if ((!m_dreg_interface.detected_p ())
|| (m_dreg_interface.unavailable_p ()))
return;
auto process_it = m_process_info.find (parent->ptid.pid ());
if (process_it != m_process_info.end ())
m_process_info[child_pid] = m_process_info[parent->ptid.pid ()];
if (m_dreg_interface.hwdebug_p ())
{
ptid_t child_ptid (child_pid, child_pid, 0);
copy_thread_dreg_state (parent->ptid, child_ptid);
}
}
/* Copy the thread debug register state from the PARENT thread to the the
state for CHILD_LWP, if we're using the HWDEBUG interface. We assume
the kernel copies the debug registers from one thread to another after
a clone event. The low_prepare_to_resume function is made to work
even if it doesn't. */
void
ppc_linux_nat_target::low_new_clone (struct lwp_info *parent,
pid_t child_lwp)
{
if ((!m_dreg_interface.detected_p ())
|| (m_dreg_interface.unavailable_p ()))
return;
if (m_dreg_interface.hwdebug_p ())
{
ptid_t child_ptid (parent->ptid.pid (), child_lwp, 0);
copy_thread_dreg_state (parent->ptid, child_ptid);
}
}
/* Initialize the arch-specific thread state for LP so that it contains
the ptid for lp, so that we can use it in low_delete_thread. Mark the
new thread LP as stale so that we update its debug registers before
resuming it. This is not called for the initial thread. */
void
ppc_linux_nat_target::low_new_thread (struct lwp_info *lp)
{
init_arch_lwp_info (lp);
mark_thread_stale (lp);
}
/* Delete the per-thread debug register stale flag. */
void
ppc_linux_nat_target::low_delete_thread (struct arch_lwp_info
*lp_arch_info)
{
if (lp_arch_info != NULL)
{
if (m_dreg_interface.detected_p ()
&& m_dreg_interface.hwdebug_p ())
m_installed_hw_bps.erase (lp_arch_info->lwp_ptid);
xfree (lp_arch_info);
}
}
/* Install or delete debug registers in thread LP so that it matches what
GDB requested before it is resumed. */
void
ppc_linux_nat_target::low_prepare_to_resume (struct lwp_info *lp)
{
if ((!m_dreg_interface.detected_p ())
|| (m_dreg_interface.unavailable_p ()))
return;
/* We have to re-install or clear the debug registers if we set the
stale flag.
In addition, some kernels configurations can disable a hardware
watchpoint after it is hit. Usually, GDB will remove and re-install
a hardware watchpoint when the thread stops if "breakpoint
always-inserted" is off, or to single-step a watchpoint. But so
that we don't rely on this behavior, if we stop due to a hardware
breakpoint or watchpoint, we also refresh our debug registers. */
arch_lwp_info *lp_arch_info = get_arch_lwp_info (lp);
bool stale_dregs = (lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
|| lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT
|| lp_arch_info->debug_regs_stale);
if (!stale_dregs)
return;
gdb_assert (lp->ptid.lwp_p ());
auto process_it = m_process_info.find (lp->ptid.pid ());
if (m_dreg_interface.hwdebug_p ())
{
/* First, delete any hardware watchpoint or breakpoint installed in
the inferior and update the thread state. */
auto installed_it = m_installed_hw_bps.find (lp->ptid);
if (installed_it != m_installed_hw_bps.end ())
{
auto &bp_list = installed_it->second;
for (auto bp_it = bp_list.begin (); bp_it != bp_list.end ();)
{
/* We ignore ENOENT to account for various possible kernel
behaviors, e.g. the kernel might or might not copy debug
registers across forks and clones, and we always copy
the debug register state when fork and clone events are
detected. */
if (ptrace (PPC_PTRACE_DELHWDEBUG, lp->ptid.lwp (), 0,
bp_it->first) < 0)
if (errno != ENOENT)
perror_with_name (_("Error deleting hardware "
"breakpoint or watchpoint"));
/* We erase the entries one at a time after successfully
removing the corresponding slot form the thread so that
if we throw an exception above in a future iteration the
map remains consistent. */
bp_it = bp_list.erase (bp_it);
}
gdb_assert (bp_list.empty ());
}
/* Now we install all the requested hardware breakpoints and
watchpoints and update the thread state. */
if (process_it != m_process_info.end ())
{
auto &bp_list = m_installed_hw_bps[lp->ptid];
for (ppc_hw_breakpoint bp
: process_it->second.requested_hw_bps)
{
long slot = ptrace (PPC_PTRACE_SETHWDEBUG, lp->ptid.lwp (),
0, &bp);
if (slot < 0)
perror_with_name (_("Error setting hardware "
"breakpoint or watchpoint"));
/* Keep track of which slots we installed in this
thread. */
bp_list.emplace (bp_list.begin (), slot, bp);
}
}
}
