1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
|
/* Intel 386 target-dependent stuff.
Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
1998, 1999, 2000, 2001
Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "gdb_string.h"
#include "frame.h"
#include "inferior.h"
#include "gdbcore.h"
#include "target.h"
#include "floatformat.h"
#include "symtab.h"
#include "gdbcmd.h"
#include "command.h"
#include "arch-utils.h"
#include "regcache.h"
/* i386_register_byte[i] is the offset into the register file of the
start of register number i. We initialize this from
i386_register_raw_size. */
int i386_register_byte[MAX_NUM_REGS];
/* i386_register_raw_size[i] is the number of bytes of storage in
GDB's register array occupied by register i. */
int i386_register_raw_size[MAX_NUM_REGS] = {
4, 4, 4, 4,
4, 4, 4, 4,
4, 4, 4, 4,
4, 4, 4, 4,
10, 10, 10, 10,
10, 10, 10, 10,
4, 4, 4, 4,
4, 4, 4, 4,
16, 16, 16, 16,
16, 16, 16, 16,
4
};
/* i386_register_virtual_size[i] is the size in bytes of the virtual
type of register i. */
int i386_register_virtual_size[MAX_NUM_REGS];
/* This is the variable that is set with "set disassembly-flavor", and
its legitimate values. */
static const char att_flavor[] = "att";
static const char intel_flavor[] = "intel";
static const char *valid_flavors[] =
{
att_flavor,
intel_flavor,
NULL
};
static const char *disassembly_flavor = att_flavor;
/* This is used to keep the bfd arch_info in sync with the disassembly
flavor. */
static void set_disassembly_flavor_sfunc (char *, int,
struct cmd_list_element *);
static void set_disassembly_flavor (void);
/* Stdio style buffering was used to minimize calls to ptrace, but
this buffering did not take into account that the code section
being accessed may not be an even number of buffers long (even if
the buffer is only sizeof(int) long). In cases where the code
section size happened to be a non-integral number of buffers long,
attempting to read the last buffer would fail. Simply using
target_read_memory and ignoring errors, rather than read_memory, is
not the correct solution, since legitimate access errors would then
be totally ignored. To properly handle this situation and continue
to use buffering would require that this code be able to determine
the minimum code section size granularity (not the alignment of the
section itself, since the actual failing case that pointed out this
problem had a section alignment of 4 but was not a multiple of 4
bytes long), on a target by target basis, and then adjust it's
buffer size accordingly. This is messy, but potentially feasible.
It probably needs the bfd library's help and support. For now, the
buffer size is set to 1. (FIXME -fnf) */
#define CODESTREAM_BUFSIZ 1 /* Was sizeof(int), see note above. */
static CORE_ADDR codestream_next_addr;
static CORE_ADDR codestream_addr;
static unsigned char codestream_buf[CODESTREAM_BUFSIZ];
static int codestream_off;
static int codestream_cnt;
#define codestream_tell() (codestream_addr + codestream_off)
#define codestream_peek() \
(codestream_cnt == 0 ? \
codestream_fill(1) : codestream_buf[codestream_off])
#define codestream_get() \
(codestream_cnt-- == 0 ? \
codestream_fill(0) : codestream_buf[codestream_off++])
static unsigned char
codestream_fill (int peek_flag)
{
codestream_addr = codestream_next_addr;
codestream_next_addr += CODESTREAM_BUFSIZ;
codestream_off = 0;
codestream_cnt = CODESTREAM_BUFSIZ;
read_memory (codestream_addr, (char *) codestream_buf, CODESTREAM_BUFSIZ);
if (peek_flag)
return (codestream_peek ());
else
return (codestream_get ());
}
static void
codestream_seek (CORE_ADDR place)
{
codestream_next_addr = place / CODESTREAM_BUFSIZ;
codestream_next_addr *= CODESTREAM_BUFSIZ;
codestream_cnt = 0;
codestream_fill (1);
