aboutsummaryrefslogtreecommitdiff
path: root/gdb/m88k-tdep.c
blob: da0b67ca3d5d700b80a87e4d97605e17a563e537 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
// OBSOLETE /* Target-machine dependent code for Motorola 88000 series, for GDB.
// OBSOLETE 
// OBSOLETE    Copyright 1988, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,
// OBSOLETE    2000, 2001, 2002 Free Software Foundation, Inc.
// OBSOLETE 
// OBSOLETE    This file is part of GDB.
// OBSOLETE 
// OBSOLETE    This program is free software; you can redistribute it and/or modify
// OBSOLETE    it under the terms of the GNU General Public License as published by
// OBSOLETE    the Free Software Foundation; either version 2 of the License, or
// OBSOLETE    (at your option) any later version.
// OBSOLETE 
// OBSOLETE    This program is distributed in the hope that it will be useful,
// OBSOLETE    but WITHOUT ANY WARRANTY; without even the implied warranty of
// OBSOLETE    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// OBSOLETE    GNU General Public License for more details.
// OBSOLETE 
// OBSOLETE    You should have received a copy of the GNU General Public License
// OBSOLETE    along with this program; if not, write to the Free Software
// OBSOLETE    Foundation, Inc., 59 Temple Place - Suite 330,
// OBSOLETE    Boston, MA 02111-1307, USA.  */
// OBSOLETE 
// OBSOLETE #include "defs.h"
// OBSOLETE #include "frame.h"
// OBSOLETE #include "inferior.h"
// OBSOLETE #include "value.h"
// OBSOLETE #include "gdbcore.h"
// OBSOLETE #include "symtab.h"
// OBSOLETE #include "setjmp.h"
// OBSOLETE #include "value.h"
// OBSOLETE #include "regcache.h"
// OBSOLETE 
// OBSOLETE /* Size of an instruction */
// OBSOLETE #define	BYTES_PER_88K_INSN	4
// OBSOLETE 
// OBSOLETE void frame_find_saved_regs ();
// OBSOLETE 
// OBSOLETE /* Is this target an m88110?  Otherwise assume m88100.  This has
// OBSOLETE    relevance for the ways in which we screw with instruction pointers.  */
// OBSOLETE 
// OBSOLETE int target_is_m88110 = 0;
// OBSOLETE 
// OBSOLETE void
// OBSOLETE m88k_target_write_pc (CORE_ADDR pc, ptid_t ptid)
// OBSOLETE {
// OBSOLETE   /* According to the MC88100 RISC Microprocessor User's Manual,
// OBSOLETE      section 6.4.3.1.2:
// OBSOLETE 
// OBSOLETE      ... can be made to return to a particular instruction by placing
// OBSOLETE      a valid instruction address in the SNIP and the next sequential
// OBSOLETE      instruction address in the SFIP (with V bits set and E bits
// OBSOLETE      clear).  The rte resumes execution at the instruction pointed to
// OBSOLETE      by the SNIP, then the SFIP.
// OBSOLETE 
// OBSOLETE      The E bit is the least significant bit (bit 0).  The V (valid)
// OBSOLETE      bit is bit 1.  This is why we logical or 2 into the values we are
// OBSOLETE      writing below.  It turns out that SXIP plays no role when
// OBSOLETE      returning from an exception so nothing special has to be done
// OBSOLETE      with it.  We could even (presumably) give it a totally bogus
// OBSOLETE      value.
// OBSOLETE 
// OBSOLETE      -- Kevin Buettner */
// OBSOLETE 
// OBSOLETE   write_register_pid (SXIP_REGNUM, pc, ptid);
// OBSOLETE   write_register_pid (SNIP_REGNUM, (pc | 2), ptid);
// OBSOLETE   write_register_pid (SFIP_REGNUM, (pc | 2) + 4, ptid);
// OBSOLETE }
// OBSOLETE 
// OBSOLETE /* The type of a register.  */
// OBSOLETE struct type *
// OBSOLETE m88k_register_type (int regnum)
// OBSOLETE {
// OBSOLETE   if (regnum >= XFP_REGNUM)
// OBSOLETE     return builtin_type_m88110_ext;
// OBSOLETE   else if (regnum == PC_REGNUM || regnum == FP_REGNUM || regnum == SP_REGNUM)
// OBSOLETE     return builtin_type_void_func_ptr;
// OBSOLETE   else
// OBSOLETE     return builtin_type_int32;
// OBSOLETE }
// OBSOLETE 
// OBSOLETE 
// OBSOLETE /* The m88k kernel aligns all instructions on 4-byte boundaries.  The
// OBSOLETE    kernel also uses the least significant two bits for its own hocus
// OBSOLETE    pocus.  When gdb receives an address from the kernel, it needs to
// OBSOLETE    preserve those right-most two bits, but gdb also needs to be careful
// OBSOLETE    to realize that those two bits are not really a part of the address
// OBSOLETE    of an instruction.  Shrug.  */
// OBSOLETE 
// OBSOLETE CORE_ADDR
// OBSOLETE m88k_addr_bits_remove (CORE_ADDR addr)
// OBSOLETE {
// OBSOLETE   return ((addr) & ~3);
// OBSOLETE }
// OBSOLETE 
// OBSOLETE 
// OBSOLETE /* Given a GDB frame, determine the address of the calling function's frame.
