aboutsummaryrefslogtreecommitdiff
path: root/gdb/nios2-tdep.c
blob: 7b1b640fe89bcfe343884ded68200857ea3203da (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
/* Target-machine dependent code for Nios II, for GDB.
   Copyright (C) 2012-2014 Free Software Foundation, Inc.
   Contributed by Peter Brookes (pbrookes@altera.com)
   and Andrew Draper (adraper@altera.com).
   Contributed by Mentor Graphics, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "frame.h"
#include "frame-unwind.h"
#include "frame-base.h"
#include "trad-frame.h"
#include "dwarf2-frame.h"
#include "symtab.h"
#include "inferior.h"
#include "gdbtypes.h"
#include "gdbcore.h"
#include "gdbcmd.h"
#include "osabi.h"
#include "target.h"
#include "dis-asm.h"
#include "regcache.h"
#include "value.h"
#include "symfile.h"
#include "arch-utils.h"
#include "floatformat.h"
#include "gdb_assert.h"
#include "infcall.h"
#include "regset.h"
#include "target-descriptions.h"

/* To get entry_point_address.  */
#include "objfiles.h"

/* Nios II ISA specific encodings and macros.  */
#include "opcode/nios2.h"

/* Nios II specific header.  */
#include "nios2-tdep.h"

#include "features/nios2.c"

/* Control debugging information emitted in this file.  */

static int nios2_debug = 0;

/* The following structures are used in the cache for prologue
   analysis; see the reg_value and reg_saved tables in
   struct nios2_unwind_cache, respectively.  */

/* struct reg_value is used to record that a register has the same value
   as reg at the given offset from the start of a function.  */

struct reg_value
{
  int reg;
  unsigned int offset;
};

/* struct reg_saved is used to record that a register value has been saved at
   basereg + addr, for basereg >= 0.  If basereg < 0, that indicates
   that the register is not known to have been saved.  Note that when
   basereg == NIOS2_Z_REGNUM (that is, r0, which holds value 0),
   addr is an absolute address.  */

struct reg_saved
{
  int basereg;
  CORE_ADDR addr;
};

struct nios2_unwind_cache
{
  /* The frame's base, optionally used by the high-level debug info.  */
  CORE_ADDR base;

  /* The previous frame's inner most stack address.  Used as this
     frame ID's stack_addr.  */
  CORE_ADDR cfa;

  /* The address of the first instruction in this function.  */
  CORE_ADDR pc;

  /* Which register holds the return address for the frame.  */
  int return_regnum;

  /* Table indicating what changes have been made to each register.  */
  struct reg_value reg_value[NIOS2_NUM_REGS];

  /* Table indicating where each register has been saved.  */
  struct reg_saved reg_saved[NIOS2_NUM_REGS];
};


/* This array is a mapping from Dwarf-2 register numbering to GDB's.  */

static int nios2_dwarf2gdb_regno_map[] =
{
  0, 1, 2, 3,
  4, 5, 6, 7,
  8, 9, 10, 11,
  12, 13, 14, 15,
  16, 17, 18, 19,
  20, 21, 22, 23,
  24, 25,
  NIOS2_GP_REGNUM,        /* 26 */
  NIOS2_SP_REGNUM,        /* 27 */
  NIOS2_FP_REGNUM,        /* 28 */
  NIOS2_EA_REGNUM,        /* 29 */
  NIOS2_BA_REGNUM,        /* 30 */
  NIOS2_RA_REGNUM,        /* 31 */
  NIOS2_PC_REGNUM,        /* 32 */
  NIOS2_STATUS_REGNUM,    /* 33 */
  NIOS2_ESTATUS_REGNUM,   /* 34 */
  NIOS2_BSTATUS_REGNUM,   /* 35 */
  NIOS2_IENABLE_REGNUM,   /* 36 */
  NIOS2_IPENDING_REGNUM,  /* 37 */
  NIOS2_CPUID_REGNUM,     /* 38 */
  39, /* CTL6 */          /* 39 */
  NIOS2_EXCEPTION_REGNUM, /* 40 */
  NIOS2_PTEADDR_REGNUM,   /* 41 */
  NIOS2_TLBACC_REGNUM,    /* 42 */
  NIOS2_TLBMISC_REGNUM,   /* 43 */
  NIOS2_ECCINJ_REGNUM,    /* 44 */
  NIOS2_BADADDR_REGNUM,   /* 45 */
  NIOS2_CONFIG_REGNUM,    /* 46 */
  NIOS2_MPUBASE_REGNUM,   /* 47 */
  NIOS2_MPUACC_REGNUM     /* 48 */
};


/* Implement the dwarf2_reg_to_regnum gdbarch method.  */

static int
nios2_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int dw_reg)
{
  if (dw_reg < 0 || dw_reg > NIOS2_NUM_REGS)
    {
      warning (_("Dwarf-2 uses unmapped register #%d"), dw_reg);
      return dw_reg;
    }

  return nios2_dwarf2gdb_regno_map[dw_reg];
}

/* Canonical names for the 49 registers.  */

static const char *const nios2_reg_names[NIOS2_NUM_REGS] =
{
  "zero", "at", "r2", "r3", "r4", "r5", "r6", "r7",
  "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
  "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
  "et", "bt", "gp", "sp", "fp", "ea", "sstatus", "ra",
  "pc",
  "status", "estatus", "bstatus", "ienable",
  "ipending", "cpuid", "ctl6", "exception",
  "pteaddr", "tlbacc", "tlbmisc", "eccinj",
  "badaddr", "config", "mpubase", "mpuacc"
};

/* Implement the register_name gdbarch method.  */

static const char *
nios2_register_name (struct gdbarch *gdbarch, int regno)
{
  /* Use mnemonic aliases for GPRs.  */
  if (regno >= 0 && regno < NIOS2_NUM_REGS)
    return nios2_reg_names[regno];
  else
    return tdesc_register_name (gdbarch, regno);
}

/* Implement the register_type gdbarch method.  */

static struct type *
nios2_register_type (struct gdbarch *gdbarch, int regno)
{
  /* If the XML description has register information, use that to
     determine the register type.  */
  if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
    return tdesc_register_type (gdbarch, regno);

  if (regno == NIOS2_PC_REGNUM)
    return builtin_type (gdbarch)->builtin_func_ptr;
  else if (regno == NIOS2_SP_REGNUM)
    return builtin_type (gdbarch)->builtin_data_ptr;
  else
    return builtin_type (gdbarch)->builtin_uint32;
}

/* Given a return value in REGCACHE with a type VALTYPE,
   extract and copy its value into VALBUF.  */

static void
nios2_extract_return_value (struct gdbarch *gdbarch, struct type *valtype,
			    struct regcache *regcache, gdb_byte *valbuf)
{
  int len = TYPE_LENGTH (valtype);

