aboutsummaryrefslogtreecommitdiff
path: root/gdb/m2-exp.y
blob: 2887ad2be21a01f0bc54f385c19fa790ff9e729b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
/* YACC grammar for Modula-2 expressions, for GDB.
   Copyright (C) 1986-2024 Free Software Foundation, Inc.
   Generated from expread.y (now c-exp.y) and contributed by the Department
   of Computer Science at the State University of New York at Buffalo, 1991.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

/* Parse a Modula-2 expression from text in a string,
   and return the result as a  struct expression  pointer.
   That structure contains arithmetic operations in reverse polish,
   with constants represented by operations that are followed by special data.
   See expression.h for the details of the format.
   What is important here is that it can be built up sequentially
   during the process of parsing; the lower levels of the tree always
   come first in the result.

   Note that malloc's and realloc's in this file are transformed to
   xmalloc and xrealloc respectively by the same sed command in the
   makefile that remaps any other malloc/realloc inserted by the parser
   generator.  Doing this with #defines and trying to control the interaction
   with include files (<malloc.h> and <stdlib.h> for example) just became
   too messy, particularly when such includes can be inserted at random
   times by the parser generator.  */
   
%{

#include "expression.h"
#include "language.h"
#include "value.h"
#include "parser-defs.h"
#include "m2-lang.h"
#include "block.h"
#include "m2-exp.h"

#define parse_type(ps) builtin_type (ps->gdbarch ())
#define parse_m2_type(ps) builtin_m2_type (ps->gdbarch ())

/* Remap normal yacc parser interface names (yyparse, yylex, yyerror,
   etc).  */
#define GDB_YY_REMAP_PREFIX m2_
#include "yy-remap.h"

/* The state of the parser, used internally when we are parsing the
   expression.  */

static struct parser_state *pstate = NULL;

int yyparse (void);

static int yylex (void);

static void yyerror (const char *);

static int parse_number (int);

/* The sign of the number being parsed.  */
static int number_sign = 1;

using namespace expr;
%}

/* Although the yacc "value" of an expression is not used,
   since the result is stored in the structure being created,
   other node types do have values.  */

%union
  {
    LONGEST lval;
    ULONGEST ulval;
    gdb_byte val[16];
    struct symbol *sym;
    struct type *tval;
    struct stoken sval;
    int voidval;
    const struct block *bval;
    enum exp_opcode opcode;
    struct internalvar *ivar;

    struct type **tvec;
    int *ivec;
  }

%type <voidval> exp type_exp start set
%type <voidval> variable
%type <tval> type
%type <bval> block 
%type <sym> fblock 

%token <lval> INT HEX ERROR
%token <ulval> UINT M2_TRUE M2_FALSE CHAR
%token <val> FLOAT

/* Both NAME and TYPENAME tokens represent symbols in the input,
   and both convey their data as strings.
   But a TYPENAME is a string that happens to be defined as a typedef
   or builtin type name (such as int or char)
   and a NAME is any other symbol.

   Contexts where this distinction is not important can use the
   nonterminal "name", which matches either NAME or TYPENAME.  */

%token <sval> STRING
%token <sval> NAME BLOCKNAME IDENT VARNAME
%token <sval> TYPENAME

%token SIZE CAP ORD HIGH ABS MIN_FUNC MAX_FUNC FLOAT_FUNC VAL CHR ODD TRUNC
%token TSIZE ADR
%token INC DEC INCL EXCL

/* The GDB scope operator */
%token COLONCOLON

%token <sval> DOLLAR_VARIABLE

/* M2 tokens */
%left ','
%left ABOVE_COMMA
%nonassoc ASSIGN
%left '<' '>' LEQ GEQ '=' NOTEQUAL '#' IN
%left OROR
%left LOGICAL_AND '&'
%left '@'
%left '+' '-'
%left '*' '/' DIV MOD
%right UNARY
%right '^' DOT '[' '('
%right NOT '~'
%left COLONCOLON QID
/* This is not an actual token ; it is used for precedence. 
%right QID
*/


%%

start   :	exp
	|	type_exp
	;

type_exp:	type
		{ pstate->push_new<type_operation> ($1); }
	;

