aboutsummaryrefslogtreecommitdiff
path: root/gdb/mn10300-tdep.c
blob: e949b403b7ab7d44089ceaae611fd7626f7dbc7c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
/* Target-dependent code for the Matsushita MN10300 for GDB, the GNU debugger.

   Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
   2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "arch-utils.h"
#include "dis-asm.h"
#include "gdbtypes.h"
#include "regcache.h"
#include "gdb_string.h"
#include "gdb_assert.h"
#include "gdbcore.h"	/* For write_memory_unsigned_integer.  */
#include "value.h"
#include "gdbtypes.h"
#include "frame.h"
#include "frame-unwind.h"
#include "frame-base.h"
#include "symtab.h"
#include "dwarf2-frame.h"
#include "osabi.h"
#include "infcall.h"
#include "prologue-value.h"
#include "target.h"

#include "mn10300-tdep.h"


/* The am33-2 has 64 registers.  */
#define MN10300_MAX_NUM_REGS 64

/* This structure holds the results of a prologue analysis.  */
struct mn10300_prologue
{
  /* The architecture for which we generated this prologue info.  */
  struct gdbarch *gdbarch;

  /* The offset from the frame base to the stack pointer --- always
     zero or negative.

     Calling this a "size" is a bit misleading, but given that the
     stack grows downwards, using offsets for everything keeps one
     from going completely sign-crazy: you never change anything's
     sign for an ADD instruction; always change the second operand's
     sign for a SUB instruction; and everything takes care of
     itself.  */
  int frame_size;

  /* Non-zero if this function has initialized the frame pointer from
     the stack pointer, zero otherwise.  */
  int has_frame_ptr;

  /* If has_frame_ptr is non-zero, this is the offset from the frame
     base to where the frame pointer points.  This is always zero or
     negative.  */
  int frame_ptr_offset;

  /* The address of the first instruction at which the frame has been
     set up and the arguments are where the debug info says they are
     --- as best as we can tell.  */
  CORE_ADDR prologue_end;

  /* reg_offset[R] is the offset from the CFA at which register R is
     saved, or 1 if register R has not been saved.  (Real values are
     always zero or negative.)  */
  int reg_offset[MN10300_MAX_NUM_REGS];
};


/* Compute the alignment required by a type.  */

static int
mn10300_type_align (struct type *type)
{
  int i, align = 1;

  switch (TYPE_CODE (type))
    {
    case TYPE_CODE_INT:
    case TYPE_CODE_ENUM:
    case TYPE_CODE_SET:
    case TYPE_CODE_RANGE:
    case TYPE_CODE_CHAR:
    case TYPE_CODE_BOOL:
    case TYPE_CODE_FLT:
    case TYPE_CODE_PTR:
    case TYPE_CODE_REF:
      return TYPE_LENGTH (type);

    case TYPE_CODE_COMPLEX:
      return TYPE_LENGTH (type) / 2;

    case TYPE_CODE_STRUCT:
    case TYPE_CODE_UNION:
      for (i = 0; i < TYPE_NFIELDS (type); i++)
	{
	  int falign = mn10300_type_align (TYPE_FIELD_TYPE (type, i));
	  while (align < falign)
	    align <<= 1;
	}
      return align;

    case TYPE_CODE_ARRAY:
      /* HACK!  Structures containing arrays, even small ones, are not
	 elligible for returning in registers.  */
      return 256;

    case TYPE_CODE_TYPEDEF:
      return mn10300_type_align (check_typedef (type));

    default:
      internal_error (__FILE__, __LINE__, _("bad switch"));
    }
}

/* Should call_function allocate stack space for a struct return?  */
static int
mn10300_use_struct_convention (struct type *type)
{
  /* Structures bigger than a pair of words can't be returned in
     registers.  */
  if (TYPE_LENGTH (type) > 8)
    return 1;

  switch (TYPE_CODE (type))
    {
    case TYPE_CODE_STRUCT:
    case TYPE_CODE_UNION:
      /* Structures with a single field are handled as the field
	 itself.  */
      if (TYPE_NFIELDS (type) == 1)
	return mn10300_use_struct_convention (TYPE_FIELD_TYPE (type, 0));

      /* Structures with word or double-word size are passed in memory, as
	 long as they require at least word alignment.  */
      if (mn10300_type_align (type) >= 4)
	return 0;

      return 1;

      /* Arrays are addressable, so they're never returned in
	 registers.  This condition can only hold when the array is
	 the only field of a struct or union.  */
    case TYPE_CODE_ARRAY:
      return 1;

    case TYPE_CODE_TYPEDEF:
      return mn10300_use_struct_convention (check_typedef (type));

    default:
      return 0;
    }
}

static void
mn10300_store_return_value (struct gdbarch *gdbarch, struct type *type,
			    struct regcache *regcache, const void *valbuf)
{
  int len = TYPE_LENGTH (type);
  int reg, regsz;
  
  if (TYPE_CODE (type) == TYPE_CODE_PTR)
    reg = 4;
  else
    reg = 0;

  regsz = register_size (gdbarch, reg);

  if (len <= regsz)
    regcache_raw_write_part (regcache, reg, 0, len, valbuf);
  else if (len <= 2 * regsz)
    {
      regcache_raw_write (regcache, reg, valbuf);
      gdb_assert (regsz == register_size (gdbarch, reg + 1));
      regcache_raw_write_part (regcache, reg+1, 0,
			       len - regsz, (char *) valbuf + regsz);
    }
  else
    internal_error (__FILE__, __LINE__,
		    _("Cannot store return value %d bytes long."), len);
}

static void
mn10300_extract_return_value (struct gdbarch *gdbarch, struct type *type,
			      struct regcache *regcache, void *valbuf)
{
  char buf[MAX_REGISTER_SIZE];
  int len = TYPE_LENGTH (type);
  int reg, regsz;

  if (TYPE_CODE (type) == TYPE_CODE_PTR)
    reg = 4;
  else
    reg = 0;

  regsz = register_size (gdbarch, reg);
  if (len <= regsz)
    {
      regcache_raw_read (regcache, reg, buf);
      memcpy (valbuf, buf, len);
    }
  else if (len <= 2 * regsz)
    {
      regcache_raw_read (regcache, reg, buf);
      memcpy (valbuf, buf, regsz);
      gdb_assert (regsz == register_size (gdbarch, reg + 1));
      regcache_raw_read (regcache, reg + 1, buf);
      memcpy ((char *) valbuf + regsz, buf, len - regsz);
    }
  else
    internal_error (__FILE__, __LINE__,
		    _("Cannot extract return value %d bytes long."), len);
}