while (codestream_tell () != place)
codestream_get ();
}
static void
codestream_read (unsigned char *buf, int count)
{
unsigned char *p;
int i;
p = buf;
for (i = 0; i < count; i++)
*p++ = codestream_get ();
}
/* If the next instruction is a jump, move to its target. */
static void
i386_follow_jump (void)
{
unsigned char buf[4];
long delta;
int data16;
CORE_ADDR pos;
pos = codestream_tell ();
data16 = 0;
if (codestream_peek () == 0x66)
{
codestream_get ();
data16 = 1;
}
switch (codestream_get ())
{
case 0xe9:
/* Relative jump: if data16 == 0, disp32, else disp16. */
if (data16)
{
codestream_read (buf, 2);
delta = extract_signed_integer (buf, 2);
/* Include the size of the jmp instruction (including the
0x66 prefix). */
pos += delta + 4;
}
else
{
codestream_read (buf, 4);
delta = extract_signed_integer (buf, 4);
pos += delta + 5;
}
break;
case 0xeb:
/* Relative jump, disp8 (ignore data16). */
codestream_read (buf, 1);
/* Sign-extend it. */
delta = extract_signed_integer (buf, 1);
pos += delta + 2;
break;
}
codestream_seek (pos);
}
/* Find & return the amount a local space allocated, and advance the
codestream to the first register push (if any).
If the entry sequence doesn't make sense, return -1, and leave
codestream pointer at a random spot. */
static long
i386_get_frame_setup (CORE_ADDR pc)
{
unsigned char op;
codestream_seek (pc);
i386_follow_jump ();
op = codestream_get ();
if (op == 0x58) /* popl %eax */
{
/* This function must start with
popl %eax 0x58
xchgl %eax, (%esp) 0x87 0x04 0x24
or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
(the System V compiler puts out the second `xchg'
instruction, and the assembler doesn't try to optimize it, so
the 'sib' form gets generated). This sequence is used to get
the address of the return buffer for a function that returns
a structure. */
int pos;
unsigned char buf[4];
static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
pos = codestream_tell ();
codestream_read (buf, 4);
if (memcmp (buf, proto1, 3) == 0)
pos += 3;
else if (memcmp (buf, proto2, 4) == 0)
pos += 4;
codestream_seek (pos);
op = codestream_get (); /* Update next opcode. */
}
if (op == 0x68 || op == 0x6a)
{
/* This function may start with
pushl constant
call _probe
addl $4, %esp
followed by
pushl %ebp
etc. */
int pos;
unsigned char buf[8];
/* Skip past the `pushl' instruction; it has either a one-byte
or a four-byte operand, depending on the opcode. */
pos = codestream_tell ();
if (op == 0x68)
pos += 4;
else
pos += 1;
codestream_seek (pos);
/* Read the following 8 bytes, which should be "call _probe" (6
bytes) followed by "addl $4,%esp" (2 bytes). */
codestream_read (buf, sizeof (buf));
if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
pos += sizeof (buf);
codestream_seek (pos);
op = codestream_get (); /* Update next opcode. */
}
if (op == 0x55) /* pushl %ebp */
{
/* Check for "movl %esp, %ebp" -- can be written in two ways. */
switch (codestream_get ())
{
case 0x8b:
if (codestream_get () != 0xec)
return -1;
break;
case 0x89:
if (codestream_get () != 0xe5)
return -1;
break;
default:
return -1;
}
/* Check for stack adjustment
subl $XXX, %esp
NOTE: You can't subtract a 16 bit immediate from a 32 bit
reg, so we don't have to worry about a data16 prefix. */
op = codestream_peek ();
if (op == 0x83)
{
/* `subl' with 8 bit immediate. */
codestream_get ();
if (codestream_get () != 0xec)
/* Some instruction starting with 0x83 other than `subl'. */
{
codestream_seek (codestream_tell () - 2);
return 0;
}
/* `subl' with signed byte immediate (though it wouldn't
make sense to be negative). */
return (codestream_get ());
}
else if (op == 0x81)
{
char buf[4];
/* Maybe it is `subl' with a 32 bit immedediate. */
codestream_get ();
if (codestream_get () != 0xec)