else
{
gdb_assert (m_dreg_interface.debugreg_p ());
/* Passing 0 to PTRACE_SET_DEBUGREG will clear the watchpoint. We
always clear the watchpoint instead of just overwriting it, in
case there is a request for a new watchpoint, because on some
older kernel versions and configurations simply overwriting the
watchpoint after it was hit would not re-enable it. */
if (ptrace (PTRACE_SET_DEBUGREG, lp->ptid.lwp (), 0, 0) < 0)
perror_with_name (_("Error clearing hardware watchpoint"));
/* GDB requested a watchpoint to be installed. */
if (process_it != m_process_info.end ()
&& process_it->second.requested_wp_val.has_value ())
{
long wp = *(process_it->second.requested_wp_val);
if (ptrace (PTRACE_SET_DEBUGREG, lp->ptid.lwp (), 0, wp) < 0)
perror_with_name (_("Error setting hardware watchpoint"));
}
}
lp_arch_info->debug_regs_stale = false;
}
/* Return true if INFERIOR_PTID is known to have been stopped by a
hardware watchpoint, false otherwise. If true is returned, write the
address that the kernel reported as causing the SIGTRAP in ADDR_P. */
bool
ppc_linux_nat_target::low_stopped_data_address (CORE_ADDR *addr_p)
{
siginfo_t siginfo;
if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
return false;
if (siginfo.si_signo != SIGTRAP
|| (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
return false;
gdb_assert (!m_dreg_interface.unavailable_p ());
/* Check if this signal corresponds to a hardware breakpoint. We only
need to check this if we're using the HWDEBUG interface, since the
DEBUGREG interface only allows setting one hardware watchpoint. */
if (m_dreg_interface.hwdebug_p ())
{
/* The index (or slot) of the *point is passed in the si_errno
field. Currently, this is only the case if the kernel was
configured with CONFIG_PPC_ADV_DEBUG_REGS. If not, we assume
the kernel will set si_errno to a value that doesn't correspond
to any real slot. */
int slot = siginfo.si_errno;
auto installed_it = m_installed_hw_bps.find (inferior_ptid);
/* We must have installed slots for the thread if it got a
TRAP_HWBKPT signal. */
gdb_assert (installed_it != m_installed_hw_bps.end ());
for (const auto & slot_bp_pair : installed_it->second)
if (slot_bp_pair.first == slot
&& (slot_bp_pair.second.trigger_type
== PPC_BREAKPOINT_TRIGGER_EXECUTE))
return false;
}
*addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr;
return true;
}
/* Return true if INFERIOR_PTID is known to have been stopped by a
hardware watchpoint, false otherwise. */
bool
ppc_linux_nat_target::low_stopped_by_watchpoint ()
{
CORE_ADDR addr;
return low_stopped_data_address (&addr);
}
bool
ppc_linux_nat_target::watchpoint_addr_within_range (CORE_ADDR addr,
CORE_ADDR start,
int length)
{
gdb_assert (!m_dreg_interface.unavailable_p ());
int mask;
if (m_dreg_interface.hwdebug_p ()
&& (linux_get_hwcap () & PPC_FEATURE_BOOKE))
return start <= addr && start + length >= addr;
else if (linux_get_hwcap () & PPC_FEATURE_BOOKE)
mask = 3;
else
mask = 7;
addr &= ~mask;
/* Check whether [start, start+length-1] intersects [addr, addr+mask]. */
return start <= addr + mask && start + length - 1 >= addr;
}
/* Return the number of registers needed for a masked hardware watchpoint. */
int
ppc_linux_nat_target::masked_watch_num_registers (CORE_ADDR addr,
CORE_ADDR mask)
{
m_dreg_interface.detect (inferior_ptid);
if (!m_dreg_interface.hwdebug_p ()
|| (m_dreg_interface.hwdebug_info ().features
& PPC_DEBUG_FEATURE_DATA_BP_MASK) == 0)
return -1;
else if ((mask & 0xC0000000) != 0xC0000000)
{
warning (_("The given mask covers kernel address space "
"and cannot be used.\n"));
return -2;
}
else
return 2;
}
/* Copy the per-thread debug register state, if any, from thread
PARENT_PTID to thread CHILD_PTID, if the debug register being used is
HWDEBUG. */
void
ppc_linux_nat_target::copy_thread_dreg_state (const ptid_t &parent_ptid,
const ptid_t &child_ptid)
{
gdb_assert (m_dreg_interface.hwdebug_p ());
auto installed_it = m_installed_hw_bps.find (parent_ptid);
if (installed_it != m_installed_hw_bps.end ())
m_installed_hw_bps[child_ptid] = m_installed_hw_bps[parent_ptid];
}
/* Mark the debug register stale flag for the new thread, if we have
already detected which debug register interface we use. */
void
ppc_linux_nat_target::mark_thread_stale (struct lwp_info *lp)
{
if ((!m_dreg_interface.detected_p ())
|| (m_dreg_interface.unavailable_p ()))
return;