/* Determine, for architecture GDBARCH, how a return value of TYPE
   should be returned.  If it is supposed to be returned in registers,
   and READBUF is non-zero, read the appropriate value from REGCACHE,
   and copy it into READBUF.  If WRITEBUF is non-zero, write the value
   from WRITEBUF into REGCACHE.  */

static enum return_value_convention
mn10300_return_value (struct gdbarch *gdbarch, struct type *func_type,
		      struct type *type, struct regcache *regcache,
		      gdb_byte *readbuf, const gdb_byte *writebuf)
{
  if (mn10300_use_struct_convention (type))
    return RETURN_VALUE_STRUCT_CONVENTION;

  if (readbuf)
    mn10300_extract_return_value (gdbarch, type, regcache, readbuf);
  if (writebuf)
    mn10300_store_return_value (gdbarch, type, regcache, writebuf);

  return RETURN_VALUE_REGISTER_CONVENTION;
}

static char *
register_name (int reg, char **regs, long sizeof_regs)
{
  if (reg < 0 || reg >= sizeof_regs / sizeof (regs[0]))
    return NULL;
  else
    return regs[reg];
}

static const char *
mn10300_generic_register_name (struct gdbarch *gdbarch, int reg)
{
  static char *regs[] =
  { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
    "sp", "pc", "mdr", "psw", "lir", "lar", "", "",
    "", "", "", "", "", "", "", "",
    "", "", "", "", "", "", "", "fp"
  };
  return register_name (reg, regs, sizeof regs);
}


static const char *
am33_register_name (struct gdbarch *gdbarch, int reg)
{
  static char *regs[] =
  { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
    "sp", "pc", "mdr", "psw", "lir", "lar", "",
    "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
    "ssp", "msp", "usp", "mcrh", "mcrl", "mcvf", "", "", ""
  };
  return register_name (reg, regs, sizeof regs);
}

static const char *
am33_2_register_name (struct gdbarch *gdbarch, int reg)
{
  static char *regs[] =
  {
    "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
    "sp", "pc", "mdr", "psw", "lir", "lar", "mdrq", "r0",
    "r1", "r2", "r3", "r4", "r5", "r6", "r7", "ssp",
    "msp", "usp", "mcrh", "mcrl", "mcvf", "fpcr", "", "",
    "fs0", "fs1", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7",
    "fs8", "fs9", "fs10", "fs11", "fs12", "fs13", "fs14", "fs15",
    "fs16", "fs17", "fs18", "fs19", "fs20", "fs21", "fs22", "fs23",
    "fs24", "fs25", "fs26", "fs27", "fs28", "fs29", "fs30", "fs31"
  };
  return register_name (reg, regs, sizeof regs);
}

static struct type *
mn10300_register_type (struct gdbarch *gdbarch, int reg)
{
  return builtin_type (gdbarch)->builtin_int;
}

static CORE_ADDR
mn10300_read_pc (struct regcache *regcache)
{
  ULONGEST val;
  regcache_cooked_read_unsigned (regcache, E_PC_REGNUM, &val);
  return val;
}

static void
mn10300_write_pc (struct regcache *regcache, CORE_ADDR val)
{
  regcache_cooked_write_unsigned (regcache, E_PC_REGNUM, val);
}

/* The breakpoint instruction must be the same size as the smallest
   instruction in the instruction set.

   The Matsushita mn10x00 processors have single byte instructions
   so we need a single byte breakpoint.  Matsushita hasn't defined
   one, so we defined it ourselves.  */

const static unsigned char *
mn10300_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
			    int *bp_size)
{
  static char breakpoint[] = {0xff};
  *bp_size = 1;
  return breakpoint;
}

/* Model the semantics of pushing a register onto the stack.  This
   is a helper function for mn10300_analyze_prologue, below.  */
static void
push_reg (pv_t *regs, struct pv_area *stack, int regnum)
{
  regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], -4);
  pv_area_store (stack, regs[E_SP_REGNUM], 4, regs[regnum]);
}

/* Translate an "r" register number extracted from an instruction encoding
   into a GDB register number.  Adapted from a simulator function
   of the same name; see am33.igen.  */
static int
translate_rreg (int rreg)
{
 /* The higher register numbers actually correspond to the
     basic machine's address and data registers.  */
  if (rreg > 7 && rreg < 12)
    return E_A0_REGNUM + rreg - 8;
  else if (rreg > 11 && rreg < 16)
    return E_D0_REGNUM + rreg - 12;
  else
    return E_E0_REGNUM + rreg;
}

/* Find saved registers in a 'struct pv_area'; we pass this to pv_area_scan.

   If VALUE is a saved register, ADDR says it was saved at a constant
   offset from the frame base, and SIZE indicates that the whole
   register was saved, record its offset in RESULT_UNTYPED.  */
static void
check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
{
  struct mn10300_prologue *result = (struct mn10300_prologue *) result_untyped;

  if (value.kind == pvk_register
      && value.k == 0
      && pv_is_register (addr, E_SP_REGNUM)
      && size == register_size (result->gdbarch, value.reg))
    result->reg_offset[value.reg] = addr.k;
}

