aboutsummaryrefslogtreecommitdiff
path: root/gdb/opencl-lang.c
blob: 3e4a9c360b2888fd48bae44839cd5cd5bda7544b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
/* OpenCL language support for GDB, the GNU debugger.
   Copyright (C) 2010-2023 Free Software Foundation, Inc.

   Contributed by Ken Werner <ken.werner@de.ibm.com>.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "gdbtypes.h"
#include "symtab.h"
#include "expression.h"
#include "parser-defs.h"
#include "language.h"
#include "varobj.h"
#include "c-lang.h"
#include "gdbarch.h"
#include "c-exp.h"

/* Returns the corresponding OpenCL vector type from the given type code,
   the length of the element type, the unsigned flag and the amount of
   elements (N).  */

static struct type *
lookup_opencl_vector_type (struct gdbarch *gdbarch, enum type_code code,
			   unsigned int el_length, unsigned int flag_unsigned,
			   int n)
{
  unsigned int length;

  /* Check if n describes a valid OpenCL vector size (2, 3, 4, 8, 16).  */
  if (n != 2 && n != 3 && n != 4 && n != 8 && n != 16)
    error (_("Invalid OpenCL vector size: %d"), n);

  /* Triple vectors have the size of a quad vector.  */
  length = (n == 3) ?  el_length * 4 : el_length * n;

  auto filter = [&] (struct type *type)
  {
    LONGEST lowb, highb;

    return (type->code () == TYPE_CODE_ARRAY && type->is_vector ()
	    && get_array_bounds (type, &lowb, &highb)
	    && type->target_type ()->code () == code
	    && type->target_type ()->is_unsigned () == flag_unsigned
	    && type->target_type ()->length () == el_length
	    && type->length () == length
	    && highb - lowb + 1 == n);
  };
  const struct language_defn *lang = language_def (language_opencl);
  return language_lookup_primitive_type (lang, gdbarch, filter);
}

/* Returns nonzero if the array ARR contains duplicates within
     the first N elements.  */

static int
array_has_dups (int *arr, int n)
{
  int i, j;

  for (i = 0; i < n; i++)
    {
      for (j = i + 1; j < n; j++)
	{
	  if (arr[i] == arr[j])
	    return 1;
	}
    }

  return 0;
}

/* The OpenCL component access syntax allows to create lvalues referring to
   selected elements of an original OpenCL vector in arbitrary order.  This
   structure holds the information to describe such lvalues.  */

struct lval_closure
{
  /* Reference count.  */
  int refc;
  /* The number of indices.  */
  int n;
  /* The element indices themselves.  */
  int *indices;
  /* A pointer to the original value.  */
  struct value *val;
};

/* Allocates an instance of struct lval_closure.  */

static struct lval_closure *
allocate_lval_closure (int *indices, int n, struct value *val)
{
  struct lval_closure *c = XCNEW (struct lval_closure);

  c->refc = 1;
  c->n = n;
  c->indices = XCNEWVEC (int, n);
  memcpy (c->indices, indices, n * sizeof (int));
  val->incref (); /* Increment the reference counter of the value.  */
  c->val = val;

  return c;
}

static void
lval_func_read (struct value *v)
{
  struct lval_closure *c = (struct lval_closure *) v->computed_closure ();
  struct type *type = check_typedef (v->type ());
  struct type *eltype = check_typedef (c->val->type ())->target_type ();
  LONGEST offset = v->offset ();
  LONGEST elsize = eltype->length ();
  int n, i, j = 0;
  LONGEST lowb = 0;
  LONGEST highb = 0;

  if (type->code () == TYPE_CODE_ARRAY
      && !get_array_bounds (type, &lowb, &highb))
    error (_("Could not determine the vector bounds"));