  /* Return values of up to 8 bytes are returned in $r2 $r3.  */
  if (len <= register_size (gdbarch, NIOS2_R2_REGNUM))
    regcache_cooked_read (regcache, NIOS2_R2_REGNUM, valbuf);
  else
    {
      gdb_assert (len <= (register_size (gdbarch, NIOS2_R2_REGNUM)
			  + register_size (gdbarch, NIOS2_R3_REGNUM)));
      regcache_cooked_read (regcache, NIOS2_R2_REGNUM, valbuf);
      regcache_cooked_read (regcache, NIOS2_R3_REGNUM, valbuf + 4);
    }
}

/* Write into appropriate registers a function return value
   of type TYPE, given in virtual format.  */

static void
nios2_store_return_value (struct gdbarch *gdbarch, struct type *valtype,
			  struct regcache *regcache, const gdb_byte *valbuf)
{
  int len = TYPE_LENGTH (valtype);

  /* Return values of up to 8 bytes are returned in $r2 $r3.  */
  if (len <= register_size (gdbarch, NIOS2_R2_REGNUM))
    regcache_cooked_write (regcache, NIOS2_R2_REGNUM, valbuf);
  else
    {
      gdb_assert (len <= (register_size (gdbarch, NIOS2_R2_REGNUM)
			  + register_size (gdbarch, NIOS2_R3_REGNUM)));
      regcache_cooked_write (regcache, NIOS2_R2_REGNUM, valbuf);
      regcache_cooked_write (regcache, NIOS2_R3_REGNUM, valbuf + 4);
    }
}


/* Set up the default values of the registers.  */

static void
nios2_setup_default (struct nios2_unwind_cache *cache)
{
  int i;

  for (i = 0; i < NIOS2_NUM_REGS; i++)
  {
    /* All registers start off holding their previous values.  */
    cache->reg_value[i].reg    = i;
    cache->reg_value[i].offset = 0;

    /* All registers start off not saved.  */
    cache->reg_saved[i].basereg = -1;
    cache->reg_saved[i].addr    = 0;
  }
}

/* Initialize the unwind cache.  */

static void
nios2_init_cache (struct nios2_unwind_cache *cache, CORE_ADDR pc)
{
  cache->base = 0;
  cache->cfa = 0;
  cache->pc = pc;
  cache->return_regnum = NIOS2_RA_REGNUM;
  nios2_setup_default (cache);
}

/* Helper function to identify when we're in a function epilogue;
   that is, the part of the function from the point at which the
   stack adjustment is made, to the return or sibcall.  On Nios II,
   we want to check that the CURRENT_PC is a return-type instruction
   and that the previous instruction is a stack adjustment.
   START_PC is the beginning of the function in question.  */

static int
nios2_in_epilogue_p (struct gdbarch *gdbarch,
		     CORE_ADDR current_pc,
		     CORE_ADDR start_pc)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);

  /* There has to be a previous instruction in the function.  */
  if (current_pc > start_pc)
    {

      /* Check whether the previous instruction was a stack
	 adjustment.  */
      unsigned int insn
        = read_memory_unsigned_integer (current_pc - NIOS2_OPCODE_SIZE,
					NIOS2_OPCODE_SIZE, byte_order);

      if ((insn & 0xffc0003c) == 0xdec00004	/* ADDI sp, sp, */
	  || (insn & 0xffc1ffff) == 0xdec1883a	/* ADD  sp, sp, */
	  || (insn & 0xffc0003f) == 0xdec00017)	/* LDW  sp, constant(sp) */
	{
	  /* Then check if it's followed by a return or a tail
	     call.  */
          insn = read_memory_unsigned_integer (current_pc, NIOS2_OPCODE_SIZE,
					       byte_order);

	  if (insn == 0xf800283a			/* RET */
	      || insn == 0xe800083a			/* ERET */
	      || (insn & 0x07ffffff) == 0x0000683a	/* JMP */
	      || (insn & 0xffc0003f) == 6)		/* BR */
	    return 1;
	}
    }
  return 0;
}

/* Implement the in_function_epilogue_p gdbarch method.  */

static int
nios2_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  CORE_ADDR func_addr;

  if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
    return nios2_in_epilogue_p (gdbarch, pc, func_addr);

  return 0;
}

/* Define some instruction patterns supporting wildcard bits via a
   mask.  */

typedef struct
{
  unsigned int insn;
  unsigned int mask;
} wild_insn;

static const wild_insn profiler_insn[] =
{
  { 0x0010e03a, 0x00000000 }, /* nextpc r8 */
  { 0xf813883a, 0x00000000 }, /* mov    r9,ra */
  { 0x02800034, 0x003fffc0 }, /* movhi  r10,257 */
  { 0x52800004, 0x003fffc0 }, /* addi   r10,r10,-31992 */
  { 0x00000000, 0xffffffc0 }, /* call   <mcount> */
  { 0x483f883a, 0x00000000 }  /* mov    ra,r9 */
};

static const wild_insn irqentry_insn[] =
{
  { 0x0031307a, 0x00000000 }, /* rdctl  et,estatus */
  { 0xc600004c, 0x00000000 }, /* andi   et,et,1 */
  { 0xc0000026, 0x003fffc0 }, /* beq    et,zero, <software_exception> */
  { 0x0031313a, 0x00000000 }, /* rdctl  et,ipending */
  { 0xc0000026, 0x003fffc0 }  /* beq    et,zero, <software_exception> */
};


/* Attempt to match SEQUENCE, which is COUNT insns long, at START_PC.  */

static int
nios2_match_sequence (struct gdbarch *gdbarch, CORE_ADDR start_pc,
		      const wild_insn *sequence, int count)
{
  CORE_ADDR pc = start_pc;
  int i;
  unsigned int insn;
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);

  for (i = 0 ; i < count ; i++)
    {
      insn = read_memory_unsigned_integer (pc, NIOS2_OPCODE_SIZE, byte_order);
      if ((insn & ~sequence[i].mask) != sequence[i].insn)
	return 0;

      pc += NIOS2_OPCODE_SIZE;
    }

  return 1;
}

/* Do prologue analysis, returning the PC of the first instruction
   after the function prologue.  Assumes CACHE has already been
   initialized.  THIS_FRAME can be null, in which case we are only
   interested in skipping the prologue.  Otherwise CACHE is filled in
   from the frame information.

