1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
|
/* Functions specific to running gdb native on IA-64 running
GNU/Linux.
Copyright (C) 1999-2024 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "inferior.h"
#include "target.h"
#include "gdbarch.h"
#include "gdbcore.h"
#include "regcache.h"
#include "ia64-tdep.h"
#include "linux-nat.h"
#include <signal.h>
#include "nat/gdb_ptrace.h"
#include "gdbsupport/gdb_wait.h"
#ifdef HAVE_SYS_REG_H
#include <sys/reg.h>
#endif
#include <sys/syscall.h>
#include <sys/user.h>
#include <asm/ptrace_offsets.h>
#include <sys/procfs.h>
/* Prototypes for supply_gregset etc. */
#include "gregset.h"
#include "inf-ptrace.h"
class ia64_linux_nat_target final : public linux_nat_target
{
public:
/* Add our register access methods. */
void fetch_registers (struct regcache *, int) override;
void store_registers (struct regcache *, int) override;
enum target_xfer_status xfer_partial (enum target_object object,
const char *annex,
gdb_byte *readbuf,
const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len,
ULONGEST *xfered_len) override;
/* Override watchpoint routines. */
/* The IA-64 architecture can step over a watch point (without
triggering it again) if the "dd" (data debug fault disable) bit
in the processor status word is set.
This PSR bit is set in
ia64_linux_nat_target::stopped_by_watchpoint when the code there
has determined that a hardware watchpoint has indeed been hit.
The CPU will then be able to execute one instruction without
triggering a watchpoint. */
bool have_steppable_watchpoint () override { return true; }
int can_use_hw_breakpoint (enum bptype, int, int) override;
bool stopped_by_watchpoint () override;
bool stopped_data_address (CORE_ADDR *) override;
int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
struct expression *) override;
int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
struct expression *) override;
/* Override linux_nat_target low methods. */
void low_new_thread (struct lwp_info *lp) override;
bool low_status_is_event (int status) override;
void enable_watchpoints_in_psr (ptid_t ptid);
};
static ia64_linux_nat_target the_ia64_linux_nat_target;
/* These must match the order of the register names.
Some sort of lookup table is needed because the offsets associated
with the registers are all over the board. */
static int u_offsets[] =
{
/* general registers */
-1, /* gr0 not available; i.e, it's always zero. */
PT_R1,
PT_R2,
PT_R3,
PT_R4,
PT_R5,
PT_R6,
PT_R7,
PT_R8,
PT_R9,
PT_R10,
PT_R11,
PT_R12,
PT_R13,
PT_R14,
PT_R15,
PT_R16,
PT_R17,
PT_R18,
PT_R19,
PT_R20,
PT_R21,
PT_R22,
PT_R23,
PT_R24,
PT_R25,
PT_R26,
PT_R27,
PT_R28,
PT_R29,
PT_R30,
PT_R31,
/* gr32 through gr127 not directly available via the ptrace interface. */
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
/* Floating point registers */
-1, -1, /* f0 and f1 not available (f0 is +0.0 and f1 is +1.0). */
PT_F2,
PT_F3,
PT_F4,
PT_F5,
PT_F6,
PT_F7,
PT_F8,
PT_F9,
PT_F10,
PT_F11,
PT_F12,
PT_F13,
PT_F14,
PT_F15,
PT_F16,
PT_F17,
PT_F18,
PT_F19,
PT_F20,
PT_F21,
PT_F22,
PT_F23,
PT_F24,
PT_F25,
PT_F26,
PT_F27,
PT_F28,
PT_F29,
PT_F30,
PT_F31,
PT_F32,
PT_F33,
PT_F34,
PT_F35,
PT_F36,
PT_F37,
PT_F38,
PT_F39,
PT_F40,
PT_F41,
PT_F42,
PT_F43,
PT_F44,
PT_F45,
PT_F46,
PT_F47,