  /* Assume elsize aligned offset.  */
  gdb_assert (offset % elsize == 0);
  offset /= elsize;
  n = offset + highb - lowb + 1;
  gdb_assert (n <= c->n);

  for (i = offset; i < n; i++)
    memcpy (v->contents_raw ().data () + j++ * elsize,
	    c->val->contents ().data () + c->indices[i] * elsize,
	    elsize);
}

static void
lval_func_write (struct value *v, struct value *fromval)
{
  scoped_value_mark mark;

  struct lval_closure *c = (struct lval_closure *) v->computed_closure ();
  struct type *type = check_typedef (v->type ());
  struct type *eltype = check_typedef (c->val->type ())->target_type ();
  LONGEST offset = v->offset ();
  LONGEST elsize = eltype->length ();
  int n, i, j = 0;
  LONGEST lowb = 0;
  LONGEST highb = 0;

  if (type->code () == TYPE_CODE_ARRAY
      && !get_array_bounds (type, &lowb, &highb))
    error (_("Could not determine the vector bounds"));

  /* Assume elsize aligned offset.  */
  gdb_assert (offset % elsize == 0);
  offset /= elsize;
  n = offset + highb - lowb + 1;

  /* Since accesses to the fourth component of a triple vector is undefined we
     just skip writes to the fourth element.  Imagine something like this:
       int3 i3 = (int3)(0, 1, 2);
       i3.hi.hi = 5;
     In this case n would be 4 (offset=12/4 + 1) while c->n would be 3.  */
  if (n > c->n)
    n = c->n;

  for (i = offset; i < n; i++)
    {
      struct value *from_elm_val = value::allocate (eltype);
      struct value *to_elm_val = value_subscript (c->val, c->indices[i]);

      memcpy (from_elm_val->contents_writeable ().data (),
	      fromval->contents ().data () + j++ * elsize,
	      elsize);
      value_assign (to_elm_val, from_elm_val);
    }
}

/* Return nonzero if bits in V from OFFSET and LENGTH represent a
   synthetic pointer.  */

static int
lval_func_check_synthetic_pointer (const struct value *v,
				   LONGEST offset, int length)
{
  struct lval_closure *c = (struct lval_closure *) v->computed_closure ();
  /* Size of the target type in bits.  */
  int elsize =
    check_typedef (c->val->type ())->target_type ()->length () * 8;
  int startrest = offset % elsize;
  int start = offset / elsize;
  int endrest = (offset + length) % elsize;
  int end = (offset + length) / elsize;
  int i;

  if (endrest)
    end++;

  if (end > c->n)
    return 0;

  for (i = start; i < end; i++)
    {
      int comp_offset = (i == start) ? startrest : 0;
      int comp_length = (i == end) ? endrest : elsize;

      if (!c->val->bits_synthetic_pointer (c->indices[i] * elsize + comp_offset,
					   comp_length))
	return 0;
    }

  return 1;
}

static void *
lval_func_copy_closure (const struct value *v)
{
  struct lval_closure *c = (struct lval_closure *) v->computed_closure ();

  ++c->refc;

  return c;
}

static void
lval_func_free_closure (struct value *v)
{
  struct lval_closure *c = (struct lval_closure *) v->computed_closure ();

  --c->refc;

  if (c->refc == 0)
    {
      c->val->decref (); /* Decrement the reference counter of the value.  */
      xfree (c->indices);
      xfree (c);
    }
}

static const struct lval_funcs opencl_value_funcs =
  {
    lval_func_read,
    lval_func_write,
    nullptr,
    NULL,	/* indirect */
    NULL,	/* coerce_ref */
    lval_func_check_synthetic_pointer,
    lval_func_copy_closure,
    lval_func_free_closure
  };

/* Creates a sub-vector from VAL.  The elements are selected by the indices of
   an array with the length of N.  Supported values for NOSIDE are
   EVAL_NORMAL and EVAL_AVOID_SIDE_EFFECTS.  */

static struct value *
create_value (struct gdbarch *gdbarch, struct value *val, enum noside noside,
	      int *indices, int n)
{
  struct type *type = check_typedef (val->type ());
  struct type *elm_type = type->target_type ();
  struct value *ret;