   The prologue will consist of the following parts:
     1) Optional profiling instrumentation.  The old version uses six
        instructions.  We step over this if there is an exact match.
	  nextpc r8
	  mov	 r9, ra
	  movhi	 r10, %hiadj(.LP2)
	  addi	 r10, r10, %lo(.LP2)
	  call	 mcount
	  mov	 ra, r9
	The new version uses two or three instructions (the last of
	these might get merged in with the STW which saves RA to the
	stack).  We interpret these.
	  mov	 r8, ra
	  call	 mcount
	  mov	 ra, r8

     2) Optional interrupt entry decision.  Again, we step over
        this if there is an exact match.
	  rdctl  et,estatus
	  andi   et,et,1
	  beq    et,zero, <software_exception>
	  rdctl  et,ipending
	  beq    et,zero, <software_exception>

     3) A stack adjustment or stack which, which will be one of:
	  addi   sp, sp, -constant
	or:
	  movi   r8, constant
	  sub    sp, sp, r8
	or
	  movhi  r8, constant
	  addi   r8, r8, constant
	  sub    sp, sp, r8
	or
	  movhi  rx, %hiadj(newstack)
	  addhi  rx, rx, %lo(newstack)
	  stw    sp, constant(rx)
	  mov    sp, rx

     4) An optional stack check, which can take either of these forms:
	  bgeu   sp, rx, +8
	  break  3
	or
	  bltu   sp, rx, .Lstack_overflow
	  ...
	.Lstack_overflow:
	  break  3

     5) Saving any registers which need to be saved.  These will
        normally just be stored onto the stack:
	  stw    rx, constant(sp)
	but in the large frame case will use r8 as an offset back
	to the cfa:
	  add    r8, r8, sp
	  stw    rx, -constant(r8)

	Saving control registers looks slightly different:
	  rdctl  rx, ctlN
	  stw    rx, constant(sp)

     6) An optional FP setup, either if the user has requested a
        frame pointer or if the function calls alloca.
        This is always:
	  mov    fp, sp

    The prologue instructions may be interleaved, and the register
    saves and FP setup can occur in either order.

    To cope with all this variability we decode all the instructions
    from the start of the prologue until we hit a branch, call or
    return.  For each of the instructions mentioned in 3, 4 and 5 we
    handle the limited cases of stores to the stack and operations
    on constant values.  */

static CORE_ADDR
nios2_analyze_prologue (struct gdbarch *gdbarch, const CORE_ADDR start_pc,
			const CORE_ADDR current_pc,
			struct nios2_unwind_cache *cache,
			struct frame_info *this_frame)
{
  /* Maximum lines of prologue to check.
     Note that this number should not be too large, else we can
     potentially end up iterating through unmapped memory.  */
  CORE_ADDR limit_pc = start_pc + 200;
  int regno;
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);

  /* Does the frame set up the FP register?  */
  int base_reg = 0;

  struct reg_value *value = cache->reg_value;
  struct reg_value temp_value[NIOS2_NUM_REGS];

  int i;

  /* Save the starting PC so we can correct the pc after running
     through the prolog, using symbol info.  */
  CORE_ADDR pc = start_pc;

  /* Is this an exception handler?  */
  int exception_handler = 0;

  /* What was the original value of SP (or fake original value for
     functions which switch stacks?  */
  CORE_ADDR frame_high;

  /* Is this the end of the prologue?  */
  int within_prologue = 1;

  CORE_ADDR prologue_end;

  /* Is this the innermost function?  */
  int innermost = (this_frame ? (frame_relative_level (this_frame) == 0) : 1);

  if (nios2_debug)
    fprintf_unfiltered (gdb_stdlog,
			"{ nios2_analyze_prologue start=%s, current=%s ",
			paddress (gdbarch, start_pc),
			paddress (gdbarch, current_pc));

  /* Set up the default values of the registers.  */
  nios2_setup_default (cache);

  /* If the first few instructions are the profile entry, then skip
     over them.  Newer versions of the compiler use more efficient
     profiling code.  */
  if (nios2_match_sequence (gdbarch, pc, profiler_insn,
			    ARRAY_SIZE (profiler_insn)))
    pc += ARRAY_SIZE (profiler_insn) * NIOS2_OPCODE_SIZE;

  /* If the first few instructions are an interrupt entry, then skip
     over them too.  */
  if (nios2_match_sequence (gdbarch, pc, irqentry_insn,
			    ARRAY_SIZE (irqentry_insn)))
    {
      pc += ARRAY_SIZE (irqentry_insn) * NIOS2_OPCODE_SIZE;
      exception_handler = 1;
    }

  prologue_end = start_pc;

  /* Find the prologue instructions.  */
  while (pc < limit_pc && within_prologue)
    {
      /* Present instruction.  */
      uint32_t insn;

      int prologue_insn = 0;

      if (pc == current_pc)
      {
	/* When we reach the current PC we must save the current
	   register state (for the backtrace) but keep analysing
	   because there might be more to find out (eg. is this an
	   exception handler).  */
	memcpy (temp_value, value, sizeof (temp_value));
	value = temp_value;
	if (nios2_debug)
	  fprintf_unfiltered (gdb_stdlog, "*");
      }

      insn = read_memory_unsigned_integer (pc, NIOS2_OPCODE_SIZE, byte_order);
      pc += NIOS2_OPCODE_SIZE;

      if (nios2_debug)
	fprintf_unfiltered (gdb_stdlog, "[%08X]", insn);

      /* The following instructions can appear in the prologue.  */

      if ((insn & 0x0001ffff) == 0x0001883a)
	{
	  /* ADD   rc, ra, rb  (also used for MOV) */

	  int ra = GET_IW_A (insn);
	  int rb = GET_IW_B (insn);
	  int rc = GET_IW_C (insn);

	  if (rc == NIOS2_SP_REGNUM
	      && rb == 0
	      && value[ra].reg == cache->reg_saved[NIOS2_SP_REGNUM].basereg)
	    {
	      /* If the previous value of SP is available somewhere
		 near the new stack pointer value then this is a
		 stack switch.  */

	      /* If any registers were saved on the stack before then
		 we can't backtrace into them now.  */
	      for (i = 0 ; i < NIOS2_NUM_REGS ; i++)
		{
		  if (cache->reg_saved[i].basereg == NIOS2_SP_REGNUM)
		    cache->reg_saved[i].basereg = -1;
		  if (value[i].reg == NIOS2_SP_REGNUM)
		    value[i].reg = -1;
		}