/* Analyze the prologue to determine where registers are saved,
   the end of the prologue, etc.  The result of this analysis is
   returned in RESULT.  See struct mn10300_prologue above for more
   information.  */
static void
mn10300_analyze_prologue (struct gdbarch *gdbarch,
                          CORE_ADDR start_pc, CORE_ADDR limit_pc,
                          struct mn10300_prologue *result)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  CORE_ADDR pc, next_pc;
  int rn;
  pv_t regs[MN10300_MAX_NUM_REGS];
  struct pv_area *stack;
  struct cleanup *back_to;
  CORE_ADDR after_last_frame_setup_insn = start_pc;
  int am33_mode = AM33_MODE (gdbarch);

  memset (result, 0, sizeof (*result));
  result->gdbarch = gdbarch;

  for (rn = 0; rn < MN10300_MAX_NUM_REGS; rn++)
    {
      regs[rn] = pv_register (rn, 0);
      result->reg_offset[rn] = 1;
    }
  stack = make_pv_area (E_SP_REGNUM, gdbarch_addr_bit (gdbarch));
  back_to = make_cleanup_free_pv_area (stack);

 /* The typical call instruction will have saved the return address on the
    stack.  Space for the return address has already been preallocated in
    the caller's frame.  It's possible, such as when using -mrelax with gcc
    that other registers were saved as well.  If this happens, we really
    have no chance of deciphering the frame.  DWARF info can save the day
    when this happens.  */
  pv_area_store (stack, regs[E_SP_REGNUM], 4, regs[E_PC_REGNUM]);

  pc = start_pc;
  while (pc < limit_pc)
    {
      int status;
      gdb_byte instr[2];

      /* Instructions can be as small as one byte; however, we usually
         need at least two bytes to do the decoding, so fetch that many
	 to begin with.  */
      status = target_read_memory (pc, instr, 2);
      if (status != 0)
	break;

      /* movm [regs], sp  */
      if (instr[0] == 0xcf)
	{
	  gdb_byte save_mask;

	  save_mask = instr[1];

	  if ((save_mask & movm_exreg0_bit) && am33_mode)
	    {
	      push_reg (regs, stack, E_E2_REGNUM);
	      push_reg (regs, stack, E_E3_REGNUM);
	    }
	  if ((save_mask & movm_exreg1_bit) && am33_mode)
	    {
	      push_reg (regs, stack, E_E4_REGNUM);
	      push_reg (regs, stack, E_E5_REGNUM);
	      push_reg (regs, stack, E_E6_REGNUM);
	      push_reg (regs, stack, E_E7_REGNUM);
	    }
	  if ((save_mask & movm_exother_bit) && am33_mode)
	    {
	      push_reg (regs, stack, E_E0_REGNUM);
	      push_reg (regs, stack, E_E1_REGNUM);
	      push_reg (regs, stack, E_MDRQ_REGNUM);
	      push_reg (regs, stack, E_MCRH_REGNUM);
	      push_reg (regs, stack, E_MCRL_REGNUM);
	      push_reg (regs, stack, E_MCVF_REGNUM);
	    }
	  if (save_mask & movm_d2_bit)
	    push_reg (regs, stack, E_D2_REGNUM);
	  if (save_mask & movm_d3_bit)
	    push_reg (regs, stack, E_D3_REGNUM);
	  if (save_mask & movm_a2_bit)
	    push_reg (regs, stack, E_A2_REGNUM);
	  if (save_mask & movm_a3_bit)
	    push_reg (regs, stack, E_A3_REGNUM);
	  if (save_mask & movm_other_bit)
	    {
	      push_reg (regs, stack, E_D0_REGNUM);
	      push_reg (regs, stack, E_D1_REGNUM);
	      push_reg (regs, stack, E_A0_REGNUM);
	      push_reg (regs, stack, E_A1_REGNUM);
	      push_reg (regs, stack, E_MDR_REGNUM);
	      push_reg (regs, stack, E_LIR_REGNUM);
	      push_reg (regs, stack, E_LAR_REGNUM);
	      /* The `other' bit leaves a blank area of four bytes at
		 the beginning of its block of saved registers, making
		 it 32 bytes long in total.  */
	      regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], -4);
	    }

	  pc += 2;
	  after_last_frame_setup_insn = pc;
	}
      /* mov sp, aN */
      else if ((instr[0] & 0xfc) == 0x3c)
	{
	  int aN = instr[0] & 0x03;

	  regs[E_A0_REGNUM + aN] = regs[E_SP_REGNUM];

	  pc += 1;
	  if (aN == 3)
	    after_last_frame_setup_insn = pc;
	}
      /* mov aM, aN */
      else if ((instr[0] & 0xf0) == 0x90
               && (instr[0] & 0x03) != ((instr[0] & 0x0c) >> 2))
	{
	  int aN = instr[0] & 0x03;
	  int aM = (instr[0] & 0x0c) >> 2;

	  regs[E_A0_REGNUM + aN] = regs[E_A0_REGNUM + aM];

	  pc += 1;
	}
      /* mov dM, dN */
      else if ((instr[0] & 0xf0) == 0x80
               && (instr[0] & 0x03) != ((instr[0] & 0x0c) >> 2))
	{
	  int dN = instr[0] & 0x03;
	  int dM = (instr[0] & 0x0c) >> 2;

	  regs[E_D0_REGNUM + dN] = regs[E_D0_REGNUM + dM];

	  pc += 1;
	}
      /* mov aM, dN */
      else if (instr[0] == 0xf1 && (instr[1] & 0xf0) == 0xd0)
	{
	  int dN = instr[1] & 0x03;
	  int aM = (instr[1] & 0x0c) >> 2;

	  regs[E_D0_REGNUM + dN] = regs[E_A0_REGNUM + aM];

	  pc += 2;
	}
      /* mov dM, aN */
      else if (instr[0] == 0xf1 && (instr[1] & 0xf0) == 0xe0)
	{
	  int aN = instr[1] & 0x03;
	  int dM = (instr[1] & 0x0c) >> 2;

	  regs[E_A0_REGNUM + aN] = regs[E_D0_REGNUM + dM];

	  pc += 2;
	}
      /* add imm8, SP */
      else if (instr[0] == 0xf8 && instr[1] == 0xfe)
	{
	  gdb_byte buf[1];
	  LONGEST imm8;


	  status = target_read_memory (pc + 2, buf, 1);
	  if (status != 0)
	    break;

	  imm8 = extract_signed_integer (buf, 1, byte_order);
	  regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], imm8);

	  pc += 3;
	  /* Stack pointer adjustments are frame related.  */
	  after_last_frame_setup_insn = pc;
	}
      /* add imm16, SP */
      else if (instr[0] == 0xfa && instr[1] == 0xfe)
	{
	  gdb_byte buf[2];
	  LONGEST imm16;