// OBSOLETE    This will be used to create a new GDB frame struct, and then
// OBSOLETE    INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
// OBSOLETE 
// OBSOLETE    For us, the frame address is its stack pointer value, so we look up
// OBSOLETE    the function prologue to determine the caller's sp value, and return it.  */
// OBSOLETE 
// OBSOLETE CORE_ADDR
// OBSOLETE frame_chain (struct frame_info *thisframe)
// OBSOLETE {
// OBSOLETE 
// OBSOLETE   frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
// OBSOLETE   /* NOTE:  this depends on frame_find_saved_regs returning the VALUE, not
// OBSOLETE      the ADDRESS, of SP_REGNUM.  It also depends on the cache of
// OBSOLETE      frame_find_saved_regs results.  */
// OBSOLETE   if (thisframe->fsr->regs[SP_REGNUM])
// OBSOLETE     return thisframe->fsr->regs[SP_REGNUM];
// OBSOLETE   else
// OBSOLETE     return thisframe->frame;	/* Leaf fn -- next frame up has same SP. */
// OBSOLETE }
// OBSOLETE 
// OBSOLETE int
// OBSOLETE frameless_function_invocation (struct frame_info *frame)
// OBSOLETE {
// OBSOLETE 
// OBSOLETE   frame_find_saved_regs (frame, (struct frame_saved_regs *) 0);
// OBSOLETE   /* NOTE:  this depends on frame_find_saved_regs returning the VALUE, not
// OBSOLETE      the ADDRESS, of SP_REGNUM.  It also depends on the cache of
// OBSOLETE      frame_find_saved_regs results.  */
// OBSOLETE   if (frame->fsr->regs[SP_REGNUM])
// OBSOLETE     return 0;			/* Frameful -- return addr saved somewhere */
// OBSOLETE   else
// OBSOLETE     return 1;			/* Frameless -- no saved return address */
// OBSOLETE }
// OBSOLETE 
// OBSOLETE void
// OBSOLETE init_extra_frame_info (int fromleaf, struct frame_info *frame)
// OBSOLETE {
// OBSOLETE   frame->fsr = 0;		/* Not yet allocated */
// OBSOLETE   frame->args_pointer = 0;	/* Unknown */
// OBSOLETE   frame->locals_pointer = 0;	/* Unknown */
// OBSOLETE }
// OBSOLETE 
// OBSOLETE /* Examine an m88k function prologue, recording the addresses at which
// OBSOLETE    registers are saved explicitly by the prologue code, and returning
// OBSOLETE    the address of the first instruction after the prologue (but not
// OBSOLETE    after the instruction at address LIMIT, as explained below).
// OBSOLETE 
// OBSOLETE    LIMIT places an upper bound on addresses of the instructions to be
// OBSOLETE    examined.  If the prologue code scan reaches LIMIT, the scan is
// OBSOLETE    aborted and LIMIT is returned.  This is used, when examining the
// OBSOLETE    prologue for the current frame, to keep examine_prologue () from
// OBSOLETE    claiming that a given register has been saved when in fact the
// OBSOLETE    instruction that saves it has not yet been executed.  LIMIT is used
// OBSOLETE    at other times to stop the scan when we hit code after the true
// OBSOLETE    function prologue (e.g. for the first source line) which might
// OBSOLETE    otherwise be mistaken for function prologue.
// OBSOLETE 
// OBSOLETE    The format of the function prologue matched by this routine is
// OBSOLETE    derived from examination of the source to gcc 1.95, particularly
// OBSOLETE    the routine output_prologue () in config/out-m88k.c.
// OBSOLETE 
// OBSOLETE    subu r31,r31,n                       # stack pointer update
// OBSOLETE 
// OBSOLETE    (st rn,r31,offset)?                  # save incoming regs
// OBSOLETE    (st.d rn,r31,offset)?