	      /* Create a fake "high water mark" 4 bytes above where SP
		 was stored and fake up the registers to be consistent
		 with that.  */
	      value[NIOS2_SP_REGNUM].reg = NIOS2_SP_REGNUM;
	      value[NIOS2_SP_REGNUM].offset
		= (value[ra].offset
		   - cache->reg_saved[NIOS2_SP_REGNUM].addr
		   - 4);
	      cache->reg_saved[NIOS2_SP_REGNUM].basereg = NIOS2_SP_REGNUM;
	      cache->reg_saved[NIOS2_SP_REGNUM].addr = -4;
	    }

	  else if (rc != 0)
	    {
	      if (value[rb].reg == 0)
		value[rc].reg = value[ra].reg;
	      else if (value[ra].reg == 0)
		value[rc].reg = value[rb].reg;
	      else
		value[rc].reg = -1;
	      value[rc].offset = value[ra].offset + value[rb].offset;
	    }
	  prologue_insn = 1;
	}

      else if ((insn & 0x0001ffff) == 0x0001983a)
	{
	  /* SUB   rc, ra, rb */

	  int ra = GET_IW_A (insn);
	  int rb = GET_IW_B (insn);
	  int rc = GET_IW_C (insn);

	  if (rc != 0)
	    {
	      if (value[rb].reg == 0)
		value[rc].reg = value[ra].reg;
	      else
		value[rc].reg = -1;
	      value[rc].offset = value[ra].offset - value[rb].offset;
	    }
	}

      else if ((insn & 0x0000003f) == 0x00000004)
	{
	  /* ADDI  rb, ra, immed   (also used for MOVI) */
	  short immed = GET_IW_IMM16 (insn);
	  int ra = GET_IW_A (insn);
	  int rb = GET_IW_B (insn);

	  /* The first stack adjustment is part of the prologue.
	     Any subsequent stack adjustments are either down to
	     alloca or the epilogue so stop analysing when we hit
	     them.  */
	  if (rb == NIOS2_SP_REGNUM
	      && (value[rb].offset != 0 || value[ra].reg != NIOS2_SP_REGNUM))
	    break;

	  if (rb != 0)
	    {
	      value[rb].reg    = value[ra].reg;
	      value[rb].offset = value[ra].offset + immed;
	    }

	  prologue_insn = 1;
	}

      else if ((insn & 0x0000003f) == 0x00000034)
	{
	  /* ORHI  rb, ra, immed   (also used for MOVHI) */
	  unsigned int immed = GET_IW_IMM16 (insn);
	  int ra = GET_IW_A (insn);
	  int rb = GET_IW_B (insn);

	  if (rb != 0)
	    {
  	      value[rb].reg    = (value[ra].reg == 0) ? 0 : -1;
	      value[rb].offset = value[ra].offset | (immed << 16);
	    }
	}

      else if ((insn & IW_OP_MASK) == OP_STW
	       || (insn & IW_OP_MASK) == OP_STWIO)
        {
	  /* STW rb, immediate(ra) */

	  short immed16 = GET_IW_IMM16 (insn);
	  int ra = GET_IW_A (insn);
	  int rb = GET_IW_B (insn);

	  /* Are we storing the original value of a register?
	     For exception handlers the value of EA-4 (return
	     address from interrupts etc) is sometimes stored.  */
	  int orig = value[rb].reg;
	  if (orig > 0
	      && (value[rb].offset == 0
		  || (orig == NIOS2_EA_REGNUM && value[rb].offset == -4)))
	    {
	      /* We are most interested in stores to the stack, but
		 also take note of stores to other places as they
		 might be useful later.  */
	      if ((value[ra].reg == NIOS2_SP_REGNUM
		   && cache->reg_saved[orig].basereg != NIOS2_SP_REGNUM)
		  || cache->reg_saved[orig].basereg == -1)
		{
		  if (pc < current_pc)
		    {
		      /* Save off callee saved registers.  */
		      cache->reg_saved[orig].basereg = value[ra].reg;
		      cache->reg_saved[orig].addr
			= value[ra].offset + GET_IW_IMM16 (insn);
		    }

		  prologue_insn = 1;

		  if (orig == NIOS2_EA_REGNUM || orig == NIOS2_ESTATUS_REGNUM)
		    exception_handler = 1;
		}
	    }
	  else
	    /* Non-stack memory writes are not part of the
	       prologue.  */
	    within_prologue = 0;
        }

      else if ((insn & 0xffc1f83f) == 0x0001303a)
	{
	  /* RDCTL rC, ctlN */
	  int rc = GET_IW_C (insn);
	  int n = GET_IW_CONTROL_REGNUM (insn);

	  if (rc != 0)
	    {
	      value[rc].reg    = NIOS2_STATUS_REGNUM + n;
	      value[rc].offset = 0;
	    }

	  prologue_insn = 1;
        }

      else if ((insn & 0x0000003f) == 0
	       && value[8].reg == NIOS2_RA_REGNUM
	       && value[8].offset == 0
	       && value[NIOS2_SP_REGNUM].reg == NIOS2_SP_REGNUM
	       && value[NIOS2_SP_REGNUM].offset == 0)
	{
	  /* A CALL instruction.  This is treated as a call to mcount
	     if ra has been stored into r8 beforehand and if it's
	     before the stack adjust.
	     Note mcount corrupts r2-r3, r9-r15 & ra.  */
	  for (i = 2 ; i <= 3 ; i++)
	    value[i].reg = -1;
	  for (i = 9 ; i <= 15 ; i++)
	    value[i].reg = -1;
	  value[NIOS2_RA_REGNUM].reg = -1;

	  prologue_insn = 1;
	}

      else if ((insn & 0xf83fffff) == 0xd800012e)
	{
	   /* BGEU sp, rx, +8
	      BREAK 3
	      This instruction sequence is used in stack checking;
	      we can ignore it.  */
	  unsigned int next_insn
	    = read_memory_unsigned_integer (pc, NIOS2_OPCODE_SIZE, byte_order);

	  if (next_insn != 0x003da0fa)
	    within_prologue = 0;
	  else
	    pc += NIOS2_OPCODE_SIZE;
	}

      else if ((insn & 0xf800003f) == 0xd8000036)
	{
	   /* BLTU sp, rx, .Lstackoverflow
	      If the location branched to holds a BREAK 3 instruction
	      then this is also stack overflow detection.  We can
	      ignore it.  */
	  CORE_ADDR target_pc = pc + ((insn & 0x3fffc0) >> 6);
	  unsigned int target_insn
	    = read_memory_unsigned_integer (target_pc, NIOS2_OPCODE_SIZE,
					    byte_order);

	  if (target_insn != 0x003da0fa)
	    within_prologue = 0;
	}

      /* Any other instructions are allowed to be moved up into the
	 prologue.  If we reach a branch, call or return then the
	 prologue is considered over.  We also consider a second stack
	 adjustment as terminating the prologue (see above).  */
      else
	{
	  switch (GET_IW_OP (insn))
	    {
	    case OP_BEQ:
	    case OP_BGE:
	    case OP_BGEU:
	    case OP_BLT:
	    case OP_BLTU:
	    case OP_BNE:
	    case OP_BR:
	    case OP_CALL:
	      within_prologue = 0;
	      break;
	    case OP_OPX:
	      if (GET_IW_OPX (insn) == OPX_RET
		  || GET_IW_OPX (insn) == OPX_ERET
		  || GET_IW_OPX (insn) == OPX_BRET
		  || GET_IW_OPX (insn) == OPX_CALLR
		  || GET_IW_OPX (insn) == OPX_JMP)
		within_prologue = 0;
	      break;
	    default:
	      break;
	    }
	}

      if (prologue_insn)
	prologue_end = pc;
    }

  /* If THIS_FRAME is NULL, we are being called from skip_prologue
     and are only interested in the PROLOGUE_END value, so just
     return that now and skip over the cache updates, which depend
     on having frame information.  */
  if (this_frame == NULL)
    return prologue_end;