	  status = target_read_memory (pc + 2, buf, 2);
	  if (status != 0)
	    break;

	  imm16 = extract_signed_integer (buf, 2, byte_order);
	  regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], imm16);

	  pc += 4;
	  /* Stack pointer adjustments are frame related.  */
	  after_last_frame_setup_insn = pc;
	}
      /* add imm32, SP */
      else if (instr[0] == 0xfc && instr[1] == 0xfe)
	{
	  gdb_byte buf[4];
	  LONGEST imm32;

	  status = target_read_memory (pc + 2, buf, 4);
	  if (status != 0)
	    break;


	  imm32 = extract_signed_integer (buf, 4, byte_order);
	  regs[E_SP_REGNUM] = pv_add_constant (regs[E_SP_REGNUM], imm32);

	  pc += 6;
	  /* Stack pointer adjustments are frame related.  */
	  after_last_frame_setup_insn = pc;
	}
      /* add imm8, aN  */
      else if ((instr[0] & 0xfc) == 0x20)
	{
	  int aN;
	  LONGEST imm8;

	  aN = instr[0] & 0x03;
	  imm8 = extract_signed_integer (&instr[1], 1, byte_order);

	  regs[E_A0_REGNUM + aN] = pv_add_constant (regs[E_A0_REGNUM + aN],
	                                            imm8);

	  pc += 2;
	}
      /* add imm16, aN  */
      else if (instr[0] == 0xfa && (instr[1] & 0xfc) == 0xd0)
	{
	  int aN;
	  LONGEST imm16;
	  gdb_byte buf[2];

	  aN = instr[1] & 0x03;

	  status = target_read_memory (pc + 2, buf, 2);
	  if (status != 0)
	    break;


	  imm16 = extract_signed_integer (buf, 2, byte_order);

	  regs[E_A0_REGNUM + aN] = pv_add_constant (regs[E_A0_REGNUM + aN],
	                                            imm16);

	  pc += 4;
	}
      /* add imm32, aN  */
      else if (instr[0] == 0xfc && (instr[1] & 0xfc) == 0xd0)
	{
	  int aN;
	  LONGEST imm32;
	  gdb_byte buf[4];

	  aN = instr[1] & 0x03;

	  status = target_read_memory (pc + 2, buf, 4);
	  if (status != 0)
	    break;

	  imm32 = extract_signed_integer (buf, 2, byte_order);

	  regs[E_A0_REGNUM + aN] = pv_add_constant (regs[E_A0_REGNUM + aN],
	                                            imm32);
	  pc += 6;
	}
      /* fmov fsM, (rN) */
      else if (instr[0] == 0xf9 && (instr[1] & 0xfd) == 0x30)
	{
	  int fsM, sM, Y, rN;
	  gdb_byte buf[1];

	  Y = (instr[1] & 0x02) >> 1;

	  status = target_read_memory (pc + 2, buf, 1);
	  if (status != 0)
	    break;

	  sM = (buf[0] & 0xf0) >> 4;
	  rN = buf[0] & 0x0f;
	  fsM = (Y << 4) | sM;

	  pv_area_store (stack, regs[translate_rreg (rN)], 4,
	                 regs[E_FS0_REGNUM + fsM]);

	  pc += 3;
	}
      /* fmov fsM, (sp) */
      else if (instr[0] == 0xf9 && (instr[1] & 0xfd) == 0x34)
	{
	  int fsM, sM, Y;
	  gdb_byte buf[1];

	  Y = (instr[1] & 0x02) >> 1;

	  status = target_read_memory (pc + 2, buf, 1);
	  if (status != 0)
	    break;

	  sM = (buf[0] & 0xf0) >> 4;
	  fsM = (Y << 4) | sM;

	  pv_area_store (stack, regs[E_SP_REGNUM], 4,
	                 regs[E_FS0_REGNUM + fsM]);

	  pc += 3;
	}
      /* fmov fsM, (rN, rI) */
      else if (instr[0] == 0xfb && instr[1] == 0x37)
	{
	  int fsM, sM, Z, rN, rI;
	  gdb_byte buf[2];


	  status = target_read_memory (pc + 2, buf, 2);
	  if (status != 0)
	    break;

	  rI = (buf[0] & 0xf0) >> 4;
	  rN = buf[0] & 0x0f;
	  sM = (buf[1] & 0xf0) >> 4;
	  Z = (buf[1] & 0x02) >> 1;
	  fsM = (Z << 4) | sM;

	  pv_area_store (stack,
	                 pv_add (regs[translate_rreg (rN)],
			         regs[translate_rreg (rI)]),
			 4, regs[E_FS0_REGNUM + fsM]);

	  pc += 4;
	}
      /* fmov fsM, (d8, rN) */
      else if (instr[0] == 0xfb && (instr[1] & 0xfd) == 0x30)
	{
	  int fsM, sM, Y, rN;
	  LONGEST d8;
	  gdb_byte buf[2];

	  Y = (instr[1] & 0x02) >> 1;

	  status = target_read_memory (pc + 2, buf, 2);
	  if (status != 0)
	    break;

	  sM = (buf[0] & 0xf0) >> 4;
	  rN = buf[0] & 0x0f;
	  fsM = (Y << 4) | sM;
	  d8 = extract_signed_integer (&buf[1], 1, byte_order);

	  pv_area_store (stack,
	                 pv_add_constant (regs[translate_rreg (rN)], d8),
	                 4, regs[E_FS0_REGNUM + fsM]);

	  pc += 4;
	}
      /* fmov fsM, (d24, rN) */
      else if (instr[0] == 0xfd && (instr[1] & 0xfd) == 0x30)
	{
	  int fsM, sM, Y, rN;
	  LONGEST d24;
	  gdb_byte buf[4];

