aboutsummaryrefslogtreecommitdiff
path: root/gdb/i386-tdep.c
blob: e436437c6832f9f8c2196d066e06b1877a17e36d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
/* Intel 386 target-dependent stuff.

   Copyright (C) 1988-2021 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "opcode/i386.h"
#include "arch-utils.h"
#include "command.h"
#include "dummy-frame.h"
#include "dwarf2/frame.h"
#include "frame.h"
#include "frame-base.h"
#include "frame-unwind.h"
#include "inferior.h"
#include "infrun.h"
#include "gdbcmd.h"
#include "gdbcore.h"
#include "gdbtypes.h"
#include "objfiles.h"
#include "osabi.h"
#include "regcache.h"
#include "reggroups.h"
#include "regset.h"
#include "symfile.h"
#include "symtab.h"
#include "target.h"
#include "target-float.h"
#include "value.h"
#include "dis-asm.h"
#include "disasm.h"
#include "remote.h"
#include "i386-tdep.h"
#include "i387-tdep.h"
#include "gdbsupport/x86-xstate.h"
#include "x86-tdep.h"
#include "expop.h"

#include "record.h"
#include "record-full.h"
#include "target-descriptions.h"
#include "arch/i386.h"

#include "ax.h"
#include "ax-gdb.h"

#include "stap-probe.h"
#include "user-regs.h"
#include "cli/cli-utils.h"
#include "expression.h"
#include "parser-defs.h"
#include <ctype.h>
#include <algorithm>
#include <unordered_set>
#include "producer.h"

/* Register names.  */

static const char * const i386_register_names[] =
{
  "eax",   "ecx",    "edx",   "ebx",
  "esp",   "ebp",    "esi",   "edi",
  "eip",   "eflags", "cs",    "ss",
  "ds",    "es",     "fs",    "gs",
  "st0",   "st1",    "st2",   "st3",
  "st4",   "st5",    "st6",   "st7",
  "fctrl", "fstat",  "ftag",  "fiseg",
  "fioff", "foseg",  "fooff", "fop",
  "xmm0",  "xmm1",   "xmm2",  "xmm3",
  "xmm4",  "xmm5",   "xmm6",  "xmm7",
  "mxcsr"
};

static const char * const i386_zmm_names[] =
{
  "zmm0",  "zmm1",   "zmm2",  "zmm3",
  "zmm4",  "zmm5",   "zmm6",  "zmm7"
};

static const char * const i386_zmmh_names[] =
{
  "zmm0h",  "zmm1h",   "zmm2h",  "zmm3h",
  "zmm4h",  "zmm5h",   "zmm6h",  "zmm7h"
};

static const char * const i386_k_names[] =
{
  "k0",  "k1",   "k2",  "k3",
  "k4",  "k5",   "k6",  "k7"
};

static const char * const i386_ymm_names[] =
{
  "ymm0",  "ymm1",   "ymm2",  "ymm3",
  "ymm4",  "ymm5",   "ymm6",  "ymm7",
};

static const char * const i386_ymmh_names[] =
{
  "ymm0h",  "ymm1h",   "ymm2h",  "ymm3h",
  "ymm4h",  "ymm5h",   "ymm6h",  "ymm7h",
};

static const char * const i386_mpx_names[] =
{
  "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
};

static const char * const i386_pkeys_names[] =
{
  "pkru"
};

/* Register names for MPX pseudo-registers.  */

static const char * const i386_bnd_names[] =
{
  "bnd0", "bnd1", "bnd2", "bnd3"
};

/* Register names for MMX pseudo-registers.  */

static const char * const i386_mmx_names[] =
{
  "mm0", "mm1", "mm2", "mm3",
  "mm4", "mm5", "mm6", "mm7"
};

/* Register names for byte pseudo-registers.  */

static const char * const i386_byte_names[] =
{
  "al", "cl", "dl", "bl", 
  "ah", "ch", "dh", "bh"
};

/* Register names for word pseudo-registers.  */

static const char * const i386_word_names[] =
{
  "ax", "cx", "dx", "bx",
  "", "bp", "si", "di"
};

/* Constant used for reading/writing pseudo registers.  In 64-bit mode, we have
   16 lower ZMM regs that extend corresponding xmm/ymm registers.  In addition,
   we have 16 upper ZMM regs that have to be handled differently.  */

const int num_lower_zmm_regs = 16;

/* MMX register?  */

static int
i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int mm0_regnum = tdep->mm0_regnum;

  if (mm0_regnum < 0)
    return 0;

  regnum -= mm0_regnum;
  return regnum >= 0 && regnum < tdep->num_mmx_regs;
}

/* Byte register?  */

int
i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  regnum -= tdep->al_regnum;
  return regnum >= 0 && regnum < tdep->num_byte_regs;
}

/* Word register?  */

int
i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  regnum -= tdep->ax_regnum;
  return regnum >= 0 && regnum < tdep->num_word_regs;
}

/* Dword register?  */

int
i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int eax_regnum = tdep->eax_regnum;

  if (eax_regnum < 0)
    return 0;

  regnum -= eax_regnum;
  return regnum >= 0 && regnum < tdep->num_dword_regs;
}

/* AVX512 register?  */

int
i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int zmm0h_regnum = tdep->zmm0h_regnum;

  if (zmm0h_regnum < 0)
    return 0;

  regnum -= zmm0h_regnum;
  return regnum >= 0 && regnum < tdep->num_zmm_regs;
}

int
i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int zmm0_regnum = tdep->zmm0_regnum;

  if (zmm0_regnum < 0)
    return 0;

  regnum -= zmm0_regnum;
  return regnum >= 0 && regnum < tdep->num_zmm_regs;
}

int
i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int k0_regnum = tdep->k0_regnum;

  if (k0_regnum < 0)
    return 0;

  regnum -= k0_regnum;
  return regnum >= 0 && regnum < I387_NUM_K_REGS;
}

static int
i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int ymm0h_regnum = tdep->ymm0h_regnum;

  if (ymm0h_regnum < 0)
    return 0;

  regnum -= ymm0h_regnum;
  return regnum >= 0 && regnum < tdep->num_ymm_regs;
}

/* AVX register?  */

int
i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int ymm0_regnum = tdep->ymm0_regnum;

  if (ymm0_regnum < 0)
    return 0;

  regnum -= ymm0_regnum;
  return regnum >= 0 && regnum < tdep->num_ymm_regs;
}

static int
i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int ymm16h_regnum = tdep->ymm16h_regnum;

  if (ymm16h_regnum < 0)
    return 0;

  regnum -= ymm16h_regnum;
  return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
}

int
i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int ymm16_regnum = tdep->ymm16_regnum;

  if (ymm16_regnum < 0)
    return 0;

  regnum -= ymm16_regnum;
  return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
}

/* BND register?  */

int
i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int bnd0_regnum = tdep->bnd0_regnum;

  if (bnd0_regnum < 0)
    return 0;

  regnum -= bnd0_regnum;
  return regnum >= 0 && regnum < I387_NUM_BND_REGS;
}

/* SSE register?  */

int
i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int num_xmm_regs = I387_NUM_XMM_REGS (tdep);

  if (num_xmm_regs == 0)
    return 0;

  regnum -= I387_XMM0_REGNUM (tdep);
  return regnum >= 0 && regnum < num_xmm_regs;
}

/* XMM_512 register?  */

int
i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);

  if (num_xmm_avx512_regs == 0)
    return 0;

  regnum -= I387_XMM16_REGNUM (tdep);
  return regnum >= 0 && regnum < num_xmm_avx512_regs;
}

static int
i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (I387_NUM_XMM_REGS (tdep) == 0)
    return 0;

  return (regnum == I387_MXCSR_REGNUM (tdep));
}

/* FP register?  */

int
i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (I387_ST0_REGNUM (tdep) < 0)
    return 0;

  return (I387_ST0_REGNUM (tdep) <= regnum
	  && regnum < I387_FCTRL_REGNUM (tdep));
}

int
i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (I387_ST0_REGNUM (tdep) < 0)
    return 0;

  return (I387_FCTRL_REGNUM (tdep) <= regnum 
	  && regnum < I387_XMM0_REGNUM (tdep));
}

/* BNDr (raw) register?  */

static int
i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

   if (I387_BND0R_REGNUM (tdep) < 0)
     return 0;

  regnum -= tdep->bnd0r_regnum;
  return regnum >= 0 && regnum < I387_NUM_BND_REGS;
}

/* BND control register?  */

static int
i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

   if (I387_BNDCFGU_REGNUM (tdep) < 0)
     return 0;

  regnum -= I387_BNDCFGU_REGNUM (tdep);
  return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
}

/* PKRU register?  */

bool
i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int pkru_regnum = tdep->pkru_regnum;

  if (pkru_regnum < 0)
    return false;

  regnum -= pkru_regnum;
  return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
}

/* Return the name of register REGNUM, or the empty string if it is
   an anonymous register.  */

static const char *
i386_register_name (struct gdbarch *gdbarch, int regnum)
{
  /* Hide the upper YMM registers.  */
  if (i386_ymmh_regnum_p (gdbarch, regnum))
    return "";

  /* Hide the upper YMM16-31 registers.  */
  if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
    return "";

  /* Hide the upper ZMM registers.  */
  if (i386_zmmh_regnum_p (gdbarch, regnum))
    return "";

  return tdesc_register_name (gdbarch, regnum);
}

/* Return the name of register REGNUM.  */

const char *
i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  if (i386_bnd_regnum_p (gdbarch, regnum))
    return i386_bnd_names[regnum - tdep->bnd0_regnum];
  if (i386_mmx_regnum_p (gdbarch, regnum))
    return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
  else if (i386_ymm_regnum_p (gdbarch, regnum))
    return i386_ymm_names[regnum - tdep->ymm0_regnum];
  else if (i386_zmm_regnum_p (gdbarch, regnum))
    return i386_zmm_names[regnum - tdep->zmm0_regnum];
  else if (i386_byte_regnum_p (gdbarch, regnum))
    return i386_byte_names[regnum - tdep->al_regnum];
  else if (i386_word_regnum_p (gdbarch, regnum))
    return i386_word_names[regnum - tdep->ax_regnum];

  internal_error (__FILE__, __LINE__, _("invalid regnum"));
}

/* Convert a dbx register number REG to the appropriate register
   number used by GDB.  */

static int
i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  /* This implements what GCC calls the "default" register map
     (dbx_register_map[]).  */

  if (reg >= 0 && reg <= 7)
    {
      /* General-purpose registers.  The debug info calls %ebp
	 register 4, and %esp register 5.  */
      if (reg == 4)
	return 5;
      else if (reg == 5)
	return 4;
      else return reg;
    }
  else if (reg >= 12 && reg <= 19)
    {
      /* Floating-point registers.  */
      return reg - 12 + I387_ST0_REGNUM (tdep);
    }
  else if (reg >= 21 && reg <= 28)
    {
      /* SSE registers.  */
      int ymm0_regnum = tdep->ymm0_regnum;

      if (ymm0_regnum >= 0
	  && i386_xmm_regnum_p (gdbarch, reg))
	return reg - 21 + ymm0_regnum;
      else
	return reg - 21 + I387_XMM0_REGNUM (tdep);
    }
  else if (reg >= 29 && reg <= 36)
    {
      /* MMX registers.  */
      return reg - 29 + I387_MM0_REGNUM (tdep);
    }

  /* This will hopefully provoke a warning.  */
  return gdbarch_num_cooked_regs (gdbarch);
}

/* Convert SVR4 DWARF register number REG to the appropriate register number
   used by GDB.  */

static int
i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  /* This implements the GCC register map that tries to be compatible
     with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]).  */

  /* The SVR4 register numbering includes %eip and %eflags, and
     numbers the floating point registers differently.  */
  if (reg >= 0 && reg <= 9)
    {
      /* General-purpose registers.  */
      return reg;
    }
  else if (reg >= 11 && reg <= 18)
    {
      /* Floating-point registers.  */
      return reg - 11 + I387_ST0_REGNUM (tdep);
    }
  else if (reg >= 21 && reg <= 36)
    {
      /* The SSE and MMX registers have the same numbers as with dbx.  */
      return i386_dbx_reg_to_regnum (gdbarch, reg);
    }

  switch (reg)
    {
    case 37: return I387_FCTRL_REGNUM (tdep);
    case 38: return I387_FSTAT_REGNUM (tdep);
    case 39: return I387_MXCSR_REGNUM (tdep);
    case 40: return I386_ES_REGNUM;
    case 41: return I386_CS_REGNUM;
    case 42: return I386_SS_REGNUM;
    case 43: return I386_DS_REGNUM;
    case 44: return I386_FS_REGNUM;
    case 45: return I386_GS_REGNUM;
    }

  return -1;
}

/* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
   num_regs + num_pseudo_regs for other debug formats.  */

int
i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
{
  int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);

  if (regnum == -1)
    return gdbarch_num_cooked_regs (gdbarch);
  return regnum;
}



/* This is the variable that is set with "set disassembly-flavor", and
   its legitimate values.  */
static const char att_flavor[] = "att";
static const char intel_flavor[] = "intel";
static const char *const valid_flavors[] =
{
  att_flavor,
  intel_flavor,
  NULL
};
static const char *disassembly_flavor = att_flavor;


/* Use the program counter to determine the contents and size of a
   breakpoint instruction.  Return a pointer to a string of bytes that
   encode a breakpoint instruction, store the length of the string in
   *LEN and optionally adjust *PC to point to the correct memory
   location for inserting the breakpoint.

   On the i386 we have a single breakpoint that fits in a single byte
   and can be inserted anywhere.

   This function is 64-bit safe.  */

constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */

typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;


/* Displaced instruction handling.  */

/* Skip the legacy instruction prefixes in INSN.
   Not all prefixes are valid for any particular insn
   but we needn't care, the insn will fault if it's invalid.
   The result is a pointer to the first opcode byte,
   or NULL if we run off the end of the buffer.  */

static gdb_byte *
i386_skip_prefixes (gdb_byte *insn, size_t max_len)
{
  gdb_byte *end = insn + max_len;

  while (insn < end)
    {
      switch (*insn)
	{
	case DATA_PREFIX_OPCODE:
	case ADDR_PREFIX_OPCODE:
	case CS_PREFIX_OPCODE:
	case DS_PREFIX_OPCODE:
	case ES_PREFIX_OPCODE:
	case FS_PREFIX_OPCODE:
	case GS_PREFIX_OPCODE:
	case SS_PREFIX_OPCODE:
	case LOCK_PREFIX_OPCODE:
	case REPE_PREFIX_OPCODE:
	case REPNE_PREFIX_OPCODE:
	  ++insn;
	  continue;
	default:
	  return insn;
	}
    }

  return NULL;
}

static int
i386_absolute_jmp_p (const gdb_byte *insn)
{
  /* jmp far (absolute address in operand).  */
  if (insn[0] == 0xea)
    return 1;

  if (insn[0] == 0xff)
    {
      /* jump near, absolute indirect (/4).  */
      if ((insn[1] & 0x38) == 0x20)
	return 1;

      /* jump far, absolute indirect (/5).  */
      if ((insn[1] & 0x38) == 0x28)
	return 1;
    }

  return 0;
}

/* Return non-zero if INSN is a jump, zero otherwise.  */

static int
i386_jmp_p (const gdb_byte *insn)
{
  /* jump short, relative.  */
  if (insn[0] == 0xeb)
    return 1;

  /* jump near, relative.  */
  if (insn[0] == 0xe9)
    return 1;

  return i386_absolute_jmp_p (insn);
}

static int
i386_absolute_call_p (const gdb_byte *insn)
{
  /* call far, absolute.  */
  if (insn[0] == 0x9a)
    return 1;

  if (insn[0] == 0xff)
    {
      /* Call near, absolute indirect (/2).  */
      if ((insn[1] & 0x38) == 0x10)
	return 1;

      /* Call far, absolute indirect (/3).  */
      if ((insn[1] & 0x38) == 0x18)
	return 1;
    }

  return 0;
}

static int
i386_ret_p (const gdb_byte *insn)
{
  switch (insn[0])
    {
    case 0xc2: /* ret near, pop N bytes.  */
    case 0xc3: /* ret near */
    case 0xca: /* ret far, pop N bytes.  */
    case 0xcb: /* ret far */
    case 0xcf: /* iret */
      return 1;

    default:
      return 0;
    }
}

static int
i386_call_p (const gdb_byte *insn)
{
  if (i386_absolute_call_p (insn))
    return 1;

  /* call near, relative.  */
  if (insn[0] == 0xe8)
    return 1;

  return 0;
}

/* Return non-zero if INSN is a system call, and set *LENGTHP to its
   length in bytes.  Otherwise, return zero.  */

static int
i386_syscall_p (const gdb_byte *insn, int *lengthp)
{
  /* Is it 'int $0x80'?  */
  if ((insn[0] == 0xcd && insn[1] == 0x80)
      /* Or is it 'sysenter'?  */
      || (insn[0] == 0x0f && insn[1] == 0x34)
      /* Or is it 'syscall'?  */
      || (insn[0] == 0x0f && insn[1] == 0x05))
    {
      *lengthp = 2;
      return 1;
    }

  return 0;
}

/* The gdbarch insn_is_call method.  */

static int
i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
{
  gdb_byte buf[I386_MAX_INSN_LEN], *insn;

  read_code (addr, buf, I386_MAX_INSN_LEN);
  insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);

  return i386_call_p (insn);
}

/* The gdbarch insn_is_ret method.  */

static int
i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
{
  gdb_byte buf[I386_MAX_INSN_LEN], *insn;

  read_code (addr, buf, I386_MAX_INSN_LEN);
  insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);

  return i386_ret_p (insn);
}

/* The gdbarch insn_is_jump method.  */

static int
i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
{
  gdb_byte buf[I386_MAX_INSN_LEN], *insn;

  read_code (addr, buf, I386_MAX_INSN_LEN);
  insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);

  return i386_jmp_p (insn);
}

/* Some kernels may run one past a syscall insn, so we have to cope.  */

displaced_step_copy_insn_closure_up
i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
			       CORE_ADDR from, CORE_ADDR to,
			       struct regcache *regs)
{
  size_t len = gdbarch_max_insn_length (gdbarch);
  std::unique_ptr<i386_displaced_step_copy_insn_closure> closure
    (new i386_displaced_step_copy_insn_closure (len));
  gdb_byte *buf = closure->buf.data ();

  read_memory (from, buf, len);

  /* GDB may get control back after the insn after the syscall.
     Presumably this is a kernel bug.
     If this is a syscall, make sure there's a nop afterwards.  */
  {
    int syscall_length;
    gdb_byte *insn;

    insn = i386_skip_prefixes (buf, len);
    if (insn != NULL && i386_syscall_p (insn, &syscall_length))
      insn[syscall_length] = NOP_OPCODE;
  }

  write_memory (to, buf, len);

  displaced_debug_printf ("%s->%s: %s",
			  paddress (gdbarch, from), paddress (gdbarch, to),
			  displaced_step_dump_bytes (buf, len).c_str ());

  /* This is a work around for a problem with g++ 4.8.  */
  return displaced_step_copy_insn_closure_up (closure.release ());
}

/* Fix up the state of registers and memory after having single-stepped
   a displaced instruction.  */

void
i386_displaced_step_fixup (struct gdbarch *gdbarch,
			   struct displaced_step_copy_insn_closure *closure_,
			   CORE_ADDR from, CORE_ADDR to,
			   struct regcache *regs)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);

  /* The offset we applied to the instruction's address.
     This could well be negative (when viewed as a signed 32-bit
     value), but ULONGEST won't reflect that, so take care when
     applying it.  */
  ULONGEST insn_offset = to - from;

  i386_displaced_step_copy_insn_closure *closure
    = (i386_displaced_step_copy_insn_closure *) closure_;
  gdb_byte *insn = closure->buf.data ();
  /* The start of the insn, needed in case we see some prefixes.  */
  gdb_byte *insn_start = insn;

  displaced_debug_printf ("fixup (%s, %s), insn = 0x%02x 0x%02x ...",
			  paddress (gdbarch, from), paddress (gdbarch, to),
			  insn[0], insn[1]);

  /* The list of issues to contend with here is taken from
     resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
     Yay for Free Software!  */

  /* Relocate the %eip, if necessary.  */

  /* The instruction recognizers we use assume any leading prefixes
     have been skipped.  */
  {
    /* This is the size of the buffer in closure.  */
    size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
    gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
    /* If there are too many prefixes, just ignore the insn.
       It will fault when run.  */
    if (opcode != NULL)
      insn = opcode;
  }

  /* Except in the case of absolute or indirect jump or call
     instructions, or a return instruction, the new eip is relative to
     the displaced instruction; make it relative.  Well, signal
     handler returns don't need relocation either, but we use the
     value of %eip to recognize those; see below.  */
  if (! i386_absolute_jmp_p (insn)
      && ! i386_absolute_call_p (insn)
      && ! i386_ret_p (insn))
    {
      ULONGEST orig_eip;
      int insn_len;

      regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);

      /* A signal trampoline system call changes the %eip, resuming
	 execution of the main program after the signal handler has
	 returned.  That makes them like 'return' instructions; we
	 shouldn't relocate %eip.

	 But most system calls don't, and we do need to relocate %eip.