/* Some instruction starting with 0x81 other than `subl'. */
{
codestream_seek (codestream_tell () - 2);
return 0;
}
/* It is `subl' with a 32 bit immediate. */
codestream_read ((unsigned char *) buf, 4);
return extract_signed_integer (buf, 4);
}
else
{
return 0;
}
}
else if (op == 0xc8)
{
char buf[2];
/* `enter' with 16 bit unsigned immediate. */
codestream_read ((unsigned char *) buf, 2);
codestream_get (); /* Flush final byte of enter instruction. */
return extract_unsigned_integer (buf, 2);
}
return (-1);
}
/* Return the chain-pointer for FRAME. In the case of the i386, the
frame's nominal address is the address of a 4-byte word containing
the calling frame's address. */
CORE_ADDR
i386_frame_chain (struct frame_info *frame)
{
if (frame->signal_handler_caller)
return frame->frame;
if (! inside_entry_file (frame->pc))
return read_memory_unsigned_integer (frame->frame, 4);
return 0;
}
/* Determine whether the function invocation represented by FRAME does
not have a from on the stack associated with it. If it does not,
return non-zero, otherwise return zero. */
int
i386_frameless_function_invocation (struct frame_info *frame)
{
if (frame->signal_handler_caller)
return 0;
return frameless_look_for_prologue (frame);
}
/* Return the saved program counter for FRAME. */
CORE_ADDR
i386_frame_saved_pc (struct frame_info *frame)
{
/* FIXME: kettenis/2001-05-09: Conditionalizing the next bit of code
on SIGCONTEXT_PC_OFFSET and I386V4_SIGTRAMP_SAVED_PC should be
considered a temporary hack. I plan to come up with something
better when we go multi-arch. */
#if defined (SIGCONTEXT_PC_OFFSET) || defined (I386V4_SIGTRAMP_SAVED_PC)
if (frame->signal_handler_caller)
return sigtramp_saved_pc (frame);
#endif
return read_memory_unsigned_integer (frame->frame + 4, 4);
}
/* Immediately after a function call, return the saved pc. */
CORE_ADDR
i386_saved_pc_after_call (struct frame_info *frame)
{
return read_memory_unsigned_integer (read_register (SP_REGNUM), 4);
}
/* Return number of args passed to a frame.
Can return -1, meaning no way to tell. */
int
i386_frame_num_args (struct frame_info *fi)
{
#if 1
return -1;
#else
/* This loses because not only might the compiler not be popping the
args right after the function call, it might be popping args from
both this call and a previous one, and we would say there are
more args than there really are. */
int retpc;
unsigned char op;
struct frame_info *pfi;
/* On the i386, the instruction following the call could be:
popl %ecx - one arg
addl $imm, %esp - imm/4 args; imm may be 8 or 32 bits
anything else - zero args. */
int frameless;
frameless = FRAMELESS_FUNCTION_INVOCATION (fi);
if (frameless)
/* In the absence of a frame pointer, GDB doesn't get correct
values for nameless arguments. Return -1, so it doesn't print
any nameless arguments. */
return -1;
pfi = get_prev_frame (fi);
if (pfi == 0)
{
/* NOTE: This can happen if we are looking at the frame for
main, because FRAME_CHAIN_VALID won't let us go into start.
If we have debugging symbols, that's not really a big deal;
it just means it will only show as many arguments to main as
are declared. */
return -1;
}
else
{
retpc = pfi->pc;
op = read_memory_integer (retpc, 1);
if (op == 0x59) /* pop %ecx */
return 1;
else if (op == 0x83)
{
op = read_memory_integer (retpc + 1, 1);
if (op == 0xc4)
/* addl $<signed imm 8 bits>, %esp */
return (read_memory_integer (retpc + 2, 1) & 0xff) / 4;
else
return 0;
}
else if (op == 0x81) /* `add' with 32 bit immediate. */
{
op = read_memory_integer (retpc + 1, 1);
if (op == 0xc4)
/* addl $<imm 32>, %esp */
return read_memory_integer (retpc + 2, 4) / 4;
else
return 0;
}
else
{
return 0;
}
}
#endif
}
/* Parse the first few instructions the function to see what registers
were stored.