	  Y = (instr[1] & 0x02) >> 1;

	  status = target_read_memory (pc + 2, buf, 4);
	  if (status != 0)
	    break;

	  sM = (buf[0] & 0xf0) >> 4;
	  rN = buf[0] & 0x0f;
	  fsM = (Y << 4) | sM;
	  d24 = extract_signed_integer (&buf[1], 3, byte_order);

	  pv_area_store (stack,
	                 pv_add_constant (regs[translate_rreg (rN)], d24),
	                 4, regs[E_FS0_REGNUM + fsM]);

	  pc += 6;
	}
      /* fmov fsM, (d32, rN) */
      else if (instr[0] == 0xfe && (instr[1] & 0xfd) == 0x30)
	{
	  int fsM, sM, Y, rN;
	  LONGEST d32;
	  gdb_byte buf[5];

	  Y = (instr[1] & 0x02) >> 1;

	  status = target_read_memory (pc + 2, buf, 5);
	  if (status != 0)
	    break;

	  sM = (buf[0] & 0xf0) >> 4;
	  rN = buf[0] & 0x0f;
	  fsM = (Y << 4) | sM;
	  d32 = extract_signed_integer (&buf[1], 4, byte_order);

	  pv_area_store (stack,
	                 pv_add_constant (regs[translate_rreg (rN)], d32),
	                 4, regs[E_FS0_REGNUM + fsM]);

	  pc += 7;
	}
      /* fmov fsM, (d8, SP) */
      else if (instr[0] == 0xfb && (instr[1] & 0xfd) == 0x34)
	{
	  int fsM, sM, Y;
	  LONGEST d8;
	  gdb_byte buf[2];

	  Y = (instr[1] & 0x02) >> 1;

	  status = target_read_memory (pc + 2, buf, 2);
	  if (status != 0)
	    break;

	  sM = (buf[0] & 0xf0) >> 4;
	  fsM = (Y << 4) | sM;
	  d8 = extract_signed_integer (&buf[1], 1, byte_order);

	  pv_area_store (stack,
	                 pv_add_constant (regs[E_SP_REGNUM], d8),
	                 4, regs[E_FS0_REGNUM + fsM]);

	  pc += 4;
	}
      /* fmov fsM, (d24, SP) */
      else if (instr[0] == 0xfd && (instr[1] & 0xfd) == 0x34)
	{
	  int fsM, sM, Y;
	  LONGEST d24;
	  gdb_byte buf[4];

	  Y = (instr[1] & 0x02) >> 1;

	  status = target_read_memory (pc + 2, buf, 4);
	  if (status != 0)
	    break;

	  sM = (buf[0] & 0xf0) >> 4;
	  fsM = (Y << 4) | sM;
	  d24 = extract_signed_integer (&buf[1], 3, byte_order);

	  pv_area_store (stack,
	                 pv_add_constant (regs[E_SP_REGNUM], d24),
	                 4, regs[E_FS0_REGNUM + fsM]);

	  pc += 6;
	}
      /* fmov fsM, (d32, SP) */
      else if (instr[0] == 0xfe && (instr[1] & 0xfd) == 0x34)
	{
	  int fsM, sM, Y;
	  LONGEST d32;
	  gdb_byte buf[5];

	  Y = (instr[1] & 0x02) >> 1;

	  status = target_read_memory (pc + 2, buf, 5);
	  if (status != 0)
	    break;

	  sM = (buf[0] & 0xf0) >> 4;
	  fsM = (Y << 4) | sM;
	  d32 = extract_signed_integer (&buf[1], 4, byte_order);

	  pv_area_store (stack,
	                 pv_add_constant (regs[E_SP_REGNUM], d32),
	                 4, regs[E_FS0_REGNUM + fsM]);

	  pc += 7;
	}
      /* fmov fsM, (rN+) */
      else if (instr[0] == 0xf9 && (instr[1] & 0xfd) == 0x31)
	{
	  int fsM, sM, Y, rN, rN_regnum;
	  gdb_byte buf[1];

	  Y = (instr[1] & 0x02) >> 1;

	  status = target_read_memory (pc + 2, buf, 1);
	  if (status != 0)
	    break;

	  sM = (buf[0] & 0xf0) >> 4;
	  rN = buf[0] & 0x0f;
	  fsM = (Y << 4) | sM;

	  rN_regnum = translate_rreg (rN);

	  pv_area_store (stack, regs[rN_regnum], 4,
	                 regs[E_FS0_REGNUM + fsM]);
	  regs[rN_regnum] = pv_add_constant (regs[rN_regnum], 4);

	  pc += 3;
	}
      /* fmov fsM, (rN+, imm8) */
      else if (instr[0] == 0xfb && (instr[1] & 0xfd) == 0x31)
	{
	  int fsM, sM, Y, rN, rN_regnum;
	  LONGEST imm8;
	  gdb_byte buf[2];

	  Y = (instr[1] & 0x02) >> 1;

	  status = target_read_memory (pc + 2, buf, 2);
	  if (status != 0)
	    break;

	  sM = (buf[0] & 0xf0) >> 4;
	  rN = buf[0] & 0x0f;
	  fsM = (Y << 4) | sM;
	  imm8 = extract_signed_integer (&buf[1], 1, byte_order);

	  rN_regnum = translate_rreg (rN);

	  pv_area_store (stack, regs[rN_regnum], 4, regs[E_FS0_REGNUM + fsM]);
	  regs[rN_regnum] = pv_add_constant (regs[rN_regnum], imm8);

	  pc += 4;
	}
      /* fmov fsM, (rN+, imm24) */
      else if (instr[0] == 0xfd && (instr[1] & 0xfd) == 0x31)
	{
	  int fsM, sM, Y, rN, rN_regnum;
	  LONGEST imm24;
	  gdb_byte buf[4];

	  Y = (instr[1] & 0x02) >> 1;

	  status = target_read_memory (pc + 2, buf, 4);
	  if (status != 0)
	    break;

	  sM = (buf[0] & 0xf0) >> 4;
	  rN = buf[0] & 0x0f;
	  fsM = (Y << 4) | sM;
	  imm24 = extract_signed_integer (&buf[1], 3, byte_order);

	  rN_regnum = translate_rreg (rN);

	  pv_area_store (stack, regs[rN_regnum], 4, regs[E_FS0_REGNUM + fsM]);
	  regs[rN_regnum] = pv_add_constant (regs[rN_regnum], imm24);

	  pc += 6;
	}
      /* fmov fsM, (rN+, imm32) */
      else if (instr[0] == 0xfe && (instr[1] & 0xfd) == 0x31)
	{
	  int fsM, sM, Y, rN, rN_regnum;
	  LONGEST imm32;
	  gdb_byte buf[5];