// OBSOLETE 
// OBSOLETE    (addu r30,r31,n)?                    # frame pointer update
// OBSOLETE 
// OBSOLETE    (pic sequence)?                      # PIC code prologue
// OBSOLETE 
// OBSOLETE    (or   rn,rm,0)?                      # Move parameters to other regs
// OBSOLETE  */
// OBSOLETE 
// OBSOLETE /* Macros for extracting fields from instructions.  */
// OBSOLETE 
// OBSOLETE #define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos))
// OBSOLETE #define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width))
// OBSOLETE #define	SUBU_OFFSET(x)	((unsigned)(x & 0xFFFF))
// OBSOLETE #define	ST_OFFSET(x)	((unsigned)((x) & 0xFFFF))
// OBSOLETE #define	ST_SRC(x)	EXTRACT_FIELD ((x), 21, 5)
// OBSOLETE #define	ADDU_OFFSET(x)	((unsigned)(x & 0xFFFF))
// OBSOLETE 
// OBSOLETE /*
// OBSOLETE  * prologue_insn_tbl is a table of instructions which may comprise a
// OBSOLETE  * function prologue.  Associated with each table entry (corresponding
// OBSOLETE  * to a single instruction or group of instructions), is an action.
// OBSOLETE  * This action is used by examine_prologue (below) to determine
// OBSOLETE  * the state of certain machine registers and where the stack frame lives.
// OBSOLETE  */
// OBSOLETE 
// OBSOLETE enum prologue_insn_action
// OBSOLETE {
// OBSOLETE   PIA_SKIP,			/* don't care what the instruction does */
// OBSOLETE   PIA_NOTE_ST,			/* note register stored and where */
// OBSOLETE   PIA_NOTE_STD,			/* note pair of registers stored and where */
// OBSOLETE   PIA_NOTE_SP_ADJUSTMENT,	/* note stack pointer adjustment */
// OBSOLETE   PIA_NOTE_FP_ASSIGNMENT,	/* note frame pointer assignment */
// OBSOLETE   PIA_NOTE_PROLOGUE_END,	/* no more prologue */
// OBSOLETE };
// OBSOLETE 
// OBSOLETE struct prologue_insns
// OBSOLETE   {
// OBSOLETE     unsigned long insn;
// OBSOLETE     unsigned long mask;
// OBSOLETE     enum prologue_insn_action action;
// OBSOLETE   };
// OBSOLETE 
// OBSOLETE struct prologue_insns prologue_insn_tbl[] =
// OBSOLETE {
// OBSOLETE   /* Various register move instructions */
// OBSOLETE   {0x58000000, 0xf800ffff, PIA_SKIP},	/* or/or.u with immed of 0 */
// OBSOLETE   {0xf4005800, 0xfc1fffe0, PIA_SKIP},	/* or rd, r0, rs */
// OBSOLETE   {0xf4005800, 0xfc00ffff, PIA_SKIP},	/* or rd, rs, r0 */
// OBSOLETE 
// OBSOLETE   /* Stack pointer setup: "subu sp, sp, n" where n is a multiple of 8 */
// OBSOLETE   {0x67ff0000, 0xffff0007, PIA_NOTE_SP_ADJUSTMENT},
// OBSOLETE 
// OBSOLETE   /* Frame pointer assignment: "addu r30, r31, n" */
// OBSOLETE   {0x63df0000, 0xffff0000, PIA_NOTE_FP_ASSIGNMENT},
// OBSOLETE 
// OBSOLETE   /* Store to stack instructions; either "st rx, sp, n" or "st.d rx, sp, n" */
// OBSOLETE   {0x241f0000, 0xfc1f0000, PIA_NOTE_ST},	/* st rx, sp, n */
// OBSOLETE   {0x201f0000, 0xfc1f0000, PIA_NOTE_STD},	/* st.d rs, sp, n */
// OBSOLETE 
// OBSOLETE   /* Instructions needed for setting up r25 for pic code. */
// OBSOLETE   {0x5f200000, 0xffff0000, PIA_SKIP},	/* or.u r25, r0, offset_high */
// OBSOLETE   {0xcc000002, 0xffffffff, PIA_SKIP},	/* bsr.n Lab */
// OBSOLETE   {0x5b390000, 0xffff0000, PIA_SKIP},	/* or r25, r25, offset_low */
// OBSOLETE   {0xf7396001, 0xffffffff, PIA_SKIP},	/* Lab: addu r25, r25, r1 */
// OBSOLETE 
// OBSOLETE   /* Various branch or jump instructions which have a delay slot -- these
// OBSOLETE      do not form part of the prologue, but the instruction in the delay