	 Our heuristic for distinguishing these cases: if stepping
	 over the system call instruction left control directly after
	 the instruction, the we relocate --- control almost certainly
	 doesn't belong in the displaced copy.  Otherwise, we assume
	 the instruction has put control where it belongs, and leave
	 it unrelocated.  Goodness help us if there are PC-relative
	 system calls.  */
      if (i386_syscall_p (insn, &insn_len)
	  && orig_eip != to + (insn - insn_start) + insn_len
	  /* GDB can get control back after the insn after the syscall.
	     Presumably this is a kernel bug.
	     i386_displaced_step_copy_insn ensures its a nop,
	     we add one to the length for it.  */
	  && orig_eip != to + (insn - insn_start) + insn_len + 1)
	displaced_debug_printf ("syscall changed %%eip; not relocating");
      else
	{
	  ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;

	  /* If we just stepped over a breakpoint insn, we don't backup
	     the pc on purpose; this is to match behaviour without
	     stepping.  */

	  regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);

	  displaced_debug_printf ("relocated %%eip from %s to %s",
				  paddress (gdbarch, orig_eip),
				  paddress (gdbarch, eip));
	}
    }

  /* If the instruction was PUSHFL, then the TF bit will be set in the
     pushed value, and should be cleared.  We'll leave this for later,
     since GDB already messes up the TF flag when stepping over a
     pushfl.  */

  /* If the instruction was a call, the return address now atop the
     stack is the address following the copied instruction.  We need
     to make it the address following the original instruction.  */
  if (i386_call_p (insn))
    {
      ULONGEST esp;
      ULONGEST retaddr;
      const ULONGEST retaddr_len = 4;

      regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
      retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
      retaddr = (retaddr - insn_offset) & 0xffffffffUL;
      write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);

      displaced_debug_printf ("relocated return addr at %s to %s",
			      paddress (gdbarch, esp),
			      paddress (gdbarch, retaddr));
    }
}

static void
append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
{
  target_write_memory (*to, buf, len);
  *to += len;
}

static void
i386_relocate_instruction (struct gdbarch *gdbarch,
			   CORE_ADDR *to, CORE_ADDR oldloc)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  gdb_byte buf[I386_MAX_INSN_LEN];
  int offset = 0, rel32, newrel;
  int insn_length;
  gdb_byte *insn = buf;

  read_memory (oldloc, buf, I386_MAX_INSN_LEN);

  insn_length = gdb_buffered_insn_length (gdbarch, insn,
					  I386_MAX_INSN_LEN, oldloc);

  /* Get past the prefixes.  */
  insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);

  /* Adjust calls with 32-bit relative addresses as push/jump, with
     the address pushed being the location where the original call in
     the user program would return to.  */
  if (insn[0] == 0xe8)
    {
      gdb_byte push_buf[16];
      unsigned int ret_addr;

      /* Where "ret" in the original code will return to.  */
      ret_addr = oldloc + insn_length;
      push_buf[0] = 0x68; /* pushq $...  */
      store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
      /* Push the push.  */
      append_insns (to, 5, push_buf);

      /* Convert the relative call to a relative jump.  */
      insn[0] = 0xe9;

      /* Adjust the destination offset.  */
      rel32 = extract_signed_integer (insn + 1, 4, byte_order);
      newrel = (oldloc - *to) + rel32;
      store_signed_integer (insn + 1, 4, byte_order, newrel);

      displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
			      hex_string (rel32), paddress (gdbarch, oldloc),
			      hex_string (newrel), paddress (gdbarch, *to));

      /* Write the adjusted jump into its displaced location.  */
      append_insns (to, 5, insn);
      return;
    }

  /* Adjust jumps with 32-bit relative addresses.  Calls are already
     handled above.  */
  if (insn[0] == 0xe9)
    offset = 1;
  /* Adjust conditional jumps.  */
  else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
    offset = 2;

  if (offset)
    {
      rel32 = extract_signed_integer (insn + offset, 4, byte_order);
      newrel = (oldloc - *to) + rel32;
      store_signed_integer (insn + offset, 4, byte_order, newrel);
      displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
			      hex_string (rel32), paddress (gdbarch, oldloc),
			      hex_string (newrel), paddress (gdbarch, *to));
    }

  /* Write the adjusted instructions into their displaced
     location.  */
  append_insns (to, insn_length, buf);
}


#ifdef I386_REGNO_TO_SYMMETRY
#error "The Sequent Symmetry is no longer supported."
#endif

/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
   and %esp "belong" to the calling function.  Therefore these
   registers should be saved if they're going to be modified.  */

/* The maximum number of saved registers.  This should include all
   registers mentioned above, and %eip.  */
#define I386_NUM_SAVED_REGS	I386_NUM_GREGS

struct i386_frame_cache
{
  /* Base address.  */
  CORE_ADDR base;
  int base_p;
  LONGEST sp_offset;
  CORE_ADDR pc;

  /* Saved registers.  */
  CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
  CORE_ADDR saved_sp;
  int saved_sp_reg;
  int pc_in_eax;

  /* Stack space reserved for local variables.  */
  long locals;
};

/* Allocate and initialize a frame cache.  */

static struct i386_frame_cache *
i386_alloc_frame_cache (void)
{
  struct i386_frame_cache *cache;
  int i;

  cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);

  /* Base address.  */
  cache->base_p = 0;
  cache->base = 0;
  cache->sp_offset = -4;
  cache->pc = 0;

  /* Saved registers.  We initialize these to -1 since zero is a valid
     offset (that's where %ebp is supposed to be stored).  */
  for (i = 0; i < I386_NUM_SAVED_REGS; i++)
    cache->saved_regs[i] = -1;
  cache->saved_sp = 0;
  cache->saved_sp_reg = -1;
  cache->pc_in_eax = 0;

  /* Frameless until proven otherwise.  */
  cache->locals = -1;

  return cache;
}

/* If the instruction at PC is a jump, return the address of its
   target.  Otherwise, return PC.  */

static CORE_ADDR
i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  gdb_byte op;
  long delta = 0;
  int data16 = 0;

  if (target_read_code (pc, &op, 1))
    return pc;

  if (op == 0x66)
    {
      data16 = 1;

      op = read_code_unsigned_integer (pc + 1, 1, byte_order);
    }

  switch (op)
    {
    case 0xe9:
      /* Relative jump: if data16 == 0, disp32, else disp16.  */
      if (data16)
	{
	  delta = read_memory_integer (pc + 2, 2, byte_order);

	  /* Include the size of the jmp instruction (including the
	     0x66 prefix).  */
	  delta += 4;
	}
      else
	{
	  delta = read_memory_integer (pc + 1, 4, byte_order);

	  /* Include the size of the jmp instruction.  */
	  delta += 5;
	}
      break;
    case 0xeb:
      /* Relative jump, disp8 (ignore data16).  */
      delta = read_memory_integer (pc + data16 + 1, 1, byte_order);

      delta += data16 + 2;
      break;
    }

  return pc + delta;
}

/* Check whether PC points at a prologue for a function returning a
   structure or union.  If so, it updates CACHE and returns the
   address of the first instruction after the code sequence that
   removes the "hidden" argument from the stack or CURRENT_PC,
   whichever is smaller.  Otherwise, return PC.  */

static CORE_ADDR
i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
			    struct i386_frame_cache *cache)
{
  /* Functions that return a structure or union start with:

	popl %eax             0x58
	xchgl %eax, (%esp)    0x87 0x04 0x24
     or xchgl %eax, 0(%esp)   0x87 0x44 0x24 0x00

     (the System V compiler puts out the second `xchg' instruction,
     and the assembler doesn't try to optimize it, so the 'sib' form
     gets generated).  This sequence is used to get the address of the
     return buffer for a function that returns a structure.  */
  static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
  static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
  gdb_byte buf[4];
  gdb_byte op;

  if (current_pc <= pc)
    return pc;

  if (target_read_code (pc, &op, 1))
    return pc;

  if (op != 0x58)		/* popl %eax */
    return pc;

  if (target_read_code (pc + 1, buf, 4))
    return pc;

  if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
    return pc;

  if (current_pc == pc)
    {
      cache->sp_offset += 4;
      return current_pc;
    }

  if (current_pc == pc + 1)
    {
      cache->pc_in_eax = 1;
      return current_pc;
    }
  
  if (buf[1] == proto1[1])
    return pc + 4;
  else
    return pc + 5;
}

static CORE_ADDR
i386_skip_probe (CORE_ADDR pc)
{
  /* A function may start with

	pushl constant
	call _probe
	addl $4, %esp
	   
     followed by

	pushl %ebp

     etc.  */
  gdb_byte buf[8];
  gdb_byte op;

  if (target_read_code (pc, &op, 1))
    return pc;

  if (op == 0x68 || op == 0x6a)
    {
      int delta;

      /* Skip past the `pushl' instruction; it has either a one-byte or a
	 four-byte operand, depending on the opcode.  */
      if (op == 0x68)
	delta = 5;
      else
	delta = 2;

      /* Read the following 8 bytes, which should be `call _probe' (6
	 bytes) followed by `addl $4,%esp' (2 bytes).  */
      read_memory (pc + delta, buf, sizeof (buf));
      if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
	pc += delta + sizeof (buf);
    }

  return pc;
}

/* GCC 4.1 and later, can put code in the prologue to realign the
   stack pointer.  Check whether PC points to such code, and update
   CACHE accordingly.  Return the first instruction after the code
   sequence or CURRENT_PC, whichever is smaller.  If we don't
   recognize the code, return PC.  */

static CORE_ADDR
i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
			  struct i386_frame_cache *cache)
{
  /* There are 2 code sequences to re-align stack before the frame
     gets set up:

	1. Use a caller-saved saved register:

		leal  4(%esp), %reg
		andl  $-XXX, %esp
		pushl -4(%reg)

	2. Use a callee-saved saved register:

		pushl %reg
		leal  8(%esp), %reg
		andl  $-XXX, %esp
		pushl -4(%reg)

     "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
     
	0x83 0xe4 0xf0			andl $-16, %esp
	0x81 0xe4 0x00 0xff 0xff 0xff	andl $-256, %esp
   */

  gdb_byte buf[14];
  int reg;
  int offset, offset_and;
  static int regnums[8] = {
    I386_EAX_REGNUM,		/* %eax */
    I386_ECX_REGNUM,		/* %ecx */
    I386_EDX_REGNUM,		/* %edx */
    I386_EBX_REGNUM,		/* %ebx */
    I386_ESP_REGNUM,		/* %esp */
    I386_EBP_REGNUM,		/* %ebp */
    I386_ESI_REGNUM,		/* %esi */
    I386_EDI_REGNUM		/* %edi */
  };

  if (target_read_code (pc, buf, sizeof buf))
    return pc;

  /* Check caller-saved saved register.  The first instruction has
     to be "leal 4(%esp), %reg".  */
  if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
    {
      /* MOD must be binary 10 and R/M must be binary 100.  */
      if ((buf[1] & 0xc7) != 0x44)
	return pc;

      /* REG has register number.  */
      reg = (buf[1] >> 3) & 7;
      offset = 4;
    }
  else
    {
      /* Check callee-saved saved register.  The first instruction
	 has to be "pushl %reg".  */
      if ((buf[0] & 0xf8) != 0x50)
	return pc;

      /* Get register.  */
      reg = buf[0] & 0x7;

      /* The next instruction has to be "leal 8(%esp), %reg".  */
      if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
	return pc;

      /* MOD must be binary 10 and R/M must be binary 100.  */
      if ((buf[2] & 0xc7) != 0x44)
	return pc;
      
      /* REG has register number.  Registers in pushl and leal have to
	 be the same.  */
      if (reg != ((buf[2] >> 3) & 7))
	return pc;

      offset = 5;
    }

  /* Rigister can't be %esp nor %ebp.  */
  if (reg == 4 || reg == 5)
    return pc;

  /* The next instruction has to be "andl $-XXX, %esp".  */
  if (buf[offset + 1] != 0xe4
      || (buf[offset] != 0x81 && buf[offset] != 0x83))
    return pc;

  offset_and = offset;
  offset += buf[offset] == 0x81 ? 6 : 3;

  /* The next instruction has to be "pushl -4(%reg)".  8bit -4 is
     0xfc.  REG must be binary 110 and MOD must be binary 01.  */
  if (buf[offset] != 0xff
      || buf[offset + 2] != 0xfc
      || (buf[offset + 1] & 0xf8) != 0x70)
    return pc;

  /* R/M has register.  Registers in leal and pushl have to be the
     same.  */
  if (reg != (buf[offset + 1] & 7))
    return pc;

  if (current_pc > pc + offset_and)
    cache->saved_sp_reg = regnums[reg];

  return std::min (pc + offset + 3, current_pc);
}

/* Maximum instruction length we need to handle.  */
#define I386_MAX_MATCHED_INSN_LEN	6

/* Instruction description.  */
struct i386_insn
{
  size_t len;
  gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
  gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
};

/* Return whether instruction at PC matches PATTERN.  */

static int
i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
{
  gdb_byte op;

  if (target_read_code (pc, &op, 1))
    return 0;

  if ((op & pattern.mask[0]) == pattern.insn[0])
    {
      gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
      int insn_matched = 1;
      size_t i;

      gdb_assert (pattern.len > 1);
      gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);

      if (target_read_code (pc + 1, buf, pattern.len - 1))
	return 0;

      for (i = 1; i < pattern.len; i++)
	{
	  if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
	    insn_matched = 0;
	}
      return insn_matched;
    }
  return 0;
}

/* Search for the instruction at PC in the list INSN_PATTERNS.  Return
   the first instruction description that matches.  Otherwise, return
   NULL.  */

static struct i386_insn *
i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
{
  struct i386_insn *pattern;

  for (pattern = insn_patterns; pattern->len > 0; pattern++)
    {
      if (i386_match_pattern (pc, *pattern))
	return pattern;
    }

  return NULL;
}

/* Return whether PC points inside a sequence of instructions that
   matches INSN_PATTERNS.  */

static int
i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
{
  CORE_ADDR current_pc;
  int ix, i;
  struct i386_insn *insn;

  insn = i386_match_insn (pc, insn_patterns);
  if (insn == NULL)
    return 0;

  current_pc = pc;
  ix = insn - insn_patterns;
  for (i = ix - 1; i >= 0; i--)
    {
      current_pc -= insn_patterns[i].len;

      if (!i386_match_pattern (current_pc, insn_patterns[i]))
	return 0;
    }

  current_pc = pc + insn->len;
  for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
    {
      if (!i386_match_pattern (current_pc, *insn))
	return 0;

      current_pc += insn->len;
    }

  return 1;
}

/* Some special instructions that might be migrated by GCC into the
   part of the prologue that sets up the new stack frame.  Because the
   stack frame hasn't been setup yet, no registers have been saved
   yet, and only the scratch registers %eax, %ecx and %edx can be
   touched.  */

static i386_insn i386_frame_setup_skip_insns[] =
{
  /* Check for `movb imm8, r' and `movl imm32, r'.
    
     ??? Should we handle 16-bit operand-sizes here?  */

  /* `movb imm8, %al' and `movb imm8, %ah' */
  /* `movb imm8, %cl' and `movb imm8, %ch' */
  { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
  /* `movb imm8, %dl' and `movb imm8, %dh' */
  { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
  /* `movl imm32, %eax' and `movl imm32, %ecx' */
  { 5, { 0xb8 }, { 0xfe } },
  /* `movl imm32, %edx' */
  { 5, { 0xba }, { 0xff } },

  /* Check for `mov imm32, r32'.  Note that there is an alternative
     encoding for `mov m32, %eax'.

     ??? Should we handle SIB addressing here?
     ??? Should we handle 16-bit operand-sizes here?  */

  /* `movl m32, %eax' */
  { 5, { 0xa1 }, { 0xff } },
  /* `movl m32, %eax' and `mov; m32, %ecx' */
  { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
  /* `movl m32, %edx' */
  { 6, { 0x89, 0x15 }, {0xff, 0xff } },

  /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
     Because of the symmetry, there are actually two ways to encode
     these instructions; opcode bytes 0x29 and 0x2b for `subl' and
     opcode bytes 0x31 and 0x33 for `xorl'.  */

  /* `subl %eax, %eax' */
  { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
  /* `subl %ecx, %ecx' */
  { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
  /* `subl %edx, %edx' */
  { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
  /* `xorl %eax, %eax' */
  { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
  /* `xorl %ecx, %ecx' */
  { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
  /* `xorl %edx, %edx' */
  { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
  { 0 }
};

/* Check whether PC points to an endbr32 instruction.  */
static CORE_ADDR
i386_skip_endbr (CORE_ADDR pc)
{
  static const gdb_byte endbr32[] = { 0xf3, 0x0f, 0x1e, 0xfb };

  gdb_byte buf[sizeof (endbr32)];

  /* Stop there if we can't read the code */
  if (target_read_code (pc, buf, sizeof (endbr32)))
    return pc;

  /* If the instruction isn't an endbr32, stop */
  if (memcmp (buf, endbr32, sizeof (endbr32)) != 0)
    return pc;

  return pc + sizeof (endbr32);
}

/* Check whether PC points to a no-op instruction.  */
static CORE_ADDR
i386_skip_noop (CORE_ADDR pc)
{
  gdb_byte op;
  int check = 1;

  if (target_read_code (pc, &op, 1))
    return pc;

  while (check) 
    {
      check = 0;
      /* Ignore `nop' instruction.  */
      if (op == 0x90) 
	{
	  pc += 1;
	  if (target_read_code (pc, &op, 1))
	    return pc;
	  check = 1;
	}
      /* Ignore no-op instruction `mov %edi, %edi'.
	 Microsoft system dlls often start with
	 a `mov %edi,%edi' instruction.
	 The 5 bytes before the function start are
	 filled with `nop' instructions.
	 This pattern can be used for hot-patching:
	 The `mov %edi, %edi' instruction can be replaced by a
	 near jump to the location of the 5 `nop' instructions
	 which can be replaced by a 32-bit jump to anywhere
	 in the 32-bit address space.  */

      else if (op == 0x8b)
	{
	  if (target_read_code (pc + 1, &op, 1))
	    return pc;

	  if (op == 0xff)
	    {
	      pc += 2;
	      if (target_read_code (pc, &op, 1))
		return pc;

	      check = 1;
	    }
	}
    }
  return pc; 
}

/* Check whether PC points at a code that sets up a new stack frame.
   If so, it updates CACHE and returns the address of the first
   instruction after the sequence that sets up the frame or LIMIT,
   whichever is smaller.  If we don't recognize the code, return PC.  */

static CORE_ADDR
i386_analyze_frame_setup (struct gdbarch *gdbarch,
			  CORE_ADDR pc, CORE_ADDR limit,
			  struct i386_frame_cache *cache)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  struct i386_insn *insn;
  gdb_byte op;
  int skip = 0;

  if (limit <= pc)
    return limit;

  if (target_read_code (pc, &op, 1))
    return pc;

  if (op == 0x55)		/* pushl %ebp */
    {
      /* Take into account that we've executed the `pushl %ebp' that
	 starts this instruction sequence.  */
      cache->saved_regs[I386_EBP_REGNUM] = 0;
      cache->sp_offset += 4;
      pc++;

      /* If that's all, return now.  */
      if (limit <= pc)
	return limit;

      /* Check for some special instructions that might be migrated by
	 GCC into the prologue and skip them.  At this point in the
	 prologue, code should only touch the scratch registers %eax,
	 %ecx and %edx, so while the number of possibilities is sheer,
	 it is limited.