	  Y = (instr[1] & 0x02) >> 1;

	  status = target_read_memory (pc + 2, buf, 5);
	  if (status != 0)
	    break;

	  sM = (buf[0] & 0xf0) >> 4;
	  rN = buf[0] & 0x0f;
	  fsM = (Y << 4) | sM;
	  imm32 = extract_signed_integer (&buf[1], 4, byte_order);

	  rN_regnum = translate_rreg (rN);

	  pv_area_store (stack, regs[rN_regnum], 4, regs[E_FS0_REGNUM + fsM]);
	  regs[rN_regnum] = pv_add_constant (regs[rN_regnum], imm32);

	  pc += 7;
	}
      /* mov imm8, aN */
      else if ((instr[0] & 0xf0) == 0x90)
        {
	  int aN = instr[0] & 0x03;
	  LONGEST imm8;

	  imm8 = extract_signed_integer (&instr[1], 1, byte_order);

	  regs[E_A0_REGNUM + aN] = pv_constant (imm8);
	  pc += 2;
	}
      /* mov imm16, aN */
      else if ((instr[0] & 0xfc) == 0x24)
        {
	  int aN = instr[0] & 0x03;
	  gdb_byte buf[2];
	  LONGEST imm16;

	  status = target_read_memory (pc + 1, buf, 2);
	  if (status != 0)
	    break;

	  imm16 = extract_signed_integer (buf, 2, byte_order);
	  regs[E_A0_REGNUM + aN] = pv_constant (imm16);
	  pc += 3;
	}
      /* mov imm32, aN */
      else if (instr[0] == 0xfc && ((instr[1] & 0xfc) == 0xdc))
        {
	  int aN = instr[1] & 0x03;
	  gdb_byte buf[4];
	  LONGEST imm32;

	  status = target_read_memory (pc + 2, buf, 4);
	  if (status != 0)
	    break;

	  imm32 = extract_signed_integer (buf, 4, byte_order);
	  regs[E_A0_REGNUM + aN] = pv_constant (imm32);
	  pc += 6;
	}
      /* mov imm8, dN */
      else if ((instr[0] & 0xf0) == 0x80)
        {
	  int dN = instr[0] & 0x03;
	  LONGEST imm8;

	  imm8 = extract_signed_integer (&instr[1], 1, byte_order);

	  regs[E_D0_REGNUM + dN] = pv_constant (imm8);
	  pc += 2;
	}
      /* mov imm16, dN */
      else if ((instr[0] & 0xfc) == 0x2c)
        {
	  int dN = instr[0] & 0x03;
	  gdb_byte buf[2];
	  LONGEST imm16;

	  status = target_read_memory (pc + 1, buf, 2);
	  if (status != 0)
	    break;

	  imm16 = extract_signed_integer (buf, 2, byte_order);
	  regs[E_D0_REGNUM + dN] = pv_constant (imm16);
	  pc += 3;
	}
      /* mov imm32, dN */
      else if (instr[0] == 0xfc && ((instr[1] & 0xfc) == 0xcc))
        {
	  int dN = instr[1] & 0x03;
	  gdb_byte buf[4];
	  LONGEST imm32;

	  status = target_read_memory (pc + 2, buf, 4);
	  if (status != 0)
	    break;

	  imm32 = extract_signed_integer (buf, 4, byte_order);
	  regs[E_D0_REGNUM + dN] = pv_constant (imm32);
	  pc += 6;
	}
      else
	{
	  /* We've hit some instruction that we don't recognize.  Hopefully,
	     we have enough to do prologue analysis.  */
	  break;
	}
    }

  /* Is the frame size (offset, really) a known constant?  */
  if (pv_is_register (regs[E_SP_REGNUM], E_SP_REGNUM))
    result->frame_size = regs[E_SP_REGNUM].k;

  /* Was the frame pointer initialized?  */
  if (pv_is_register (regs[E_A3_REGNUM], E_SP_REGNUM))
    {
      result->has_frame_ptr = 1;
      result->frame_ptr_offset = regs[E_A3_REGNUM].k;
    }

  /* Record where all the registers were saved.  */
  pv_area_scan (stack, check_for_saved, (void *) result);

  result->prologue_end = after_last_frame_setup_insn;

  do_cleanups (back_to);
}

/* Function: skip_prologue
   Return the address of the first inst past the prologue of the function.  */

static CORE_ADDR
mn10300_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  char *name;
  CORE_ADDR func_addr, func_end;
  struct mn10300_prologue p;

  /* Try to find the extent of the function that contains PC.  */
  if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
    return pc;

  mn10300_analyze_prologue (gdbarch, pc, func_end, &p);
  return p.prologue_end;
}

/* Wrapper for mn10300_analyze_prologue: find the function start;
   use the current frame PC as the limit, then
   invoke mn10300_analyze_prologue and return its result.  */
static struct mn10300_prologue *
mn10300_analyze_frame_prologue (struct frame_info *this_frame,
			   void **this_prologue_cache)
{
  if (!*this_prologue_cache)
    {
      CORE_ADDR func_start, stop_addr;

      *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct mn10300_prologue);

      func_start = get_frame_func (this_frame);
      stop_addr = get_frame_pc (this_frame);

      /* If we couldn't find any function containing the PC, then
         just initialize the prologue cache, but don't do anything.  */
      if (!func_start)
        stop_addr = func_start;

      mn10300_analyze_prologue (get_frame_arch (this_frame),
                                func_start, stop_addr, *this_prologue_cache);
    }

  return *this_prologue_cache;
}

/* Given the next frame and a prologue cache, return this frame's
   base.  */
static CORE_ADDR
mn10300_frame_base (struct frame_info *this_frame, void **this_prologue_cache)
{
  struct mn10300_prologue *p
    = mn10300_analyze_frame_prologue (this_frame, this_prologue_cache);