// OBSOLETE      slot might be a store instruction which should be noted. */
// OBSOLETE   {0xc4000000, 0xe4000000, PIA_NOTE_PROLOGUE_END},
// OBSOLETE 					/* br.n, bsr.n, bb0.n, or bb1.n */
// OBSOLETE   {0xec000000, 0xfc000000, PIA_NOTE_PROLOGUE_END},	/* bcnd.n */
// OBSOLETE   {0xf400c400, 0xfffff7e0, PIA_NOTE_PROLOGUE_END}	/* jmp.n or jsr.n */
// OBSOLETE 
// OBSOLETE };
// OBSOLETE 
// OBSOLETE 
// OBSOLETE /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
// OBSOLETE    is not the address of a valid instruction, the address of the next
// OBSOLETE    instruction beyond ADDR otherwise.  *PWORD1 receives the first word
// OBSOLETE    of the instruction. */
// OBSOLETE 
// OBSOLETE #define NEXT_PROLOGUE_INSN(addr, lim, pword1) \
// OBSOLETE   (((addr) < (lim)) ? next_insn (addr, pword1) : 0)
// OBSOLETE 
// OBSOLETE /* Read the m88k instruction at 'memaddr' and return the address of 
// OBSOLETE    the next instruction after that, or 0 if 'memaddr' is not the
// OBSOLETE    address of a valid instruction.  The instruction
// OBSOLETE    is stored at 'pword1'.  */
// OBSOLETE 
// OBSOLETE CORE_ADDR
// OBSOLETE next_insn (CORE_ADDR memaddr, unsigned long *pword1)
// OBSOLETE {
// OBSOLETE   *pword1 = read_memory_integer (memaddr, BYTES_PER_88K_INSN);
// OBSOLETE   return memaddr + BYTES_PER_88K_INSN;
// OBSOLETE }
// OBSOLETE 
// OBSOLETE /* Read a register from frames called by us (or from the hardware regs).  */
// OBSOLETE 
// OBSOLETE static int
// OBSOLETE read_next_frame_reg (struct frame_info *frame, int regno)
// OBSOLETE {
// OBSOLETE   for (; frame; frame = frame->next)
// OBSOLETE     {
// OBSOLETE       if (regno == SP_REGNUM)
// OBSOLETE 	return FRAME_FP (frame);
// OBSOLETE       else if (frame->fsr->regs[regno])
// OBSOLETE 	return read_memory_integer (frame->fsr->regs[regno], 4);
// OBSOLETE     }
// OBSOLETE   return read_register (regno);
// OBSOLETE }
// OBSOLETE 
// OBSOLETE /* Examine the prologue of a function.  `ip' points to the first instruction.
// OBSOLETE    `limit' is the limit of the prologue (e.g. the addr of the first 
// OBSOLETE    linenumber, or perhaps the program counter if we're stepping through).
// OBSOLETE    `frame_sp' is the stack pointer value in use in this frame.  
// OBSOLETE    `fsr' is a pointer to a frame_saved_regs structure into which we put
// OBSOLETE    info about the registers saved by this frame.  
// OBSOLETE    `fi' is a struct frame_info pointer; we fill in various fields in it
// OBSOLETE    to reflect the offsets of the arg pointer and the locals pointer.  */
// OBSOLETE 
// OBSOLETE static CORE_ADDR
// OBSOLETE examine_prologue (register CORE_ADDR ip, register CORE_ADDR limit,
// OBSOLETE 		  CORE_ADDR frame_sp, struct frame_saved_regs *fsr,
// OBSOLETE 		  struct frame_info *fi)
// OBSOLETE {
// OBSOLETE   register CORE_ADDR next_ip;
// OBSOLETE   register int src;
// OBSOLETE   unsigned long insn;
// OBSOLETE   int size, offset;
// OBSOLETE   char must_adjust[32];		/* If set, must adjust offsets in fsr */
// OBSOLETE   int sp_offset = -1;		/* -1 means not set (valid must be mult of 8) */
// OBSOLETE   int fp_offset = -1;		/* -1 means not set */
// OBSOLETE   CORE_ADDR frame_fp;
// OBSOLETE   CORE_ADDR prologue_end = 0;
// OBSOLETE 
// OBSOLETE   memset (must_adjust, '\0', sizeof (must_adjust));