	 Make sure we only skip these instructions if we later see the
	 `movl %esp, %ebp' that actually sets up the frame.  */
      while (pc + skip < limit)
	{
	  insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
	  if (insn == NULL)
	    break;

	  skip += insn->len;
	}

      /* If that's all, return now.  */
      if (limit <= pc + skip)
	return limit;

      if (target_read_code (pc + skip, &op, 1))
	return pc + skip;

      /* The i386 prologue looks like

	 push   %ebp
	 mov    %esp,%ebp
	 sub    $0x10,%esp

	 and a different prologue can be generated for atom.

	 push   %ebp
	 lea    (%esp),%ebp
	 lea    -0x10(%esp),%esp

	 We handle both of them here.  */

      switch (op)
	{
	  /* Check for `movl %esp, %ebp' -- can be written in two ways.  */
	case 0x8b:
	  if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
	      != 0xec)
	    return pc;
	  pc += (skip + 2);
	  break;
	case 0x89:
	  if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
	      != 0xe5)
	    return pc;
	  pc += (skip + 2);
	  break;
	case 0x8d: /* Check for 'lea (%ebp), %ebp'.  */
	  if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
	      != 0x242c)
	    return pc;
	  pc += (skip + 3);
	  break;
	default:
	  return pc;
	}

      /* OK, we actually have a frame.  We just don't know how large
	 it is yet.  Set its size to zero.  We'll adjust it if
	 necessary.  We also now commit to skipping the special
	 instructions mentioned before.  */
      cache->locals = 0;

      /* If that's all, return now.  */
      if (limit <= pc)
	return limit;

      /* Check for stack adjustment 

	    subl $XXX, %esp
	 or
	    lea -XXX(%esp),%esp

	 NOTE: You can't subtract a 16-bit immediate from a 32-bit
	 reg, so we don't have to worry about a data16 prefix.  */
      if (target_read_code (pc, &op, 1))
	return pc;
      if (op == 0x83)
	{
	  /* `subl' with 8-bit immediate.  */
	  if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
	    /* Some instruction starting with 0x83 other than `subl'.  */
	    return pc;

	  /* `subl' with signed 8-bit immediate (though it wouldn't
	     make sense to be negative).  */
	  cache->locals = read_code_integer (pc + 2, 1, byte_order);
	  return pc + 3;
	}
      else if (op == 0x81)
	{
	  /* Maybe it is `subl' with a 32-bit immediate.  */
	  if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
	    /* Some instruction starting with 0x81 other than `subl'.  */
	    return pc;

	  /* It is `subl' with a 32-bit immediate.  */
	  cache->locals = read_code_integer (pc + 2, 4, byte_order);
	  return pc + 6;
	}
      else if (op == 0x8d)
	{
	  /* The ModR/M byte is 0x64.  */
	  if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
	    return pc;
	  /* 'lea' with 8-bit displacement.  */
	  cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
	  return pc + 4;
	}
      else
	{
	  /* Some instruction other than `subl' nor 'lea'.  */
	  return pc;
	}
    }
  else if (op == 0xc8)		/* enter */
    {
      cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
      return pc + 4;
    }

  return pc;
}

/* Check whether PC points at code that saves registers on the stack.
   If so, it updates CACHE and returns the address of the first
   instruction after the register saves or CURRENT_PC, whichever is
   smaller.  Otherwise, return PC.  */

static CORE_ADDR
i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
			     struct i386_frame_cache *cache)
{
  CORE_ADDR offset = 0;
  gdb_byte op;
  int i;

  if (cache->locals > 0)
    offset -= cache->locals;
  for (i = 0; i < 8 && pc < current_pc; i++)
    {
      if (target_read_code (pc, &op, 1))
	return pc;
      if (op < 0x50 || op > 0x57)
	break;

      offset -= 4;
      cache->saved_regs[op - 0x50] = offset;
      cache->sp_offset += 4;
      pc++;
    }

  return pc;
}

/* Do a full analysis of the prologue at PC and update CACHE
   accordingly.  Bail out early if CURRENT_PC is reached.  Return the
   address where the analysis stopped.

   We handle these cases:

   The startup sequence can be at the start of the function, or the
   function can start with a branch to startup code at the end.

   %ebp can be set up with either the 'enter' instruction, or "pushl
   %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
   once used in the System V compiler).

   Local space is allocated just below the saved %ebp by either the
   'enter' instruction, or by "subl $<size>, %esp".  'enter' has a
   16-bit unsigned argument for space to allocate, and the 'addl'
   instruction could have either a signed byte, or 32-bit immediate.

   Next, the registers used by this function are pushed.  With the
   System V compiler they will always be in the order: %edi, %esi,
   %ebx (and sometimes a harmless bug causes it to also save but not
   restore %eax); however, the code below is willing to see the pushes
   in any order, and will handle up to 8 of them.
 
   If the setup sequence is at the end of the function, then the next
   instruction will be a branch back to the start.  */

static CORE_ADDR
i386_analyze_prologue (struct gdbarch *gdbarch,
		       CORE_ADDR pc, CORE_ADDR current_pc,
		       struct i386_frame_cache *cache)
{
  pc = i386_skip_endbr (pc);
  pc = i386_skip_noop (pc);
  pc = i386_follow_jump (gdbarch, pc);
  pc = i386_analyze_struct_return (pc, current_pc, cache);
  pc = i386_skip_probe (pc);
  pc = i386_analyze_stack_align (pc, current_pc, cache);
  pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
  return i386_analyze_register_saves (pc, current_pc, cache);
}

/* Return PC of first real instruction.  */

static CORE_ADDR
i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);

  static gdb_byte pic_pat[6] =
  {
    0xe8, 0, 0, 0, 0,		/* call 0x0 */
    0x5b,			/* popl %ebx */
  };
  struct i386_frame_cache cache;
  CORE_ADDR pc;
  gdb_byte op;
  int i;
  CORE_ADDR func_addr;

  if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
    {
      CORE_ADDR post_prologue_pc
	= skip_prologue_using_sal (gdbarch, func_addr);
      struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);

      /* LLVM backend (Clang/Flang) always emits a line note before the
	 prologue and another one after.  We trust clang and newer Intel
	 compilers to emit usable line notes.  */
      if (post_prologue_pc
	  && (cust != NULL
	      && COMPUNIT_PRODUCER (cust) != NULL
	      && (producer_is_llvm (COMPUNIT_PRODUCER (cust))
	      || producer_is_icc_ge_19 (COMPUNIT_PRODUCER (cust)))))
        return std::max (start_pc, post_prologue_pc);
    }
 
  cache.locals = -1;
  pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
  if (cache.locals < 0)
    return start_pc;

  /* Found valid frame setup.  */

  /* The native cc on SVR4 in -K PIC mode inserts the following code
     to get the address of the global offset table (GOT) into register
     %ebx:

	call	0x0
	popl    %ebx
	movl    %ebx,x(%ebp)    (optional)
	addl    y,%ebx

     This code is with the rest of the prologue (at the end of the
     function), so we have to skip it to get to the first real
     instruction at the start of the function.  */

  for (i = 0; i < 6; i++)
    {
      if (target_read_code (pc + i, &op, 1))
	return pc;

      if (pic_pat[i] != op)
	break;
    }
  if (i == 6)
    {
      int delta = 6;

      if (target_read_code (pc + delta, &op, 1))
	return pc;

      if (op == 0x89)		/* movl %ebx, x(%ebp) */
	{
	  op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);

	  if (op == 0x5d)	/* One byte offset from %ebp.  */
	    delta += 3;
	  else if (op == 0x9d)	/* Four byte offset from %ebp.  */
	    delta += 6;
	  else			/* Unexpected instruction.  */
	    delta = 0;

	  if (target_read_code (pc + delta, &op, 1))
	    return pc;
	}

      /* addl y,%ebx */
      if (delta > 0 && op == 0x81
	  && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
	     == 0xc3)
	{
	  pc += delta + 6;
	}
    }

  /* If the function starts with a branch (to startup code at the end)
     the last instruction should bring us back to the first
     instruction of the real code.  */
  if (i386_follow_jump (gdbarch, start_pc) != start_pc)
    pc = i386_follow_jump (gdbarch, pc);

  return pc;
}

/* Check that the code pointed to by PC corresponds to a call to
   __main, skip it if so.  Return PC otherwise.  */

CORE_ADDR
i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  gdb_byte op;

  if (target_read_code (pc, &op, 1))
    return pc;
  if (op == 0xe8)
    {
      gdb_byte buf[4];

      if (target_read_code (pc + 1, buf, sizeof buf) == 0)
	{
	  /* Make sure address is computed correctly as a 32bit
	     integer even if CORE_ADDR is 64 bit wide.  */
	  struct bound_minimal_symbol s;
	  CORE_ADDR call_dest;

	  call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
	  call_dest = call_dest & 0xffffffffU;
	  s = lookup_minimal_symbol_by_pc (call_dest);
	  if (s.minsym != NULL
	      && s.minsym->linkage_name () != NULL
	      && strcmp (s.minsym->linkage_name (), "__main") == 0)
	    pc += 5;
	}
    }

  return pc;
}

/* This function is 64-bit safe.  */

static CORE_ADDR
i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
  gdb_byte buf[8];

  frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
  return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
}


/* Normal frames.  */

static void
i386_frame_cache_1 (struct frame_info *this_frame,
		    struct i386_frame_cache *cache)
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  gdb_byte buf[4];
  int i;

  cache->pc = get_frame_func (this_frame);

  /* In principle, for normal frames, %ebp holds the frame pointer,
     which holds the base address for the current stack frame.
     However, for functions that don't need it, the frame pointer is
     optional.  For these "frameless" functions the frame pointer is
     actually the frame pointer of the calling frame.  Signal
     trampolines are just a special case of a "frameless" function.
     They (usually) share their frame pointer with the frame that was
     in progress when the signal occurred.  */

  get_frame_register (this_frame, I386_EBP_REGNUM, buf);
  cache->base = extract_unsigned_integer (buf, 4, byte_order);
  if (cache->base == 0)
    {
      cache->base_p = 1;
      return;
    }

  /* For normal frames, %eip is stored at 4(%ebp).  */
  cache->saved_regs[I386_EIP_REGNUM] = 4;

  if (cache->pc != 0)
    i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
			   cache);

  if (cache->locals < 0)
    {
      /* We didn't find a valid frame, which means that CACHE->base
	 currently holds the frame pointer for our calling frame.  If
	 we're at the start of a function, or somewhere half-way its
	 prologue, the function's frame probably hasn't been fully
	 setup yet.  Try to reconstruct the base address for the stack
	 frame by looking at the stack pointer.  For truly "frameless"
	 functions this might work too.  */

      if (cache->saved_sp_reg != -1)
	{
	  /* Saved stack pointer has been saved.  */
	  get_frame_register (this_frame, cache->saved_sp_reg, buf);
	  cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);

	  /* We're halfway aligning the stack.  */
	  cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
	  cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;

	  /* This will be added back below.  */
	  cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
	}
      else if (cache->pc != 0
	       || target_read_code (get_frame_pc (this_frame), buf, 1))
	{
	  /* We're in a known function, but did not find a frame
	     setup.  Assume that the function does not use %ebp.
	     Alternatively, we may have jumped to an invalid
	     address; in that case there is definitely no new
	     frame in %ebp.  */
	  get_frame_register (this_frame, I386_ESP_REGNUM, buf);
	  cache->base = extract_unsigned_integer (buf, 4, byte_order)
			+ cache->sp_offset;
	}
      else
	/* We're in an unknown function.  We could not find the start
	   of the function to analyze the prologue; our best option is
	   to assume a typical frame layout with the caller's %ebp
	   saved.  */
	cache->saved_regs[I386_EBP_REGNUM] = 0;
    }

  if (cache->saved_sp_reg != -1)
    {
      /* Saved stack pointer has been saved (but the SAVED_SP_REG
	 register may be unavailable).  */
      if (cache->saved_sp == 0
	  && deprecated_frame_register_read (this_frame,
					     cache->saved_sp_reg, buf))
	cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
    }
  /* Now that we have the base address for the stack frame we can
     calculate the value of %esp in the calling frame.  */
  else if (cache->saved_sp == 0)
    cache->saved_sp = cache->base + 8;

  /* Adjust all the saved registers such that they contain addresses
     instead of offsets.  */
  for (i = 0; i < I386_NUM_SAVED_REGS; i++)
    if (cache->saved_regs[i] != -1)
      cache->saved_regs[i] += cache->base;

  cache->base_p = 1;
}

static struct i386_frame_cache *
i386_frame_cache (struct frame_info *this_frame, void **this_cache)
{
  struct i386_frame_cache *cache;

  if (*this_cache)
    return (struct i386_frame_cache *) *this_cache;

  cache = i386_alloc_frame_cache ();
  *this_cache = cache;

  try
    {
      i386_frame_cache_1 (this_frame, cache);
    }
  catch (const gdb_exception_error &ex)
    {
      if (ex.error != NOT_AVAILABLE_ERROR)
	throw;
    }

  return cache;
}

static void
i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
		    struct frame_id *this_id)
{
  struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);

  if (!cache->base_p)
    (*this_id) = frame_id_build_unavailable_stack (cache->pc);
  else if (cache->base == 0)
    {
      /* This marks the outermost frame.  */
    }
  else
    {
      /* See the end of i386_push_dummy_call.  */
      (*this_id) = frame_id_build (cache->base + 8, cache->pc);
    }
}

static enum unwind_stop_reason
i386_frame_unwind_stop_reason (struct frame_info *this_frame,
			       void **this_cache)
{
  struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);

  if (!cache->base_p)
    return UNWIND_UNAVAILABLE;

  /* This marks the outermost frame.  */
  if (cache->base == 0)
    return UNWIND_OUTERMOST;

  return UNWIND_NO_REASON;
}

static struct value *
i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
			  int regnum)
{
  struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);

  gdb_assert (regnum >= 0);

  /* The System V ABI says that:

     "The flags register contains the system flags, such as the
     direction flag and the carry flag.  The direction flag must be
     set to the forward (that is, zero) direction before entry and
     upon exit from a function.  Other user flags have no specified
     role in the standard calling sequence and are not preserved."

     To guarantee the "upon exit" part of that statement we fake a
     saved flags register that has its direction flag cleared.

     Note that GCC doesn't seem to rely on the fact that the direction
     flag is cleared after a function return; it always explicitly
     clears the flag before operations where it matters.

     FIXME: kettenis/20030316: I'm not quite sure whether this is the
     right thing to do.  The way we fake the flags register here makes
     it impossible to change it.  */

  if (regnum == I386_EFLAGS_REGNUM)
    {
      ULONGEST val;

      val = get_frame_register_unsigned (this_frame, regnum);
      val &= ~(1 << 10);
      return frame_unwind_got_constant (this_frame, regnum, val);
    }

  if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
    return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);

  if (regnum == I386_ESP_REGNUM
      && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
    {
      /* If the SP has been saved, but we don't know where, then this
	 means that SAVED_SP_REG register was found unavailable back
	 when we built the cache.  */
      if (cache->saved_sp == 0)
	return frame_unwind_got_register (this_frame, regnum,
					  cache->saved_sp_reg);
      else
	return frame_unwind_got_constant (this_frame, regnum,
					  cache->saved_sp);
    }

  if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
    return frame_unwind_got_memory (this_frame, regnum,
				    cache->saved_regs[regnum]);

  return frame_unwind_got_register (this_frame, regnum, regnum);
}

static const struct frame_unwind i386_frame_unwind =
{
  "i386 prologue",
  NORMAL_FRAME,
  i386_frame_unwind_stop_reason,
  i386_frame_this_id,
  i386_frame_prev_register,
  NULL,
  default_frame_sniffer
};

/* Normal frames, but in a function epilogue.  */

/* Implement the stack_frame_destroyed_p gdbarch method.

   The epilogue is defined here as the 'ret' instruction, which will
   follow any instruction such as 'leave' or 'pop %ebp' that destroys
   the function's stack frame.  */

static int
i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  gdb_byte insn;
  struct compunit_symtab *cust;

  cust = find_pc_compunit_symtab (pc);
  if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
    return 0;

  if (target_read_memory (pc, &insn, 1))
    return 0;	/* Can't read memory at pc.  */

  if (insn != 0xc3)	/* 'ret' instruction.  */
    return 0;

  return 1;
}

static int
i386_epilogue_frame_sniffer (const struct frame_unwind *self,
			     struct frame_info *this_frame,
			     void **this_prologue_cache)
{
  if (frame_relative_level (this_frame) == 0)
    return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
					 get_frame_pc (this_frame));
  else
    return 0;
}

static struct i386_frame_cache *
i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
{
  struct i386_frame_cache *cache;
  CORE_ADDR sp;

  if (*this_cache)
    return (struct i386_frame_cache *) *this_cache;

  cache = i386_alloc_frame_cache ();
  *this_cache = cache;

  try
    {
      cache->pc = get_frame_func (this_frame);

      /* At this point the stack looks as if we just entered the
	 function, with the return address at the top of the
	 stack.  */
      sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
      cache->base = sp + cache->sp_offset;
      cache->saved_sp = cache->base + 8;
      cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;

      cache->base_p = 1;
    }
  catch (const gdb_exception_error &ex)
    {
      if (ex.error != NOT_AVAILABLE_ERROR)
	throw;
    }

  return cache;
}

static enum unwind_stop_reason
i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
					void **this_cache)
{
  struct i386_frame_cache *cache =
    i386_epilogue_frame_cache (this_frame, this_cache);

  if (!cache->base_p)
    return UNWIND_UNAVAILABLE;

  return UNWIND_NO_REASON;
}

static void
i386_epilogue_frame_this_id (struct frame_info *this_frame,
			     void **this_cache,
			     struct frame_id *this_id)
{
  struct i386_frame_cache *cache =
    i386_epilogue_frame_cache (this_frame, this_cache);

  if (!cache->base_p)
    (*this_id) = frame_id_build_unavailable_stack (cache->pc);
  else
    (*this_id) = frame_id_build (cache->base + 8, cache->pc);
}

static struct value *
i386_epilogue_frame_prev_register (struct frame_info *this_frame,
				   void **this_cache, int regnum)
{
  /* Make sure we've initialized the cache.  */
  i386_epilogue_frame_cache (this_frame, this_cache);

  return i386_frame_prev_register (this_frame, this_cache, regnum);
}

static const struct frame_unwind i386_epilogue_frame_unwind =
{
  "i386 epilogue",
  NORMAL_FRAME,
  i386_epilogue_frame_unwind_stop_reason,
  i386_epilogue_frame_this_id,
  i386_epilogue_frame_prev_register,
  NULL, 
  i386_epilogue_frame_sniffer
};


/* Stack-based trampolines.  */

/* These trampolines are used on cross x86 targets, when taking the
   address of a nested function.  When executing these trampolines,
   no stack frame is set up, so we are in a similar situation as in
   epilogues and i386_epilogue_frame_this_id can be re-used.  */

/* Static chain passed in register.  */

static i386_insn i386_tramp_chain_in_reg_insns[] =
{
  /* `movl imm32, %eax' and `movl imm32, %ecx' */
  { 5, { 0xb8 }, { 0xfe } },

  /* `jmp imm32' */
  { 5, { 0xe9 }, { 0xff } },

  {0}
};

/* Static chain passed on stack (when regparm=3).  */

static i386_insn i386_tramp_chain_on_stack_insns[] =
{
  /* `push imm32' */
  { 5, { 0x68 }, { 0xff } },

  /* `jmp imm32' */
  { 5, { 0xe9 }, { 0xff } },

  {0}
};

/* Return whether PC points inside a stack trampoline.   */

static int
i386_in_stack_tramp_p (CORE_ADDR pc)
{
  gdb_byte insn;
  const char *name;

  /* A stack trampoline is detected if no name is associated
    to the current pc and if it points inside a trampoline
    sequence.  */

  find_pc_partial_function (pc, &name, NULL, NULL);
  if (name)
    return 0;

  if (target_read_memory (pc, &insn, 1))
    return 0;

  if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
      && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
    return 0;

  return 1;
}

static int
i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
				struct frame_info *this_frame,
				void **this_cache)
{
  if (frame_relative_level (this_frame) == 0)
    return i386_in_stack_tramp_p (get_frame_pc (this_frame));
  else
    return 0;
}

static const struct frame_unwind i386_stack_tramp_frame_unwind =
{
  "i386 stack tramp",
  NORMAL_FRAME,
  i386_epilogue_frame_unwind_stop_reason,
  i386_epilogue_frame_this_id,
  i386_epilogue_frame_prev_register,
  NULL, 
  i386_stack_tramp_frame_sniffer
};

/* Generate a bytecode expression to get the value of the saved PC.  */

static void
i386_gen_return_address (struct gdbarch *gdbarch,
			 struct agent_expr *ax, struct axs_value *value,
			 CORE_ADDR scope)
{
  /* The following sequence assumes the traditional use of the base
     register.  */
  ax_reg (ax, I386_EBP_REGNUM);
  ax_const_l (ax, 4);
  ax_simple (ax, aop_add);
  value->type = register_type (gdbarch, I386_EIP_REGNUM);
  value->kind = axs_lvalue_memory;
}


/* Signal trampolines.  */

static struct i386_frame_cache *
i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  struct i386_frame_cache *cache;
  CORE_ADDR addr;
  gdb_byte buf[4];

  if (*this_cache)
    return (struct i386_frame_cache *) *this_cache;

  cache = i386_alloc_frame_cache ();

  try
    {
      get_frame_register (this_frame, I386_ESP_REGNUM, buf);
      cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;

      addr = tdep->sigcontext_addr (this_frame);
      if (tdep->sc_reg_offset)
	{
	  int i;

	  gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);

	  for (i = 0; i < tdep->sc_num_regs; i++)
	    if (tdep->sc_reg_offset[i] != -1)
	      cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
	}
      else
	{
	  cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
	  cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
	}

      cache->base_p = 1;
    }
  catch (const gdb_exception_error &ex)
    {
      if (ex.error != NOT_AVAILABLE_ERROR)
	throw;
    }

  *this_cache = cache;
  return cache;
}

static enum unwind_stop_reason
i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
					void **this_cache)
{
  struct i386_frame_cache *cache =
    i386_sigtramp_frame_cache (this_frame, this_cache);

  if (!cache->base_p)
    return UNWIND_UNAVAILABLE;

  return UNWIND_NO_REASON;
}

static void
i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
			     struct frame_id *this_id)
{
  struct i386_frame_cache *cache =
    i386_sigtramp_frame_cache (this_frame, this_cache);

  if (!cache->base_p)
    (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
  else
    {
      /* See the end of i386_push_dummy_call.  */
      (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
    }
}

static struct value *
i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
				   void **this_cache, int regnum)
{
  /* Make sure we've initialized the cache.  */
  i386_sigtramp_frame_cache (this_frame, this_cache);

  return i386_frame_prev_register (this_frame, this_cache, regnum);
}

static int
i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
			     struct frame_info *this_frame,
			     void **this_prologue_cache)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));