/* Expressions */

exp     :       exp '^'   %prec UNARY
			{ pstate->wrap<unop_ind_operation> (); }
	;

exp	:	'-'
			{ number_sign = -1; }
		exp    %prec UNARY
			{ number_sign = 1;
			  pstate->wrap<unary_neg_operation> (); }
	;

exp	:	'+' exp    %prec UNARY
		{ pstate->wrap<unary_plus_operation> (); }
	;

exp	:	not_exp exp %prec UNARY
			{ pstate->wrap<unary_logical_not_operation> (); }
	;

not_exp	:	NOT
	|	'~'
	;

exp	:	CAP '(' exp ')'
			{ error (_("CAP function is not implemented")); }
	;

exp	:	ORD '(' exp ')'
			{ error (_("ORD function is not implemented")); }
	;

exp	:	ABS '(' exp ')'
			{ error (_("ABS function is not implemented")); }
	;

exp	:	ADR '(' exp ')'
			{ pstate->wrap<unop_addr_operation> (); }
	;

exp	: 	HIGH '(' exp ')'
			{ pstate->wrap<m2_unop_high_operation> (); }
	;

exp 	:	MIN_FUNC '(' type ')'
			{ error (_("MIN function is not implemented")); }
	;

exp	: 	MAX_FUNC '(' type ')'
			{ error (_("MAX function is not implemented")); }
	;

exp	:	FLOAT_FUNC '(' exp ')'
			{ error (_("FLOAT function is not implemented")); }
	;

exp	:	VAL '(' type ',' exp ')'
			{ error (_("VAL function is not implemented")); }
	;

exp	:	CHR '(' exp ')'
			{ error (_("CHR function is not implemented")); }
	;

exp	:	ODD '(' exp ')'
			{ error (_("ODD function is not implemented")); }
	;

exp	:	TRUNC '(' exp ')'
			{ error (_("TRUNC function is not implemented")); }
	;

exp	:	TSIZE '(' exp ')'
			{ pstate->wrap<unop_sizeof_operation> (); }
	;

exp	:	SIZE exp       %prec UNARY
			{ pstate->wrap<unop_sizeof_operation> (); }
	;


exp	:	INC '(' exp ')'
			{ pstate->wrap<preinc_operation> (); }
	;

exp	:	INC '(' exp ',' exp ')'
			{
			  operation_up rhs = pstate->pop ();
			  operation_up lhs = pstate->pop ();
			  pstate->push_new<assign_modify_operation>
			    (BINOP_ADD, std::move (lhs), std::move (rhs));
			}
	;

exp	:	DEC '(' exp ')'
			{ pstate->wrap<predec_operation> (); }
	;

exp	:	DEC '(' exp ',' exp ')'
			{
			  operation_up rhs = pstate->pop ();
			  operation_up lhs = pstate->pop ();
			  pstate->push_new<assign_modify_operation>
			    (BINOP_SUB, std::move (lhs), std::move (rhs));
			}
	;

exp	:	exp DOT NAME
			{
			  pstate->push_new<structop_operation>
			    (pstate->pop (), copy_name ($3));
			}
;

exp	:	set
	;

exp	:	exp IN set
			{ error (_("Sets are not implemented."));}
	;

exp	:	INCL '(' exp ',' exp ')'
			{ error (_("Sets are not implemented."));}
	;

exp	:	EXCL '(' exp ',' exp ')'
			{ error (_("Sets are not implemented."));}
	;

set	:	'{' arglist '}'
			{ error (_("Sets are not implemented."));}
	|	type '{' arglist '}'
			{ error (_("Sets are not implemented."));}
	;


/* Modula-2 array subscript notation [a,b,c...].  */
exp     :       exp '['
			/* This function just saves the number of arguments
			   that follow in the list.  It is *not* specific to
			   function types */
			{ pstate->start_arglist(); }
		non_empty_arglist ']'  %prec DOT
			{
			  gdb_assert (pstate->arglist_len > 0);
			  std::vector<operation_up> args
			    = pstate->pop_vector (pstate->end_arglist ());
			  pstate->push_new<multi_subscript_operation>
			    (pstate->pop (), std::move (args));
			}
	;

exp	:	exp '('
			/* This is to save the value of arglist_len
			   being accumulated by an outer function call.  */
			{ pstate->start_arglist (); }
		arglist ')'	%prec DOT
			{
			  std::vector<operation_up> args
			    = pstate->pop_vector (pstate->end_arglist ());
			  pstate->push_new<funcall_operation>
			    (pstate->pop (), std::move (args));
			}
	;

arglist	:
	;

arglist	:	exp
			{ pstate->arglist_len = 1; }
	;

arglist	:	arglist ',' exp   %prec ABOVE_COMMA
			{ pstate->arglist_len++; }
	;

non_empty_arglist
	:       exp
			{ pstate->arglist_len = 1; }
	;

non_empty_arglist
	:       non_empty_arglist ',' exp %prec ABOVE_COMMA
     	       	    	{ pstate->arglist_len++; }
     	;