  /* Check if a single component of a vector is requested which means
     the resulting type is a (primitive) scalar type.  */
  if (n == 1)
    {
      if (noside == EVAL_AVOID_SIDE_EFFECTS)
	ret = value::zero (elm_type, not_lval);
      else
	ret = value_subscript (val, indices[0]);
    }
  else
    {
      /* Multiple components of the vector are requested which means the
	 resulting type is a vector as well.  */
      struct type *dst_type =
	lookup_opencl_vector_type (gdbarch, elm_type->code (),
				   elm_type->length (),
				   elm_type->is_unsigned (), n);

      if (dst_type == NULL)
	dst_type = init_vector_type (elm_type, n);

      make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type), dst_type, NULL);

      if (noside == EVAL_AVOID_SIDE_EFFECTS)
	ret = value::allocate (dst_type);
      else
	{
	  /* Check whether to create a lvalue or not.  */
	  if (val->lval () != not_lval && !array_has_dups (indices, n))
	    {
	      struct lval_closure *c = allocate_lval_closure (indices, n, val);
	      ret = value::allocate_computed (dst_type, &opencl_value_funcs, c);
	    }
	  else
	    {
	      int i;

	      ret = value::allocate (dst_type);

	      /* Copy src val contents into the destination value.  */
	      for (i = 0; i < n; i++)
		memcpy (ret->contents_writeable ().data ()
			+ (i * elm_type->length ()),
			val->contents ().data ()
			+ (indices[i] * elm_type->length ()),
			elm_type->length ());
	    }
	}
    }
  return ret;
}

/* OpenCL vector component access.  */

static struct value *
opencl_component_ref (struct expression *exp, struct value *val,
		      const char *comps, enum noside noside)
{
  LONGEST lowb, highb;
  int src_len;
  struct value *v;
  int indices[16], i;
  int dst_len;

  if (!get_array_bounds (check_typedef (val->type ()), &lowb, &highb))
    error (_("Could not determine the vector bounds"));

  src_len = highb - lowb + 1;

  /* Throw an error if the amount of array elements does not fit a
     valid OpenCL vector size (2, 3, 4, 8, 16).  */
  if (src_len != 2 && src_len != 3 && src_len != 4 && src_len != 8
      && src_len != 16)
    error (_("Invalid OpenCL vector size"));

  if (strcmp (comps, "lo") == 0 )
    {
      dst_len = (src_len == 3) ? 2 : src_len / 2;

      for (i = 0; i < dst_len; i++)
	indices[i] = i;
    }
  else if (strcmp (comps, "hi") == 0)
    {
      dst_len = (src_len == 3) ? 2 : src_len / 2;

      for (i = 0; i < dst_len; i++)
	indices[i] = dst_len + i;
    }
  else if (strcmp (comps, "even") == 0)
    {
      dst_len = (src_len == 3) ? 2 : src_len / 2;

      for (i = 0; i < dst_len; i++)
	indices[i] = i*2;
    }
  else if (strcmp (comps, "odd") == 0)
    {
      dst_len = (src_len == 3) ? 2 : src_len / 2;

      for (i = 0; i < dst_len; i++)
	indices[i] = i*2+1;
    }
  else if (strncasecmp (comps, "s", 1) == 0)
    {
#define HEXCHAR_TO_INT(C) ((C >= '0' && C <= '9') ? \
			   C-'0' : ((C >= 'A' && C <= 'F') ? \
			   C-'A'+10 : ((C >= 'a' && C <= 'f') ? \
			   C-'a'+10 : -1)))

      dst_len = strlen (comps);
      /* Skip the s/S-prefix.  */
      dst_len--;

      for (i = 0; i < dst_len; i++)
	{
	  indices[i] = HEXCHAR_TO_INT(comps[i+1]);
	  /* Check if the requested component is invalid or exceeds
	     the vector.  */
	  if (indices[i] < 0 || indices[i] >= src_len)
	    error (_("Invalid OpenCL vector component accessor %s"), comps);
	}
    }
  else
    {
      dst_len = strlen (comps);

      for (i = 0; i < dst_len; i++)
	{
	  /* x, y, z, w */
	  switch (comps[i])
	  {
	  case 'x':
	    indices[i] = 0;
	    break;
	  case 'y':
	    indices[i] = 1;
	    break;
	  case 'z':
	    if (src_len < 3)
	      error (_("Invalid OpenCL vector component accessor %s"), comps);
	    indices[i] = 2;
	    break;
	  case 'w':
	    if (src_len < 4)
	      error (_("Invalid OpenCL vector component accessor %s"), comps);
	    indices[i] = 3;
	    break;
	  default:
	    error (_("Invalid OpenCL vector component accessor %s"), comps);
	    break;
	  }
	}
    }