We handle these cases:
The startup sequence can be at the start of the function, or the
function can start with a branch to startup code at the end.
%ebp can be set up with either the 'enter' instruction, or "pushl
%ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
once used in the System V compiler).
Local space is allocated just below the saved %ebp by either the
'enter' instruction, or by "subl $<size>, %esp". 'enter' has a 16
bit unsigned argument for space to allocate, and the 'addl'
instruction could have either a signed byte, or 32 bit immediate.
Next, the registers used by this function are pushed. With the
System V compiler they will always be in the order: %edi, %esi,
%ebx (and sometimes a harmless bug causes it to also save but not
restore %eax); however, the code below is willing to see the pushes
in any order, and will handle up to 8 of them.
If the setup sequence is at the end of the function, then the next
instruction will be a branch back to the start. */
void
i386_frame_init_saved_regs (struct frame_info *fip)
{
long locals = -1;
unsigned char op;
CORE_ADDR dummy_bottom;
CORE_ADDR addr;
CORE_ADDR pc;
int i;
if (fip->saved_regs)
return;
frame_saved_regs_zalloc (fip);
/* If the frame is the end of a dummy, compute where the beginning
would be. */
dummy_bottom = fip->frame - 4 - REGISTER_BYTES - CALL_DUMMY_LENGTH;
/* Check if the PC points in the stack, in a dummy frame. */
if (dummy_bottom <= fip->pc && fip->pc <= fip->frame)
{
/* All registers were saved by push_call_dummy. */
addr = fip->frame;
for (i = 0; i < NUM_REGS; i++)
{
addr -= REGISTER_RAW_SIZE (i);
fip->saved_regs[i] = addr;
}
return;
}
pc = get_pc_function_start (fip->pc);
if (pc != 0)
locals = i386_get_frame_setup (pc);
if (locals >= 0)
{
addr = fip->frame - 4 - locals;
for (i = 0; i < 8; i++)
{
op = codestream_get ();
if (op < 0x50 || op > 0x57)
break;
#ifdef I386_REGNO_TO_SYMMETRY
/* Dynix uses different internal numbering. Ick. */
fip->saved_regs[I386_REGNO_TO_SYMMETRY (op - 0x50)] = addr;
#else
fip->saved_regs[op - 0x50] = addr;
#endif
addr -= 4;
}
}
fip->saved_regs[PC_REGNUM] = fip->frame + 4;
fip->saved_regs[FP_REGNUM] = fip->frame;
}
/* Return PC of first real instruction. */
int
i386_skip_prologue (int pc)
{
unsigned char op;
int i;
static unsigned char pic_pat[6] =
{ 0xe8, 0, 0, 0, 0, /* call 0x0 */
0x5b, /* popl %ebx */
};
CORE_ADDR pos;
if (i386_get_frame_setup (pc) < 0)
return (pc);
/* Found valid frame setup -- codestream now points to start of push
instructions for saving registers. */
/* Skip over register saves. */
for (i = 0; i < 8; i++)
{
op = codestream_peek ();
/* Break if not `pushl' instrunction. */
if (op < 0x50 || op > 0x57)
break;
codestream_get ();
}
/* The native cc on SVR4 in -K PIC mode inserts the following code
to get the address of the global offset table (GOT) into register
%ebx
call 0x0
popl %ebx
movl %ebx,x(%ebp) (optional)
addl y,%ebx
This code is with the rest of the prologue (at the end of the
function), so we have to skip it to get to the first real
instruction at the start of the function. */
pos = codestream_tell ();
for (i = 0; i < 6; i++)
{
op = codestream_get ();
if (pic_pat[i] != op)
break;
}
if (i == 6)
{
unsigned char buf[4];
long delta = 6;
op = codestream_get ();
if (op == 0x89) /* movl %ebx, x(%ebp) */
{
op = codestream_get ();
if (op == 0x5d) /* One byte offset from %ebp. */
{
delta += 3;
codestream_read (buf, 1);
}
else if (op == 0x9d) /* Four byte offset from %ebp. */
{
delta += 6;
codestream_read (buf, 4);
}
else /* Unexpected instruction. */
delta = -1;
op = codestream_get ();
}
/* addl y,%ebx */
if (delta > 0 && op == 0x81 && codestream_get () == 0xc3)
{
pos += delta + 6;
}
}
codestream_seek (pos);
i386_follow_jump ();