PT_F48,
PT_F49,
PT_F50,
PT_F51,
PT_F52,
PT_F53,
PT_F54,
PT_F55,
PT_F56,
PT_F57,
PT_F58,
PT_F59,
PT_F60,
PT_F61,
PT_F62,
PT_F63,
PT_F64,
PT_F65,
PT_F66,
PT_F67,
PT_F68,
PT_F69,
PT_F70,
PT_F71,
PT_F72,
PT_F73,
PT_F74,
PT_F75,
PT_F76,
PT_F77,
PT_F78,
PT_F79,
PT_F80,
PT_F81,
PT_F82,
PT_F83,
PT_F84,
PT_F85,
PT_F86,
PT_F87,
PT_F88,
PT_F89,
PT_F90,
PT_F91,
PT_F92,
PT_F93,
PT_F94,
PT_F95,
PT_F96,
PT_F97,
PT_F98,
PT_F99,
PT_F100,
PT_F101,
PT_F102,
PT_F103,
PT_F104,
PT_F105,
PT_F106,
PT_F107,
PT_F108,
PT_F109,
PT_F110,
PT_F111,
PT_F112,
PT_F113,
PT_F114,
PT_F115,
PT_F116,
PT_F117,
PT_F118,
PT_F119,
PT_F120,
PT_F121,
PT_F122,
PT_F123,
PT_F124,
PT_F125,
PT_F126,
PT_F127,
/* Predicate registers - we don't fetch these individually. */
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
/* branch registers */
PT_B0,
PT_B1,
PT_B2,
PT_B3,
PT_B4,
PT_B5,
PT_B6,
PT_B7,
/* Virtual frame pointer and virtual return address pointer. */
-1, -1,
/* other registers */
PT_PR,
PT_CR_IIP, /* ip */
PT_CR_IPSR, /* psr */
PT_CFM, /* cfm */
/* kernel registers not visible via ptrace interface (?) */
-1, -1, -1, -1, -1, -1, -1, -1,
/* hole */
-1, -1, -1, -1, -1, -1, -1, -1,
PT_AR_RSC,
PT_AR_BSP,
PT_AR_BSPSTORE,
PT_AR_RNAT,
-1,
-1, /* Not available: FCR, IA32 floating control register. */
-1, -1,
-1, /* Not available: EFLAG */
-1, /* Not available: CSD */
-1, /* Not available: SSD */
-1, /* Not available: CFLG */
-1, /* Not available: FSR */
-1, /* Not available: FIR */
-1, /* Not available: FDR */
-1,
PT_AR_CCV,
-1, -1, -1,
PT_AR_UNAT,
-1, -1, -1,
PT_AR_FPSR,
-1, -1, -1,
-1, /* Not available: ITC */
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1,
PT_AR_PFS,
PT_AR_LC,
PT_AR_EC,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1,
/* nat bits - not fetched directly; instead we obtain these bits from
either rnat or unat or from memory. */
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
};
static CORE_ADDR
ia64_register_addr (struct gdbarch *gdbarch, int regno)
{
CORE_ADDR addr;
if (regno < 0 || regno >= gdbarch_num_regs (gdbarch))
error (_("Invalid register number %d."), regno);
if (u_offsets[regno] == -1)
addr = 0;
else
addr = (CORE_ADDR) u_offsets[regno];
return addr;
}
static int
ia64_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
{
return regno < 0
|| regno >= gdbarch_num_regs (gdbarch)
|| u_offsets[regno] == -1;
}
static int
ia64_cannot_store_register (struct gdbarch *gdbarch, int regno)
{
/* Rationale behind not permitting stores to bspstore...
The IA-64 architecture provides bspstore and bsp which refer
memory locations in the RSE's backing store. bspstore is the
next location which will be written when the RSE needs to write
to memory. bsp is the address at which r32 in the current frame
would be found if it were written to the backing store.
The IA-64 architecture provides read-only access to bsp and
read/write access to bspstore (but only when the RSE is in
the enforced lazy mode). It should be noted that stores
to bspstore also affect the value of bsp. Changing bspstore
does not affect the number of dirty entries between bspstore
and bsp, so changing bspstore by N words will also cause bsp
to be changed by (roughly) N as well. (It could be N-1 or N+1
depending upon where the NaT collection bits fall.)