  /* If we are in the function epilogue and have already popped
     registers off the stack in preparation for returning, then we
     want to go back to the original register values.  */
  if (innermost && nios2_in_epilogue_p (gdbarch, current_pc, start_pc))
    nios2_setup_default (cache);

  /* Exception handlers use a different return address register.  */
  if (exception_handler)
    cache->return_regnum = NIOS2_EA_REGNUM;

  if (nios2_debug)
    fprintf_unfiltered (gdb_stdlog, "\n-> retreg=%d, ", cache->return_regnum);

  if (cache->reg_value[NIOS2_FP_REGNUM].reg == NIOS2_SP_REGNUM)
    /* If the FP now holds an offset from the CFA then this is a
       normal frame which uses the frame pointer.  */
    base_reg = NIOS2_FP_REGNUM;
  else if (cache->reg_value[NIOS2_SP_REGNUM].reg == NIOS2_SP_REGNUM)
    /* FP doesn't hold an offset from the CFA.  If SP still holds an
       offset from the CFA then we might be in a function which omits
       the frame pointer, or we might be partway through the prologue.
       In both cases we can find the CFA using SP.  */
    base_reg = NIOS2_SP_REGNUM;
  else
    {
      /* Somehow the stack pointer has been corrupted.
	 We can't return.  */
      if (nios2_debug)
	fprintf_unfiltered (gdb_stdlog, "<can't reach cfa> }\n");
      return 0;
    }

  if (cache->reg_value[base_reg].offset == 0
      || cache->reg_saved[NIOS2_RA_REGNUM].basereg != NIOS2_SP_REGNUM
      || cache->reg_saved[cache->return_regnum].basereg != NIOS2_SP_REGNUM)
    {
      /* If the frame didn't adjust the stack, didn't save RA or
	 didn't save EA in an exception handler then it must either
	 be a leaf function (doesn't call any other functions) or it
	 can't return.  If it has called another function then it
	 can't be a leaf, so set base == 0 to indicate that we can't
	 backtrace past it.  */

      if (!innermost)
	{
	  /* If it isn't the innermost function then it can't be a
	     leaf, unless it was interrupted.  Check whether RA for
	     this frame is the same as PC.  If so then it probably
	     wasn't interrupted.  */
	  CORE_ADDR ra
	    = get_frame_register_unsigned (this_frame, NIOS2_RA_REGNUM);

	  if (ra == current_pc)
	    {
	      if (nios2_debug)
		fprintf_unfiltered
		  (gdb_stdlog,
		   "<noreturn ADJUST %s, r31@r%d+?>, r%d@r%d+?> }\n",
		   paddress (gdbarch, cache->reg_value[base_reg].offset),
		   cache->reg_saved[NIOS2_RA_REGNUM].basereg,
		   cache->return_regnum,
		   cache->reg_saved[cache->return_regnum].basereg);
	      return 0;
	    }
	}
    }

  /* Get the value of whichever register we are using for the
     base.  */
  cache->base = get_frame_register_unsigned (this_frame, base_reg);

  /* What was the value of SP at the start of this function (or just
     after the stack switch).  */
  frame_high = cache->base - cache->reg_value[base_reg].offset;

  /* Adjust all the saved registers such that they contain addresses
     instead of offsets.  */
  for (i = 0; i < NIOS2_NUM_REGS; i++)
    if (cache->reg_saved[i].basereg == NIOS2_SP_REGNUM)
      {
	cache->reg_saved[i].basereg = NIOS2_Z_REGNUM;
	cache->reg_saved[i].addr += frame_high;
      }

  for (i = 0; i < NIOS2_NUM_REGS; i++)
    if (cache->reg_saved[i].basereg == NIOS2_GP_REGNUM)
      {
	CORE_ADDR gp = get_frame_register_unsigned (this_frame,
						    NIOS2_GP_REGNUM);

	for ( ; i < NIOS2_NUM_REGS; i++)
	  if (cache->reg_saved[i].basereg == NIOS2_GP_REGNUM)
	    {
	      cache->reg_saved[i].basereg = NIOS2_Z_REGNUM;
	      cache->reg_saved[i].addr += gp;
	    }
      }

  /* Work out what the value of SP was on the first instruction of
     this function.  If we didn't switch stacks then this can be
     trivially computed from the base address.  */
  if (cache->reg_saved[NIOS2_SP_REGNUM].basereg == NIOS2_Z_REGNUM)
    cache->cfa
      = read_memory_unsigned_integer (cache->reg_saved[NIOS2_SP_REGNUM].addr,
				      4, byte_order);
  else
    cache->cfa = frame_high;

  /* Exception handlers restore ESTATUS into STATUS.  */
  if (exception_handler)
    {
      cache->reg_saved[NIOS2_STATUS_REGNUM]
	= cache->reg_saved[NIOS2_ESTATUS_REGNUM];
      cache->reg_saved[NIOS2_ESTATUS_REGNUM].basereg = -1;
    }

  if (nios2_debug)
    fprintf_unfiltered (gdb_stdlog, "cfa=%s }\n",
			paddress (gdbarch, cache->cfa));

  return prologue_end;
}

/* Implement the skip_prologue gdbarch hook.  */

static CORE_ADDR
nios2_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
{
  CORE_ADDR limit_pc;
  CORE_ADDR func_addr;

  struct nios2_unwind_cache cache;

  /* See if we can determine the end of the prologue via the symbol
     table.  If so, then return either PC, or the PC after the
     prologue, whichever is greater.  */
  if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
    {
      CORE_ADDR post_prologue_pc
        = skip_prologue_using_sal (gdbarch, func_addr);

      if (post_prologue_pc != 0)
        return max (start_pc, post_prologue_pc);
    }