/* GDB construct */
exp	:	'{' type '}' exp  %prec UNARY
			{
			  pstate->push_new<unop_memval_operation>
			    (pstate->pop (), $2);
			}
	;

exp     :       type '(' exp ')' %prec UNARY
			{
			  pstate->push_new<unop_cast_operation>
			    (pstate->pop (), $1);
			}
	;

exp	:	'(' exp ')'
			{ }
	;

/* Binary operators in order of decreasing precedence.  Note that some
   of these operators are overloaded!  (ie. sets) */

/* GDB construct */
exp	:	exp '@' exp
			{ pstate->wrap2<repeat_operation> (); }
	;

exp	:	exp '*' exp
			{ pstate->wrap2<mul_operation> (); }
	;

exp	:	exp '/' exp
			{ pstate->wrap2<div_operation> (); }
	;

exp     :       exp DIV exp
			{ pstate->wrap2<intdiv_operation> (); }
	;

exp	:	exp MOD exp
			{ pstate->wrap2<rem_operation> (); }
	;

exp	:	exp '+' exp
			{ pstate->wrap2<add_operation> (); }
	;

exp	:	exp '-' exp
			{ pstate->wrap2<sub_operation> (); }
	;

exp	:	exp '=' exp
			{ pstate->wrap2<equal_operation> (); }
	;

exp	:	exp NOTEQUAL exp
			{ pstate->wrap2<notequal_operation> (); }
	|       exp '#' exp
			{ pstate->wrap2<notequal_operation> (); }
	;

exp	:	exp LEQ exp
			{ pstate->wrap2<leq_operation> (); }
	;

exp	:	exp GEQ exp
			{ pstate->wrap2<geq_operation> (); }
	;

exp	:	exp '<' exp
			{ pstate->wrap2<less_operation> (); }
	;

exp	:	exp '>' exp
			{ pstate->wrap2<gtr_operation> (); }
	;

exp	:	exp LOGICAL_AND exp
			{ pstate->wrap2<logical_and_operation> (); }
	;

exp	:	exp OROR exp
			{ pstate->wrap2<logical_or_operation> (); }
	;

exp	:	exp ASSIGN exp
			{ pstate->wrap2<assign_operation> (); }
	;


/* Constants */

exp	:	M2_TRUE
			{ pstate->push_new<bool_operation> ($1); }
	;

exp	:	M2_FALSE
			{ pstate->push_new<bool_operation> ($1); }
	;

exp	:	INT
			{
			  pstate->push_new<long_const_operation>
			    (parse_m2_type (pstate)->builtin_int, $1);
			}
	;

exp	:	UINT
			{
			  pstate->push_new<long_const_operation>
			    (parse_m2_type (pstate)->builtin_card, $1);
			}
	;

exp	:	CHAR
			{
			  pstate->push_new<long_const_operation>
			    (parse_m2_type (pstate)->builtin_char, $1);
			}
	;


exp	:	FLOAT
			{
			  float_data data;
			  std::copy (std::begin ($1), std::end ($1),
				     std::begin (data));
			  pstate->push_new<float_const_operation>
			    (parse_m2_type (pstate)->builtin_real, data);
			}
	;

exp	:	variable
	;

exp	:	SIZE '(' type ')'	%prec UNARY
			{
			  pstate->push_new<long_const_operation>
			    (parse_m2_type (pstate)->builtin_int,
			     $3->length ());
			}
	;

exp	:	STRING
			{ error (_("strings are not implemented")); }
	;

/* This will be used for extensions later.  Like adding modules.  */
block	:	fblock	
			{ $$ = $1->value_block (); }
	;

fblock	:	BLOCKNAME
			{ struct symbol *sym
			    = lookup_symbol (copy_name ($1).c_str (),
					     pstate->expression_context_block,
					     SEARCH_VFT, 0).symbol;
			  $$ = sym;}
	;
			     

/* GDB scope operator */
fblock	:	block COLONCOLON BLOCKNAME
			{ struct symbol *tem
			    = lookup_symbol (copy_name ($3).c_str (), $1,
					     SEARCH_VFT, 0).symbol;
			  if (!tem || tem->aclass () != LOC_BLOCK)
			    error (_("No function \"%s\" in specified context."),
				   copy_name ($3).c_str ());
			  $$ = tem;
			}
	;