OTOH, the Linux kernel provides read/write access to bsp (and
currently read/write access to bspstore as well). But it
is definitely the case that if you change one, the other
will change at the same time. It is more useful to gdb to
be able to change bsp. So in order to prevent strange and
undesirable things from happening when a dummy stack frame
is popped (after calling an inferior function), we allow
bspstore to be read, but not written. (Note that popping
a (generic) dummy stack frame causes all registers that
were previously read from the inferior process to be written
back.) */
return regno < 0
|| regno >= gdbarch_num_regs (gdbarch)
|| u_offsets[regno] == -1
|| regno == IA64_BSPSTORE_REGNUM;
}
void
supply_gregset (struct regcache *regcache, const gregset_t *gregsetp)
{
int regi;
const greg_t *regp = (const greg_t *) gregsetp;
for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
{
regcache->raw_supply (regi, regp + (regi - IA64_GR0_REGNUM));
}
/* FIXME: NAT collection bits are at index 32; gotta deal with these
somehow... */
regcache->raw_supply (IA64_PR_REGNUM, regp + 33);
for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
{
regcache->raw_supply (regi, regp + 34 + (regi - IA64_BR0_REGNUM));
}
regcache->raw_supply (IA64_IP_REGNUM, regp + 42);
regcache->raw_supply (IA64_CFM_REGNUM, regp + 43);
regcache->raw_supply (IA64_PSR_REGNUM, regp + 44);
regcache->raw_supply (IA64_RSC_REGNUM, regp + 45);
regcache->raw_supply (IA64_BSP_REGNUM, regp + 46);
regcache->raw_supply (IA64_BSPSTORE_REGNUM, regp + 47);
regcache->raw_supply (IA64_RNAT_REGNUM, regp + 48);
regcache->raw_supply (IA64_CCV_REGNUM, regp + 49);
regcache->raw_supply (IA64_UNAT_REGNUM, regp + 50);
regcache->raw_supply (IA64_FPSR_REGNUM, regp + 51);
regcache->raw_supply (IA64_PFS_REGNUM, regp + 52);
regcache->raw_supply (IA64_LC_REGNUM, regp + 53);
regcache->raw_supply (IA64_EC_REGNUM, regp + 54);
}
void
fill_gregset (const struct regcache *regcache, gregset_t *gregsetp, int regno)
{
int regi;
greg_t *regp = (greg_t *) gregsetp;
#define COPY_REG(_idx_,_regi_) \
if ((regno == -1) || regno == _regi_) \
regcache->raw_collect (_regi_, regp + _idx_)
for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
{
COPY_REG (regi - IA64_GR0_REGNUM, regi);
}
/* FIXME: NAT collection bits at index 32? */
COPY_REG (33, IA64_PR_REGNUM);
for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
{
COPY_REG (34 + (regi - IA64_BR0_REGNUM), regi);
}
COPY_REG (42, IA64_IP_REGNUM);
COPY_REG (43, IA64_CFM_REGNUM);
COPY_REG (44, IA64_PSR_REGNUM);
COPY_REG (45, IA64_RSC_REGNUM);
COPY_REG (46, IA64_BSP_REGNUM);
COPY_REG (47, IA64_BSPSTORE_REGNUM);
COPY_REG (48, IA64_RNAT_REGNUM);
COPY_REG (49, IA64_CCV_REGNUM);
COPY_REG (50, IA64_UNAT_REGNUM);
COPY_REG (51, IA64_FPSR_REGNUM);
COPY_REG (52, IA64_PFS_REGNUM);
COPY_REG (53, IA64_LC_REGNUM);
COPY_REG (54, IA64_EC_REGNUM);
}
/* Given a pointer to a floating point register set in /proc format
(fpregset_t *), unpack the register contents and supply them as gdb's
idea of the current floating point register values. */
void
supply_fpregset (struct regcache *regcache, const fpregset_t *fpregsetp)
{
int regi;
const char *from;
const gdb_byte f_zero[16] = { 0 };
const gdb_byte f_one[16] =
{ 0, 0, 0, 0, 0, 0, 0, 0x80, 0xff, 0xff, 0, 0, 0, 0, 0, 0 };
/* Kernel generated cores have fr1==0 instead of 1.0. Older GDBs