arch_lwp_info *lp_arch_info = get_arch_lwp_info (lp);
lp_arch_info->debug_regs_stale = true;
}
/* Mark all the threads of the group of PID as stale with respect to
debug registers and issue a stop request to each such thread that
isn't already stopped. */
void
ppc_linux_nat_target::mark_debug_registers_changed (pid_t pid)
{
/* We do this in two passes to make sure all threads are marked even if
we get an exception when stopping one of them. */
iterate_over_lwps (ptid_t (pid),
[this] (struct lwp_info *lp) -> int {
this->mark_thread_stale (lp);
return 0;
});
iterate_over_lwps (ptid_t (pid),
[] (struct lwp_info *lp) -> int {
if (!lwp_is_stopped (lp))
linux_stop_lwp (lp);
return 0;
});
}
/* Register a hardware breakpoint or watchpoint BP for the pid PID, then
mark the stale flag for all threads of the group of PID, and issue a
stop request for them. The breakpoint or watchpoint will be installed
the next time each thread is resumed. Should only be used if the
debug register interface is HWDEBUG. */
void
ppc_linux_nat_target::register_hw_breakpoint (pid_t pid,
const struct
ppc_hw_breakpoint &bp)
{
gdb_assert (m_dreg_interface.hwdebug_p ());
m_process_info[pid].requested_hw_bps.push_back (bp);
mark_debug_registers_changed (pid);
}
/* Clear a registration for a hardware breakpoint or watchpoint BP for
the pid PID, then mark the stale flag for all threads of the group of
PID, and issue a stop request for them. The breakpoint or watchpoint
will be removed the next time each thread is resumed. Should only be
used if the debug register interface is HWDEBUG. */
void
ppc_linux_nat_target::clear_hw_breakpoint (pid_t pid,
const struct ppc_hw_breakpoint &bp)
{
gdb_assert (m_dreg_interface.hwdebug_p ());
auto process_it = m_process_info.find (pid);
gdb_assert (process_it != m_process_info.end ());
auto bp_it = std::find_if (process_it->second.requested_hw_bps.begin (),
process_it->second.requested_hw_bps.end (),
[&bp, this]
(const struct ppc_hw_breakpoint &curr)
{ return hwdebug_point_cmp (bp, curr); }
);
/* If GDB is removing a watchpoint, it must have been inserted. */
gdb_assert (bp_it != process_it->second.requested_hw_bps.end ());
process_it->second.requested_hw_bps.erase (bp_it);
mark_debug_registers_changed (pid);
}
/* Register the hardware watchpoint value WP_VALUE for the pid PID,
then mark the stale flag for all threads of the group of PID, and
issue a stop request for them. The breakpoint or watchpoint will be
installed the next time each thread is resumed. Should only be used
if the debug register interface is DEBUGREG. */
void
ppc_linux_nat_target::register_wp (pid_t pid, long wp_value)
{
gdb_assert (m_dreg_interface.debugreg_p ());
/* Our other functions should have told GDB that we only have one
hardware watchpoint with this interface. */
gdb_assert (!m_process_info[pid].requested_wp_val.has_value ());
m_process_info[pid].requested_wp_val.emplace (wp_value);
mark_debug_registers_changed (pid);
}
/* Clear the hardware watchpoint registration for the pid PID, then mark
the stale flag for all threads of the group of PID, and issue a stop
request for them. The breakpoint or watchpoint will be installed the
next time each thread is resumed. Should only be used if the debug
register interface is DEBUGREG. */
void
ppc_linux_nat_target::clear_wp (pid_t pid)
{
gdb_assert (m_dreg_interface.debugreg_p ());
auto process_it = m_process_info.find (pid);
gdb_assert (process_it != m_process_info.end ());
gdb_assert (process_it->second.requested_wp_val.has_value ());
process_it->second.requested_wp_val.reset ();
mark_debug_registers_changed (pid);
}
/* Initialize the arch-specific thread state for LWP, if it not already
created. */
void
ppc_linux_nat_target::init_arch_lwp_info (struct lwp_info *lp)
{
if (lwp_arch_private_info (lp) == NULL)
{
lwp_set_arch_private_info (lp, XCNEW (struct arch_lwp_info));
lwp_arch_private_info (lp)->debug_regs_stale = false;
lwp_arch_private_info (lp)->lwp_ptid = lp->ptid;
}
}
/* Get the arch-specific thread state for LWP, creating it if
necessary. */
arch_lwp_info *
ppc_linux_nat_target::get_arch_lwp_info (struct lwp_info *lp)
{
init_arch_lwp_info (lp);
return lwp_arch_private_info (lp);
}
void _initialize_ppc_linux_nat ();
void
_initialize_ppc_linux_nat ()
{
linux_target = &the_ppc_linux_nat_target;
/* Register the target. */
add_inf_child_target (linux_target);
}
|