  /* Throw an error if the amount of requested components does not
     result in a valid length (1, 2, 3, 4, 8, 16).  */
  if (dst_len != 1 && dst_len != 2 && dst_len != 3 && dst_len != 4
      && dst_len != 8 && dst_len != 16)
    error (_("Invalid OpenCL vector component accessor %s"), comps);

  v = create_value (exp->gdbarch, val, noside, indices, dst_len);

  return v;
}

/* Perform the unary logical not (!) operation.  */

struct value *
opencl_logical_not (struct type *expect_type, struct expression *exp,
		    enum noside noside, enum exp_opcode op,
		    struct value *arg)
{
  struct type *type = check_typedef (arg->type ());
  struct type *rettype;
  struct value *ret;

  if (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
    {
      struct type *eltype = check_typedef (type->target_type ());
      LONGEST lowb, highb;
      int i;

      if (!get_array_bounds (type, &lowb, &highb))
	error (_("Could not determine the vector bounds"));

      /* Determine the resulting type of the operation and allocate the
	 value.  */
      rettype = lookup_opencl_vector_type (exp->gdbarch, TYPE_CODE_INT,
					   eltype->length (), 0,
					   highb - lowb + 1);
      ret = value::allocate (rettype);

      for (i = 0; i < highb - lowb + 1; i++)
	{
	  /* For vector types, the unary operator shall return a 0 if the
	  value of its operand compares unequal to 0, and -1 (i.e. all bits
	  set) if the value of its operand compares equal to 0.  */
	  int tmp = value_logical_not (value_subscript (arg, i)) ? -1 : 0;
	  memset ((ret->contents_writeable ().data ()
		   + i * eltype->length ()),
		  tmp, eltype->length ());
	}
    }
  else
    {
      rettype = language_bool_type (exp->language_defn, exp->gdbarch);
      ret = value_from_longest (rettype, value_logical_not (arg));
    }

  return ret;
}

/* Perform a relational operation on two scalar operands.  */

static int
scalar_relop (struct value *val1, struct value *val2, enum exp_opcode op)
{
  int ret;

  switch (op)
    {
    case BINOP_EQUAL:
      ret = value_equal (val1, val2);
      break;
    case BINOP_NOTEQUAL:
      ret = !value_equal (val1, val2);
      break;
    case BINOP_LESS:
      ret = value_less (val1, val2);
      break;
    case BINOP_GTR:
      ret = value_less (val2, val1);
      break;
    case BINOP_GEQ:
      ret = value_less (val2, val1) || value_equal (val1, val2);
      break;
    case BINOP_LEQ:
      ret = value_less (val1, val2) || value_equal (val1, val2);
      break;
    case BINOP_LOGICAL_AND:
      ret = !value_logical_not (val1) && !value_logical_not (val2);
      break;
    case BINOP_LOGICAL_OR:
      ret = !value_logical_not (val1) || !value_logical_not (val2);
      break;
    default:
      error (_("Attempt to perform an unsupported operation"));
      break;
    }
  return ret;
}

/* Perform a relational operation on two vector operands.  */

static struct value *
vector_relop (struct expression *exp, struct value *val1, struct value *val2,
	      enum exp_opcode op)
{
  struct value *ret;
  struct type *type1, *type2, *eltype1, *eltype2, *rettype;
  int t1_is_vec, t2_is_vec, i;
  LONGEST lowb1, lowb2, highb1, highb2;

  type1 = check_typedef (val1->type ());
  type2 = check_typedef (val2->type ());

  t1_is_vec = (type1->code () == TYPE_CODE_ARRAY && type1->is_vector ());
  t2_is_vec = (type2->code () == TYPE_CODE_ARRAY && type2->is_vector ());

  if (!t1_is_vec || !t2_is_vec)
    error (_("Vector operations are not supported on scalar types"));

  eltype1 = check_typedef (type1->target_type ());
  eltype2 = check_typedef (type2->target_type ());

  if (!get_array_bounds (type1,&lowb1, &highb1)
      || !get_array_bounds (type2, &lowb2, &highb2))
    error (_("Could not determine the vector bounds"));