return (codestream_tell ());
}
void
i386_push_dummy_frame (void)
{
CORE_ADDR sp = read_register (SP_REGNUM);
int regnum;
char regbuf[MAX_REGISTER_RAW_SIZE];
sp = push_word (sp, read_register (PC_REGNUM));
sp = push_word (sp, read_register (FP_REGNUM));
write_register (FP_REGNUM, sp);
for (regnum = 0; regnum < NUM_REGS; regnum++)
{
read_register_gen (regnum, regbuf);
sp = push_bytes (sp, regbuf, REGISTER_RAW_SIZE (regnum));
}
write_register (SP_REGNUM, sp);
}
/* Insert the (relative) function address into the call sequence
stored at DYMMY. */
void
i386_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
value_ptr *args, struct type *type, int gcc_p)
{
int from, to, delta, loc;
loc = (int)(read_register (SP_REGNUM) - CALL_DUMMY_LENGTH);
from = loc + 5;
to = (int)(fun);
delta = to - from;
*((char *)(dummy) + 1) = (delta & 0xff);
*((char *)(dummy) + 2) = ((delta >> 8) & 0xff);
*((char *)(dummy) + 3) = ((delta >> 16) & 0xff);
*((char *)(dummy) + 4) = ((delta >> 24) & 0xff);
}
void
i386_pop_frame (void)
{
struct frame_info *frame = get_current_frame ();
CORE_ADDR fp;
int regnum;
char regbuf[MAX_REGISTER_RAW_SIZE];
fp = FRAME_FP (frame);
i386_frame_init_saved_regs (frame);
for (regnum = 0; regnum < NUM_REGS; regnum++)
{
CORE_ADDR addr;
addr = frame->saved_regs[regnum];
if (addr)
{
read_memory (addr, regbuf, REGISTER_RAW_SIZE (regnum));
write_register_bytes (REGISTER_BYTE (regnum), regbuf,
REGISTER_RAW_SIZE (regnum));
}
}
write_register (FP_REGNUM, read_memory_integer (fp, 4));
write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
write_register (SP_REGNUM, fp + 8);
flush_cached_frames ();
}
#ifdef GET_LONGJMP_TARGET
/* Figure out where the longjmp will land. Slurp the args out of the
stack. We expect the first arg to be a pointer to the jmp_buf
structure from which we extract the pc (JB_PC) that we will land
at. The pc is copied into PC. This routine returns true on
success. */
int
get_longjmp_target (CORE_ADDR *pc)
{
char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
CORE_ADDR sp, jb_addr;
sp = read_register (SP_REGNUM);
if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack. */
buf,
TARGET_PTR_BIT / TARGET_CHAR_BIT))
return 0;
jb_addr = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
TARGET_PTR_BIT / TARGET_CHAR_BIT))
return 0;
*pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
return 1;
}
#endif /* GET_LONGJMP_TARGET */
CORE_ADDR
i386_push_arguments (int nargs, value_ptr *args, CORE_ADDR sp,
int struct_return, CORE_ADDR struct_addr)
{
sp = default_push_arguments (nargs, args, sp, struct_return, struct_addr);
if (struct_return)
{
char buf[4];
sp -= 4;
store_address (buf, 4, struct_addr);
write_memory (sp, buf, 4);
}
return sp;
}
void
i386_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
{
/* Do nothing. Everything was already done by i386_push_arguments. */
}
/* These registers are used for returning integers (and on some
targets also for returning `struct' and `union' values when their
size and alignment match an integer type). */
#define LOW_RETURN_REGNUM 0 /* %eax */
#define HIGH_RETURN_REGNUM 2 /* %edx */
/* Extract from an array REGBUF containing the (raw) register state, a
function return value of TYPE, and copy that, in virtual format,
into VALBUF. */
void
i386_extract_return_value (struct type *type, char *regbuf, char *valbuf)
{
int len = TYPE_LENGTH (type);
if (TYPE_CODE (type) == TYPE_CODE_STRUCT
&& TYPE_NFIELDS (type) == 1)
{
i386_extract_return_value (TYPE_FIELD_TYPE (type, 0), regbuf, valbuf);
return;
}
if (TYPE_CODE (type) == TYPE_CODE_FLT)
{
if (NUM_FREGS == 0)
{
warning ("Cannot find floating-point return value.");
memset (valbuf, 0, len);
return;
}
/* Floating-point return values can be found in %st(0).