  /* In functions that use alloca, the distance between the stack
     pointer and the frame base varies dynamically, so we can't use
     the SP plus static information like prologue analysis to find the
     frame base.  However, such functions must have a frame pointer,
     to be able to restore the SP on exit.  So whenever we do have a
     frame pointer, use that to find the base.  */
  if (p->has_frame_ptr)
    {
      CORE_ADDR fp = get_frame_register_unsigned (this_frame, E_A3_REGNUM);
      return fp - p->frame_ptr_offset;
    }
  else
    {
      CORE_ADDR sp = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
      return sp - p->frame_size;
    }
}

/* Here is a dummy implementation.  */
static struct frame_id
mn10300_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
{
  CORE_ADDR sp = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
  CORE_ADDR pc = get_frame_register_unsigned (this_frame, E_PC_REGNUM);
  return frame_id_build (sp, pc);
}

static void
mn10300_frame_this_id (struct frame_info *this_frame,
		       void **this_prologue_cache,
		       struct frame_id *this_id)
{
  *this_id = frame_id_build (mn10300_frame_base (this_frame,
						 this_prologue_cache),
			     get_frame_func (this_frame));

}

static struct value *
mn10300_frame_prev_register (struct frame_info *this_frame,
		             void **this_prologue_cache, int regnum)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
  struct mn10300_prologue *p
    = mn10300_analyze_frame_prologue (this_frame, this_prologue_cache);
  CORE_ADDR frame_base = mn10300_frame_base (this_frame, this_prologue_cache);
  int reg_size = register_size (get_frame_arch (this_frame), regnum);

  if (regnum == E_SP_REGNUM)
    return frame_unwind_got_constant (this_frame, regnum, frame_base);

  /* If prologue analysis says we saved this register somewhere,
     return a description of the stack slot holding it.  */
  if (p->reg_offset[regnum] != 1)
    return frame_unwind_got_memory (this_frame, regnum,
                                    frame_base + p->reg_offset[regnum]);

  /* Otherwise, presume we haven't changed the value of this
     register, and get it from the next frame.  */
  return frame_unwind_got_register (this_frame, regnum, regnum);
}

static const struct frame_unwind mn10300_frame_unwind = {
  NORMAL_FRAME,
  default_frame_unwind_stop_reason,
  mn10300_frame_this_id, 
  mn10300_frame_prev_register,
  NULL,
  default_frame_sniffer
};

static CORE_ADDR
mn10300_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
{
  ULONGEST pc;

  pc = frame_unwind_register_unsigned (this_frame, E_PC_REGNUM);
  return pc;
}

static CORE_ADDR
mn10300_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
{
  ULONGEST sp;

  sp = frame_unwind_register_unsigned (this_frame, E_SP_REGNUM);
  return sp;
}

static void
mn10300_frame_unwind_init (struct gdbarch *gdbarch)
{
  dwarf2_append_unwinders (gdbarch);
  frame_unwind_append_unwinder (gdbarch, &mn10300_frame_unwind);
  set_gdbarch_dummy_id (gdbarch, mn10300_dummy_id);
  set_gdbarch_unwind_pc (gdbarch, mn10300_unwind_pc);
  set_gdbarch_unwind_sp (gdbarch, mn10300_unwind_sp);
}

/* Function: push_dummy_call
 *
 * Set up machine state for a target call, including
 * function arguments, stack, return address, etc.
 *
 */

static CORE_ADDR
mn10300_push_dummy_call (struct gdbarch *gdbarch, 
			 struct value *target_func,
			 struct regcache *regcache,
			 CORE_ADDR bp_addr, 
			 int nargs, struct value **args,
			 CORE_ADDR sp, 
			 int struct_return,
			 CORE_ADDR struct_addr)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  const int push_size = register_size (gdbarch, E_PC_REGNUM);
  int regs_used;
  int len, arg_len; 
  int stack_offset = 0;
  int argnum;
  char *val, valbuf[MAX_REGISTER_SIZE];

  /* This should be a nop, but align the stack just in case something
     went wrong.  Stacks are four byte aligned on the mn10300.  */
  sp &= ~3;

  /* Now make space on the stack for the args.

     XXX This doesn't appear to handle pass-by-invisible reference
     arguments.  */
  regs_used = struct_return ? 1 : 0;
  for (len = 0, argnum = 0; argnum < nargs; argnum++)
    {
      arg_len = (TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3;
      while (regs_used < 2 && arg_len > 0)
	{
	  regs_used++;
	  arg_len -= push_size;
	}
      len += arg_len;
    }

  /* Allocate stack space.  */
  sp -= len;

  if (struct_return)
    {
      regs_used = 1;
      regcache_cooked_write_unsigned (regcache, E_D0_REGNUM, struct_addr);
    }
  else
    regs_used = 0;

  /* Push all arguments onto the stack.  */
  for (argnum = 0; argnum < nargs; argnum++)
    {
      /* FIXME what about structs?  Unions?  */
      if (TYPE_CODE (value_type (*args)) == TYPE_CODE_STRUCT
	  && TYPE_LENGTH (value_type (*args)) > 8)
	{
	  /* Change to pointer-to-type.  */
	  arg_len = push_size;
	  store_unsigned_integer (valbuf, push_size, byte_order,
				  value_address (*args));
	  val = &valbuf[0];
	}
      else
	{
	  arg_len = TYPE_LENGTH (value_type (*args));
	  val = (char *) value_contents (*args);
	}

      while (regs_used < 2 && arg_len > 0)
	{
	  regcache_cooked_write_unsigned (regcache, regs_used, 
		  extract_unsigned_integer (val, push_size, byte_order));
	  val += push_size;
	  arg_len -= push_size;
	  regs_used++;
	}

      while (arg_len > 0)
	{
	  write_memory (sp + stack_offset, val, push_size);
	  arg_len -= push_size;
	  val += push_size;
	  stack_offset += push_size;
	}

      args++;
    }

  /* Make space for the flushback area.  */
  sp -= 8;

  /* Push the return address that contains the magic breakpoint.  */
  sp -= 4;
  write_memory_unsigned_integer (sp, push_size, byte_order, bp_addr);

  /* The CPU also writes the return address always into the
     MDR register on "call".  */
  regcache_cooked_write_unsigned (regcache, E_MDR_REGNUM, bp_addr);

  /* Update $sp.  */
  regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);

  /* On the mn10300, it's possible to move some of the stack adjustment
     and saving of the caller-save registers out of the prologue and
     into the call sites.  (When using gcc, this optimization can
     occur when using the -mrelax switch.) If this occurs, the dwarf2
     info will reflect this fact.  We can test to see if this is the
     case by creating a new frame using the current stack pointer and
     the address of the function that we're about to call.  We then
     unwind SP and see if it's different than the SP of our newly
     created frame.  If the SP values are the same, the caller is not
     expected to allocate any additional stack.  On the other hand, if
     the SP values are different, the difference determines the
     additional stack that must be allocated.
     