  /* Check whether the vector types are compatible.  */
  if (eltype1->code () != eltype2->code ()
      || eltype1->length () != eltype2->length ()
      || eltype1->is_unsigned () != eltype2->is_unsigned ()
      || lowb1 != lowb2 || highb1 != highb2)
    error (_("Cannot perform operation on vectors with different types"));

  /* Determine the resulting type of the operation and allocate the value.  */
  rettype = lookup_opencl_vector_type (exp->gdbarch, TYPE_CODE_INT,
				       eltype1->length (), 0,
				       highb1 - lowb1 + 1);
  ret = value::allocate (rettype);

  for (i = 0; i < highb1 - lowb1 + 1; i++)
    {
      /* For vector types, the relational, equality and logical operators shall
	 return 0 if the specified relation is false and -1 (i.e. all bits set)
	 if the specified relation is true.  */
      int tmp = scalar_relop (value_subscript (val1, i),
			      value_subscript (val2, i), op) ? -1 : 0;
      memset ((ret->contents_writeable ().data ()
	       + i * eltype1->length ()),
	      tmp, eltype1->length ());
     }

  return ret;
}

/* Perform a cast of ARG into TYPE.  There's sadly a lot of duplication in
   here from valops.c:value_cast, opencl is different only in the
   behaviour of scalar to vector casting.  As far as possibly we're going
   to try and delegate back to the standard value_cast function. */

struct value *
opencl_value_cast (struct type *type, struct value *arg)
{
  if (type != arg->type ())
    {
      /* Casting scalar to vector is a special case for OpenCL, scalar
	 is cast to element type of vector then replicated into each
	 element of the vector.  First though, we need to work out if
	 this is a scalar to vector cast; code lifted from
	 valops.c:value_cast.  */
      enum type_code code1, code2;
      struct type *to_type;
      int scalar;

      to_type = check_typedef (type);

      code1 = to_type->code ();
      code2 = check_typedef (arg->type ())->code ();

      if (code2 == TYPE_CODE_REF)
	code2 = check_typedef (coerce_ref(arg)->type ())->code ();

      scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_BOOL
		|| code2 == TYPE_CODE_CHAR || code2 == TYPE_CODE_FLT
		|| code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
		|| code2 == TYPE_CODE_RANGE);

      if (code1 == TYPE_CODE_ARRAY && to_type->is_vector () && scalar)
	{
	  struct type *eltype;

	  /* Cast to the element type of the vector here as
	     value_vector_widen will error if the scalar value is
	     truncated by the cast.  To avoid the error, cast (and
	     possibly truncate) here.  */
	  eltype = check_typedef (to_type->target_type ());
	  arg = value_cast (eltype, arg);

	  return value_vector_widen (arg, type);
	}
      else
	/* Standard cast handler.  */
	arg = value_cast (type, arg);
    }
  return arg;
}

/* Perform a relational operation on two operands.  */

struct value *
opencl_relop (struct type *expect_type, struct expression *exp,
	      enum noside noside, enum exp_opcode op,
	      struct value *arg1, struct value *arg2)
{
  struct value *val;
  struct type *type1 = check_typedef (arg1->type ());
  struct type *type2 = check_typedef (arg2->type ());
  int t1_is_vec = (type1->code () == TYPE_CODE_ARRAY
		   && type1->is_vector ());
  int t2_is_vec = (type2->code () == TYPE_CODE_ARRAY
		   && type2->is_vector ());

  if (!t1_is_vec && !t2_is_vec)
    {
      int tmp = scalar_relop (arg1, arg2, op);
      struct type *type =
	language_bool_type (exp->language_defn, exp->gdbarch);

      val = value_from_longest (type, tmp);
    }
  else if (t1_is_vec && t2_is_vec)
    {
      val = vector_relop (exp, arg1, arg2, op);
    }
  else
    {
      /* Widen the scalar operand to a vector.  */
      struct value **v = t1_is_vec ? &arg2 : &arg1;
      struct type *t = t1_is_vec ? type2 : type1;

      if (t->code () != TYPE_CODE_FLT && !is_integral_type (t))
	error (_("Argument to operation not a number or boolean."));