did the same. So ignore whatever might be recorded in fpregset_t
for fr0/fr1 and always supply their expected values. */
/* fr0 is always read as zero. */
regcache->raw_supply (IA64_FR0_REGNUM, f_zero);
/* fr1 is always read as one (1.0). */
regcache->raw_supply (IA64_FR1_REGNUM, f_one);
for (regi = IA64_FR2_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
{
from = (const char *) &((*fpregsetp)[regi - IA64_FR0_REGNUM]);
regcache->raw_supply (regi, from);
}
}
/* Given a pointer to a floating point register set in /proc format
(fpregset_t *), update the register specified by REGNO from gdb's idea
of the current floating point register set. If REGNO is -1, update
them all. */
void
fill_fpregset (const struct regcache *regcache,
fpregset_t *fpregsetp, int regno)
{
int regi;
for (regi = IA64_FR0_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
{
if ((regno == -1) || (regno == regi))
regcache->raw_collect (regi, &((*fpregsetp)[regi - IA64_FR0_REGNUM]));
}
}
#define IA64_PSR_DB (1UL << 24)
#define IA64_PSR_DD (1UL << 39)
void
ia64_linux_nat_target::enable_watchpoints_in_psr (ptid_t ptid)
{
struct regcache *regcache = get_thread_regcache (this, ptid);
ULONGEST psr;
regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
if (!(psr & IA64_PSR_DB))
{
psr |= IA64_PSR_DB; /* Set the db bit - this enables hardware
watchpoints and breakpoints. */
regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
}
}
static long debug_registers[8];
static void
store_debug_register (ptid_t ptid, int idx, long val)
{
int tid;
tid = ptid.lwp ();
if (tid == 0)
tid = ptid.pid ();
(void) ptrace (PT_WRITE_U, tid, (PTRACE_TYPE_ARG3) (PT_DBR + 8 * idx), val);
}
static void
store_debug_register_pair (ptid_t ptid, int idx, long *dbr_addr,
long *dbr_mask)
{
if (dbr_addr)
store_debug_register (ptid, 2 * idx, *dbr_addr);
if (dbr_mask)
store_debug_register (ptid, 2 * idx + 1, *dbr_mask);
}
static int
is_power_of_2 (int val)
{
int i, onecount;
onecount = 0;
for (i = 0; i < 8 * sizeof (val); i++)
if (val & (1 << i))
onecount++;
return onecount <= 1;
}
int
ia64_linux_nat_target::insert_watchpoint (CORE_ADDR addr, int len,
enum target_hw_bp_type type,
struct expression *cond)
{
int idx;
long dbr_addr, dbr_mask;
int max_watchpoints = 4;
if (len <= 0 || !is_power_of_2 (len))
return -1;
for (idx = 0; idx < max_watchpoints; idx++)
{
dbr_mask = debug_registers[idx * 2 + 1];
if ((dbr_mask & (0x3UL << 62)) == 0)
{
/* Exit loop if both r and w bits clear. */
break;
}
}
if (idx == max_watchpoints)
return -1;
dbr_addr = (long) addr;
dbr_mask = (~(len - 1) & 0x00ffffffffffffffL); /* construct mask to match */
dbr_mask |= 0x0800000000000000L; /* Only match privilege level 3 */
switch (type)
{
case hw_write:
dbr_mask |= (1L << 62); /* Set w bit */
break;
case hw_read:
dbr_mask |= (1L << 63); /* Set r bit */
break;
case hw_access:
dbr_mask |= (3L << 62); /* Set both r and w bits */
break;
default:
return -1;
}
debug_registers[2 * idx] = dbr_addr;
debug_registers[2 * idx + 1] = dbr_mask;
for (const lwp_info *lp : all_lwps ())
{
store_debug_register_pair (lp->ptid, idx, &dbr_addr, &dbr_mask);
enable_watchpoints_in_psr (lp->ptid);
}
return 0;
}
int
ia64_linux_nat_target::remove_watchpoint (CORE_ADDR addr, int len,
enum target_hw_bp_type type,
struct expression *cond)
{
int idx;
long dbr_addr, dbr_mask;
int max_watchpoints = 4;
if (len <= 0 || !is_power_of_2 (len))