  /* Prologue analysis does the rest....  */
  nios2_init_cache (&cache, start_pc);
  return nios2_analyze_prologue (gdbarch, start_pc, start_pc, &cache, NULL);
}

/* Implement the breakpoint_from_pc gdbarch hook.  */

static const gdb_byte*
nios2_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
			  int *bp_size)
{
  /* break encoding: 31->27  26->22  21->17  16->11 10->6 5->0 */
  /*                 00000   00000   0x1d    0x2d   11111 0x3a */
  /*                 00000   00000   11101   101101 11111 111010 */
  /* In bytes:       00000000 00111011 01101111 11111010 */
  /*                 0x0       0x3b    0x6f     0xfa */
  static const gdb_byte breakpoint_le[] = {0xfa, 0x6f, 0x3b, 0x0};
  static const gdb_byte breakpoint_be[] = {0x0, 0x3b, 0x6f, 0xfa};

  enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);

  *bp_size = 4;
  if (gdbarch_byte_order_for_code (gdbarch) == BFD_ENDIAN_BIG)
    return breakpoint_be;
  else
    return breakpoint_le;
}

/* Implement the print_insn gdbarch method.  */

static int
nios2_print_insn (bfd_vma memaddr, disassemble_info *info)
{
  if (info->endian == BFD_ENDIAN_BIG)
    return print_insn_big_nios2 (memaddr, info);
  else
    return print_insn_little_nios2 (memaddr, info);
}


/* Implement the frame_align gdbarch method.  */

static CORE_ADDR
nios2_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
{
  return align_down (addr, 4);
}


/* Implement the return_value gdbarch method.  */

static enum return_value_convention
nios2_return_value (struct gdbarch *gdbarch, struct value *function,
		    struct type *type, struct regcache *regcache,
		    gdb_byte *readbuf, const gdb_byte *writebuf)
{
  if (TYPE_LENGTH (type) > 8)
    return RETURN_VALUE_STRUCT_CONVENTION;

  if (readbuf)
    nios2_extract_return_value (gdbarch, type, regcache, readbuf);
  if (writebuf)
    nios2_store_return_value (gdbarch, type, regcache, writebuf);

  return RETURN_VALUE_REGISTER_CONVENTION;
}

/* Implement the dummy_id gdbarch method.  */

static struct frame_id
nios2_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
{
  return frame_id_build
    (get_frame_register_unsigned (this_frame, NIOS2_SP_REGNUM),
     get_frame_pc (this_frame));
}

/* Implement the push_dummy_call gdbarch method.  */

static CORE_ADDR
nios2_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
                       struct regcache *regcache, CORE_ADDR bp_addr,
                       int nargs, struct value **args, CORE_ADDR sp,
                       int struct_return, CORE_ADDR struct_addr)
{
  int argreg;
  int float_argreg;
  int argnum;
  int len = 0;
  int stack_offset = 0;
  CORE_ADDR func_addr = find_function_addr (function, NULL);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);

  /* Set the return address register to point to the entry point of
     the program, where a breakpoint lies in wait.  */
  regcache_cooked_write_signed (regcache, NIOS2_RA_REGNUM, bp_addr);

  /* Now make space on the stack for the args.  */
  for (argnum = 0; argnum < nargs; argnum++)
    len += align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
  sp -= len;

  /* Initialize the register pointer.  */
  argreg = NIOS2_FIRST_ARGREG;

  /* The struct_return pointer occupies the first parameter-passing
     register.  */
  if (struct_return)
    regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);

  /* Now load as many as possible of the first arguments into
     registers, and push the rest onto the stack.  Loop through args
     from first to last.  */
  for (argnum = 0; argnum < nargs; argnum++)
    {
      const gdb_byte *val;
      gdb_byte valbuf[MAX_REGISTER_SIZE];
      struct value *arg = args[argnum];
      struct type *arg_type = check_typedef (value_type (arg));
      int len = TYPE_LENGTH (arg_type);
      enum type_code typecode = TYPE_CODE (arg_type);

      val = value_contents (arg);

      /* Copy the argument to general registers or the stack in
         register-sized pieces.  Large arguments are split between
         registers and stack.  */
      while (len > 0)
        {
	  int partial_len = (len < 4 ? len : 4);

	  if (argreg <= NIOS2_LAST_ARGREG)
	    {
	      /* The argument is being passed in a register.  */
	      CORE_ADDR regval = extract_unsigned_integer (val, partial_len,
							   byte_order);

	      regcache_cooked_write_unsigned (regcache, argreg, regval);
	      argreg++;
	    }
	  else
	    {
	      /* The argument is being passed on the stack.  */
	      CORE_ADDR addr = sp + stack_offset;

	      write_memory (addr, val, partial_len);
	      stack_offset += align_up (partial_len, 4);
	    }

	  len -= partial_len;
	  val += partial_len;
	}
    }

  regcache_cooked_write_signed (regcache, NIOS2_SP_REGNUM, sp);

  /* Return adjusted stack pointer.  */
  return sp;
}

/* Implement the unwind_pc gdbarch method.  */

static CORE_ADDR
nios2_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
  gdb_byte buf[4];

  frame_unwind_register (next_frame, NIOS2_PC_REGNUM, buf);
  return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
}

/* Implement the unwind_sp gdbarch method.  */

static CORE_ADDR
nios2_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
{
  return frame_unwind_register_unsigned (this_frame, NIOS2_SP_REGNUM);
}

/* Use prologue analysis to fill in the register cache
   *THIS_PROLOGUE_CACHE for THIS_FRAME.  This function initializes
   *THIS_PROLOGUE_CACHE first.  */

static struct nios2_unwind_cache *
nios2_frame_unwind_cache (struct frame_info *this_frame,
			  void **this_prologue_cache)
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  CORE_ADDR current_pc;
  struct nios2_unwind_cache *cache;
  int i;

  if (*this_prologue_cache)
    return *this_prologue_cache;

  cache = FRAME_OBSTACK_ZALLOC (struct nios2_unwind_cache);
  *this_prologue_cache = cache;

  /* Zero all fields.  */
  nios2_init_cache (cache, get_frame_func (this_frame));

  /* Prologue analysis does the rest...  */
  current_pc = get_frame_pc (this_frame);
  if (cache->pc != 0)
    nios2_analyze_prologue (gdbarch, cache->pc, current_pc, cache, this_frame);

  return cache;
}

/* Implement the this_id function for the normal unwinder.  */

static void
nios2_frame_this_id (struct frame_info *this_frame, void **this_cache,
		     struct frame_id *this_id)
{
  struct nios2_unwind_cache *cache =
    nios2_frame_unwind_cache (this_frame, this_cache);

  /* This marks the outermost frame.  */
  if (cache->base == 0)
    return;