// OBSOLETE   next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
// OBSOLETE 
// OBSOLETE   while (next_ip)
// OBSOLETE     {
// OBSOLETE       struct prologue_insns *pip;
// OBSOLETE 
// OBSOLETE       for (pip = prologue_insn_tbl; (insn & pip->mask) != pip->insn;)
// OBSOLETE 	if (++pip >= prologue_insn_tbl + sizeof prologue_insn_tbl)
// OBSOLETE 	  goto end_of_prologue_found;	/* not a prologue insn */
// OBSOLETE 
// OBSOLETE       switch (pip->action)
// OBSOLETE 	{
// OBSOLETE 	case PIA_NOTE_ST:
// OBSOLETE 	case PIA_NOTE_STD:
// OBSOLETE 	  if (sp_offset != -1)
// OBSOLETE 	    {
// OBSOLETE 	      src = ST_SRC (insn);
// OBSOLETE 	      offset = ST_OFFSET (insn);
// OBSOLETE 	      must_adjust[src] = 1;
// OBSOLETE 	      fsr->regs[src++] = offset;	/* Will be adjusted later */
// OBSOLETE 	      if (pip->action == PIA_NOTE_STD && src < 32)
// OBSOLETE 		{
// OBSOLETE 		  offset += 4;
// OBSOLETE 		  must_adjust[src] = 1;
// OBSOLETE 		  fsr->regs[src++] = offset;
// OBSOLETE 		}
// OBSOLETE 	    }
// OBSOLETE 	  else
// OBSOLETE 	    goto end_of_prologue_found;
// OBSOLETE 	  break;
// OBSOLETE 	case PIA_NOTE_SP_ADJUSTMENT:
// OBSOLETE 	  if (sp_offset == -1)
// OBSOLETE 	    sp_offset = -SUBU_OFFSET (insn);
// OBSOLETE 	  else
// OBSOLETE 	    goto end_of_prologue_found;
// OBSOLETE 	  break;
// OBSOLETE 	case PIA_NOTE_FP_ASSIGNMENT:
// OBSOLETE 	  if (fp_offset == -1)
// OBSOLETE 	    fp_offset = ADDU_OFFSET (insn);
// OBSOLETE 	  else
// OBSOLETE 	    goto end_of_prologue_found;
// OBSOLETE 	  break;
// OBSOLETE 	case PIA_NOTE_PROLOGUE_END:
// OBSOLETE 	  if (!prologue_end)
// OBSOLETE 	    prologue_end = ip;
// OBSOLETE 	  break;
// OBSOLETE 	case PIA_SKIP:
// OBSOLETE 	default:
// OBSOLETE 	  /* Do nothing */
// OBSOLETE 	  break;
// OBSOLETE 	}
// OBSOLETE 
// OBSOLETE       ip = next_ip;
// OBSOLETE       next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn);
// OBSOLETE     }
// OBSOLETE 
// OBSOLETE end_of_prologue_found:
// OBSOLETE 
// OBSOLETE   if (prologue_end)
// OBSOLETE     ip = prologue_end;
// OBSOLETE 
// OBSOLETE   /* We're done with the prologue.  If we don't care about the stack
// OBSOLETE      frame itself, just return.  (Note that fsr->regs has been trashed,
// OBSOLETE      but the one caller who calls with fi==0 passes a dummy there.)  */
// OBSOLETE 
// OBSOLETE   if (fi == 0)
// OBSOLETE     return ip;
// OBSOLETE 
// OBSOLETE   /*
// OBSOLETE      OK, now we have:
// OBSOLETE 
// OBSOLETE      sp_offset  original (before any alloca calls) displacement of SP
// OBSOLETE      (will be negative).
// OBSOLETE 
// OBSOLETE      fp_offset  displacement from original SP to the FP for this frame
// OBSOLETE      or -1.
// OBSOLETE 
// OBSOLETE      fsr->regs[0..31]   displacement from original SP to the stack
// OBSOLETE      location where reg[0..31] is stored.
// OBSOLETE 
// OBSOLETE      must_adjust[0..31] set if corresponding offset was set.
// OBSOLETE 
// OBSOLETE      If alloca has been called between the function prologue and the current
// OBSOLETE      IP, then the current SP (frame_sp) will not be the original SP as set by
// OBSOLETE      the function prologue.  If the current SP is not the original SP, then the
// OBSOLETE      compiler will have allocated an FP for this frame, fp_offset will be set,
// OBSOLETE      and we can use it to calculate the original SP.