return -1;
for (idx = 0; idx < max_watchpoints; idx++)
{
dbr_addr = debug_registers[2 * idx];
dbr_mask = debug_registers[2 * idx + 1];
if ((dbr_mask & (0x3UL << 62)) && addr == (CORE_ADDR) dbr_addr)
{
debug_registers[2 * idx] = 0;
debug_registers[2 * idx + 1] = 0;
dbr_addr = 0;
dbr_mask = 0;
for (const lwp_info *lp : all_lwps ())
store_debug_register_pair (lp->ptid, idx, &dbr_addr, &dbr_mask);
return 0;
}
}
return -1;
}
void
ia64_linux_nat_target::low_new_thread (struct lwp_info *lp)
{
int i, any;
any = 0;
for (i = 0; i < 8; i++)
{
if (debug_registers[i] != 0)
any = 1;
store_debug_register (lp->ptid, i, debug_registers[i]);
}
if (any)
enable_watchpoints_in_psr (lp->ptid);
}
bool
ia64_linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
{
CORE_ADDR psr;
siginfo_t siginfo;
regcache *regcache = get_thread_regcache (inferior_thread ());
if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
return false;
if (siginfo.si_signo != SIGTRAP
|| (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
return false;
regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
psr |= IA64_PSR_DD; /* Set the dd bit - this will disable the watchpoint
for the next instruction. */
regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
*addr_p = (CORE_ADDR) siginfo.si_addr;
return true;
}
bool
ia64_linux_nat_target::stopped_by_watchpoint ()
{
CORE_ADDR addr;
return stopped_data_address (&addr);
}
int
ia64_linux_nat_target::can_use_hw_breakpoint (enum bptype type,
int cnt, int othertype)
{
return 1;
}
/* Fetch register REGNUM from the inferior. */
static void
ia64_linux_fetch_register (struct regcache *regcache, int regnum)
{
struct gdbarch *gdbarch = regcache->arch ();
CORE_ADDR addr;
size_t size;
PTRACE_TYPE_RET *buf;
pid_t pid;
int i;
/* r0 cannot be fetched but is always zero. */
if (regnum == IA64_GR0_REGNUM)
{
const gdb_byte zero[8] = { 0 };
gdb_assert (sizeof (zero) == register_size (gdbarch, regnum));
regcache->raw_supply (regnum, zero);
return;
}
/* fr0 cannot be fetched but is always zero. */
if (regnum == IA64_FR0_REGNUM)
{
const gdb_byte f_zero[16] = { 0 };
gdb_assert (sizeof (f_zero) == register_size (gdbarch, regnum));
regcache->raw_supply (regnum, f_zero);
return;
}
/* fr1 cannot be fetched but is always one (1.0). */
if (regnum == IA64_FR1_REGNUM)
{
const gdb_byte f_one[16] =
{ 0, 0, 0, 0, 0, 0, 0, 0x80, 0xff, 0xff, 0, 0, 0, 0, 0, 0 };
gdb_assert (sizeof (f_one) == register_size (gdbarch, regnum));
regcache->raw_supply (regnum, f_one);
return;
}
if (ia64_cannot_fetch_register (gdbarch, regnum))
{
regcache->raw_supply (regnum, NULL);
return;
}
pid = get_ptrace_pid (regcache->ptid ());
/* This isn't really an address, but ptrace thinks of it as one. */
addr = ia64_register_addr (gdbarch, regnum);
size = register_size (gdbarch, regnum);
gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
buf = (PTRACE_TYPE_RET *) alloca (size);
/* Read the register contents from the inferior a chunk at a time. */
for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
{
errno = 0;
buf[i] = ptrace (PT_READ_U, pid, (PTRACE_TYPE_ARG3)addr, 0);
if (errno != 0)
error (_("Couldn't read register %s (#%d): %s."),
gdbarch_register_name (gdbarch, regnum),
regnum, safe_strerror (errno));
addr += sizeof (PTRACE_TYPE_RET);
}
regcache->raw_supply (regnum, buf);
}
/* Fetch register REGNUM from the inferior. If REGNUM is -1, do this