  *this_id = frame_id_build (cache->cfa, cache->pc);
}

/* Implement the prev_register function for the normal unwinder.  */

static struct value *
nios2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
			   int regnum)
{
  struct nios2_unwind_cache *cache =
    nios2_frame_unwind_cache (this_frame, this_cache);

  gdb_assert (regnum >= 0 && regnum < NIOS2_NUM_REGS);

  /* The PC of the previous frame is stored in the RA register of
     the current frame.  Frob regnum so that we pull the value from
     the correct place.  */
  if (regnum == NIOS2_PC_REGNUM)
    regnum = cache->return_regnum;

  if (regnum == NIOS2_SP_REGNUM && cache->cfa)
    return frame_unwind_got_constant (this_frame, regnum, cache->cfa);

  /* If we've worked out where a register is stored then load it from
     there.  */
  if (cache->reg_saved[regnum].basereg == NIOS2_Z_REGNUM)
    return frame_unwind_got_memory (this_frame, regnum,
				    cache->reg_saved[regnum].addr);

  return frame_unwind_got_register (this_frame, regnum, regnum);
}

/* Implement the this_base, this_locals, and this_args hooks
   for the normal unwinder.  */

static CORE_ADDR
nios2_frame_base_address (struct frame_info *this_frame, void **this_cache)
{
  struct nios2_unwind_cache *info
    = nios2_frame_unwind_cache (this_frame, this_cache);

  return info->base;
}

/* Data structures for the normal prologue-analysis-based
   unwinder.  */

static const struct frame_unwind nios2_frame_unwind =
{
  NORMAL_FRAME,
  default_frame_unwind_stop_reason,
  nios2_frame_this_id,
  nios2_frame_prev_register,
  NULL,
  default_frame_sniffer
};

static const struct frame_base nios2_frame_base =
{
  &nios2_frame_unwind,
  nios2_frame_base_address,
  nios2_frame_base_address,
  nios2_frame_base_address
};

/* Fill in the register cache *THIS_CACHE for THIS_FRAME for use
   in the stub unwinder.  */

static struct trad_frame_cache *
nios2_stub_frame_cache (struct frame_info *this_frame, void **this_cache)
{
  CORE_ADDR pc;
  CORE_ADDR start_addr;
  CORE_ADDR stack_addr;
  struct trad_frame_cache *this_trad_cache;
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  int num_regs = gdbarch_num_regs (gdbarch);

  if (*this_cache != NULL)
    return *this_cache;
  this_trad_cache = trad_frame_cache_zalloc (this_frame);
  *this_cache = this_trad_cache;

  /* The return address is in the link register.  */
  trad_frame_set_reg_realreg (this_trad_cache,
                              gdbarch_pc_regnum (gdbarch),
                              NIOS2_RA_REGNUM);

  /* Frame ID, since it's a frameless / stackless function, no stack
     space is allocated and SP on entry is the current SP.  */
  pc = get_frame_pc (this_frame);
  find_pc_partial_function (pc, NULL, &start_addr, NULL);
  stack_addr = get_frame_register_unsigned (this_frame, NIOS2_SP_REGNUM);
  trad_frame_set_id (this_trad_cache, frame_id_build (start_addr, stack_addr));
  /* Assume that the frame's base is the same as the stack pointer.  */
  trad_frame_set_this_base (this_trad_cache, stack_addr);

  return this_trad_cache;
}

/* Implement the this_id function for the stub unwinder.  */

static void
nios2_stub_frame_this_id (struct frame_info *this_frame, void **this_cache,
                          struct frame_id *this_id)
{
  struct trad_frame_cache *this_trad_cache
    = nios2_stub_frame_cache (this_frame, this_cache);

  trad_frame_get_id (this_trad_cache, this_id);
}

/* Implement the prev_register function for the stub unwinder.  */

static struct value *
nios2_stub_frame_prev_register (struct frame_info *this_frame,
			        void **this_cache, int regnum)
{
  struct trad_frame_cache *this_trad_cache
    = nios2_stub_frame_cache (this_frame, this_cache);

  return trad_frame_get_register (this_trad_cache, this_frame, regnum);
}

/* Implement the sniffer function for the stub unwinder.
   This unwinder is used for cases where the normal
   prologue-analysis-based unwinder can't work,
   such as PLT stubs.  */

static int
nios2_stub_frame_sniffer (const struct frame_unwind *self,
			  struct frame_info *this_frame, void **cache)
{
  gdb_byte dummy[4];
  struct obj_section *s;
  CORE_ADDR pc = get_frame_address_in_block (this_frame);

  /* Use the stub unwinder for unreadable code.  */
  if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
    return 1;

  if (in_plt_section (pc))
    return 1;

  return 0;
}

/* Define the data structures for the stub unwinder.  */

static const struct frame_unwind nios2_stub_frame_unwind =
{
  NORMAL_FRAME,
  default_frame_unwind_stop_reason,
  nios2_stub_frame_this_id,
  nios2_stub_frame_prev_register,
  NULL,
  nios2_stub_frame_sniffer
};

/* Helper function to read an instruction at PC.  */

static unsigned long
nios2_fetch_instruction (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);

  return read_memory_unsigned_integer (pc, NIOS2_OPCODE_SIZE, byte_order);
}

/* Determine where to set a single step breakpoint while considering
   branch prediction.  */

static CORE_ADDR
nios2_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  unsigned long inst;
  int op;
  int imm16;
  int ra;
  int rb;
  int ras;
  int rbs;
  unsigned int rau;
  unsigned int rbu;

  inst = nios2_fetch_instruction (gdbarch, pc);
  pc += NIOS2_OPCODE_SIZE;

  imm16 = (short) GET_IW_IMM16 (inst);
  ra = GET_IW_A (inst);
  rb = GET_IW_B (inst);
  ras = get_frame_register_signed (frame, ra);
  rbs = get_frame_register_signed (frame, rb);
  rau = get_frame_register_unsigned (frame, ra);
  rbu = get_frame_register_unsigned (frame, rb);

  switch (GET_IW_OP (inst))
    {
    case OP_BEQ:
      if (ras == rbs)
	pc += imm16;
      break;

    case OP_BGE:
      if (ras >= rbs)
        pc += imm16;
      break;

    case OP_BGEU:
      if (rau >= rbu)
        pc += imm16;
      break;

    case OP_BLT:
      if (ras < rbs)
        pc += imm16;
      break;

    case OP_BLTU:
      if (rau < rbu)
        pc += imm16;
      break;

    case OP_BNE:
      if (ras != rbs)
        pc += imm16;
      break;

    case OP_BR:
      pc += imm16;
      break;

    case OP_JMPI:
    case OP_CALL:
      pc = (pc & 0xf0000000) | (GET_IW_IMM26 (inst) << 2);
      break;

    case OP_OPX:
      switch (GET_IW_OPX (inst))
	{
	case OPX_JMP:
	case OPX_CALLR:
	case OPX_RET:
	  pc = ras;
	  break;

	case OPX_TRAP:
	  if (tdep->syscall_next_pc != NULL)
	    return tdep->syscall_next_pc (frame);

	default:
	  break;
	}
      break;
    default:
      break;
    }
  return pc;
}