/* Useful for assigning to PROCEDURE variables */
variable:	fblock
			{
			  block_symbol sym { $1, nullptr };
			  pstate->push_new<var_value_operation> (sym);
			}
	;

/* GDB internal ($foo) variable */
variable:	DOLLAR_VARIABLE
			{ pstate->push_dollar ($1); }
	;

/* GDB scope operator */
variable:	block COLONCOLON NAME
			{ struct block_symbol sym
			    = lookup_symbol (copy_name ($3).c_str (), $1,
					     SEARCH_VFT, 0);

			  if (sym.symbol == 0)
			    error (_("No symbol \"%s\" in specified context."),
				   copy_name ($3).c_str ());
			  if (symbol_read_needs_frame (sym.symbol))
			    pstate->block_tracker->update (sym);

			  pstate->push_new<var_value_operation> (sym);
			}
	;

/* Base case for variables.  */
variable:	NAME
			{ struct block_symbol sym;
			  struct field_of_this_result is_a_field_of_this;

			  std::string name = copy_name ($1);
			  sym
			    = lookup_symbol (name.c_str (),
					     pstate->expression_context_block,
					     SEARCH_VFT,
					     &is_a_field_of_this);

			  pstate->push_symbol (name.c_str (), sym);
			}
	;

type
	:	TYPENAME
			{ $$
			    = lookup_typename (pstate->language (),
					       copy_name ($1).c_str (),
					       pstate->expression_context_block,
					       0);
			}

	;

%%

/* Take care of parsing a number (anything that starts with a digit).
   Set yylval and return the token type; update lexptr.
   LEN is the number of characters in it.  */

/*** Needs some error checking for the float case ***/

static int
parse_number (int olen)
{
  const char *p = pstate->lexptr;
  ULONGEST n = 0;
  ULONGEST prevn = 0;
  int c,i,ischar=0;
  int base = input_radix;
  int len = olen;

  if(p[len-1] == 'H')
  {
     base = 16;
     len--;
  }
  else if(p[len-1] == 'C' || p[len-1] == 'B')
  {
     base = 8;
     ischar = p[len-1] == 'C';
     len--;
  }

  /* Scan the number */
  for (c = 0; c < len; c++)
  {
    if (p[c] == '.' && base == 10)
      {
	/* It's a float since it contains a point.  */
	if (!parse_float (p, len,
			  parse_m2_type (pstate)->builtin_real,
			  yylval.val))
	  return ERROR;

	pstate->lexptr += len;
	return FLOAT;
      }
    if (p[c] == '.' && base != 10)
       error (_("Floating point numbers must be base 10."));
    if (base == 10 && (p[c] < '0' || p[c] > '9'))
       error (_("Invalid digit \'%c\' in number."),p[c]);
 }

  while (len-- > 0)
    {
      c = *p++;
      n *= base;
      if( base == 8 && (c == '8' || c == '9'))
	 error (_("Invalid digit \'%c\' in octal number."),c);
      if (c >= '0' && c <= '9')
	i = c - '0';
      else
	{
	  if (base == 16 && c >= 'A' && c <= 'F')
	    i = c - 'A' + 10;
	  else
	     return ERROR;
	}
      n+=i;
      if(i >= base)
	 return ERROR;
      if (n == 0 && prevn == 0)
	;
      else if (RANGE_CHECK && prevn >= n)
	range_error (_("Overflow on numeric constant."));

	 prevn=n;
    }

  pstate->lexptr = p;
  if(*p == 'B' || *p == 'C' || *p == 'H')
     pstate->lexptr++;			/* Advance past B,C or H */

  if (ischar)
  {
     yylval.ulval = n;
     return CHAR;
  }

  int int_bits = gdbarch_int_bit (pstate->gdbarch ());
  bool have_signed = number_sign == -1;
  bool have_unsigned = number_sign == 1;
  if (have_signed && fits_in_type (number_sign, n, int_bits, true))
    {
      yylval.lval = n;
      return INT;
    }
  else if (have_unsigned && fits_in_type (number_sign, n, int_bits, false))
    {
      yylval.ulval = n;
      return UINT;
    }
  else
    error (_("Overflow on numeric constant."));
}