// OBSOLETE 
// OBSOLETE      Then, we figure out where the arguments and locals are, and relocate the
// OBSOLETE      offsets in fsr->regs to absolute addresses.  */
// OBSOLETE 
// OBSOLETE   if (fp_offset != -1)
// OBSOLETE     {
// OBSOLETE       /* We have a frame pointer, so get it, and base our calc's on it.  */
// OBSOLETE       frame_fp = (CORE_ADDR) read_next_frame_reg (fi->next, ACTUAL_FP_REGNUM);
// OBSOLETE       frame_sp = frame_fp - fp_offset;
// OBSOLETE     }
// OBSOLETE   else
// OBSOLETE     {
// OBSOLETE       /* We have no frame pointer, therefore frame_sp is still the same value
// OBSOLETE          as set by prologue.  But where is the frame itself?  */
// OBSOLETE       if (must_adjust[SRP_REGNUM])
// OBSOLETE 	{
// OBSOLETE 	  /* Function header saved SRP (r1), the return address.  Frame starts
// OBSOLETE 	     4 bytes down from where it was saved.  */
// OBSOLETE 	  frame_fp = frame_sp + fsr->regs[SRP_REGNUM] - 4;
// OBSOLETE 	  fi->locals_pointer = frame_fp;
// OBSOLETE 	}
// OBSOLETE       else
// OBSOLETE 	{
// OBSOLETE 	  /* Function header didn't save SRP (r1), so we are in a leaf fn or
// OBSOLETE 	     are otherwise confused.  */
// OBSOLETE 	  frame_fp = -1;
// OBSOLETE 	}
// OBSOLETE     }
// OBSOLETE 
// OBSOLETE   /* The locals are relative to the FP (whether it exists as an allocated
// OBSOLETE      register, or just as an assumed offset from the SP) */
// OBSOLETE   fi->locals_pointer = frame_fp;
// OBSOLETE 
// OBSOLETE   /* The arguments are just above the SP as it was before we adjusted it
// OBSOLETE      on entry.  */
// OBSOLETE   fi->args_pointer = frame_sp - sp_offset;
// OBSOLETE 
// OBSOLETE   /* Now that we know the SP value used by the prologue, we know where
// OBSOLETE      it saved all the registers.  */
// OBSOLETE   for (src = 0; src < 32; src++)
// OBSOLETE     if (must_adjust[src])
// OBSOLETE       fsr->regs[src] += frame_sp;
// OBSOLETE 
// OBSOLETE   /* The saved value of the SP is always known.  */
// OBSOLETE   /* (we hope...) */
// OBSOLETE   if (fsr->regs[SP_REGNUM] != 0
// OBSOLETE       && fsr->regs[SP_REGNUM] != frame_sp - sp_offset)
// OBSOLETE     fprintf_unfiltered (gdb_stderr, "Bad saved SP value %lx != %lx, offset %x!\n",
// OBSOLETE 			fsr->regs[SP_REGNUM],
// OBSOLETE 			frame_sp - sp_offset, sp_offset);
// OBSOLETE 
// OBSOLETE   fsr->regs[SP_REGNUM] = frame_sp - sp_offset;
// OBSOLETE 
// OBSOLETE   return (ip);
// OBSOLETE }
// OBSOLETE 
// OBSOLETE /* Given an ip value corresponding to the start of a function,
// OBSOLETE    return the ip of the first instruction after the function 
// OBSOLETE    prologue.  */
// OBSOLETE 
// OBSOLETE CORE_ADDR
// OBSOLETE m88k_skip_prologue (CORE_ADDR ip)
// OBSOLETE {
// OBSOLETE   struct frame_saved_regs saved_regs_dummy;
// OBSOLETE   struct symtab_and_line sal;
// OBSOLETE   CORE_ADDR limit;
// OBSOLETE 
// OBSOLETE   sal = find_pc_line (ip, 0);
// OBSOLETE   limit = (sal.end) ? sal.end : 0xffffffff;
// OBSOLETE 
// OBSOLETE   return (examine_prologue (ip, limit, (CORE_ADDR) 0, &saved_regs_dummy,
// OBSOLETE 			    (struct frame_info *) 0));
// OBSOLETE }
// OBSOLETE 
// OBSOLETE /* Put here the code to store, into a struct frame_saved_regs,
// OBSOLETE    the addresses of the saved registers of frame described by FRAME_INFO.
// OBSOLETE    This includes special registers such as pc and fp saved in special
// OBSOLETE    ways in the stack frame.  sp is even more special:
// OBSOLETE    the address we return for it IS the sp for the next frame.