  /* We shouldn't even bother if we don't have a sigcontext_addr
     handler.  */
  if (tdep->sigcontext_addr == NULL)
    return 0;

  if (tdep->sigtramp_p != NULL)
    {
      if (tdep->sigtramp_p (this_frame))
	return 1;
    }

  if (tdep->sigtramp_start != 0)
    {
      CORE_ADDR pc = get_frame_pc (this_frame);

      gdb_assert (tdep->sigtramp_end != 0);
      if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
	return 1;
    }

  return 0;
}

static const struct frame_unwind i386_sigtramp_frame_unwind =
{
  "i386 sigtramp",
  SIGTRAMP_FRAME,
  i386_sigtramp_frame_unwind_stop_reason,
  i386_sigtramp_frame_this_id,
  i386_sigtramp_frame_prev_register,
  NULL,
  i386_sigtramp_frame_sniffer
};


static CORE_ADDR
i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
{
  struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);

  return cache->base;
}

static const struct frame_base i386_frame_base =
{
  &i386_frame_unwind,
  i386_frame_base_address,
  i386_frame_base_address,
  i386_frame_base_address
};

static struct frame_id
i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
{
  CORE_ADDR fp;

  fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);

  /* See the end of i386_push_dummy_call.  */
  return frame_id_build (fp + 8, get_frame_pc (this_frame));
}

/* _Decimal128 function return values need 16-byte alignment on the
   stack.  */

static CORE_ADDR
i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
{
  return sp & -(CORE_ADDR)16;
}


/* Figure out where the longjmp will land.  Slurp the args out of the
   stack.  We expect the first arg to be a pointer to the jmp_buf
   structure from which we extract the address that we will land at.
   This address is copied into PC.  This routine returns non-zero on
   success.  */

static int
i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
{
  gdb_byte buf[4];
  CORE_ADDR sp, jb_addr;
  struct gdbarch *gdbarch = get_frame_arch (frame);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;

  /* If JB_PC_OFFSET is -1, we have no way to find out where the
     longjmp will land.  */
  if (jb_pc_offset == -1)
    return 0;

  get_frame_register (frame, I386_ESP_REGNUM, buf);
  sp = extract_unsigned_integer (buf, 4, byte_order);
  if (target_read_memory (sp + 4, buf, 4))
    return 0;

  jb_addr = extract_unsigned_integer (buf, 4, byte_order);
  if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
    return 0;

  *pc = extract_unsigned_integer (buf, 4, byte_order);
  return 1;
}


/* Check whether TYPE must be 16-byte-aligned when passed as a
   function argument.  16-byte vectors, _Decimal128 and structures or
   unions containing such types must be 16-byte-aligned; other
   arguments are 4-byte-aligned.  */

static int
i386_16_byte_align_p (struct type *type)
{
  type = check_typedef (type);
  if ((type->code () == TYPE_CODE_DECFLOAT
       || (type->code () == TYPE_CODE_ARRAY && type->is_vector ()))
      && TYPE_LENGTH (type) == 16)
    return 1;
  if (type->code () == TYPE_CODE_ARRAY)
    return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
  if (type->code () == TYPE_CODE_STRUCT
      || type->code () == TYPE_CODE_UNION)
    {
      int i;
      for (i = 0; i < type->num_fields (); i++)
	{
	  if (field_is_static (&type->field (i)))
	    continue;
	  if (i386_16_byte_align_p (type->field (i).type ()))
	    return 1;
	}
    }
  return 0;
}

/* Implementation for set_gdbarch_push_dummy_code.  */

static CORE_ADDR
i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
		      struct value **args, int nargs, struct type *value_type,
		      CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
		      struct regcache *regcache)
{
  /* Use 0xcc breakpoint - 1 byte.  */
  *bp_addr = sp - 1;
  *real_pc = funaddr;

  /* Keep the stack aligned.  */
  return sp - 16;
}

/* The "push_dummy_call" gdbarch method, optionally with the thiscall
   calling convention.  */

CORE_ADDR
i386_thiscall_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
			       struct regcache *regcache, CORE_ADDR bp_addr,
			       int nargs, struct value **args, CORE_ADDR sp,
			       function_call_return_method return_method,
			       CORE_ADDR struct_addr, bool thiscall)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  gdb_byte buf[4];
  int i;
  int write_pass;
  int args_space = 0;

  /* BND registers can be in arbitrary values at the moment of the
     inferior call.  This can cause boundary violations that are not
     due to a real bug or even desired by the user.  The best to be done
     is set the BND registers to allow access to the whole memory, INIT
     state, before pushing the inferior call.   */
  i387_reset_bnd_regs (gdbarch, regcache);

  /* Determine the total space required for arguments and struct
     return address in a first pass (allowing for 16-byte-aligned
     arguments), then push arguments in a second pass.  */

  for (write_pass = 0; write_pass < 2; write_pass++)
    {
      int args_space_used = 0;

      if (return_method == return_method_struct)
	{
	  if (write_pass)
	    {
	      /* Push value address.  */
	      store_unsigned_integer (buf, 4, byte_order, struct_addr);
	      write_memory (sp, buf, 4);
	      args_space_used += 4;
	    }
	  else
	    args_space += 4;
	}

      for (i = thiscall ? 1 : 0; i < nargs; i++)
	{
	  int len = TYPE_LENGTH (value_enclosing_type (args[i]));

	  if (write_pass)
	    {
	      if (i386_16_byte_align_p (value_enclosing_type (args[i])))
		args_space_used = align_up (args_space_used, 16);

	      write_memory (sp + args_space_used,
			    value_contents_all (args[i]), len);
	      /* The System V ABI says that:

	      "An argument's size is increased, if necessary, to make it a
	      multiple of [32-bit] words.  This may require tail padding,
	      depending on the size of the argument."

	      This makes sure the stack stays word-aligned.  */
	      args_space_used += align_up (len, 4);
	    }
	  else
	    {
	      if (i386_16_byte_align_p (value_enclosing_type (args[i])))
		args_space = align_up (args_space, 16);
	      args_space += align_up (len, 4);
	    }
	}

      if (!write_pass)
	{
	  sp -= args_space;

	  /* The original System V ABI only requires word alignment,
	     but modern incarnations need 16-byte alignment in order
	     to support SSE.  Since wasting a few bytes here isn't
	     harmful we unconditionally enforce 16-byte alignment.  */
	  sp &= ~0xf;
	}
    }

  /* Store return address.  */
  sp -= 4;
  store_unsigned_integer (buf, 4, byte_order, bp_addr);
  write_memory (sp, buf, 4);

  /* Finally, update the stack pointer...  */
  store_unsigned_integer (buf, 4, byte_order, sp);
  regcache->cooked_write (I386_ESP_REGNUM, buf);

  /* ...and fake a frame pointer.  */
  regcache->cooked_write (I386_EBP_REGNUM, buf);

  /* The 'this' pointer needs to be in ECX.  */
  if (thiscall)
    regcache->cooked_write (I386_ECX_REGNUM, value_contents_all (args[0]));

  /* MarkK wrote: This "+ 8" is all over the place:
     (i386_frame_this_id, i386_sigtramp_frame_this_id,
     i386_dummy_id).  It's there, since all frame unwinders for
     a given target have to agree (within a certain margin) on the
     definition of the stack address of a frame.  Otherwise frame id
     comparison might not work correctly.  Since DWARF2/GCC uses the
     stack address *before* the function call as a frame's CFA.  On
     the i386, when %ebp is used as a frame pointer, the offset
     between the contents %ebp and the CFA as defined by GCC.  */
  return sp + 8;
}

/* Implement the "push_dummy_call" gdbarch method.  */

static CORE_ADDR
i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
		      struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
		      struct value **args, CORE_ADDR sp,
		      function_call_return_method return_method,
		      CORE_ADDR struct_addr)
{
  return i386_thiscall_push_dummy_call (gdbarch, function, regcache, bp_addr,
					nargs, args, sp, return_method,
					struct_addr, false);
}

/* These registers are used for returning integers (and on some
   targets also for returning `struct' and `union' values when their
   size and alignment match an integer type).  */
#define LOW_RETURN_REGNUM	I386_EAX_REGNUM /* %eax */
#define HIGH_RETURN_REGNUM	I386_EDX_REGNUM /* %edx */

/* Read, for architecture GDBARCH, a function return value of TYPE
   from REGCACHE, and copy that into VALBUF.  */

static void
i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
			   struct regcache *regcache, gdb_byte *valbuf)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int len = TYPE_LENGTH (type);
  gdb_byte buf[I386_MAX_REGISTER_SIZE];

  if (type->code () == TYPE_CODE_FLT)
    {
      if (tdep->st0_regnum < 0)
	{
	  warning (_("Cannot find floating-point return value."));
	  memset (valbuf, 0, len);
	  return;
	}

      /* Floating-point return values can be found in %st(0).  Convert
	 its contents to the desired type.  This is probably not
	 exactly how it would happen on the target itself, but it is
	 the best we can do.  */
      regcache->raw_read (I386_ST0_REGNUM, buf);
      target_float_convert (buf, i387_ext_type (gdbarch), valbuf, type);
    }
  else
    {
      int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
      int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);

      if (len <= low_size)
	{
	  regcache->raw_read (LOW_RETURN_REGNUM, buf);
	  memcpy (valbuf, buf, len);
	}
      else if (len <= (low_size + high_size))
	{
	  regcache->raw_read (LOW_RETURN_REGNUM, buf);
	  memcpy (valbuf, buf, low_size);
	  regcache->raw_read (HIGH_RETURN_REGNUM, buf);
	  memcpy (valbuf + low_size, buf, len - low_size);
	}
      else
	internal_error (__FILE__, __LINE__,
			_("Cannot extract return value of %d bytes long."),
			len);
    }
}

/* Write, for architecture GDBARCH, a function return value of TYPE
   from VALBUF into REGCACHE.  */

static void
i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
			 struct regcache *regcache, const gdb_byte *valbuf)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int len = TYPE_LENGTH (type);

  if (type->code () == TYPE_CODE_FLT)
    {
      ULONGEST fstat;
      gdb_byte buf[I386_MAX_REGISTER_SIZE];

      if (tdep->st0_regnum < 0)
	{
	  warning (_("Cannot set floating-point return value."));
	  return;
	}

      /* Returning floating-point values is a bit tricky.  Apart from
	 storing the return value in %st(0), we have to simulate the
	 state of the FPU at function return point.  */

      /* Convert the value found in VALBUF to the extended
	 floating-point format used by the FPU.  This is probably
	 not exactly how it would happen on the target itself, but
	 it is the best we can do.  */
      target_float_convert (valbuf, type, buf, i387_ext_type (gdbarch));
      regcache->raw_write (I386_ST0_REGNUM, buf);

      /* Set the top of the floating-point register stack to 7.  The
	 actual value doesn't really matter, but 7 is what a normal
	 function return would end up with if the program started out
	 with a freshly initialized FPU.  */
      regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
      fstat |= (7 << 11);
      regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);

      /* Mark %st(1) through %st(7) as empty.  Since we set the top of
	 the floating-point register stack to 7, the appropriate value
	 for the tag word is 0x3fff.  */
      regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
    }
  else
    {
      int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
      int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);

      if (len <= low_size)
	regcache->raw_write_part (LOW_RETURN_REGNUM, 0, len, valbuf);
      else if (len <= (low_size + high_size))
	{
	  regcache->raw_write (LOW_RETURN_REGNUM, valbuf);
	  regcache->raw_write_part (HIGH_RETURN_REGNUM, 0, len - low_size,
				    valbuf + low_size);
	}
      else
	internal_error (__FILE__, __LINE__,
			_("Cannot store return value of %d bytes long."), len);
    }
}


/* This is the variable that is set with "set struct-convention", and
   its legitimate values.  */
static const char default_struct_convention[] = "default";
static const char pcc_struct_convention[] = "pcc";
static const char reg_struct_convention[] = "reg";
static const char *const valid_conventions[] =
{
  default_struct_convention,
  pcc_struct_convention,
  reg_struct_convention,
  NULL
};
static const char *struct_convention = default_struct_convention;

/* Return non-zero if TYPE, which is assumed to be a structure,
   a union type, or an array type, should be returned in registers
   for architecture GDBARCH.  */

static int
i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum type_code code = type->code ();
  int len = TYPE_LENGTH (type);

  gdb_assert (code == TYPE_CODE_STRUCT
	      || code == TYPE_CODE_UNION
	      || code == TYPE_CODE_ARRAY);

  if (struct_convention == pcc_struct_convention
      || (struct_convention == default_struct_convention
	  && tdep->struct_return == pcc_struct_return))
    return 0;

  /* Structures consisting of a single `float', `double' or 'long
     double' member are returned in %st(0).  */
  if (code == TYPE_CODE_STRUCT && type->num_fields () == 1)
    {
      type = check_typedef (type->field (0).type ());
      if (type->code () == TYPE_CODE_FLT)
	return (len == 4 || len == 8 || len == 12);
    }

  return (len == 1 || len == 2 || len == 4 || len == 8);
}

/* Determine, for architecture GDBARCH, how a return value of TYPE
   should be returned.  If it is supposed to be returned in registers,
   and READBUF is non-zero, read the appropriate value from REGCACHE,
   and copy it into READBUF.  If WRITEBUF is non-zero, write the value
   from WRITEBUF into REGCACHE.  */

static enum return_value_convention
i386_return_value (struct gdbarch *gdbarch, struct value *function,
		   struct type *type, struct regcache *regcache,
		   gdb_byte *readbuf, const gdb_byte *writebuf)
{
  enum type_code code = type->code ();

  if (((code == TYPE_CODE_STRUCT
	|| code == TYPE_CODE_UNION
	|| code == TYPE_CODE_ARRAY)
       && !i386_reg_struct_return_p (gdbarch, type))
      /* Complex double and long double uses the struct return convention.  */
      || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
      || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
      /* 128-bit decimal float uses the struct return convention.  */
      || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
    {
      /* The System V ABI says that:

	 "A function that returns a structure or union also sets %eax
	 to the value of the original address of the caller's area
	 before it returns.  Thus when the caller receives control
	 again, the address of the returned object resides in register
	 %eax and can be used to access the object."

	 So the ABI guarantees that we can always find the return
	 value just after the function has returned.  */

      /* Note that the ABI doesn't mention functions returning arrays,
	 which is something possible in certain languages such as Ada.
	 In this case, the value is returned as if it was wrapped in
	 a record, so the convention applied to records also applies
	 to arrays.  */

      if (readbuf)
	{
	  ULONGEST addr;

	  regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
	  read_memory (addr, readbuf, TYPE_LENGTH (type));
	}

      return RETURN_VALUE_ABI_RETURNS_ADDRESS;
    }

  /* This special case is for structures consisting of a single
     `float', `double' or 'long double' member.  These structures are
     returned in %st(0).  For these structures, we call ourselves
     recursively, changing TYPE into the type of the first member of
     the structure.  Since that should work for all structures that
     have only one member, we don't bother to check the member's type
     here.  */
  if (code == TYPE_CODE_STRUCT && type->num_fields () == 1)
    {
      type = check_typedef (type->field (0).type ());
      return i386_return_value (gdbarch, function, type, regcache,
				readbuf, writebuf);
    }

  if (readbuf)
    i386_extract_return_value (gdbarch, type, regcache, readbuf);
  if (writebuf)
    i386_store_return_value (gdbarch, type, regcache, writebuf);

  return RETURN_VALUE_REGISTER_CONVENTION;
}


struct type *
i387_ext_type (struct gdbarch *gdbarch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (!tdep->i387_ext_type)
    {
      tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
      gdb_assert (tdep->i387_ext_type != NULL);
    }

  return tdep->i387_ext_type;
}

/* Construct type for pseudo BND registers.  We can't use
   tdesc_find_type since a complement of one value has to be used
   to describe the upper bound.  */

static struct type *
i386_bnd_type (struct gdbarch *gdbarch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);


  if (!tdep->i386_bnd_type)
    {
      struct type *t;
      const struct builtin_type *bt = builtin_type (gdbarch);

      /* The type we're building is described bellow:  */
#if 0
      struct __bound128
      {
	void *lbound;
	void *ubound;		/* One complement of raw ubound field.  */
      };
#endif

      t = arch_composite_type (gdbarch,
			       "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);

      append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
      append_composite_type_field (t, "ubound", bt->builtin_data_ptr);

      t->set_name ("builtin_type_bound128");
      tdep->i386_bnd_type = t;
    }

  return tdep->i386_bnd_type;
}

/* Construct vector type for pseudo ZMM registers.  We can't use
   tdesc_find_type since ZMM isn't described in target description.  */

static struct type *
i386_zmm_type (struct gdbarch *gdbarch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (!tdep->i386_zmm_type)
    {
      const struct builtin_type *bt = builtin_type (gdbarch);

      /* The type we're building is this:  */
#if 0
      union __gdb_builtin_type_vec512i
      {
	int128_t v4_int128[4];
	int64_t v8_int64[8];
	int32_t v16_int32[16];
	int16_t v32_int16[32];
	int8_t v64_int8[64];
	double v8_double[8];
	float v16_float[16];
	bfloat16_t v32_bfloat16[32];
      };
#endif

      struct type *t;

      t = arch_composite_type (gdbarch,
			       "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
      append_composite_type_field (t, "v32_bfloat16",
				   init_vector_type (bt->builtin_bfloat16, 32));
      append_composite_type_field (t, "v16_float",
				   init_vector_type (bt->builtin_float, 16));
      append_composite_type_field (t, "v8_double",
				   init_vector_type (bt->builtin_double, 8));
      append_composite_type_field (t, "v64_int8",
				   init_vector_type (bt->builtin_int8, 64));
      append_composite_type_field (t, "v32_int16",
				   init_vector_type (bt->builtin_int16, 32));
      append_composite_type_field (t, "v16_int32",
				   init_vector_type (bt->builtin_int32, 16));
      append_composite_type_field (t, "v8_int64",
				   init_vector_type (bt->builtin_int64, 8));
      append_composite_type_field (t, "v4_int128",
				   init_vector_type (bt->builtin_int128, 4));

      t->set_is_vector (true);
      t->set_name ("builtin_type_vec512i");
      tdep->i386_zmm_type = t;
    }

  return tdep->i386_zmm_type;
}

/* Construct vector type for pseudo YMM registers.  We can't use
   tdesc_find_type since YMM isn't described in target description.  */

static struct type *
i386_ymm_type (struct gdbarch *gdbarch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (!tdep->i386_ymm_type)
    {
      const struct builtin_type *bt = builtin_type (gdbarch);

      /* The type we're building is this: */
#if 0
      union __gdb_builtin_type_vec256i
      {
	int128_t v2_int128[2];
	int64_t v4_int64[4];
	int32_t v8_int32[8];
	int16_t v16_int16[16];
	int8_t v32_int8[32];
	double v4_double[4];
	float v8_float[8];
	bfloat16_t v16_bfloat16[16];
      };
#endif

      struct type *t;

      t = arch_composite_type (gdbarch,
			       "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
      append_composite_type_field (t, "v16_bfloat16",
				   init_vector_type (bt->builtin_bfloat16, 16));
      append_composite_type_field (t, "v8_float",
				   init_vector_type (bt->builtin_float, 8));
      append_composite_type_field (t, "v4_double",
				   init_vector_type (bt->builtin_double, 4));
      append_composite_type_field (t, "v32_int8",
				   init_vector_type (bt->builtin_int8, 32));
      append_composite_type_field (t, "v16_int16",
				   init_vector_type (bt->builtin_int16, 16));
      append_composite_type_field (t, "v8_int32",
				   init_vector_type (bt->builtin_int32, 8));
      append_composite_type_field (t, "v4_int64",
				   init_vector_type (bt->builtin_int64, 4));
      append_composite_type_field (t, "v2_int128",
				   init_vector_type (bt->builtin_int128, 2));

      t->set_is_vector (true);
      t->set_name ("builtin_type_vec256i");
      tdep->i386_ymm_type = t;
    }

  return tdep->i386_ymm_type;
}

/* Construct vector type for MMX registers.  */
static struct type *
i386_mmx_type (struct gdbarch *gdbarch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (!tdep->i386_mmx_type)
    {
      const struct builtin_type *bt = builtin_type (gdbarch);