FIXME: Does %st(0) always correspond to FP0? */
if (len == TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT
&& TARGET_LONG_DOUBLE_FORMAT == &floatformat_i387_ext)
{
/* Copy straight over, but take care of the padding. */
memcpy (valbuf, ®buf[REGISTER_BYTE (FP0_REGNUM)],
FPU_REG_RAW_SIZE);
memset (valbuf + FPU_REG_RAW_SIZE, 0, len - FPU_REG_RAW_SIZE);
}
else
{
/* Convert the extended floating-point number found in
%st(0) to the desired type. This is probably not exactly
how it would happen on the target itself, but it is the
best we can do. */
DOUBLEST val;
floatformat_to_doublest (&floatformat_i387_ext,
®buf[REGISTER_BYTE (FP0_REGNUM)], &val);
store_floating (valbuf, TYPE_LENGTH (type), val);
}
}
else
{
int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
if (len <= low_size)
memcpy (valbuf, ®buf[REGISTER_BYTE (LOW_RETURN_REGNUM)], len);
else if (len <= (low_size + high_size))
{
memcpy (valbuf,
®buf[REGISTER_BYTE (LOW_RETURN_REGNUM)], low_size);
memcpy (valbuf + low_size,
®buf[REGISTER_BYTE (HIGH_RETURN_REGNUM)], len - low_size);
}
else
internal_error (__FILE__, __LINE__,
"Cannot extract return value of %d bytes long.", len);
}
}
/* Write into the appropriate registers a function return value stored
in VALBUF of type TYPE, given in virtual format. */
void
i386_store_return_value (struct type *type, char *valbuf)
{
int len = TYPE_LENGTH (type);
if (TYPE_CODE (type) == TYPE_CODE_STRUCT
&& TYPE_NFIELDS (type) == 1)
{
i386_store_return_value (TYPE_FIELD_TYPE (type, 0), valbuf);
return;
}
if (TYPE_CODE (type) == TYPE_CODE_FLT)
{
unsigned int fstat;
if (NUM_FREGS == 0)
{
warning ("Cannot set floating-point return value.");
return;
}
/* Floating-point return values can be found in %st(0). */
if (len == TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT
&& TARGET_LONG_DOUBLE_FORMAT == &floatformat_i387_ext)
{
/* Copy straight over. */
write_register_bytes (REGISTER_BYTE (FP0_REGNUM), valbuf,
FPU_REG_RAW_SIZE);
}
else
{
char buf[FPU_REG_RAW_SIZE];
DOUBLEST val;
/* Convert the value found in VALBUF to the extended
floating point format used by the FPU. This is probably
not exactly how it would happen on the target itself, but
it is the best we can do. */
val = extract_floating (valbuf, TYPE_LENGTH (type));
floatformat_from_doublest (&floatformat_i387_ext, &val, buf);
write_register_bytes (REGISTER_BYTE (FP0_REGNUM), buf,
FPU_REG_RAW_SIZE);
}
/* Set the top of the floating point register stack to 7. That
makes sure that FP0 (which we set above) is indeed %st(0).