for all registers. */
void
ia64_linux_nat_target::fetch_registers (struct regcache *regcache, int regnum)
{
if (regnum == -1)
for (regnum = 0;
regnum < gdbarch_num_regs (regcache->arch ());
regnum++)
ia64_linux_fetch_register (regcache, regnum);
else
ia64_linux_fetch_register (regcache, regnum);
}
/* Store register REGNUM into the inferior. */
static void
ia64_linux_store_register (const struct regcache *regcache, int regnum)
{
struct gdbarch *gdbarch = regcache->arch ();
CORE_ADDR addr;
size_t size;
PTRACE_TYPE_RET *buf;
pid_t pid;
int i;
if (ia64_cannot_store_register (gdbarch, regnum))
return;
pid = get_ptrace_pid (regcache->ptid ());
/* This isn't really an address, but ptrace thinks of it as one. */
addr = ia64_register_addr (gdbarch, regnum);
size = register_size (gdbarch, regnum);
gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
buf = (PTRACE_TYPE_RET *) alloca (size);
/* Write the register contents into the inferior a chunk at a time. */
regcache->raw_collect (regnum, buf);
for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
{
errno = 0;
ptrace (PT_WRITE_U, pid, (PTRACE_TYPE_ARG3)addr, buf[i]);
if (errno != 0)
error (_("Couldn't write register %s (#%d): %s."),
gdbarch_register_name (gdbarch, regnum),
regnum, safe_strerror (errno));
addr += sizeof (PTRACE_TYPE_RET);
}
}
/* Store register REGNUM back into the inferior. If REGNUM is -1, do
this for all registers. */
void
ia64_linux_nat_target::store_registers (struct regcache *regcache, int regnum)
{
if (regnum == -1)
for (regnum = 0;
regnum < gdbarch_num_regs (regcache->arch ());
regnum++)
ia64_linux_store_register (regcache, regnum);
else
ia64_linux_store_register (regcache, regnum);
}
/* Implement the xfer_partial target_ops method. */
enum target_xfer_status
ia64_linux_nat_target::xfer_partial (enum target_object object,
const char *annex,
gdb_byte *readbuf, const gdb_byte *writebuf,
ULONGEST offset, ULONGEST len,
ULONGEST *xfered_len)
{
if (object == TARGET_OBJECT_UNWIND_TABLE && readbuf != NULL)
{
static long gate_table_size;
gdb_byte *tmp_buf;
long res;
/* Probe for the table size once. */
if (gate_table_size == 0)
gate_table_size = syscall (__NR_getunwind, NULL, 0);
if (gate_table_size < 0)
return TARGET_XFER_E_IO;
if (offset >= gate_table_size)
return TARGET_XFER_EOF;
tmp_buf = (gdb_byte *) alloca (gate_table_size);
res = syscall (__NR_getunwind, tmp_buf, gate_table_size);
if (res < 0)
return TARGET_XFER_E_IO;
gdb_assert (res == gate_table_size);
if (offset + len > gate_table_size)
len = gate_table_size - offset;
memcpy (readbuf, tmp_buf + offset, len);
*xfered_len = len;
return TARGET_XFER_OK;
}
return linux_nat_target::xfer_partial (object, annex, readbuf, writebuf,
offset, len, xfered_len);
}
/* For break.b instruction ia64 CPU forgets the immediate value and generates
SIGILL with ILL_ILLOPC instead of more common SIGTRAP with TRAP_BRKPT.
ia64 does not use gdbarch_decr_pc_after_break so we do not have to make any
difference for the signals here. */
bool
ia64_linux_nat_target::low_status_is_event (int status)
{
return WIFSTOPPED (status) && (WSTOPSIG (status) == SIGTRAP
|| WSTOPSIG (status) == SIGILL);
}
void _initialize_ia64_linux_nat ();
void
_initialize_ia64_linux_nat ()
{
/* Register the target. */
linux_target = &the_ia64_linux_nat_target;
add_inf_child_target (&the_ia64_linux_nat_target);
}
|