      /* The type we're building is this: */
#if 0
      union __gdb_builtin_type_vec64i
      {
	int64_t uint64;
	int32_t v2_int32[2];
	int16_t v4_int16[4];
	int8_t v8_int8[8];
      };
#endif

      struct type *t;

      t = arch_composite_type (gdbarch,
			       "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);

      append_composite_type_field (t, "uint64", bt->builtin_int64);
      append_composite_type_field (t, "v2_int32",
				   init_vector_type (bt->builtin_int32, 2));
      append_composite_type_field (t, "v4_int16",
				   init_vector_type (bt->builtin_int16, 4));
      append_composite_type_field (t, "v8_int8",
				   init_vector_type (bt->builtin_int8, 8));

      t->set_is_vector (true);
      t->set_name ("builtin_type_vec64i");
      tdep->i386_mmx_type = t;
    }

  return tdep->i386_mmx_type;
}

/* Return the GDB type object for the "standard" data type of data in
   register REGNUM.  */

struct type *
i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
{
  if (i386_bnd_regnum_p (gdbarch, regnum))
    return i386_bnd_type (gdbarch);
  if (i386_mmx_regnum_p (gdbarch, regnum))
    return i386_mmx_type (gdbarch);
  else if (i386_ymm_regnum_p (gdbarch, regnum))
    return i386_ymm_type (gdbarch);
  else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
    return i386_ymm_type (gdbarch);
  else if (i386_zmm_regnum_p (gdbarch, regnum))
    return i386_zmm_type (gdbarch);
  else
    {
      const struct builtin_type *bt = builtin_type (gdbarch);
      if (i386_byte_regnum_p (gdbarch, regnum))
	return bt->builtin_int8;
      else if (i386_word_regnum_p (gdbarch, regnum))
	return bt->builtin_int16;
      else if (i386_dword_regnum_p (gdbarch, regnum))
	return bt->builtin_int32;
      else if (i386_k_regnum_p (gdbarch, regnum))
	return bt->builtin_int64;
    }

  internal_error (__FILE__, __LINE__, _("invalid regnum"));
}

/* Map a cooked register onto a raw register or memory.  For the i386,
   the MMX registers need to be mapped onto floating point registers.  */

static int
i386_mmx_regnum_to_fp_regnum (readable_regcache *regcache, int regnum)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
  int mmxreg, fpreg;
  ULONGEST fstat;
  int tos;

  mmxreg = regnum - tdep->mm0_regnum;
  regcache->raw_read (I387_FSTAT_REGNUM (tdep), &fstat);
  tos = (fstat >> 11) & 0x7;
  fpreg = (mmxreg + tos) % 8;

  return (I387_ST0_REGNUM (tdep) + fpreg);
}

/* A helper function for us by i386_pseudo_register_read_value and
   amd64_pseudo_register_read_value.  It does all the work but reads
   the data into an already-allocated value.  */

void
i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
				      readable_regcache *regcache,
				      int regnum,
				      struct value *result_value)
{
  gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
  enum register_status status;
  gdb_byte *buf = value_contents_raw (result_value);

  if (i386_mmx_regnum_p (gdbarch, regnum))
    {
      int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);

      /* Extract (always little endian).  */
      status = regcache->raw_read (fpnum, raw_buf);
      if (status != REG_VALID)
	mark_value_bytes_unavailable (result_value, 0,
				      TYPE_LENGTH (value_type (result_value)));
      else
	memcpy (buf, raw_buf, register_size (gdbarch, regnum));
    }
  else
    {
      struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
      if (i386_bnd_regnum_p (gdbarch, regnum))
	{
	  regnum -= tdep->bnd0_regnum;

	  /* Extract (always little endian).  Read lower 128bits.  */
	  status = regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
				       raw_buf);
	  if (status != REG_VALID)
	    mark_value_bytes_unavailable (result_value, 0, 16);
	  else
	    {
	      enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
	      LONGEST upper, lower;
	      int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);

	      lower = extract_unsigned_integer (raw_buf, 8, byte_order);
	      upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
	      upper = ~upper;

	      memcpy (buf, &lower, size);
	      memcpy (buf + size, &upper, size);
	    }
	}
      else if (i386_k_regnum_p (gdbarch, regnum))
	{
	  regnum -= tdep->k0_regnum;

	  /* Extract (always little endian).  */
	  status = regcache->raw_read (tdep->k0_regnum + regnum, raw_buf);
	  if (status != REG_VALID)
	    mark_value_bytes_unavailable (result_value, 0, 8);
	  else
	    memcpy (buf, raw_buf, 8);
	}
      else if (i386_zmm_regnum_p (gdbarch, regnum))
	{
	  regnum -= tdep->zmm0_regnum;

	  if (regnum < num_lower_zmm_regs)
	    {
	      /* Extract (always little endian).  Read lower 128bits.  */
	      status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
					   raw_buf);
	      if (status != REG_VALID)
		mark_value_bytes_unavailable (result_value, 0, 16);
	      else
		memcpy (buf, raw_buf, 16);

	      /* Extract (always little endian).  Read upper 128bits.  */
	      status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
					   raw_buf);
	      if (status != REG_VALID)
		mark_value_bytes_unavailable (result_value, 16, 16);
	      else
		memcpy (buf + 16, raw_buf, 16);
	    }
	  else
	    {
	      /* Extract (always little endian).  Read lower 128bits.  */
	      status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum
					   - num_lower_zmm_regs,
					   raw_buf);
	      if (status != REG_VALID)
		mark_value_bytes_unavailable (result_value, 0, 16);
	      else
		memcpy (buf, raw_buf, 16);

	      /* Extract (always little endian).  Read upper 128bits.  */
	      status = regcache->raw_read (I387_YMM16H_REGNUM (tdep) + regnum
					   - num_lower_zmm_regs,
					   raw_buf);
	      if (status != REG_VALID)
		mark_value_bytes_unavailable (result_value, 16, 16);
	      else
		memcpy (buf + 16, raw_buf, 16);
	    }

	  /* Read upper 256bits.  */
	  status = regcache->raw_read (tdep->zmm0h_regnum + regnum,
				       raw_buf);
	  if (status != REG_VALID)
	    mark_value_bytes_unavailable (result_value, 32, 32);
	  else
	    memcpy (buf + 32, raw_buf, 32);
	}
      else if (i386_ymm_regnum_p (gdbarch, regnum))
	{
	  regnum -= tdep->ymm0_regnum;

	  /* Extract (always little endian).  Read lower 128bits.  */
	  status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
				       raw_buf);
	  if (status != REG_VALID)
	    mark_value_bytes_unavailable (result_value, 0, 16);
	  else
	    memcpy (buf, raw_buf, 16);
	  /* Read upper 128bits.  */
	  status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
				       raw_buf);
	  if (status != REG_VALID)
	    mark_value_bytes_unavailable (result_value, 16, 32);
	  else
	    memcpy (buf + 16, raw_buf, 16);
	}
      else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
	{
	  regnum -= tdep->ymm16_regnum;
	  /* Extract (always little endian).  Read lower 128bits.  */
	  status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum,
				       raw_buf);
	  if (status != REG_VALID)
	    mark_value_bytes_unavailable (result_value, 0, 16);
	  else
	    memcpy (buf, raw_buf, 16);
	  /* Read upper 128bits.  */
	  status = regcache->raw_read (tdep->ymm16h_regnum + regnum,
				       raw_buf);
	  if (status != REG_VALID)
	    mark_value_bytes_unavailable (result_value, 16, 16);
	  else
	    memcpy (buf + 16, raw_buf, 16);
	}
      else if (i386_word_regnum_p (gdbarch, regnum))
	{
	  int gpnum = regnum - tdep->ax_regnum;

	  /* Extract (always little endian).  */
	  status = regcache->raw_read (gpnum, raw_buf);
	  if (status != REG_VALID)
	    mark_value_bytes_unavailable (result_value, 0,
					  TYPE_LENGTH (value_type (result_value)));
	  else
	    memcpy (buf, raw_buf, 2);
	}
      else if (i386_byte_regnum_p (gdbarch, regnum))
	{
	  int gpnum = regnum - tdep->al_regnum;

	  /* Extract (always little endian).  We read both lower and
	     upper registers.  */
	  status = regcache->raw_read (gpnum % 4, raw_buf);
	  if (status != REG_VALID)
	    mark_value_bytes_unavailable (result_value, 0,
					  TYPE_LENGTH (value_type (result_value)));
	  else if (gpnum >= 4)
	    memcpy (buf, raw_buf + 1, 1);
	  else
	    memcpy (buf, raw_buf, 1);
	}
      else
	internal_error (__FILE__, __LINE__, _("invalid regnum"));
    }
}

static struct value *
i386_pseudo_register_read_value (struct gdbarch *gdbarch,
				 readable_regcache *regcache,
				 int regnum)
{
  struct value *result;

  result = allocate_value (register_type (gdbarch, regnum));
  VALUE_LVAL (result) = lval_register;
  VALUE_REGNUM (result) = regnum;

  i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);

  return result;
}

void
i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
			    int regnum, const gdb_byte *buf)
{
  gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];

  if (i386_mmx_regnum_p (gdbarch, regnum))
    {
      int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);

      /* Read ...  */
      regcache->raw_read (fpnum, raw_buf);
      /* ... Modify ... (always little endian).  */
      memcpy (raw_buf, buf, register_size (gdbarch, regnum));
      /* ... Write.  */
      regcache->raw_write (fpnum, raw_buf);
    }
  else
    {
      struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

      if (i386_bnd_regnum_p (gdbarch, regnum))
	{
	  ULONGEST upper, lower;
	  int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
	  enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());

	  /* New values from input value.  */
	  regnum -= tdep->bnd0_regnum;
	  lower = extract_unsigned_integer (buf, size, byte_order);
	  upper = extract_unsigned_integer (buf + size, size, byte_order);

	  /* Fetching register buffer.  */
	  regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
			      raw_buf);

	  upper = ~upper;

	  /* Set register bits.  */
	  memcpy (raw_buf, &lower, 8);
	  memcpy (raw_buf + 8, &upper, 8);

	  regcache->raw_write (I387_BND0R_REGNUM (tdep) + regnum, raw_buf);
	}
      else if (i386_k_regnum_p (gdbarch, regnum))
	{
	  regnum -= tdep->k0_regnum;

	  regcache->raw_write (tdep->k0_regnum + regnum, buf);
	}
      else if (i386_zmm_regnum_p (gdbarch, regnum))
	{
	  regnum -= tdep->zmm0_regnum;

	  if (regnum < num_lower_zmm_regs)
	    {
	      /* Write lower 128bits.  */
	      regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
	      /* Write upper 128bits.  */
	      regcache->raw_write (I387_YMM0_REGNUM (tdep) + regnum, buf + 16);
	    }
	  else
	    {
	      /* Write lower 128bits.  */
	      regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum
				   - num_lower_zmm_regs, buf);
	      /* Write upper 128bits.  */
	      regcache->raw_write (I387_YMM16H_REGNUM (tdep) + regnum
				   - num_lower_zmm_regs, buf + 16);
	    }
	  /* Write upper 256bits.  */
	  regcache->raw_write (tdep->zmm0h_regnum + regnum, buf + 32);
	}
      else if (i386_ymm_regnum_p (gdbarch, regnum))
	{
	  regnum -= tdep->ymm0_regnum;

	  /* ... Write lower 128bits.  */
	  regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
	  /* ... Write upper 128bits.  */
	  regcache->raw_write (tdep->ymm0h_regnum + regnum, buf + 16);
	}
      else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
	{
	  regnum -= tdep->ymm16_regnum;

	  /* ... Write lower 128bits.  */
	  regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum, buf);
	  /* ... Write upper 128bits.  */
	  regcache->raw_write (tdep->ymm16h_regnum + regnum, buf + 16);
	}
      else if (i386_word_regnum_p (gdbarch, regnum))
	{
	  int gpnum = regnum - tdep->ax_regnum;

	  /* Read ...  */
	  regcache->raw_read (gpnum, raw_buf);
	  /* ... Modify ... (always little endian).  */
	  memcpy (raw_buf, buf, 2);
	  /* ... Write.  */
	  regcache->raw_write (gpnum, raw_buf);
	}
      else if (i386_byte_regnum_p (gdbarch, regnum))
	{
	  int gpnum = regnum - tdep->al_regnum;

	  /* Read ...  We read both lower and upper registers.  */
	  regcache->raw_read (gpnum % 4, raw_buf);
	  /* ... Modify ... (always little endian).  */
	  if (gpnum >= 4)
	    memcpy (raw_buf + 1, buf, 1);
	  else
	    memcpy (raw_buf, buf, 1);
	  /* ... Write.  */
	  regcache->raw_write (gpnum % 4, raw_buf);
	}
      else
	internal_error (__FILE__, __LINE__, _("invalid regnum"));
    }
}

/* Implement the 'ax_pseudo_register_collect' gdbarch method.  */

int
i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
				 struct agent_expr *ax, int regnum)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (i386_mmx_regnum_p (gdbarch, regnum))
    {
      /* MMX to FPU register mapping depends on current TOS.  Let's just
	 not care and collect everything...  */
      int i;

      ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
      for (i = 0; i < 8; i++)
	ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
      return 0;
    }
  else if (i386_bnd_regnum_p (gdbarch, regnum))
    {
      regnum -= tdep->bnd0_regnum;
      ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
      return 0;
    }
  else if (i386_k_regnum_p (gdbarch, regnum))
    {
      regnum -= tdep->k0_regnum;
      ax_reg_mask (ax, tdep->k0_regnum + regnum);
      return 0;
    }
  else if (i386_zmm_regnum_p (gdbarch, regnum))
    {
      regnum -= tdep->zmm0_regnum;
      if (regnum < num_lower_zmm_regs)
	{
	  ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
	  ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
	}
      else
	{
	  ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
			   - num_lower_zmm_regs);
	  ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
			   - num_lower_zmm_regs);
	}
      ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
      return 0;
    }
  else if (i386_ymm_regnum_p (gdbarch, regnum))
    {
      regnum -= tdep->ymm0_regnum;
      ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
      ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
      return 0;
    }
  else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
    {
      regnum -= tdep->ymm16_regnum;
      ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
      ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
      return 0;
    }
  else if (i386_word_regnum_p (gdbarch, regnum))
    {
      int gpnum = regnum - tdep->ax_regnum;

      ax_reg_mask (ax, gpnum);
      return 0;
    }
  else if (i386_byte_regnum_p (gdbarch, regnum))
    {
      int gpnum = regnum - tdep->al_regnum;

      ax_reg_mask (ax, gpnum % 4);
      return 0;
    }
  else
    internal_error (__FILE__, __LINE__, _("invalid regnum"));
  return 1;
}


/* Return the register number of the register allocated by GCC after
   REGNUM, or -1 if there is no such register.  */

static int
i386_next_regnum (int regnum)
{
  /* GCC allocates the registers in the order:

     %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...

     Since storing a variable in %esp doesn't make any sense we return
     -1 for %ebp and for %esp itself.  */
  static int next_regnum[] =
  {
    I386_EDX_REGNUM,		/* Slot for %eax.  */
    I386_EBX_REGNUM,		/* Slot for %ecx.  */
    I386_ECX_REGNUM,		/* Slot for %edx.  */
    I386_ESI_REGNUM,		/* Slot for %ebx.  */
    -1, -1,			/* Slots for %esp and %ebp.  */
    I386_EDI_REGNUM,		/* Slot for %esi.  */
    I386_EBP_REGNUM		/* Slot for %edi.  */
  };

  if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
    return next_regnum[regnum];

  return -1;
}

/* Return nonzero if a value of type TYPE stored in register REGNUM
   needs any special handling.  */

static int
i386_convert_register_p (struct gdbarch *gdbarch,
			 int regnum, struct type *type)
{
  int len = TYPE_LENGTH (type);

  /* Values may be spread across multiple registers.  Most debugging
     formats aren't expressive enough to specify the locations, so
     some heuristics is involved.  Right now we only handle types that
     have a length that is a multiple of the word size, since GCC
     doesn't seem to put any other types into registers.  */
  if (len > 4 && len % 4 == 0)
    {
      int last_regnum = regnum;

      while (len > 4)
	{
	  last_regnum = i386_next_regnum (last_regnum);
	  len -= 4;
	}

      if (last_regnum != -1)
	return 1;
    }

  return i387_convert_register_p (gdbarch, regnum, type);
}

/* Read a value of type TYPE from register REGNUM in frame FRAME, and
   return its contents in TO.  */

static int
i386_register_to_value (struct frame_info *frame, int regnum,
			struct type *type, gdb_byte *to,
			int *optimizedp, int *unavailablep)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  int len = TYPE_LENGTH (type);

  if (i386_fp_regnum_p (gdbarch, regnum))
    return i387_register_to_value (frame, regnum, type, to,
				   optimizedp, unavailablep);

  /* Read a value spread across multiple registers.  */

  gdb_assert (len > 4 && len % 4 == 0);

  while (len > 0)
    {
      gdb_assert (regnum != -1);
      gdb_assert (register_size (gdbarch, regnum) == 4);

      if (!get_frame_register_bytes (frame, regnum, 0,
				     gdb::make_array_view (to,
							register_size (gdbarch,
								       regnum)),
				     optimizedp, unavailablep))
	return 0;

      regnum = i386_next_regnum (regnum);
      len -= 4;
      to += 4;
    }

  *optimizedp = *unavailablep = 0;
  return 1;
}

/* Write the contents FROM of a value of type TYPE into register
   REGNUM in frame FRAME.  */

static void
i386_value_to_register (struct frame_info *frame, int regnum,
			struct type *type, const gdb_byte *from)
{
  int len = TYPE_LENGTH (type);

  if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
    {
      i387_value_to_register (frame, regnum, type, from);
      return;
    }

  /* Write a value spread across multiple registers.  */

  gdb_assert (len > 4 && len % 4 == 0);

  while (len > 0)
    {
      gdb_assert (regnum != -1);
      gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);

      put_frame_register (frame, regnum, from);
      regnum = i386_next_regnum (regnum);
      len -= 4;
      from += 4;
    }
}

/* Supply register REGNUM from the buffer specified by GREGS and LEN
   in the general-purpose register set REGSET to register cache
   REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */

void
i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
		     int regnum, const void *gregs, size_t len)
{
  struct gdbarch *gdbarch = regcache->arch ();
  const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  const gdb_byte *regs = (const gdb_byte *) gregs;
  int i;

  gdb_assert (len >= tdep->sizeof_gregset);

  for (i = 0; i < tdep->gregset_num_regs; i++)
    {
      if ((regnum == i || regnum == -1)
	  && tdep->gregset_reg_offset[i] != -1)
	regcache->raw_supply (i, regs + tdep->gregset_reg_offset[i]);
    }
}

/* Collect register REGNUM from the register cache REGCACHE and store
   it in the buffer specified by GREGS and LEN as described by the
   general-purpose register set REGSET.  If REGNUM is -1, do this for
   all registers in REGSET.  */

static void
i386_collect_gregset (const struct regset *regset,
		      const struct regcache *regcache,
		      int regnum, void *gregs, size_t len)
{
  struct gdbarch *gdbarch = regcache->arch ();
  const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  gdb_byte *regs = (gdb_byte *) gregs;
  int i;

  gdb_assert (len >= tdep->sizeof_gregset);

  for (i = 0; i < tdep->gregset_num_regs; i++)
    {
      if ((regnum == i || regnum == -1)
	  && tdep->gregset_reg_offset[i] != -1)
	regcache->raw_collect (i, regs + tdep->gregset_reg_offset[i]);
    }
}

/* Supply register REGNUM from the buffer specified by FPREGS and LEN
   in the floating-point register set REGSET to register cache
   REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */

static void
i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
		      int regnum, const void *fpregs, size_t len)
{
  struct gdbarch *gdbarch = regcache->arch ();
  const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (len == I387_SIZEOF_FXSAVE)
    {
      i387_supply_fxsave (regcache, regnum, fpregs);
      return;
    }

  gdb_assert (len >= tdep->sizeof_fpregset);
  i387_supply_fsave (regcache, regnum, fpregs);
}

/* Collect register REGNUM from the register cache REGCACHE and store
   it in the buffer specified by FPREGS and LEN as described by the
   floating-point register set REGSET.  If REGNUM is -1, do this for
   all registers in REGSET.  */

static void
i386_collect_fpregset (const struct regset *regset,
		       const struct regcache *regcache,
		       int regnum, void *fpregs, size_t len)
{
  struct gdbarch *gdbarch = regcache->arch ();
  const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (len == I387_SIZEOF_FXSAVE)
    {
      i387_collect_fxsave (regcache, regnum, fpregs);
      return;
    }

  gdb_assert (len >= tdep->sizeof_fpregset);
  i387_collect_fsave (regcache, regnum, fpregs);
}

/* Register set definitions.  */

const struct regset i386_gregset =
  {
    NULL, i386_supply_gregset, i386_collect_gregset
  };

const struct regset i386_fpregset =
  {
    NULL, i386_supply_fpregset, i386_collect_fpregset
  };

/* Default iterator over core file register note sections.  */

void
i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
				   iterate_over_regset_sections_cb *cb,
				   void *cb_data,
				   const struct regcache *regcache)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset, &i386_gregset, NULL,
      cb_data);
  if (tdep->sizeof_fpregset)
    cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset, tdep->fpregset,
	NULL, cb_data);
}


/* Stuff for WIN32 PE style DLL's but is pretty generic really.  */

CORE_ADDR
i386_pe_skip_trampoline_code (struct frame_info *frame,
			      CORE_ADDR pc, char *name)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);

  /* jmp *(dest) */
  if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
    {
      unsigned long indirect =
	read_memory_unsigned_integer (pc + 2, 4, byte_order);
      struct minimal_symbol *indsym =
	indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
      const char *symname = indsym ? indsym->linkage_name () : 0;

      if (symname)
	{
	  if (startswith (symname, "__imp_")
	      || startswith (symname, "_imp_"))
	    return name ? 1 :
		   read_memory_unsigned_integer (indirect, 4, byte_order);
	}
    }
  return 0;			/* Not a trampoline.  */
}


/* Return whether the THIS_FRAME corresponds to a sigtramp
   routine.  */

int
i386_sigtramp_p (struct frame_info *this_frame)
{
  CORE_ADDR pc = get_frame_pc (this_frame);
  const char *name;

  find_pc_partial_function (pc, &name, NULL, NULL);
  return (name && strcmp ("_sigtramp", name) == 0);
}


/* We have two flavours of disassembly.  The machinery on this page
   deals with switching between those.  */

static int
i386_print_insn (bfd_vma pc, struct disassemble_info *info)
{
  gdb_assert (disassembly_flavor == att_flavor
	      || disassembly_flavor == intel_flavor);

  info->disassembler_options = disassembly_flavor;

  return default_print_insn (pc, info);
}


/* There are a few i386 architecture variants that differ only
   slightly from the generic i386 target.  For now, we don't give them
   their own source file, but include them here.  As a consequence,
   they'll always be included.  */

/* System V Release 4 (SVR4).  */

/* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
   routine.  */

static int
i386_svr4_sigtramp_p (struct frame_info *this_frame)
{
  CORE_ADDR pc = get_frame_pc (this_frame);
  const char *name;

  /* The origin of these symbols is currently unknown.  */
  find_pc_partial_function (pc, &name, NULL, NULL);
  return (name && (strcmp ("_sigreturn", name) == 0
		   || strcmp ("sigvechandler", name) == 0));
}

/* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
   address of the associated sigcontext (ucontext) structure.  */

static CORE_ADDR
i386_svr4_sigcontext_addr (struct frame_info *this_frame)
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  gdb_byte buf[4];
  CORE_ADDR sp;

  get_frame_register (this_frame, I386_ESP_REGNUM, buf);
  sp = extract_unsigned_integer (buf, 4, byte_order);

  return read_memory_unsigned_integer (sp + 8, 4, byte_order);
}



/* Implementation of `gdbarch_stap_is_single_operand', as defined in
   gdbarch.h.  */

int
i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
{
  return (*s == '$' /* Literal number.  */
	  || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement.  */
	  || (*s == '(' && s[1] == '%') /* Register indirection.  */
	  || (*s == '%' && isalpha (s[1]))); /* Register access.  */
}

/* Helper function for i386_stap_parse_special_token.