FIXME: Perhaps we should completely reset the status word? */
fstat = read_register (FSTAT_REGNUM);
fstat |= (7 << 11);
write_register (FSTAT_REGNUM, fstat);
/* Mark %st(1) through %st(7) as empty. */
write_register (FTAG_REGNUM, 0x3fff);
}
else
{
int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
if (len <= low_size)
write_register_bytes (REGISTER_BYTE (LOW_RETURN_REGNUM), valbuf, len);
else if (len <= (low_size + high_size))
{
write_register_bytes (REGISTER_BYTE (LOW_RETURN_REGNUM),
valbuf, low_size);
write_register_bytes (REGISTER_BYTE (HIGH_RETURN_REGNUM),
valbuf + low_size, len - low_size);
}
else
internal_error (__FILE__, __LINE__,
"Cannot store return value of %d bytes long.", len);
}
}
/* Extract from an array REGBUF containing the (raw) register state
the address in which a function should return its structure value,
as a CORE_ADDR. */
CORE_ADDR
i386_extract_struct_value_address (char *regbuf)
{
return extract_address (®buf[REGISTER_BYTE (LOW_RETURN_REGNUM)],
REGISTER_RAW_SIZE (LOW_RETURN_REGNUM));
}
/* Return the GDB type object for the "standard" data type of data in
register REGNUM. Perhaps %esi and %edi should go here, but
potentially they could be used for things other than address. */
struct type *
i386_register_virtual_type (int regnum)
{
if (regnum == PC_REGNUM || regnum == FP_REGNUM || regnum == SP_REGNUM)
return lookup_pointer_type (builtin_type_void);
if (IS_FP_REGNUM (regnum))
return builtin_type_long_double;
if (IS_SSE_REGNUM (regnum))
return builtin_type_v4sf;
return builtin_type_int;
}
/* Return true iff register REGNUM's virtual format is different from
its raw format. Note that this definition assumes that the host
supports IEEE 32-bit floats, since it doesn't say that SSE
registers need conversion. Even if we can't find a counterexample,
this is still sloppy. */
int
i386_register_convertible (int regnum)
{
return IS_FP_REGNUM (regnum);
}
/* Convert data from raw format for register REGNUM in buffer FROM to
virtual format with type TYPE in buffer TO. In principle both
formats are identical except that the virtual format has two extra
bytes appended that aren't used. We set these to zero. */
void
i386_register_convert_to_virtual (int regnum, struct type *type,
char *from, char *to)
{
/* Copy straight over, but take care of the padding. */
memcpy (to, from, FPU_REG_RAW_SIZE);
memset (to + FPU_REG_RAW_SIZE, 0, TYPE_LENGTH (type) - FPU_REG_RAW_SIZE);
}
/* Convert data from virtual format with type TYPE in buffer FROM to
raw format for register REGNUM in buffer TO. Simply omit the two
unused bytes. */
void
i386_register_convert_to_raw (struct type *type, int regnum,
char *from, char *to)
{
memcpy (to, from, FPU_REG_RAW_SIZE);
}
#ifdef I386V4_SIGTRAMP_SAVED_PC
/* Get saved user PC for sigtramp from the pushed ucontext on the
stack for all three variants of SVR4 sigtramps. */
CORE_ADDR
i386v4_sigtramp_saved_pc (struct frame_info *frame)
{
CORE_ADDR saved_pc_offset = 4;
char *name = NULL;
find_pc_partial_function (frame->pc, &name, NULL, NULL);
if (name)
{
if (STREQ (name, "_sigreturn"))
saved_pc_offset = 132 + 14 * 4;
else if (STREQ (name, "_sigacthandler"))
saved_pc_offset = 80 + 14 * 4;
else if (STREQ (name, "sigvechandler"))
saved_pc_offset = 120 + 14 * 4;
}
if (frame->next)
return read_memory_integer (frame->next->frame + saved_pc_offset, 4);
return read_memory_integer (read_register (SP_REGNUM) + saved_pc_offset, 4);
}
#endif /* I386V4_SIGTRAMP_SAVED_PC */
#ifdef STATIC_TRANSFORM_NAME