/* Some tokens */

static struct
{
   char name[2];
   int token;
} tokentab2[] =
{
    { {'<', '>'},    NOTEQUAL 	},
    { {':', '='},    ASSIGN	},
    { {'<', '='},    LEQ	},
    { {'>', '='},    GEQ	},
    { {':', ':'},    COLONCOLON },

};

/* Some specific keywords */

struct keyword {
   char keyw[10];
   int token;
};

static struct keyword keytab[] =
{
    {"OR" ,   OROR	 },
    {"IN",    IN         },/* Note space after IN */
    {"AND",   LOGICAL_AND},
    {"ABS",   ABS	 },
    {"ADR",   ADR	 },
    {"CHR",   CHR	 },
    {"DEC",   DEC	 },
    {"NOT",   NOT	 },
    {"DIV",   DIV    	 },
    {"INC",   INC	 },
    {"MAX",   MAX_FUNC	 },
    {"MIN",   MIN_FUNC	 },
    {"MOD",   MOD	 },
    {"ODD",   ODD	 },
    {"CAP",   CAP	 },
    {"ORD",   ORD	 },
    {"VAL",   VAL	 },
    {"EXCL",  EXCL	 },
    {"HIGH",  HIGH       },
    {"INCL",  INCL	 },
    {"SIZE",  SIZE       },
    {"FLOAT", FLOAT_FUNC },
    {"TRUNC", TRUNC	 },
    {"TSIZE", SIZE       },
};


/* Depth of parentheses.  */
static int paren_depth;

/* Read one token, getting characters through lexptr.  */

/* This is where we will check to make sure that the language and the
   operators used are compatible  */

static int
yylex (void)
{
  int c;
  int namelen;
  int i;
  const char *tokstart;
  char quote;

 retry:

  pstate->prev_lexptr = pstate->lexptr;

  tokstart = pstate->lexptr;


  /* See if it is a special token of length 2 */
  for( i = 0 ; i < (int) (sizeof tokentab2 / sizeof tokentab2[0]) ; i++)
     if (strncmp (tokentab2[i].name, tokstart, 2) == 0)
     {
	pstate->lexptr += 2;
	return tokentab2[i].token;
     }

  switch (c = *tokstart)
    {
    case 0:
      return 0;

    case ' ':
    case '\t':
    case '\n':
      pstate->lexptr++;
      goto retry;

    case '(':
      paren_depth++;
      pstate->lexptr++;
      return c;

    case ')':
      if (paren_depth == 0)
	return 0;
      paren_depth--;
      pstate->lexptr++;
      return c;

    case ',':
      if (pstate->comma_terminates && paren_depth == 0)
	return 0;
      pstate->lexptr++;
      return c;

    case '.':
      /* Might be a floating point number.  */
      if (pstate->lexptr[1] >= '0' && pstate->lexptr[1] <= '9')
	break;			/* Falls into number code.  */
      else
      {
	 pstate->lexptr++;
	 return DOT;
      }

/* These are character tokens that appear as-is in the YACC grammar */
    case '+':
    case '-':
    case '*':
    case '/':
    case '^':
    case '<':
    case '>':
    case '[':
    case ']':
    case '=':
    case '{':
    case '}':
    case '#':
    case '@':
    case '~':
    case '&':
      pstate->lexptr++;
      return c;

    case '\'' :
    case '"':
      quote = c;
      for (namelen = 1; (c = tokstart[namelen]) != quote && c != '\0'; namelen++)
	if (c == '\\')
	  {
	    c = tokstart[++namelen];
	    if (c >= '0' && c <= '9')
	      {
		c = tokstart[++namelen];
		if (c >= '0' && c <= '9')
		  c = tokstart[++namelen];
	      }
	  }
      if(c != quote)
	 error (_("Unterminated string or character constant."));
      yylval.sval.ptr = tokstart + 1;
      yylval.sval.length = namelen - 1;
      pstate->lexptr += namelen + 1;

      if(namelen == 2)  	/* Single character */
      {
	   yylval.ulval = tokstart[1];
	   return CHAR;
      }
      else
	 return STRING;
    }