/* Implement the software_single_step gdbarch method.  */

static int
nios2_software_single_step (struct frame_info *frame)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  struct address_space *aspace = get_frame_address_space (frame);
  CORE_ADDR next_pc = nios2_get_next_pc (frame, get_frame_pc (frame));

  insert_single_step_breakpoint (gdbarch, aspace, next_pc);

  return 1;
}

/* Implement the get_longjump_target gdbarch method.  */

static int
nios2_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  CORE_ADDR jb_addr = get_frame_register_unsigned (frame, NIOS2_R4_REGNUM);
  gdb_byte buf[4];

  if (target_read_memory (jb_addr + (tdep->jb_pc * 4), buf, 4))
    return 0;

  *pc = extract_unsigned_integer (buf, 4, byte_order);
  return 1;
}

/* Initialize the Nios II gdbarch.  */

static struct gdbarch *
nios2_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
  struct gdbarch *gdbarch;
  struct gdbarch_tdep *tdep;
  int register_bytes, i;
  struct tdesc_arch_data *tdesc_data = NULL;
  const struct target_desc *tdesc = info.target_desc;

  if (!tdesc_has_registers (tdesc))
    /* Pick a default target description.  */
    tdesc = tdesc_nios2;

  /* Check any target description for validity.  */
  if (tdesc_has_registers (tdesc))
    {
      const struct tdesc_feature *feature;
      int valid_p;

      feature = tdesc_find_feature (tdesc, "org.gnu.gdb.nios2.cpu");
      if (feature == NULL)
	return NULL;

      tdesc_data = tdesc_data_alloc ();

      valid_p = 1;
      
      for (i = 0; i < NIOS2_NUM_REGS; i++)
	valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
					    nios2_reg_names[i]);

      if (!valid_p)
	{
	  tdesc_data_cleanup (tdesc_data);
	  return NULL;
	}
    }

  /* Find a candidate among the list of pre-declared architectures.  */
  arches = gdbarch_list_lookup_by_info (arches, &info);
  if (arches != NULL)
    return arches->gdbarch;

  /* None found, create a new architecture from the information
     provided.  */
  tdep = xcalloc (1, sizeof (struct gdbarch_tdep));
  gdbarch = gdbarch_alloc (&info, tdep);

  /* longjmp support not enabled by default.  */
  tdep->jb_pc = -1;

  /* Data type sizes.  */
  set_gdbarch_ptr_bit (gdbarch, 32);
  set_gdbarch_addr_bit (gdbarch, 32);
  set_gdbarch_short_bit (gdbarch, 16);
  set_gdbarch_int_bit (gdbarch, 32);
  set_gdbarch_long_bit (gdbarch, 32);
  set_gdbarch_long_long_bit (gdbarch, 64);
  set_gdbarch_float_bit (gdbarch, 32);
  set_gdbarch_double_bit (gdbarch, 64);

  set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
  set_gdbarch_double_format (gdbarch, floatformats_ieee_double);

  /* The register set.  */
  set_gdbarch_num_regs (gdbarch, NIOS2_NUM_REGS);
  set_gdbarch_sp_regnum (gdbarch, NIOS2_SP_REGNUM);
  set_gdbarch_pc_regnum (gdbarch, NIOS2_PC_REGNUM);	/* Pseudo register PC */

  set_gdbarch_register_name (gdbarch, nios2_register_name);
  set_gdbarch_register_type (gdbarch, nios2_register_type);

  /* Provide register mappings for stabs and dwarf2.  */
  set_gdbarch_stab_reg_to_regnum (gdbarch, nios2_dwarf_reg_to_regnum);
  set_gdbarch_dwarf2_reg_to_regnum (gdbarch, nios2_dwarf_reg_to_regnum);

  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);

  /* Call dummy code.  */
  set_gdbarch_frame_align (gdbarch, nios2_frame_align);

  set_gdbarch_return_value (gdbarch, nios2_return_value);

  set_gdbarch_skip_prologue (gdbarch, nios2_skip_prologue);
  set_gdbarch_in_function_epilogue_p (gdbarch, nios2_in_function_epilogue_p);
  set_gdbarch_breakpoint_from_pc (gdbarch, nios2_breakpoint_from_pc);

  set_gdbarch_dummy_id (gdbarch, nios2_dummy_id);
  set_gdbarch_unwind_pc (gdbarch, nios2_unwind_pc);
  set_gdbarch_unwind_sp (gdbarch, nios2_unwind_sp);

  /* The dwarf2 unwinder will normally produce the best results if
     the debug information is available, so register it first.  */
  dwarf2_append_unwinders (gdbarch);
  frame_unwind_append_unwinder (gdbarch, &nios2_stub_frame_unwind);
  frame_unwind_append_unwinder (gdbarch, &nios2_frame_unwind);

  /* Single stepping.  */
  set_gdbarch_software_single_step (gdbarch, nios2_software_single_step);

  /* Hook in ABI-specific overrides, if they have been registered.  */
  gdbarch_init_osabi (info, gdbarch);

  if (tdep->jb_pc >= 0)
    set_gdbarch_get_longjmp_target (gdbarch, nios2_get_longjmp_target);

  frame_base_set_default (gdbarch, &nios2_frame_base);

  set_gdbarch_print_insn (gdbarch, nios2_print_insn);

  /* Enable inferior call support.  */
  set_gdbarch_push_dummy_call (gdbarch, nios2_push_dummy_call);

  if (tdesc_data)
    tdesc_use_registers (gdbarch, tdesc, tdesc_data);

  return gdbarch;
}

extern initialize_file_ftype _initialize_nios2_tdep; /* -Wmissing-prototypes */

void
_initialize_nios2_tdep (void)
{
  gdbarch_register (bfd_arch_nios2, nios2_gdbarch_init, NULL);
  initialize_tdesc_nios2 ();

  /* Allow debugging this file's internals.  */
  add_setshow_boolean_cmd ("nios2", class_maintenance, &nios2_debug,
			   _("Set Nios II debugging."),
			   _("Show Nios II debugging."),
			   _("When on, Nios II specific debugging is enabled."),
			   NULL,
			   NULL,
			   &setdebuglist, &showdebuglist);
}