      *v = opencl_value_cast (t1_is_vec ? type1 : type2, *v);
      val = vector_relop (exp, arg1, arg2, op);
    }

  return val;
}

/* A helper function for BINOP_ASSIGN.  */

struct value *
eval_opencl_assign (struct type *expect_type, struct expression *exp,
		    enum noside noside, enum exp_opcode op,
		    struct value *arg1, struct value *arg2)
{
  if (noside == EVAL_AVOID_SIDE_EFFECTS)
    return arg1;

  struct type *type1 = arg1->type ();
  if (arg1->deprecated_modifiable ()
      && arg1->lval () != lval_internalvar)
    arg2 = opencl_value_cast (type1, arg2);

  return value_assign (arg1, arg2);
}

namespace expr
{

value *
opencl_structop_operation::evaluate (struct type *expect_type,
				     struct expression *exp,
				     enum noside noside)
{
  value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
  struct type *type1 = check_typedef (arg1->type ());

  if (type1->code () == TYPE_CODE_ARRAY && type1->is_vector ())
    return opencl_component_ref (exp, arg1, std::get<1> (m_storage).c_str (),
				 noside);
  else
    {
      struct value *v = value_struct_elt (&arg1, {},
					  std::get<1> (m_storage).c_str (),
					  NULL, "structure");

      if (noside == EVAL_AVOID_SIDE_EFFECTS)
	v = value::zero (v->type (), v->lval ());
      return v;
    }
}

value *
opencl_logical_binop_operation::evaluate (struct type *expect_type,
					  struct expression *exp,
					  enum noside noside)
{
  enum exp_opcode op = std::get<0> (m_storage);
  value *arg1 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);

  /* For scalar operations we need to avoid evaluating operands
     unnecessarily.  However, for vector operations we always need to
     evaluate both operands.  Unfortunately we only know which of the
     two cases apply after we know the type of the second operand.
     Therefore we evaluate it once using EVAL_AVOID_SIDE_EFFECTS.  */
  value *arg2 = std::get<2> (m_storage)->evaluate (nullptr, exp,
						   EVAL_AVOID_SIDE_EFFECTS);
  struct type *type1 = check_typedef (arg1->type ());
  struct type *type2 = check_typedef (arg2->type ());

  if ((type1->code () == TYPE_CODE_ARRAY && type1->is_vector ())
      || (type2->code () == TYPE_CODE_ARRAY && type2->is_vector ()))
    {
      arg2 = std::get<2> (m_storage)->evaluate (nullptr, exp, noside);

      return opencl_relop (nullptr, exp, noside, op, arg1, arg2);
    }
  else
    {
      /* For scalar built-in types, only evaluate the right
	 hand operand if the left hand operand compares
	 unequal(&&)/equal(||) to 0.  */
      bool tmp = value_logical_not (arg1);

      if (op == BINOP_LOGICAL_OR)
	tmp = !tmp;

      if (!tmp)
	{
	  arg2 = std::get<2> (m_storage)->evaluate (nullptr, exp, noside);
	  tmp = value_logical_not (arg2);
	  if (op == BINOP_LOGICAL_OR)
	    tmp = !tmp;
	}

      type1 = language_bool_type (exp->language_defn, exp->gdbarch);
      return value_from_longest (type1, tmp);
    }
}

value *
opencl_ternop_cond_operation::evaluate (struct type *expect_type,
					struct expression *exp,
					enum noside noside)
{
  value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
  struct type *type1 = check_typedef (arg1->type ());
  if (type1->code () == TYPE_CODE_ARRAY && type1->is_vector ())
    {
      struct value *arg2, *arg3, *tmp, *ret;
      struct type *eltype2, *type2, *type3, *eltype3;
      int t2_is_vec, t3_is_vec, i;
      LONGEST lowb1, lowb2, lowb3, highb1, highb2, highb3;

      arg2 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
      arg3 = std::get<2> (m_storage)->evaluate (nullptr, exp, noside);
      type2 = check_typedef (arg2->type ());
      type3 = check_typedef (arg3->type ());
      t2_is_vec
	= type2->code () == TYPE_CODE_ARRAY && type2->is_vector ();
      t3_is_vec
	= type3->code () == TYPE_CODE_ARRAY && type3->is_vector ();