   This function parses operands of the form `-8+3+1(%rbp)', which
   must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.

   Return true if the operand was parsed successfully, false
   otherwise.  */

static expr::operation_up
i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
				       struct stap_parse_info *p)
{
  const char *s = p->arg;

  if (isdigit (*s) || *s == '-' || *s == '+')
    {
      bool got_minus[3];
      int i;
      long displacements[3];
      const char *start;
      int len;
      char *endp;

      got_minus[0] = false;
      if (*s == '+')
	++s;
      else if (*s == '-')
	{
	  ++s;
	  got_minus[0] = true;
	}

      if (!isdigit ((unsigned char) *s))
	return {};

      displacements[0] = strtol (s, &endp, 10);
      s = endp;

      if (*s != '+' && *s != '-')
	{
	  /* We are not dealing with a triplet.  */
	  return {};
	}

      got_minus[1] = false;
      if (*s == '+')
	++s;
      else
	{
	  ++s;
	  got_minus[1] = true;
	}

      if (!isdigit ((unsigned char) *s))
	return {};

      displacements[1] = strtol (s, &endp, 10);
      s = endp;

      if (*s != '+' && *s != '-')
	{
	  /* We are not dealing with a triplet.  */
	  return {};
	}

      got_minus[2] = false;
      if (*s == '+')
	++s;
      else
	{
	  ++s;
	  got_minus[2] = true;
	}

      if (!isdigit ((unsigned char) *s))
	return {};

      displacements[2] = strtol (s, &endp, 10);
      s = endp;

      if (*s != '(' || s[1] != '%')
	return {};

      s += 2;
      start = s;

      while (isalnum (*s))
	++s;

      if (*s++ != ')')
	return {};

      len = s - start - 1;
      std::string regname (start, len);

      if (user_reg_map_name_to_regnum (gdbarch, regname.c_str (), len) == -1)
	error (_("Invalid register name `%s' on expression `%s'."),
	       regname.c_str (), p->saved_arg);

      LONGEST value = 0;
      for (i = 0; i < 3; i++)
	{
	  LONGEST this_val = displacements[i];
	  if (got_minus[i])
	    this_val = -this_val;
	  value += this_val;
	}

      p->arg = s;

      using namespace expr;

      struct type *long_type = builtin_type (gdbarch)->builtin_long;
      operation_up offset
	= make_operation<long_const_operation> (long_type, value);

      operation_up reg
	= make_operation<register_operation> (std::move (regname));
      struct type *void_ptr = builtin_type (gdbarch)->builtin_data_ptr;
      reg = make_operation<unop_cast_operation> (std::move (reg), void_ptr);

      operation_up sum
	= make_operation<add_operation> (std::move (reg), std::move (offset));
      struct type *arg_ptr_type = lookup_pointer_type (p->arg_type);
      sum = make_operation<unop_cast_operation> (std::move (sum),
						 arg_ptr_type);
      return make_operation<unop_ind_operation> (std::move (sum));
    }

  return {};
}

/* Helper function for i386_stap_parse_special_token.

   This function parses operands of the form `register base +
   (register index * size) + offset', as represented in
   `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.

   Return true if the operand was parsed successfully, false
   otherwise.  */

static expr::operation_up
i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
					      struct stap_parse_info *p)
{
  const char *s = p->arg;

  if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
    {
      bool offset_minus = false;
      long offset = 0;
      bool size_minus = false;
      long size = 0;
      const char *start;
      int len_base;
      int len_index;

      if (*s == '+')
	++s;
      else if (*s == '-')
	{
	  ++s;
	  offset_minus = true;
	}

      if (offset_minus && !isdigit (*s))
	return {};

      if (isdigit (*s))
	{
	  char *endp;

	  offset = strtol (s, &endp, 10);
	  s = endp;
	}

      if (*s != '(' || s[1] != '%')
	return {};

      s += 2;
      start = s;

      while (isalnum (*s))
	++s;

      if (*s != ',' || s[1] != '%')
	return {};

      len_base = s - start;
      std::string base (start, len_base);

      if (user_reg_map_name_to_regnum (gdbarch, base.c_str (), len_base) == -1)
	error (_("Invalid register name `%s' on expression `%s'."),
	       base.c_str (), p->saved_arg);

      s += 2;
      start = s;

      while (isalnum (*s))
	++s;

      len_index = s - start;
      std::string index (start, len_index);

      if (user_reg_map_name_to_regnum (gdbarch, index.c_str (),
				       len_index) == -1)
	error (_("Invalid register name `%s' on expression `%s'."),
	       index.c_str (), p->saved_arg);

      if (*s != ',' && *s != ')')
	return {};

      if (*s == ',')
	{
	  char *endp;

	  ++s;
	  if (*s == '+')
	    ++s;
	  else if (*s == '-')
	    {
	      ++s;
	      size_minus = true;
	    }

	  size = strtol (s, &endp, 10);
	  s = endp;

	  if (*s != ')')
	    return {};
	}

      ++s;
      p->arg = s;

      using namespace expr;

      struct type *long_type = builtin_type (gdbarch)->builtin_long;
      operation_up reg = make_operation<register_operation> (std::move (base));

      if (offset != 0)
	{
	  if (offset_minus)
	    offset = -offset;
	  operation_up value
	    = make_operation<long_const_operation> (long_type, offset);
	  reg = make_operation<add_operation> (std::move (reg),
					       std::move (value));
	}

      operation_up ind_reg
	= make_operation<register_operation> (std::move (index));

      if (size != 0)
	{
	  if (size_minus)
	    size = -size;
	  operation_up value
	    = make_operation<long_const_operation> (long_type, size);
	  ind_reg = make_operation<mul_operation> (std::move (ind_reg),
						   std::move (value));
	}

      operation_up sum
	= make_operation<add_operation> (std::move (reg),
					 std::move (ind_reg));

      struct type *arg_ptr_type = lookup_pointer_type (p->arg_type);
      sum = make_operation<unop_cast_operation> (std::move (sum),
						 arg_ptr_type);
      return make_operation<unop_ind_operation> (std::move (sum));
    }

  return {};
}

/* Implementation of `gdbarch_stap_parse_special_token', as defined in
   gdbarch.h.  */

expr::operation_up
i386_stap_parse_special_token (struct gdbarch *gdbarch,
			       struct stap_parse_info *p)
{
  /* The special tokens to be parsed here are:

     - `register base + (register index * size) + offset', as represented
     in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.

     - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
     `*(-8 + 3 - 1 + (void *) $eax)'.  */

  expr::operation_up result
    = i386_stap_parse_special_token_triplet (gdbarch, p);

  if (result == nullptr)
    result = i386_stap_parse_special_token_three_arg_disp (gdbarch, p);

  return result;
}

/* Implementation of 'gdbarch_stap_adjust_register', as defined in
   gdbarch.h.  */

static std::string
i386_stap_adjust_register (struct gdbarch *gdbarch, struct stap_parse_info *p,
			   const std::string &regname, int regnum)
{
  static const std::unordered_set<std::string> reg_assoc
    = { "ax", "bx", "cx", "dx",
	"si", "di", "bp", "sp" };

  /* If we are dealing with a register whose size is less than the size
     specified by the "[-]N@" prefix, and it is one of the registers that
     we know has an extended variant available, then use the extended
     version of the register instead.  */
  if (register_size (gdbarch, regnum) < TYPE_LENGTH (p->arg_type)
      && reg_assoc.find (regname) != reg_assoc.end ())
    return "e" + regname;

  /* Otherwise, just use the requested register.  */
  return regname;
}



/* gdbarch gnu_triplet_regexp method.  Both arches are acceptable as GDB always
   also supplies -m64 or -m32 by gdbarch_gcc_target_options.  */

static const char *
i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
{
  return "(x86_64|i.86)";
}



/* Implement the "in_indirect_branch_thunk" gdbarch function.  */

static bool
i386_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  return x86_in_indirect_branch_thunk (pc, i386_register_names,
				       I386_EAX_REGNUM, I386_EIP_REGNUM);
}

/* Generic ELF.  */

void
i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
{
  static const char *const stap_integer_prefixes[] = { "$", NULL };
  static const char *const stap_register_prefixes[] = { "%", NULL };
  static const char *const stap_register_indirection_prefixes[] = { "(",
								    NULL };
  static const char *const stap_register_indirection_suffixes[] = { ")",
								    NULL };

  /* We typically use stabs-in-ELF with the SVR4 register numbering.  */
  set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);

  /* Registering SystemTap handlers.  */
  set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
  set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
  set_gdbarch_stap_register_indirection_prefixes (gdbarch,
					  stap_register_indirection_prefixes);
  set_gdbarch_stap_register_indirection_suffixes (gdbarch,
					  stap_register_indirection_suffixes);
  set_gdbarch_stap_is_single_operand (gdbarch,
				      i386_stap_is_single_operand);
  set_gdbarch_stap_parse_special_token (gdbarch,
					i386_stap_parse_special_token);
  set_gdbarch_stap_adjust_register (gdbarch,
				    i386_stap_adjust_register);

  set_gdbarch_in_indirect_branch_thunk (gdbarch,
					i386_in_indirect_branch_thunk);
}

/* System V Release 4 (SVR4).  */

void
i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  /* System V Release 4 uses ELF.  */
  i386_elf_init_abi (info, gdbarch);

  /* System V Release 4 has shared libraries.  */
  set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);

  tdep->sigtramp_p = i386_svr4_sigtramp_p;
  tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
  tdep->sc_pc_offset = 36 + 14 * 4;
  tdep->sc_sp_offset = 36 + 17 * 4;

  tdep->jb_pc_offset = 20;
}



/* i386 register groups.  In addition to the normal groups, add "mmx"
   and "sse".  */

static struct reggroup *i386_sse_reggroup;
static struct reggroup *i386_mmx_reggroup;

static void
i386_init_reggroups (void)
{
  i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
  i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
}

static void
i386_add_reggroups (struct gdbarch *gdbarch)
{
  reggroup_add (gdbarch, i386_sse_reggroup);
  reggroup_add (gdbarch, i386_mmx_reggroup);
  reggroup_add (gdbarch, general_reggroup);
  reggroup_add (gdbarch, float_reggroup);
  reggroup_add (gdbarch, all_reggroup);
  reggroup_add (gdbarch, save_reggroup);
  reggroup_add (gdbarch, restore_reggroup);
  reggroup_add (gdbarch, vector_reggroup);
  reggroup_add (gdbarch, system_reggroup);
}

int
i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
			  struct reggroup *group)
{
  const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
      ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
      bndr_regnum_p, bnd_regnum_p, zmm_regnum_p, zmmh_regnum_p,
      mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
      avx512_p, avx_p, sse_p, pkru_regnum_p;

  /* Don't include pseudo registers, except for MMX, in any register
     groups.  */
  if (i386_byte_regnum_p (gdbarch, regnum))
    return 0;

  if (i386_word_regnum_p (gdbarch, regnum))
    return 0;

  if (i386_dword_regnum_p (gdbarch, regnum))
    return 0;

  mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
  if (group == i386_mmx_reggroup)
    return mmx_regnum_p;

  pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
  xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
  xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
  mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
  if (group == i386_sse_reggroup)
    return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;

  ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
  ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
  zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);

  avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
	      == X86_XSTATE_AVX_AVX512_MASK);
  avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
	   == X86_XSTATE_AVX_MASK) && !avx512_p;
  sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
	   == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;

  if (group == vector_reggroup)
    return (mmx_regnum_p
	    || (zmm_regnum_p && avx512_p)
	    || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
	    || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
	    || mxcsr_regnum_p);

  fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
		 || i386_fpc_regnum_p (gdbarch, regnum));
  if (group == float_reggroup)
    return fp_regnum_p;

  /* For "info reg all", don't include upper YMM registers nor XMM
     registers when AVX is supported.  */
  ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
  ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
  zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
  if (group == all_reggroup
      && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
	  || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
	  || ymmh_regnum_p
	  || ymmh_avx512_regnum_p
	  || zmmh_regnum_p))
    return 0;

  bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
  if (group == all_reggroup
      && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
    return bnd_regnum_p;

  bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
  if (group == all_reggroup
      && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
    return 0;

  mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
  if (group == all_reggroup
      && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
    return mpx_ctrl_regnum_p;

  if (group == general_reggroup)
    return (!fp_regnum_p
	    && !mmx_regnum_p
	    && !mxcsr_regnum_p
	    && !xmm_regnum_p
	    && !xmm_avx512_regnum_p
	    && !ymm_regnum_p
	    && !ymmh_regnum_p
	    && !ymm_avx512_regnum_p
	    && !ymmh_avx512_regnum_p
	    && !bndr_regnum_p
	    && !bnd_regnum_p
	    && !mpx_ctrl_regnum_p
	    && !zmm_regnum_p
	    && !zmmh_regnum_p
	    && !pkru_regnum_p);

  return default_register_reggroup_p (gdbarch, regnum, group);
}


/* Get the ARGIth function argument for the current function.  */

static CORE_ADDR
i386_fetch_pointer_argument (struct frame_info *frame, int argi, 
			     struct type *type)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
  return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
}

#define PREFIX_REPZ	0x01
#define PREFIX_REPNZ	0x02
#define PREFIX_LOCK	0x04
#define PREFIX_DATA	0x08
#define PREFIX_ADDR	0x10

/* operand size */
enum
{
  OT_BYTE = 0,
  OT_WORD,
  OT_LONG,
  OT_QUAD,
  OT_DQUAD,
};

/* i386 arith/logic operations */
enum
{
  OP_ADDL,
  OP_ORL,
  OP_ADCL,
  OP_SBBL,
  OP_ANDL,
  OP_SUBL,
  OP_XORL,
  OP_CMPL,
};

struct i386_record_s
{
  struct gdbarch *gdbarch;
  struct regcache *regcache;
  CORE_ADDR orig_addr;
  CORE_ADDR addr;
  int aflag;
  int dflag;
  int override;
  uint8_t modrm;
  uint8_t mod, reg, rm;
  int ot;
  uint8_t rex_x;
  uint8_t rex_b;
  int rip_offset;
  int popl_esp_hack;
  const int *regmap;
};

/* Parse the "modrm" part of the memory address irp->addr points at.
   Returns -1 if something goes wrong, 0 otherwise.  */

static int
i386_record_modrm (struct i386_record_s *irp)
{
  struct gdbarch *gdbarch = irp->gdbarch;

  if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
    return -1;

  irp->addr++;
  irp->mod = (irp->modrm >> 6) & 3;
  irp->reg = (irp->modrm >> 3) & 7;
  irp->rm = irp->modrm & 7;

  return 0;
}

/* Extract the memory address that the current instruction writes to,
   and return it in *ADDR.  Return -1 if something goes wrong.  */

static int
i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
{
  struct gdbarch *gdbarch = irp->gdbarch;
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  gdb_byte buf[4];
  ULONGEST offset64;

  *addr = 0;
  if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
    {
      /* 32/64 bits */
      int havesib = 0;
      uint8_t scale = 0;
      uint8_t byte;
      uint8_t index = 0;
      uint8_t base = irp->rm;

      if (base == 4)
	{
	  havesib = 1;
	  if (record_read_memory (gdbarch, irp->addr, &byte, 1))
	    return -1;
	  irp->addr++;
	  scale = (byte >> 6) & 3;
	  index = ((byte >> 3) & 7) | irp->rex_x;
	  base = (byte & 7);
	}
      base |= irp->rex_b;

      switch (irp->mod)
	{
	case 0:
	  if ((base & 7) == 5)
	    {
	      base = 0xff;
	      if (record_read_memory (gdbarch, irp->addr, buf, 4))
		return -1;
	      irp->addr += 4;
	      *addr = extract_signed_integer (buf, 4, byte_order);
	      if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
		*addr += irp->addr + irp->rip_offset;
	    }
	  break;
	case 1:
	  if (record_read_memory (gdbarch, irp->addr, buf, 1))
	    return -1;
	  irp->addr++;
	  *addr = (int8_t) buf[0];
	  break;
	case 2:
	  if (record_read_memory (gdbarch, irp->addr, buf, 4))
	    return -1;
	  *addr = extract_signed_integer (buf, 4, byte_order);
	  irp->addr += 4;
	  break;
	}

      offset64 = 0;
      if (base != 0xff)
	{
	  if (base == 4 && irp->popl_esp_hack)
	    *addr += irp->popl_esp_hack;
	  regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
				      &offset64);
	}
      if (irp->aflag == 2)
	{
	  *addr += offset64;
	}
      else
	*addr = (uint32_t) (offset64 + *addr);

      if (havesib && (index != 4 || scale != 0))
	{
	  regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
				      &offset64);
	  if (irp->aflag == 2)
	    *addr += offset64 << scale;
	  else
	    *addr = (uint32_t) (*addr + (offset64 << scale));
	}

      if (!irp->aflag)
	{
	  /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
	     address from 32-bit to 64-bit.  */
	    *addr = (uint32_t) *addr;
	}
    }
  else
    {
      /* 16 bits */
      switch (irp->mod)
	{
	case 0:
	  if (irp->rm == 6)
	    {
	      if (record_read_memory (gdbarch, irp->addr, buf, 2))
		return -1;
	      irp->addr += 2;
	      *addr = extract_signed_integer (buf, 2, byte_order);
	      irp->rm = 0;
	      goto no_rm;
	    }
	  break;
	case 1:
	  if (record_read_memory (gdbarch, irp->addr, buf, 1))
	    return -1;
	  irp->addr++;
	  *addr = (int8_t) buf[0];
	  break;
	case 2:
	  if (record_read_memory (gdbarch, irp->addr, buf, 2))
	    return -1;
	  irp->addr += 2;
	  *addr = extract_signed_integer (buf, 2, byte_order);
	  break;
	}

      switch (irp->rm)
	{
	case 0:
	  regcache_raw_read_unsigned (irp->regcache,
				      irp->regmap[X86_RECORD_REBX_REGNUM],
				      &offset64);
	  *addr = (uint32_t) (*addr + offset64);
	  regcache_raw_read_unsigned (irp->regcache,
				      irp->regmap[X86_RECORD_RESI_REGNUM],
				      &offset64);
	  *addr = (uint32_t) (*addr + offset64);
	  break;
	case 1:
	  regcache_raw_read_unsigned (irp->regcache,
				      irp->regmap[X86_RECORD_REBX_REGNUM],
				      &offset64);
	  *addr = (uint32_t) (*addr + offset64);
	  regcache_raw_read_unsigned (irp->regcache,
				      irp->regmap[X86_RECORD_REDI_REGNUM],
				      &offset64);
	  *addr = (uint32_t) (*addr + offset64);
	  break;
	case 2:
	  regcache_raw_read_unsigned (irp->regcache,
				      irp->regmap[X86_RECORD_REBP_REGNUM],
				      &offset64);
	  *addr = (uint32_t) (*addr + offset64);
	  regcache_raw_read_unsigned (irp->regcache,
				      irp->regmap[X86_RECORD_RESI_REGNUM],
				      &offset64);
	  *addr = (uint32_t) (*addr + offset64);
	  break;
	case 3:
	  regcache_raw_read_unsigned (irp->regcache,
				      irp->regmap[X86_RECORD_REBP_REGNUM],
				      &offset64);
	  *addr = (uint32_t) (*addr + offset64);
	  regcache_raw_read_unsigned (irp->regcache,
				      irp->regmap[X86_RECORD_REDI_REGNUM],
				      &offset64);
	  *addr = (uint32_t) (*addr + offset64);
	  break;
	case 4:
	  regcache_raw_read_unsigned (irp->regcache,
				      irp->regmap[X86_RECORD_RESI_REGNUM],
				      &offset64);
	  *addr = (uint32_t) (*addr + offset64);
	  break;
	case 5:
	  regcache_raw_read_unsigned (irp->regcache,
				      irp->regmap[X86_RECORD_REDI_REGNUM],
				      &offset64);
	  *addr = (uint32_t) (*addr + offset64);
	  break;
	case 6:
	  regcache_raw_read_unsigned (irp->regcache,
				      irp->regmap[X86_RECORD_REBP_REGNUM],
				      &offset64);
	  *addr = (uint32_t) (*addr + offset64);
	  break;
	case 7:
	  regcache_raw_read_unsigned (irp->regcache,
				      irp->regmap[X86_RECORD_REBX_REGNUM],
				      &offset64);
	  *addr = (uint32_t) (*addr + offset64);
	  break;
	}
      *addr &= 0xffff;
    }

 no_rm:
  return 0;
}

/* Record the address and contents of the memory that will be changed
   by the current instruction.  Return -1 if something goes wrong, 0
   otherwise.  */

static int
i386_record_lea_modrm (struct i386_record_s *irp)
{
  struct gdbarch *gdbarch = irp->gdbarch;
  uint64_t addr;

  if (irp->override >= 0)
    {
      if (record_full_memory_query)
	{
	  if (yquery (_("\
Process record ignores the memory change of instruction at address %s\n\
because it can't get the value of the segment register.\n\
Do you want to stop the program?"),
		      paddress (gdbarch, irp->orig_addr)))
	    return -1;
	}

      return 0;
    }

  if (i386_record_lea_modrm_addr (irp, &addr))
    return -1;

  if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
    return -1;

  return 0;
}

/* Record the effects of a push operation.  Return -1 if something
   goes wrong, 0 otherwise.  */

static int
i386_record_push (struct i386_record_s *irp, int size)
{
  ULONGEST addr;

  if (record_full_arch_list_add_reg (irp->regcache,
				     irp->regmap[X86_RECORD_RESP_REGNUM]))
    return -1;
  regcache_raw_read_unsigned (irp->regcache,
			      irp->regmap[X86_RECORD_RESP_REGNUM],
			      &addr);
  if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
    return -1;

  return 0;
}


/* Defines contents to record.  */
#define I386_SAVE_FPU_REGS              0xfffd
#define I386_SAVE_FPU_ENV               0xfffe
#define I386_SAVE_FPU_ENV_REG_STACK     0xffff