/* SunPRO encodes the static variables. This is not related to C++
mangling, it is done for C too. */
char *
sunpro_static_transform_name (char *name)
{
char *p;
if (IS_STATIC_TRANSFORM_NAME (name))
{
/* For file-local statics there will be a period, a bunch of
junk (the contents of which match a string given in the
N_OPT), a period and the name. For function-local statics
there will be a bunch of junk (which seems to change the
second character from 'A' to 'B'), a period, the name of the
function, and the name. So just skip everything before the
last period. */
p = strrchr (name, '.');
if (p != NULL)
name = p + 1;
}
return name;
}
#endif /* STATIC_TRANSFORM_NAME */
/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
CORE_ADDR
skip_trampoline_code (CORE_ADDR pc, char *name)
{
if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
{
unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
struct minimal_symbol *indsym =
indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
char *symname = indsym ? SYMBOL_NAME (indsym) : 0;
if (symname)
{
if (strncmp (symname, "__imp_", 6) == 0
|| strncmp (symname, "_imp_", 5) == 0)
return name ? 1 : read_memory_unsigned_integer (indirect, 4);
}
}
return 0; /* Not a trampoline. */
}
/* We have two flavours of disassembly. The machinery on this page
deals with switching between those. */
static int
gdb_print_insn_i386 (bfd_vma memaddr, disassemble_info *info)
{
if (disassembly_flavor == att_flavor)
return print_insn_i386_att (memaddr, info);
else if (disassembly_flavor == intel_flavor)
return print_insn_i386_intel (memaddr, info);
/* Never reached -- disassembly_flavour is always either att_flavor
or intel_flavor. */
internal_error (__FILE__, __LINE__, "failed internal consistency check");
}
/* If the disassembly mode is intel, we have to also switch the bfd
mach_type. This function is run in the set disassembly_flavor
command, and does that. */
static void
set_disassembly_flavor_sfunc (char *args, int from_tty,
struct cmd_list_element *c)
{
set_disassembly_flavor ();
}
static void
set_disassembly_flavor (void)
{
if (disassembly_flavor == att_flavor)
set_architecture_from_arch_mach (bfd_arch_i386, bfd_mach_i386_i386);
else if (disassembly_flavor == intel_flavor)
set_architecture_from_arch_mach (bfd_arch_i386,
bfd_mach_i386_i386_intel_syntax);
}
/* Provide a prototype to silence -Wmissing-prototypes. */
void _initialize_i386_tdep (void);
void
_initialize_i386_tdep (void)
{
/* Initialize the table saying where each register starts in the
register file. */
{
int i, offset;
offset = 0;
for (i = 0; i < MAX_NUM_REGS; i++)
{
i386_register_byte[i] = offset;
offset += i386_register_raw_size[i];
}
}
/* Initialize the table of virtual register sizes. */
{
int i;
for (i = 0; i < MAX_NUM_REGS; i++)
i386_register_virtual_size[i] = TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (i));
}
tm_print_insn = gdb_print_insn_i386;
tm_print_insn_info.mach = bfd_lookup_arch (bfd_arch_i386, 0)->mach;
/* Add the variable that controls the disassembly flavor. */
{
struct cmd_list_element *new_cmd;
new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
valid_flavors,
&disassembly_flavor,
"\
Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
and the default value is \"att\".",
&setlist);
new_cmd->function.sfunc = set_disassembly_flavor_sfunc;
add_show_from_set (new_cmd, &showlist);
}
/* Finally, initialize the disassembly flavor to the default given
in the disassembly_flavor variable. */
set_disassembly_flavor ();
}
|