      /* Widen the scalar operand to a vector if necessary.  */
      if (t2_is_vec || !t3_is_vec)
	{
	  arg3 = opencl_value_cast (type2, arg3);
	  type3 = arg3->type ();
	}
      else if (!t2_is_vec || t3_is_vec)
	{
	  arg2 = opencl_value_cast (type3, arg2);
	  type2 = arg2->type ();
	}
      else if (!t2_is_vec || !t3_is_vec)
	{
	  /* Throw an error if arg2 or arg3 aren't vectors.  */
	  error (_("\
Cannot perform conditional operation on incompatible types"));
	}

      eltype2 = check_typedef (type2->target_type ());
      eltype3 = check_typedef (type3->target_type ());

      if (!get_array_bounds (type1, &lowb1, &highb1)
	  || !get_array_bounds (type2, &lowb2, &highb2)
	  || !get_array_bounds (type3, &lowb3, &highb3))
	error (_("Could not determine the vector bounds"));

      /* Throw an error if the types of arg2 or arg3 are incompatible.  */
      if (eltype2->code () != eltype3->code ()
	  || eltype2->length () != eltype3->length ()
	  || eltype2->is_unsigned () != eltype3->is_unsigned ()
	  || lowb2 != lowb3 || highb2 != highb3)
	error (_("\
Cannot perform operation on vectors with different types"));

      /* Throw an error if the sizes of arg1 and arg2/arg3 differ.  */
      if (lowb1 != lowb2 || lowb1 != lowb3
	  || highb1 != highb2 || highb1 != highb3)
	error (_("\
Cannot perform conditional operation on vectors with different sizes"));

      ret = value::allocate (type2);

      for (i = 0; i < highb1 - lowb1 + 1; i++)
	{
	  tmp = value_logical_not (value_subscript (arg1, i)) ?
	    value_subscript (arg3, i) : value_subscript (arg2, i);
	  memcpy (ret->contents_writeable ().data () +
		  i * eltype2->length (), tmp->contents_all ().data (),
		  eltype2->length ());
	}

      return ret;
    }
  else
    {
      if (value_logical_not (arg1))
	return std::get<2> (m_storage)->evaluate (nullptr, exp, noside);
      else
	return std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
    }
}

} /* namespace expr */

/* Class representing the OpenCL language.  */

class opencl_language : public language_defn
{
public:
  opencl_language ()
    : language_defn (language_opencl)
  { /* Nothing.  */ }

  /* See language.h.  */

  const char *name () const override
  { return "opencl"; }

  /* See language.h.  */

  const char *natural_name () const override
  { return "OpenCL C"; }

  /* See language.h.  */
  void language_arch_info (struct gdbarch *gdbarch,
			   struct language_arch_info *lai) const override
  {
    /* Helper function to allow shorter lines below.  */
    auto add  = [&] (struct type * t) -> struct type *
    {
      lai->add_primitive_type (t);
      return t;
    };

/* Helper macro to create strings.  */
#define OCL_STRING(S) #S

/* This macro allocates and assigns the type struct pointers
   for the vector types.  */
#define BUILD_OCL_VTYPES(TYPE, ELEMENT_TYPE)			\
    do								\
      {								\
	struct type *tmp;					\
	tmp = add (init_vector_type (ELEMENT_TYPE, 2));		\
	tmp->set_name (OCL_STRING(TYPE ## 2));			\
	tmp = add (init_vector_type (ELEMENT_TYPE, 3));		\
	tmp->set_name (OCL_STRING(TYPE ## 3));			\
	tmp->set_length (4 * (ELEMENT_TYPE)->length ());	\
	tmp = add (init_vector_type (ELEMENT_TYPE, 4));		\
	tmp->set_name (OCL_STRING(TYPE ## 4));			\
	tmp = add (init_vector_type (ELEMENT_TYPE, 8));		\
	tmp->set_name (OCL_STRING(TYPE ## 8));			\
	tmp = init_vector_type (ELEMENT_TYPE, 16);		\
	tmp->set_name (OCL_STRING(TYPE ## 16));			\
      }								\
    while (false)