  /* Is it a number?  */
  /* Note:  We have already dealt with the case of the token '.'.
     See case '.' above.  */
  if ((c >= '0' && c <= '9'))
    {
      /* It's a number.  */
      int got_dot = 0, got_e = 0;
      const char *p = tokstart;
      int toktype;

      for (++p ;; ++p)
	{
	  if (!got_e && (*p == 'e' || *p == 'E'))
	    got_dot = got_e = 1;
	  else if (!got_dot && *p == '.')
	    got_dot = 1;
	  else if (got_e && (p[-1] == 'e' || p[-1] == 'E')
		   && (*p == '-' || *p == '+'))
	    /* This is the sign of the exponent, not the end of the
	       number.  */
	    continue;
	  else if ((*p < '0' || *p > '9') &&
		   (*p < 'A' || *p > 'F') &&
		   (*p != 'H'))  /* Modula-2 hexadecimal number */
	    break;
	}
	toktype = parse_number (p - tokstart);
	if (toktype == ERROR)
	  error (_("Invalid number \"%.*s\"."), (int) (p - tokstart),
		 tokstart);
	pstate->lexptr = p;
	return toktype;
    }

  if (!(c == '_' || c == '$'
	|| (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
    /* We must have come across a bad character (e.g. ';').  */
    error (_("Invalid character '%c' in expression."), c);

  /* It's a name.  See how long it is.  */
  namelen = 0;
  for (c = tokstart[namelen];
       (c == '_' || c == '$' || (c >= '0' && c <= '9')
	|| (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'));
       c = tokstart[++namelen])
    ;

  /* The token "if" terminates the expression and is NOT
     removed from the input stream.  */
  if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
    {
      return 0;
    }

  pstate->lexptr += namelen;

  /*  Lookup special keywords */
  for(i = 0 ; i < (int) (sizeof(keytab) / sizeof(keytab[0])) ; i++)
     if (namelen == strlen (keytab[i].keyw)
	 && strncmp (tokstart, keytab[i].keyw, namelen) == 0)
	   return keytab[i].token;

  yylval.sval.ptr = tokstart;
  yylval.sval.length = namelen;

  if (*tokstart == '$')
    return DOLLAR_VARIABLE;

  /* Use token-type BLOCKNAME for symbols that happen to be defined as
     functions.  If this is not so, then ...
     Use token-type TYPENAME for symbols that happen to be defined
     currently as names of types; NAME for other symbols.
     The caller is not constrained to care about the distinction.  */
 {
    std::string tmp = copy_name (yylval.sval);
    struct symbol *sym;

    if (lookup_symtab (current_program_space, tmp.c_str ()) != nullptr)
      return BLOCKNAME;

    sym = lookup_symbol (tmp.c_str (), pstate->expression_context_block,
			 SEARCH_VFT, 0).symbol;
    if (sym && sym->aclass () == LOC_BLOCK)
      return BLOCKNAME;
    if (lookup_typename (pstate->language (),
			 tmp.c_str (), pstate->expression_context_block, 1))
      return TYPENAME;

    if(sym)
    {
      switch(sym->aclass ())
       {
       case LOC_STATIC:
       case LOC_REGISTER:
       case LOC_ARG:
       case LOC_REF_ARG:
       case LOC_REGPARM_ADDR:
       case LOC_LOCAL:
       case LOC_CONST:
       case LOC_CONST_BYTES:
       case LOC_OPTIMIZED_OUT:
       case LOC_COMPUTED:
	  return NAME;

       case LOC_TYPEDEF:
	  return TYPENAME;

       case LOC_BLOCK:
	  return BLOCKNAME;

       case LOC_UNDEF:
	  error (_("internal:  Undefined class in m2lex()"));

       case LOC_LABEL:
       case LOC_UNRESOLVED:
	  error (_("internal:  Unforseen case in m2lex()"));

       default:
	  error (_("unhandled token in m2lex()"));
	  break;
       }
    }
    else
    {
       /* Built-in BOOLEAN type.  This is sort of a hack.  */
       if (startswith (tokstart, "TRUE"))
       {
	  yylval.ulval = 1;
	  return M2_TRUE;
       }
       else if (startswith (tokstart, "FALSE"))
       {
	  yylval.ulval = 0;
	  return M2_FALSE;
       }
    }

    /* Must be another type of name...  */
    return NAME;
 }
}

int
m2_language::parser (struct parser_state *par_state) const
{
  /* Setting up the parser state.  */
  scoped_restore pstate_restore = make_scoped_restore (&pstate);
  gdb_assert (par_state != NULL);
  pstate = par_state;
  paren_depth = 0;

  int result = yyparse ();
  if (!result)
    pstate->set_operation (pstate->pop ());
  return result;
}

static void
yyerror (const char *msg)
{
  pstate->parse_error (msg);
}