// OBSOLETE 
// OBSOLETE    We cache the result of doing this in the frame_obstack, since it is
// OBSOLETE    fairly expensive.  */
// OBSOLETE 
// OBSOLETE void
// OBSOLETE frame_find_saved_regs (struct frame_info *fi, struct frame_saved_regs *fsr)
// OBSOLETE {
// OBSOLETE   register struct frame_saved_regs *cache_fsr;
// OBSOLETE   CORE_ADDR ip;
// OBSOLETE   struct symtab_and_line sal;
// OBSOLETE   CORE_ADDR limit;
// OBSOLETE 
// OBSOLETE   if (!fi->fsr)
// OBSOLETE     {
// OBSOLETE       cache_fsr = (struct frame_saved_regs *)
// OBSOLETE 	frame_obstack_alloc (sizeof (struct frame_saved_regs));
// OBSOLETE       memset (cache_fsr, '\0', sizeof (struct frame_saved_regs));
// OBSOLETE       fi->fsr = cache_fsr;
// OBSOLETE 
// OBSOLETE       /* Find the start and end of the function prologue.  If the PC
// OBSOLETE          is in the function prologue, we only consider the part that
// OBSOLETE          has executed already.  In the case where the PC is not in
// OBSOLETE          the function prologue, we set limit to two instructions beyond
// OBSOLETE          where the prologue ends in case if any of the prologue instructions
// OBSOLETE          were moved into a delay slot of a branch instruction. */
// OBSOLETE 
// OBSOLETE       ip = get_pc_function_start (fi->pc);
// OBSOLETE       sal = find_pc_line (ip, 0);
// OBSOLETE       limit = (sal.end && sal.end < fi->pc) ? sal.end + 2 * BYTES_PER_88K_INSN
// OBSOLETE 	: fi->pc;
// OBSOLETE 
// OBSOLETE       /* This will fill in fields in *fi as well as in cache_fsr.  */
// OBSOLETE #ifdef SIGTRAMP_FRAME_FIXUP
// OBSOLETE       if (fi->signal_handler_caller)
// OBSOLETE 	SIGTRAMP_FRAME_FIXUP (fi->frame);
// OBSOLETE #endif
// OBSOLETE       examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
// OBSOLETE #ifdef SIGTRAMP_SP_FIXUP
// OBSOLETE       if (fi->signal_handler_caller && fi->fsr->regs[SP_REGNUM])
// OBSOLETE 	SIGTRAMP_SP_FIXUP (fi->fsr->regs[SP_REGNUM]);
// OBSOLETE #endif
// OBSOLETE     }
// OBSOLETE 
// OBSOLETE   if (fsr)
// OBSOLETE     *fsr = *fi->fsr;
// OBSOLETE }
// OBSOLETE 
// OBSOLETE /* Return the address of the locals block for the frame
// OBSOLETE    described by FI.  Returns 0 if the address is unknown.
// OBSOLETE    NOTE!  Frame locals are referred to by negative offsets from the
// OBSOLETE    argument pointer, so this is the same as frame_args_address().  */
// OBSOLETE 
// OBSOLETE CORE_ADDR
// OBSOLETE frame_locals_address (struct frame_info *fi)
// OBSOLETE {
// OBSOLETE   struct frame_saved_regs fsr;
// OBSOLETE 
// OBSOLETE   if (fi->args_pointer)		/* Cached value is likely there.  */
// OBSOLETE     return fi->args_pointer;
// OBSOLETE 
// OBSOLETE   /* Nope, generate it.  */
// OBSOLETE 
// OBSOLETE   get_frame_saved_regs (fi, &fsr);
// OBSOLETE 
// OBSOLETE   return fi->args_pointer;
// OBSOLETE }
// OBSOLETE 
// OBSOLETE /* Return the address of the argument block for the frame
// OBSOLETE    described by FI.  Returns 0 if the address is unknown.  */
// OBSOLETE 
// OBSOLETE CORE_ADDR
// OBSOLETE frame_args_address (struct frame_info *fi)
// OBSOLETE {
// OBSOLETE   struct frame_saved_regs fsr;
// OBSOLETE 
// OBSOLETE   if (fi->args_pointer)		/* Cached value is likely there.  */
// OBSOLETE     return fi->args_pointer;
// OBSOLETE 
// OBSOLETE   /* Nope, generate it.  */
// OBSOLETE 
// OBSOLETE   get_frame_saved_regs (fi, &fsr);
// OBSOLETE 
// OBSOLETE   return fi->args_pointer;
// OBSOLETE }
// OBSOLETE 
// OBSOLETE /* Return the saved PC from this frame.