/* Record the values of the floating point registers which will be
   changed by the current instruction.  Returns -1 if something is
   wrong, 0 otherwise.  */

static int i386_record_floats (struct gdbarch *gdbarch,
			       struct i386_record_s *ir,
			       uint32_t iregnum)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  int i;

  /* Oza: Because of floating point insn push/pop of fpu stack is going to
     happen.  Currently we store st0-st7 registers, but we need not store all
     registers all the time, in future we use ftag register and record only
     those who are not marked as an empty.  */

  if (I386_SAVE_FPU_REGS == iregnum)
    {
      for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
	{
	  if (record_full_arch_list_add_reg (ir->regcache, i))
	    return -1;
	}
    }
  else if (I386_SAVE_FPU_ENV == iregnum)
    {
      for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
	      {
	      if (record_full_arch_list_add_reg (ir->regcache, i))
		return -1;
	      }
    }
  else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
    {
      for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
	if (record_full_arch_list_add_reg (ir->regcache, i))
	  return -1;
    }
  else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
	   (iregnum <= I387_FOP_REGNUM (tdep)))
    {
      if (record_full_arch_list_add_reg (ir->regcache,iregnum))
	return -1;
    }
  else
    {
      /* Parameter error.  */
      return -1;
    }
  if(I386_SAVE_FPU_ENV != iregnum)
    {
    for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
      {
      if (record_full_arch_list_add_reg (ir->regcache, i))
	return -1;
      }
    }
  return 0;
}

/* Parse the current instruction, and record the values of the
   registers and memory that will be changed by the current
   instruction.  Returns -1 if something goes wrong, 0 otherwise.  */

#define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
    record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])

int
i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
		     CORE_ADDR input_addr)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int prefixes = 0;
  int regnum = 0;
  uint32_t opcode;
  uint8_t opcode8;
  ULONGEST addr;
  gdb_byte buf[I386_MAX_REGISTER_SIZE];
  struct i386_record_s ir;
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  uint8_t rex_w = -1;
  uint8_t rex_r = 0;

  memset (&ir, 0, sizeof (struct i386_record_s));
  ir.regcache = regcache;
  ir.addr = input_addr;
  ir.orig_addr = input_addr;
  ir.aflag = 1;
  ir.dflag = 1;
  ir.override = -1;
  ir.popl_esp_hack = 0;
  ir.regmap = tdep->record_regmap;
  ir.gdbarch = gdbarch;

  if (record_debug > 1)
    fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
				    "addr = %s\n",
			paddress (gdbarch, ir.addr));

  /* prefixes */
  while (1)
    {
      if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
	return -1;
      ir.addr++;
      switch (opcode8)	/* Instruction prefixes */
	{
	case REPE_PREFIX_OPCODE:
	  prefixes |= PREFIX_REPZ;
	  break;
	case REPNE_PREFIX_OPCODE:
	  prefixes |= PREFIX_REPNZ;
	  break;
	case LOCK_PREFIX_OPCODE:
	  prefixes |= PREFIX_LOCK;
	  break;
	case CS_PREFIX_OPCODE:
	  ir.override = X86_RECORD_CS_REGNUM;
	  break;
	case SS_PREFIX_OPCODE:
	  ir.override = X86_RECORD_SS_REGNUM;
	  break;
	case DS_PREFIX_OPCODE:
	  ir.override = X86_RECORD_DS_REGNUM;
	  break;
	case ES_PREFIX_OPCODE:
	  ir.override = X86_RECORD_ES_REGNUM;
	  break;
	case FS_PREFIX_OPCODE:
	  ir.override = X86_RECORD_FS_REGNUM;
	  break;
	case GS_PREFIX_OPCODE:
	  ir.override = X86_RECORD_GS_REGNUM;
	  break;
	case DATA_PREFIX_OPCODE:
	  prefixes |= PREFIX_DATA;
	  break;
	case ADDR_PREFIX_OPCODE:
	  prefixes |= PREFIX_ADDR;
	  break;
	case 0x40:	/* i386 inc %eax */
	case 0x41:	/* i386 inc %ecx */
	case 0x42:	/* i386 inc %edx */
	case 0x43:	/* i386 inc %ebx */
	case 0x44:	/* i386 inc %esp */
	case 0x45:	/* i386 inc %ebp */
	case 0x46:	/* i386 inc %esi */
	case 0x47:	/* i386 inc %edi */
	case 0x48:	/* i386 dec %eax */
	case 0x49:	/* i386 dec %ecx */
	case 0x4a:	/* i386 dec %edx */
	case 0x4b:	/* i386 dec %ebx */
	case 0x4c:	/* i386 dec %esp */
	case 0x4d:	/* i386 dec %ebp */
	case 0x4e:	/* i386 dec %esi */
	case 0x4f:	/* i386 dec %edi */
	  if (ir.regmap[X86_RECORD_R8_REGNUM])	/* 64 bit target */
	    {
	       /* REX */
	       rex_w = (opcode8 >> 3) & 1;
	       rex_r = (opcode8 & 0x4) << 1;
	       ir.rex_x = (opcode8 & 0x2) << 2;
	       ir.rex_b = (opcode8 & 0x1) << 3;
	    }
	  else					/* 32 bit target */
	    goto out_prefixes;
	  break;
	default:
	  goto out_prefixes;
	  break;
	}
    }
 out_prefixes:
  if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
    {
      ir.dflag = 2;
    }
  else
    {
      if (prefixes & PREFIX_DATA)
	ir.dflag ^= 1;
    }
  if (prefixes & PREFIX_ADDR)
    ir.aflag ^= 1;
  else if (ir.regmap[X86_RECORD_R8_REGNUM])
    ir.aflag = 2;

  /* Now check op code.  */
  opcode = (uint32_t) opcode8;
 reswitch:
  switch (opcode)
    {
    case 0x0f:
      if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
	return -1;
      ir.addr++;
      opcode = (uint32_t) opcode8 | 0x0f00;
      goto reswitch;
      break;

    case 0x00:    /* arith & logic */
    case 0x01:
    case 0x02:
    case 0x03:
    case 0x04:
    case 0x05:
    case 0x08:
    case 0x09:
    case 0x0a:
    case 0x0b:
    case 0x0c:
    case 0x0d:
    case 0x10:
    case 0x11:
    case 0x12:
    case 0x13:
    case 0x14:
    case 0x15:
    case 0x18:
    case 0x19:
    case 0x1a:
    case 0x1b:
    case 0x1c:
    case 0x1d:
    case 0x20:
    case 0x21:
    case 0x22:
    case 0x23:
    case 0x24:
    case 0x25:
    case 0x28:
    case 0x29:
    case 0x2a:
    case 0x2b:
    case 0x2c:
    case 0x2d:
    case 0x30:
    case 0x31:
    case 0x32:
    case 0x33:
    case 0x34:
    case 0x35:
    case 0x38:
    case 0x39:
    case 0x3a:
    case 0x3b:
    case 0x3c:
    case 0x3d:
      if (((opcode >> 3) & 7) != OP_CMPL)
	{
	  if ((opcode & 1) == 0)
	    ir.ot = OT_BYTE;
	  else
	    ir.ot = ir.dflag + OT_WORD;

	  switch ((opcode >> 1) & 3)
	    {
	    case 0:    /* OP Ev, Gv */
	      if (i386_record_modrm (&ir))
		return -1;
	      if (ir.mod != 3)
		{
		  if (i386_record_lea_modrm (&ir))
		    return -1;
		}
	      else
		{
		  ir.rm |= ir.rex_b;
		  if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
		    ir.rm &= 0x3;
		  I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
		}
	      break;
	    case 1:    /* OP Gv, Ev */
	      if (i386_record_modrm (&ir))
		return -1;
	      ir.reg |= rex_r;
	      if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
		ir.reg &= 0x3;
	      I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
	      break;
	    case 2:    /* OP A, Iv */
	      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
	      break;
	    }
	}
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
      break;

    case 0x80:    /* GRP1 */
    case 0x81:
    case 0x82:
    case 0x83:
      if (i386_record_modrm (&ir))
	return -1;

      if (ir.reg != OP_CMPL)
	{
	  if ((opcode & 1) == 0)
	    ir.ot = OT_BYTE;
	  else
	    ir.ot = ir.dflag + OT_WORD;

	  if (ir.mod != 3)
	    {
	      if (opcode == 0x83)
		ir.rip_offset = 1;
	      else
		ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
	      if (i386_record_lea_modrm (&ir))
		return -1;
	    }
	  else
	    I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
	}
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
      break;

    case 0x40:      /* inc */
    case 0x41:
    case 0x42:
    case 0x43:
    case 0x44:
    case 0x45:
    case 0x46:
    case 0x47:

    case 0x48:      /* dec */
    case 0x49:
    case 0x4a:
    case 0x4b:
    case 0x4c:
    case 0x4d:
    case 0x4e:
    case 0x4f:

      I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
      break;

    case 0xf6:    /* GRP3 */
    case 0xf7:
      if ((opcode & 1) == 0)
	ir.ot = OT_BYTE;
      else
	ir.ot = ir.dflag + OT_WORD;
      if (i386_record_modrm (&ir))
	return -1;

      if (ir.mod != 3 && ir.reg == 0)
	ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);

      switch (ir.reg)
	{
	case 0:    /* test */
	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
	  break;
	case 2:    /* not */
	case 3:    /* neg */
	  if (ir.mod != 3)
	    {
	      if (i386_record_lea_modrm (&ir))
		return -1;
	    }
	  else
	    {
	      ir.rm |= ir.rex_b;
	      if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
		ir.rm &= 0x3;
	      I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
	    }
	  if (ir.reg == 3)  /* neg */
	    I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
	  break;
	case 4:    /* mul  */
	case 5:    /* imul */
	case 6:    /* div  */
	case 7:    /* idiv */
	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
	  if (ir.ot != OT_BYTE)
	    I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
	  break;
	default:
	  ir.addr -= 2;
	  opcode = opcode << 8 | ir.modrm;
	  goto no_support;
	  break;
	}
      break;

    case 0xfe:    /* GRP4 */
    case 0xff:    /* GRP5 */
      if (i386_record_modrm (&ir))
	return -1;
      if (ir.reg >= 2 && opcode == 0xfe)
	{
	  ir.addr -= 2;
	  opcode = opcode << 8 | ir.modrm;
	  goto no_support;
	}
      switch (ir.reg)
	{
	case 0:    /* inc */
	case 1:    /* dec */
	  if ((opcode & 1) == 0)
	    ir.ot = OT_BYTE;
	  else
	    ir.ot = ir.dflag + OT_WORD;
	  if (ir.mod != 3)
	    {
	      if (i386_record_lea_modrm (&ir))
		return -1;
	    }
	  else
	    {
	      ir.rm |= ir.rex_b;
	      if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
		ir.rm &= 0x3;
	      I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
	    }
	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
	  break;
	case 2:    /* call */
	  if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
	    ir.dflag = 2;
	  if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
	    return -1;
	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
	  break;
	case 3:    /* lcall */
	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
	  if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
	    return -1;
	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
	  break;
	case 4:    /* jmp  */
	case 5:    /* ljmp */
	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
	  break;
	case 6:    /* push */
	  if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
	    ir.dflag = 2;
	  if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
	    return -1;
	  break;
	default:
	  ir.addr -= 2;
	  opcode = opcode << 8 | ir.modrm;
	  goto no_support;
	  break;
	}
      break;

    case 0x84:    /* test */
    case 0x85:
    case 0xa8:
    case 0xa9:
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
      break;

    case 0x98:    /* CWDE/CBW */
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
      break;

    case 0x99:    /* CDQ/CWD */
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
      break;

    case 0x0faf:  /* imul */
    case 0x69:
    case 0x6b:
      ir.ot = ir.dflag + OT_WORD;
      if (i386_record_modrm (&ir))
	return -1;
      if (opcode == 0x69)
	ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
      else if (opcode == 0x6b)
	ir.rip_offset = 1;
      ir.reg |= rex_r;
      if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
	ir.reg &= 0x3;
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
      break;

    case 0x0fc0:  /* xadd */
    case 0x0fc1:
      if ((opcode & 1) == 0)
	ir.ot = OT_BYTE;
      else
	ir.ot = ir.dflag + OT_WORD;
      if (i386_record_modrm (&ir))
	return -1;
      ir.reg |= rex_r;
      if (ir.mod == 3)
	{
	  if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
	    ir.reg &= 0x3;
	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
	  if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
	    ir.rm &= 0x3;
	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
	}
      else
	{
	  if (i386_record_lea_modrm (&ir))
	    return -1;
	  if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
	    ir.reg &= 0x3;
	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
	}
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
      break;

    case 0x0fb0:  /* cmpxchg */
    case 0x0fb1:
      if ((opcode & 1) == 0)
	ir.ot = OT_BYTE;
      else
	ir.ot = ir.dflag + OT_WORD;
      if (i386_record_modrm (&ir))
	return -1;
      if (ir.mod == 3)
	{
	  ir.reg |= rex_r;
	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
	  if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
	    ir.reg &= 0x3;
	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
	}
      else
	{
	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
	  if (i386_record_lea_modrm (&ir))
	    return -1;
	}
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
      break;

    case 0x0fc7:    /* cmpxchg8b / rdrand / rdseed */
      if (i386_record_modrm (&ir))
	return -1;
      if (ir.mod == 3)
	{
	  /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
	     an extended opcode.  rdrand has bits 110 (/6) and rdseed
	     has bits 111 (/7).  */
	  if (ir.reg == 6 || ir.reg == 7)
	    {
	      /* The storage register is described by the 3 R/M bits, but the
		 REX.B prefix may be used to give access to registers
		 R8~R15.  In this case ir.rex_b + R/M will give us the register
		 in the range R8~R15.

		 REX.W may also be used to access 64-bit registers, but we
		 already record entire registers and not just partial bits
		 of them.  */
	      I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
	      /* These instructions also set conditional bits.  */
	      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
	      break;
	    }
	  else
	    {
	      /* We don't handle this particular instruction yet.  */
	      ir.addr -= 2;
	      opcode = opcode << 8 | ir.modrm;
	      goto no_support;
	    }
	}
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
      if (i386_record_lea_modrm (&ir))
	return -1;
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
      break;

    case 0x50:    /* push */
    case 0x51:
    case 0x52:
    case 0x53:
    case 0x54:
    case 0x55:
    case 0x56:
    case 0x57:
    case 0x68:
    case 0x6a:
      if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
	ir.dflag = 2;
      if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
	return -1;
      break;

    case 0x06:    /* push es */
    case 0x0e:    /* push cs */
    case 0x16:    /* push ss */
    case 0x1e:    /* push ds */
      if (ir.regmap[X86_RECORD_R8_REGNUM])
	{
	  ir.addr -= 1;
	  goto no_support;
	}
      if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
	return -1;
      break;

    case 0x0fa0:    /* push fs */
    case 0x0fa8:    /* push gs */
      if (ir.regmap[X86_RECORD_R8_REGNUM])
	{
	  ir.addr -= 2;
	  goto no_support;
	}
      if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
	return -1;
      break;

    case 0x60:    /* pusha */
      if (ir.regmap[X86_RECORD_R8_REGNUM])
	{
	  ir.addr -= 1;
	  goto no_support;
	}
      if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
	return -1;
      break;

    case 0x58:    /* pop */
    case 0x59:
    case 0x5a:
    case 0x5b:
    case 0x5c:
    case 0x5d:
    case 0x5e:
    case 0x5f:
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
      I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
      break;

    case 0x61:    /* popa */
      if (ir.regmap[X86_RECORD_R8_REGNUM])
	{
	  ir.addr -= 1;
	  goto no_support;
	}
      for (regnum = X86_RECORD_REAX_REGNUM; 
	   regnum <= X86_RECORD_REDI_REGNUM;
	   regnum++)
	I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
      break;

    case 0x8f:    /* pop */
      if (ir.regmap[X86_RECORD_R8_REGNUM])
	ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
      else
	ir.ot = ir.dflag + OT_WORD;
      if (i386_record_modrm (&ir))
	return -1;
      if (ir.mod == 3)
	I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
      else
	{
	  ir.popl_esp_hack = 1 << ir.ot;
	  if (i386_record_lea_modrm (&ir))
	    return -1;
	}
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
      break;

    case 0xc8:    /* enter */
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
      if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
	ir.dflag = 2;
      if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
	return -1;
      break;

    case 0xc9:    /* leave */
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
      break;

    case 0x07:    /* pop es */
      if (ir.regmap[X86_RECORD_R8_REGNUM])
	{
	  ir.addr -= 1;
	  goto no_support;
	}
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
      break;

    case 0x17:    /* pop ss */
      if (ir.regmap[X86_RECORD_R8_REGNUM])
	{
	  ir.addr -= 1;
	  goto no_support;
	}
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
      break;

    case 0x1f:    /* pop ds */
      if (ir.regmap[X86_RECORD_R8_REGNUM])
	{
	  ir.addr -= 1;
	  goto no_support;
	}
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
      break;

    case 0x0fa1:    /* pop fs */
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
      break;

    case 0x0fa9:    /* pop gs */
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
      break;

    case 0x88:    /* mov */
    case 0x89:
    case 0xc6:
    case 0xc7:
      if ((opcode & 1) == 0)
	ir.ot = OT_BYTE;
      else
	ir.ot = ir.dflag + OT_WORD;

      if (i386_record_modrm (&ir))
	return -1;

      if (ir.mod != 3)
	{
	  if (opcode == 0xc6 || opcode == 0xc7)
	    ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
	  if (i386_record_lea_modrm (&ir))
	    return -1;
	}
      else
	{
	  if (opcode == 0xc6 || opcode == 0xc7)
	    ir.rm |= ir.rex_b;
	  if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
	    ir.rm &= 0x3;
	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
	}
      break;

    case 0x8a:    /* mov */
    case 0x8b:
      if ((opcode & 1) == 0)
	ir.ot = OT_BYTE;
      else
	ir.ot = ir.dflag + OT_WORD;
      if (i386_record_modrm (&ir))
	return -1;
      ir.reg |= rex_r;
      if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
	ir.reg &= 0x3;
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
      break;

    case 0x8c:    /* mov seg */
      if (i386_record_modrm (&ir))
	return -1;
      if (ir.reg > 5)
	{
	  ir.addr -= 2;
	  opcode = opcode << 8 | ir.modrm;
	  goto no_support;
	}

      if (ir.mod == 3)
	I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
      else
	{
	  ir.ot = OT_WORD;
	  if (i386_record_lea_modrm (&ir))
	    return -1;
	}
      break;

    case 0x8e:    /* mov seg */
      if (i386_record_modrm (&ir))
	return -1;
      switch (ir.reg)
	{
	case 0:
	  regnum = X86_RECORD_ES_REGNUM;
	  break;
	case 2:
	  regnum = X86_RECORD_SS_REGNUM;
	  break;
	case 3:
	  regnum = X86_RECORD_DS_REGNUM;
	  break;
	case 4:
	  regnum = X86_RECORD_FS_REGNUM;
	  break;
	case 5:
	  regnum = X86_RECORD_GS_REGNUM;
	  break;
	default:
	  ir.addr -= 2;
	  opcode = opcode << 8 | ir.modrm;
	  goto no_support;
	  break;
	}
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
      break;