     Note that we don't update the return value though because that's
     the value of the stack just after pushing the arguments, but prior
     to performing the call.  This value is needed in order to
     construct the frame ID of the dummy call.  */
  {
    CORE_ADDR func_addr = find_function_addr (target_func, NULL);
    CORE_ADDR unwound_sp 
      = mn10300_unwind_sp (gdbarch, create_new_frame (sp, func_addr));
    if (sp != unwound_sp)
      regcache_cooked_write_unsigned (regcache, E_SP_REGNUM,
                                      sp - (unwound_sp - sp));
  }

  return sp;
}

/* If DWARF2 is a register number appearing in Dwarf2 debug info, then
   mn10300_dwarf2_reg_to_regnum (DWARF2) is the corresponding GDB
   register number.  Why don't Dwarf2 and GDB use the same numbering?
   Who knows?  But since people have object files lying around with
   the existing Dwarf2 numbering, and other people have written stubs
   to work with the existing GDB, neither of them can change.  So we
   just have to cope.  */
static int
mn10300_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int dwarf2)
{
  /* This table is supposed to be shaped like the gdbarch_register_name
     initializer in gcc/config/mn10300/mn10300.h.  Registers which
     appear in GCC's numbering, but have no counterpart in GDB's
     world, are marked with a -1.  */
  static int dwarf2_to_gdb[] = {
    0,  1,  2,  3,  4,  5,  6,  7, -1, 8,
    15, 16, 17, 18, 19, 20, 21, 22,
    32, 33, 34, 35, 36, 37, 38, 39,
    40, 41, 42, 43, 44, 45, 46, 47,
    48, 49, 50, 51, 52, 53, 54, 55,
    56, 57, 58, 59, 60, 61, 62, 63,
    9, 11
  };

  if (dwarf2 < 0
      || dwarf2 >= ARRAY_SIZE (dwarf2_to_gdb))
    {
      warning (_("Bogus register number in debug info: %d"), dwarf2);
      return -1;
    }

  return dwarf2_to_gdb[dwarf2];
}

static struct gdbarch *
mn10300_gdbarch_init (struct gdbarch_info info,
		      struct gdbarch_list *arches)
{
  struct gdbarch *gdbarch;
  struct gdbarch_tdep *tdep;
  int num_regs;

  arches = gdbarch_list_lookup_by_info (arches, &info);
  if (arches != NULL)
    return arches->gdbarch;

  tdep = xmalloc (sizeof (struct gdbarch_tdep));
  gdbarch = gdbarch_alloc (&info, tdep);

  switch (info.bfd_arch_info->mach)
    {
    case 0:
    case bfd_mach_mn10300:
      set_gdbarch_register_name (gdbarch, mn10300_generic_register_name);
      tdep->am33_mode = 0;
      num_regs = 32;
      break;
    case bfd_mach_am33:
      set_gdbarch_register_name (gdbarch, am33_register_name);
      tdep->am33_mode = 1;
      num_regs = 32;
      break;
    case bfd_mach_am33_2:
      set_gdbarch_register_name (gdbarch, am33_2_register_name);
      tdep->am33_mode = 2;
      num_regs = 64;
      set_gdbarch_fp0_regnum (gdbarch, 32);
      break;
    default:
      internal_error (__FILE__, __LINE__,
		      _("mn10300_gdbarch_init: Unknown mn10300 variant"));
      break;
    }

  /* By default, chars are unsigned.  */
  set_gdbarch_char_signed (gdbarch, 0);

  /* Registers.  */
  set_gdbarch_num_regs (gdbarch, num_regs);
  set_gdbarch_register_type (gdbarch, mn10300_register_type);
  set_gdbarch_skip_prologue (gdbarch, mn10300_skip_prologue);
  set_gdbarch_read_pc (gdbarch, mn10300_read_pc);
  set_gdbarch_write_pc (gdbarch, mn10300_write_pc);
  set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
  set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
  set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mn10300_dwarf2_reg_to_regnum);

  /* Stack unwinding.  */
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
  /* Breakpoints.  */
  set_gdbarch_breakpoint_from_pc (gdbarch, mn10300_breakpoint_from_pc);
  /* decr_pc_after_break?  */
  /* Disassembly.  */
  set_gdbarch_print_insn (gdbarch, print_insn_mn10300);

  /* Stage 2 */
  set_gdbarch_return_value (gdbarch, mn10300_return_value);
  
  /* Stage 3 -- get target calls working.  */
  set_gdbarch_push_dummy_call (gdbarch, mn10300_push_dummy_call);
  /* set_gdbarch_return_value (store, extract) */


  mn10300_frame_unwind_init (gdbarch);

  /* Hook in ABI-specific overrides, if they have been registered.  */
  gdbarch_init_osabi (info, gdbarch);

  return gdbarch;
}
 
/* Dump out the mn10300 specific architecture information.  */

static void
mn10300_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  fprintf_unfiltered (file, "mn10300_dump_tdep: am33_mode = %d\n",
		      tdep->am33_mode);
}

/* Provide a prototype to silence -Wmissing-prototypes.  */
extern initialize_file_ftype _initialize_mn10300_tdep;

void
_initialize_mn10300_tdep (void)
{
  gdbarch_register (bfd_arch_mn10300, mn10300_gdbarch_init, mn10300_dump_tdep);
}