// OBSOLETE 
// OBSOLETE    If the frame has a memory copy of SRP_REGNUM, use that.  If not,
// OBSOLETE    just use the register SRP_REGNUM itself.  */
// OBSOLETE 
// OBSOLETE CORE_ADDR
// OBSOLETE frame_saved_pc (struct frame_info *frame)
// OBSOLETE {
// OBSOLETE   return read_next_frame_reg (frame, SRP_REGNUM);
// OBSOLETE }
// OBSOLETE 
// OBSOLETE 
// OBSOLETE #define DUMMY_FRAME_SIZE 192
// OBSOLETE 
// OBSOLETE static void
// OBSOLETE write_word (CORE_ADDR sp, ULONGEST word)
// OBSOLETE {
// OBSOLETE   register int len = REGISTER_SIZE;
// OBSOLETE   char buffer[MAX_REGISTER_RAW_SIZE];
// OBSOLETE 
// OBSOLETE   store_unsigned_integer (buffer, len, word);
// OBSOLETE   write_memory (sp, buffer, len);
// OBSOLETE }
// OBSOLETE 
// OBSOLETE void
// OBSOLETE m88k_push_dummy_frame (void)
// OBSOLETE {
// OBSOLETE   register CORE_ADDR sp = read_register (SP_REGNUM);
// OBSOLETE   register int rn;
// OBSOLETE   int offset;
// OBSOLETE 
// OBSOLETE   sp -= DUMMY_FRAME_SIZE;	/* allocate a bunch of space */
// OBSOLETE 
// OBSOLETE   for (rn = 0, offset = 0; rn <= SP_REGNUM; rn++, offset += 4)
// OBSOLETE     write_word (sp + offset, read_register (rn));
// OBSOLETE 
// OBSOLETE   write_word (sp + offset, read_register (SXIP_REGNUM));
// OBSOLETE   offset += 4;
// OBSOLETE 
// OBSOLETE   write_word (sp + offset, read_register (SNIP_REGNUM));
// OBSOLETE   offset += 4;
// OBSOLETE 
// OBSOLETE   write_word (sp + offset, read_register (SFIP_REGNUM));
// OBSOLETE   offset += 4;
// OBSOLETE 
// OBSOLETE   write_word (sp + offset, read_register (PSR_REGNUM));
// OBSOLETE   offset += 4;
// OBSOLETE 
// OBSOLETE   write_word (sp + offset, read_register (FPSR_REGNUM));
// OBSOLETE   offset += 4;
// OBSOLETE 
// OBSOLETE   write_word (sp + offset, read_register (FPCR_REGNUM));
// OBSOLETE   offset += 4;
// OBSOLETE 
// OBSOLETE   write_register (SP_REGNUM, sp);
// OBSOLETE   write_register (ACTUAL_FP_REGNUM, sp);
// OBSOLETE }
// OBSOLETE 
// OBSOLETE void
// OBSOLETE pop_frame (void)
// OBSOLETE {
// OBSOLETE   register struct frame_info *frame = get_current_frame ();
// OBSOLETE   register int regnum;
// OBSOLETE   struct frame_saved_regs fsr;
// OBSOLETE 
// OBSOLETE   get_frame_saved_regs (frame, &fsr);
// OBSOLETE 
// OBSOLETE   if (PC_IN_CALL_DUMMY (read_pc (), read_register (SP_REGNUM), frame->frame))
// OBSOLETE     {
// OBSOLETE       /* FIXME: I think get_frame_saved_regs should be handling this so
// OBSOLETE          that we can deal with the saved registers properly (e.g. frame
// OBSOLETE          1 is a call dummy, the user types "frame 2" and then "print $ps").  */
// OBSOLETE       register CORE_ADDR sp = read_register (ACTUAL_FP_REGNUM);
// OBSOLETE       int offset;
// OBSOLETE 
// OBSOLETE       for (regnum = 0, offset = 0; regnum <= SP_REGNUM; regnum++, offset += 4)
// OBSOLETE 	(void) write_register (regnum, read_memory_integer (sp + offset, 4));
// OBSOLETE 
// OBSOLETE       write_register (SXIP_REGNUM, read_memory_integer (sp + offset, 4));
// OBSOLETE       offset += 4;
// OBSOLETE 
// OBSOLETE       write_register (SNIP_REGNUM, read_memory_integer (sp + offset, 4));
// OBSOLETE       offset += 4;
// OBSOLETE 
// OBSOLETE       write_register (SFIP_REGNUM, read_memory_integer (sp + offset, 4));
// OBSOLETE       offset += 4;
// OBSOLETE 
// OBSOLETE       write_register (PSR_REGNUM, read_memory_integer (sp + offset, 4));
// OBSOLETE       offset += 4;
// OBSOLETE 
// OBSOLETE       write_register (FPSR_REGNUM, read_memory_integer (sp + offset, 4));
// OBSOLETE       offset += 4;
// OBSOLETE 
// OBSOLETE       write_register (FPCR_REGNUM, read_memory_integer (sp + offset, 4));
// OBSOLETE       offset += 4;
// OBSOLETE 
// OBSOLETE     }
// OBSOLETE   else
// OBSOLETE     {
// OBSOLETE       for (regnum = FP_REGNUM; regnum > 0; regnum--)
// OBSOLETE 	if (fsr.regs[regnum])
// OBSOLETE 	  write_register (regnum,
// OBSOLETE 			  read_memory_integer (fsr.regs[regnum], 4));
// OBSOLETE       write_pc (frame_saved_pc (frame));
// OBSOLETE     }
// OBSOLETE   reinit_frame_cache ();
// OBSOLETE }
// OBSOLETE 
// OBSOLETE void
// OBSOLETE _initialize_m88k_tdep (void)
// OBSOLETE {
// OBSOLETE   tm_print_insn = print_insn_m88k;
// OBSOLETE }