    struct type *el_type, *char_type, *int_type;

    char_type = el_type = add (arch_integer_type (gdbarch, 8, 0, "char"));
    BUILD_OCL_VTYPES (char, el_type);
    el_type = add (arch_integer_type (gdbarch, 8, 1, "uchar"));
    BUILD_OCL_VTYPES (uchar, el_type);
    el_type = add (arch_integer_type (gdbarch, 16, 0, "short"));
    BUILD_OCL_VTYPES (short, el_type);
    el_type = add (arch_integer_type (gdbarch, 16, 1, "ushort"));
    BUILD_OCL_VTYPES (ushort, el_type);
    int_type = el_type = add (arch_integer_type (gdbarch, 32, 0, "int"));
    BUILD_OCL_VTYPES (int, el_type);
    el_type = add (arch_integer_type (gdbarch, 32, 1, "uint"));
    BUILD_OCL_VTYPES (uint, el_type);
    el_type = add (arch_integer_type (gdbarch, 64, 0, "long"));
    BUILD_OCL_VTYPES (long, el_type);
    el_type = add (arch_integer_type (gdbarch, 64, 1, "ulong"));
    BUILD_OCL_VTYPES (ulong, el_type);
    el_type = add (arch_float_type (gdbarch, 16, "half", floatformats_ieee_half));
    BUILD_OCL_VTYPES (half, el_type);
    el_type = add (arch_float_type (gdbarch, 32, "float", floatformats_ieee_single));
    BUILD_OCL_VTYPES (float, el_type);
    el_type = add (arch_float_type (gdbarch, 64, "double", floatformats_ieee_double));
    BUILD_OCL_VTYPES (double, el_type);

    add (arch_boolean_type (gdbarch, 8, 1, "bool"));
    add (arch_integer_type (gdbarch, 8, 1, "unsigned char"));
    add (arch_integer_type (gdbarch, 16, 1, "unsigned short"));
    add (arch_integer_type (gdbarch, 32, 1, "unsigned int"));
    add (arch_integer_type (gdbarch, 64, 1, "unsigned long"));
    add (arch_integer_type (gdbarch, gdbarch_ptr_bit (gdbarch), 1, "size_t"));
    add (arch_integer_type (gdbarch, gdbarch_ptr_bit (gdbarch), 0, "ptrdiff_t"));
    add (arch_integer_type (gdbarch, gdbarch_ptr_bit (gdbarch), 0, "intptr_t"));
    add (arch_integer_type (gdbarch, gdbarch_ptr_bit (gdbarch), 1, "uintptr_t"));
    add (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void"));

    /* Type of elements of strings.  */
    lai->set_string_char_type (char_type);

    /* Specifies the return type of logical and relational operations.  */
    lai->set_bool_type (int_type, "int");
  }

  /* See language.h.  */

  bool can_print_type_offsets () const override
  {
    return true;
  }

  /* See language.h.  */

  void print_type (struct type *type, const char *varstring,
		   struct ui_file *stream, int show, int level,
		   const struct type_print_options *flags) const override
  {
    /* We nearly always defer to C type printing, except that vector types
       are considered primitive in OpenCL, and should always be printed
       using their TYPE_NAME.  */
    if (show > 0)
      {
	type = check_typedef (type);
	if (type->code () == TYPE_CODE_ARRAY && type->is_vector ()
	    && type->name () != NULL)
	  show = 0;
      }

    c_print_type (type, varstring, stream, show, level, la_language, flags);
  }

  /* See language.h.  */

  enum macro_expansion macro_expansion () const override
  { return macro_expansion_c; }
};

/* Single instance of the OpenCL language class.  */

static opencl_language opencl_language_defn;