    case 0x0fb6:    /* movzbS */
    case 0x0fb7:    /* movzwS */
    case 0x0fbe:    /* movsbS */
    case 0x0fbf:    /* movswS */
      if (i386_record_modrm (&ir))
	return -1;
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
      break;

    case 0x8d:      /* lea */
      if (i386_record_modrm (&ir))
	return -1;
      if (ir.mod == 3)
	{
	  ir.addr -= 2;
	  opcode = opcode << 8 | ir.modrm;
	  goto no_support;
	}
      ir.ot = ir.dflag;
      ir.reg |= rex_r;
      if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
	ir.reg &= 0x3;
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
      break;

    case 0xa0:    /* mov EAX */
    case 0xa1:

    case 0xd7:    /* xlat */
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
      break;

    case 0xa2:    /* mov EAX */
    case 0xa3:
      if (ir.override >= 0)
	{
	  if (record_full_memory_query)
	    {
	      if (yquery (_("\
Process record ignores the memory change of instruction at address %s\n\
because it can't get the value of the segment register.\n\
Do you want to stop the program?"),
			  paddress (gdbarch, ir.orig_addr)))
		return -1;
	    }
	}
      else
	{
	  if ((opcode & 1) == 0)
	    ir.ot = OT_BYTE;
	  else
	    ir.ot = ir.dflag + OT_WORD;
	  if (ir.aflag == 2)
	    {
	      if (record_read_memory (gdbarch, ir.addr, buf, 8))
		return -1;
	      ir.addr += 8;
	      addr = extract_unsigned_integer (buf, 8, byte_order);
	    }
	  else if (ir.aflag)
	    {
	      if (record_read_memory (gdbarch, ir.addr, buf, 4))
		return -1;
	      ir.addr += 4;
	      addr = extract_unsigned_integer (buf, 4, byte_order);
	    }
	  else
	    {
	      if (record_read_memory (gdbarch, ir.addr, buf, 2))
		return -1;
	      ir.addr += 2;
	      addr = extract_unsigned_integer (buf, 2, byte_order);
	    }
	  if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
	    return -1;
	}
      break;

    case 0xb0:    /* mov R, Ib */
    case 0xb1:
    case 0xb2:
    case 0xb3:
    case 0xb4:
    case 0xb5:
    case 0xb6:
    case 0xb7:
      I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
					  ? ((opcode & 0x7) | ir.rex_b)
					  : ((opcode & 0x7) & 0x3));
      break;

    case 0xb8:    /* mov R, Iv */
    case 0xb9:
    case 0xba:
    case 0xbb:
    case 0xbc:
    case 0xbd:
    case 0xbe:
    case 0xbf:
      I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
      break;

    case 0x91:    /* xchg R, EAX */
    case 0x92:
    case 0x93:
    case 0x94:
    case 0x95:
    case 0x96:
    case 0x97:
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
      break;

    case 0x86:    /* xchg Ev, Gv */
    case 0x87:
      if ((opcode & 1) == 0)
	ir.ot = OT_BYTE;
      else
	ir.ot = ir.dflag + OT_WORD;
      if (i386_record_modrm (&ir))
	return -1;
      if (ir.mod == 3)
	{
	  ir.rm |= ir.rex_b;
	  if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
	    ir.rm &= 0x3;
	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
	}
      else
	{
	  if (i386_record_lea_modrm (&ir))
	    return -1;
	}
      ir.reg |= rex_r;
      if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
	ir.reg &= 0x3;
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
      break;

    case 0xc4:    /* les Gv */
    case 0xc5:    /* lds Gv */
      if (ir.regmap[X86_RECORD_R8_REGNUM])
	{
	  ir.addr -= 1;
	  goto no_support;
	}
      /* FALLTHROUGH */
    case 0x0fb2:    /* lss Gv */
    case 0x0fb4:    /* lfs Gv */
    case 0x0fb5:    /* lgs Gv */
      if (i386_record_modrm (&ir))
	return -1;
      if (ir.mod == 3)
	{
	  if (opcode > 0xff)
	    ir.addr -= 3;
	  else
	    ir.addr -= 2;
	  opcode = opcode << 8 | ir.modrm;
	  goto no_support;
	}
      switch (opcode)
	{
	case 0xc4:    /* les Gv */
	  regnum = X86_RECORD_ES_REGNUM;
	  break;
	case 0xc5:    /* lds Gv */
	  regnum = X86_RECORD_DS_REGNUM;
	  break;
	case 0x0fb2:  /* lss Gv */
	  regnum = X86_RECORD_SS_REGNUM;
	  break;
	case 0x0fb4:  /* lfs Gv */
	  regnum = X86_RECORD_FS_REGNUM;
	  break;
	case 0x0fb5:  /* lgs Gv */
	  regnum = X86_RECORD_GS_REGNUM;
	  break;
	}
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
      break;

    case 0xc0:    /* shifts */
    case 0xc1:
    case 0xd0:
    case 0xd1:
    case 0xd2:
    case 0xd3:
      if ((opcode & 1) == 0)
	ir.ot = OT_BYTE;
      else
	ir.ot = ir.dflag + OT_WORD;
      if (i386_record_modrm (&ir))
	return -1;
      if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
	{
	  if (i386_record_lea_modrm (&ir))
	    return -1;
	}
      else
	{
	  ir.rm |= ir.rex_b;
	  if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
	    ir.rm &= 0x3;
	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
	}
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
      break;

    case 0x0fa4:
    case 0x0fa5:
    case 0x0fac:
    case 0x0fad:
      if (i386_record_modrm (&ir))
	return -1;
      if (ir.mod == 3)
	{
	  if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
	    return -1;
	}
      else
	{
	  if (i386_record_lea_modrm (&ir))
	    return -1;
	}
      break;

    case 0xd8:    /* Floats.  */
    case 0xd9:
    case 0xda:
    case 0xdb:
    case 0xdc:
    case 0xdd:
    case 0xde:
    case 0xdf:
      if (i386_record_modrm (&ir))
	return -1;
      ir.reg |= ((opcode & 7) << 3);
      if (ir.mod != 3)
	{
	  /* Memory.  */
	  uint64_t addr64;

	  if (i386_record_lea_modrm_addr (&ir, &addr64))
	    return -1;
	  switch (ir.reg)
	    {
	    case 0x02:
	    case 0x12:
	    case 0x22:
	    case 0x32:
	      /* For fcom, ficom nothing to do.  */
	      break;
	    case 0x03:
	    case 0x13:
	    case 0x23:
	    case 0x33:
	      /* For fcomp, ficomp pop FPU stack, store all.  */
	      if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
		return -1;
	      break;
	    case 0x00:
	    case 0x01:
	    case 0x04:
	    case 0x05:
	    case 0x06:
	    case 0x07:
	    case 0x10:
	    case 0x11:
	    case 0x14:
	    case 0x15:
	    case 0x16:
	    case 0x17:
	    case 0x20:
	    case 0x21:
	    case 0x24:
	    case 0x25:
	    case 0x26:
	    case 0x27:
	    case 0x30:
	    case 0x31:
	    case 0x34:
	    case 0x35:
	    case 0x36:
	    case 0x37:
	      /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
		 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
		 of code,  always affects st(0) register.  */
	      if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
		return -1;
	      break;
	    case 0x08:
	    case 0x0a:
	    case 0x0b:
	    case 0x18:
	    case 0x19:
	    case 0x1a:
	    case 0x1b:
	    case 0x1d:
	    case 0x28:
	    case 0x29:
	    case 0x2a:
	    case 0x2b:
	    case 0x38:
	    case 0x39:
	    case 0x3a:
	    case 0x3b:
	    case 0x3c:
	    case 0x3d:
	      switch (ir.reg & 7)
		{
		case 0:
		  /* Handling fld, fild.  */
		  if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
		    return -1;
		  break;
		case 1:
		  switch (ir.reg >> 4)
		    {
		    case 0:
		      if (record_full_arch_list_add_mem (addr64, 4))
			return -1;
		      break;
		    case 2:
		      if (record_full_arch_list_add_mem (addr64, 8))
			return -1;
		      break;
		    case 3:
		      break;
		    default:
		      if (record_full_arch_list_add_mem (addr64, 2))
			return -1;
		      break;
		    }
		  break;
		default:
		  switch (ir.reg >> 4)
		    {
		    case 0:
		      if (record_full_arch_list_add_mem (addr64, 4))
			return -1;
		      if (3 == (ir.reg & 7))
			{
			  /* For fstp m32fp.  */
			  if (i386_record_floats (gdbarch, &ir,
						  I386_SAVE_FPU_REGS))
			    return -1;
			}
		      break;
		    case 1:
		      if (record_full_arch_list_add_mem (addr64, 4))
			return -1;
		      if ((3 == (ir.reg & 7))
			  || (5 == (ir.reg & 7))
			  || (7 == (ir.reg & 7)))
			{
			  /* For fstp insn.  */
			  if (i386_record_floats (gdbarch, &ir,
						  I386_SAVE_FPU_REGS))
			    return -1;
			}
		      break;
		    case 2:
		      if (record_full_arch_list_add_mem (addr64, 8))
			return -1;
		      if (3 == (ir.reg & 7))
			{
			  /* For fstp m64fp.  */
			  if (i386_record_floats (gdbarch, &ir,
						  I386_SAVE_FPU_REGS))
			    return -1;
			}
		      break;
		    case 3:
		      if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
			{
			  /* For fistp, fbld, fild, fbstp.  */
			  if (i386_record_floats (gdbarch, &ir,
						  I386_SAVE_FPU_REGS))
			    return -1;
			}
		      /* Fall through */
		    default:
		      if (record_full_arch_list_add_mem (addr64, 2))
			return -1;
		      break;
		    }
		  break;
		}
	      break;
	    case 0x0c:
	      /* Insn fldenv.  */
	      if (i386_record_floats (gdbarch, &ir,
				      I386_SAVE_FPU_ENV_REG_STACK))
		return -1;
	      break;
	    case 0x0d:
	      /* Insn fldcw.  */
	      if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
		return -1;
	      break;
	    case 0x2c:
	      /* Insn frstor.  */
	      if (i386_record_floats (gdbarch, &ir,
				      I386_SAVE_FPU_ENV_REG_STACK))
		return -1;
	      break;
	    case 0x0e:
	      if (ir.dflag)
		{
		  if (record_full_arch_list_add_mem (addr64, 28))
		    return -1;
		}
	      else
		{
		  if (record_full_arch_list_add_mem (addr64, 14))
		    return -1;
		}
	      break;
	    case 0x0f:
	    case 0x2f:
	      if (record_full_arch_list_add_mem (addr64, 2))
		return -1;
	      /* Insn fstp, fbstp.  */
	      if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
		return -1;
	      break;
	    case 0x1f:
	    case 0x3e:
	      if (record_full_arch_list_add_mem (addr64, 10))
		return -1;
	      break;
	    case 0x2e:
	      if (ir.dflag)
		{
		  if (record_full_arch_list_add_mem (addr64, 28))
		    return -1;
		  addr64 += 28;
		}
	      else
		{
		  if (record_full_arch_list_add_mem (addr64, 14))
		    return -1;
		  addr64 += 14;
		}
	      if (record_full_arch_list_add_mem (addr64, 80))
		return -1;
	      /* Insn fsave.  */
	      if (i386_record_floats (gdbarch, &ir,
				      I386_SAVE_FPU_ENV_REG_STACK))
		return -1;
	      break;
	    case 0x3f:
	      if (record_full_arch_list_add_mem (addr64, 8))
		return -1;
	      /* Insn fistp.  */
	      if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
		return -1;
	      break;
	    default:
	      ir.addr -= 2;
	      opcode = opcode << 8 | ir.modrm;
	      goto no_support;
	      break;
	    }
	}
      /* Opcode is an extension of modR/M byte.  */
      else
	{
	  switch (opcode)
	    {
	    case 0xd8:
	      if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
		return -1;
	      break;
	    case 0xd9:
	      if (0x0c == (ir.modrm >> 4))
		{
		  if ((ir.modrm & 0x0f) <= 7)
		    {
		      if (i386_record_floats (gdbarch, &ir,
					      I386_SAVE_FPU_REGS))
			return -1;
		    }
		  else
		    {
		      if (i386_record_floats (gdbarch, &ir,
					      I387_ST0_REGNUM (tdep)))
			return -1;
		      /* If only st(0) is changing, then we have already
			 recorded.  */
		      if ((ir.modrm & 0x0f) - 0x08)
			{
			  if (i386_record_floats (gdbarch, &ir,
						  I387_ST0_REGNUM (tdep) +
						  ((ir.modrm & 0x0f) - 0x08)))
			    return -1;
			}
		    }
		}
	      else
		{
		  switch (ir.modrm)
		    {
		    case 0xe0:
		    case 0xe1:
		    case 0xf0:
		    case 0xf5:
		    case 0xf8:
		    case 0xfa:
		    case 0xfc:
		    case 0xfe:
		    case 0xff:
		      if (i386_record_floats (gdbarch, &ir,
					      I387_ST0_REGNUM (tdep)))
			return -1;
		      break;
		    case 0xf1:
		    case 0xf2:
		    case 0xf3:
		    case 0xf4:
		    case 0xf6:
		    case 0xf7:
		    case 0xe8:
		    case 0xe9:
		    case 0xea:
		    case 0xeb:
		    case 0xec:
		    case 0xed:
		    case 0xee:
		    case 0xf9:
		    case 0xfb:
		      if (i386_record_floats (gdbarch, &ir,
					      I386_SAVE_FPU_REGS))
			return -1;
		      break;
		    case 0xfd:
		      if (i386_record_floats (gdbarch, &ir,
					      I387_ST0_REGNUM (tdep)))
			return -1;
		      if (i386_record_floats (gdbarch, &ir,
					      I387_ST0_REGNUM (tdep) + 1))
			return -1;
		      break;
		    }
		}
	      break;
	    case 0xda:
	      if (0xe9 == ir.modrm)
		{
		  if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
		    return -1;
		}
	      else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
		{
		  if (i386_record_floats (gdbarch, &ir,
					  I387_ST0_REGNUM (tdep)))
		    return -1;
		  if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
		    {
		      if (i386_record_floats (gdbarch, &ir,
					      I387_ST0_REGNUM (tdep) +
					      (ir.modrm & 0x0f)))
			return -1;
		    }
		  else if ((ir.modrm & 0x0f) - 0x08)
		    {
		      if (i386_record_floats (gdbarch, &ir,
					      I387_ST0_REGNUM (tdep) +
					      ((ir.modrm & 0x0f) - 0x08)))
			return -1;
		    }
		}
	      break;
	    case 0xdb:
	      if (0xe3 == ir.modrm)
		{
		  if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
		    return -1;
		}
	      else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
		{
		  if (i386_record_floats (gdbarch, &ir,
					  I387_ST0_REGNUM (tdep)))
		    return -1;
		  if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
		    {
		      if (i386_record_floats (gdbarch, &ir,
					      I387_ST0_REGNUM (tdep) +
					      (ir.modrm & 0x0f)))
			return -1;
		    }
		  else if ((ir.modrm & 0x0f) - 0x08)
		    {
		      if (i386_record_floats (gdbarch, &ir,
					      I387_ST0_REGNUM (tdep) +
					      ((ir.modrm & 0x0f) - 0x08)))
			return -1;
		    }
		}
	      break;
	    case 0xdc:
	      if ((0x0c == ir.modrm >> 4)
		  || (0x0d == ir.modrm >> 4)
		  || (0x0f == ir.modrm >> 4))
		{
		  if ((ir.modrm & 0x0f) <= 7)
		    {
		      if (i386_record_floats (gdbarch, &ir,
					      I387_ST0_REGNUM (tdep) +
					      (ir.modrm & 0x0f)))
			return -1;
		    }
		  else
		    {
		      if (i386_record_floats (gdbarch, &ir,
					      I387_ST0_REGNUM (tdep) +
					      ((ir.modrm & 0x0f) - 0x08)))
			return -1;
		    }
		}
	      break;
	    case 0xdd:
	      if (0x0c == ir.modrm >> 4)
		{
		  if (i386_record_floats (gdbarch, &ir,
					  I387_FTAG_REGNUM (tdep)))
		    return -1;
		}
	      else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
		{
		  if ((ir.modrm & 0x0f) <= 7)
		    {
		      if (i386_record_floats (gdbarch, &ir,
					      I387_ST0_REGNUM (tdep) +
					      (ir.modrm & 0x0f)))
			return -1;
		    }
		  else
		    {
		      if (i386_record_floats (gdbarch, &ir,
					      I386_SAVE_FPU_REGS))
			return -1;
		    }
		}
	      break;
	    case 0xde:
	      if ((0x0c == ir.modrm >> 4)
		  || (0x0e == ir.modrm >> 4)
		  || (0x0f == ir.modrm >> 4)
		  || (0xd9 == ir.modrm))
		{
		  if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
		    return -1;
		}
	      break;
	    case 0xdf:
	      if (0xe0 == ir.modrm)
		{
		  if (record_full_arch_list_add_reg (ir.regcache,
						     I386_EAX_REGNUM))
		    return -1;
		}
	      else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
		{
		  if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
		    return -1;
		}
	      break;
	    }
	}
      break;
      /* string ops */
    case 0xa4:    /* movsS */
    case 0xa5:
    case 0xaa:    /* stosS */
    case 0xab:
    case 0x6c:    /* insS */
    case 0x6d:
      regcache_raw_read_unsigned (ir.regcache,
				  ir.regmap[X86_RECORD_RECX_REGNUM],
				  &addr);
      if (addr)
	{
	  ULONGEST es, ds;

	  if ((opcode & 1) == 0)
	    ir.ot = OT_BYTE;
	  else
	    ir.ot = ir.dflag + OT_WORD;
	  regcache_raw_read_unsigned (ir.regcache,
				      ir.regmap[X86_RECORD_REDI_REGNUM],
				      &addr);

	  regcache_raw_read_unsigned (ir.regcache,
				      ir.regmap[X86_RECORD_ES_REGNUM],
				      &es);
	  regcache_raw_read_unsigned (ir.regcache,
				      ir.regmap[X86_RECORD_DS_REGNUM],
				      &ds);
	  if (ir.aflag && (es != ds))
	    {
	      /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
	      if (record_full_memory_query)
		{
		  if (yquery (_("\
Process record ignores the memory change of instruction at address %s\n\
because it can't get the value of the segment register.\n\
Do you want to stop the program?"),
			      paddress (gdbarch, ir.orig_addr)))
		    return -1;
		}
	    }
	  else
	    {
	      if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
		return -1;
	    }

	  if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
	    I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
	  if (opcode == 0xa4 || opcode == 0xa5)
	    I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
	}
      break;

    case 0xa6:    /* cmpsS */
    case 0xa7:
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
      if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
	I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
      break;

    case 0xac:    /* lodsS */
    case 0xad:
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
      if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
	I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
      break;

    case 0xae:    /* scasS */
    case 0xaf:
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
      if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
	I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
      break;

    case 0x6e:    /* outsS */
    case 0x6f:
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
      if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
	I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
      break;

    case 0xe4:    /* port I/O */
    case 0xe5:
    case 0xec:
    case 0xed:
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
      break;

    case 0xe6:
    case 0xe7:
    case 0xee:
    case 0xef:
      break;

      /* control */
    case 0xc2:    /* ret im */
    case 0xc3:    /* ret */
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
      break;

    case 0xca:    /* lret im */
    case 0xcb:    /* lret */
    case 0xcf:    /* iret */
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
      break;

    case 0xe8:    /* call im */
      if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
	ir.dflag = 2;
      if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
	return -1;
      break;

    case 0x9a:    /* lcall im */
      if (ir.regmap[X86_RECORD_R8_REGNUM])
	{
	  ir.addr -= 1;
	  goto no_support;
	}
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
      if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
	return -1;
      break;

    case 0xe9:    /* jmp im */
    case 0xea:    /* ljmp im */
    case 0xeb:    /* jmp Jb */
    case 0x70:    /* jcc Jb */
    case 0x71:
    case 0x72:
    case 0x73:
    case 0x74:
    case 0x75:
    case 0x76:
    case 0x77:
    case 0x78:
    case 0x79:
    case 0x7a:
    case 0x7b:
    case 0x7c:
    case 0x7d:
    case 0x7e:
    case 0x7f:
    case 0x0f80:  /* jcc Jv */
    case 0x0f81:
    case 0x0f82:
    case 0x0f83:
    case 0x0f84:
    case 0x0f85:
    case 0x0f86:
    case 0x0f87:
    case 0x0f88:
    case 0x0f89:
    case 0x0f8a:
    case 0x0f8b:
    case 0x0f8c:
    case 0x0f8d:
    case 0x0f8e:
    case 0x0f8f:
      break;

    case 0x0f90:  /* setcc Gv */
    case 0x0f91:
    case 0x0f92:
    case 0x0f93:
    case 0x0f94:
    case 0x0f95:
    case 0x0f96:
    case 0x0f97:
    case 0x0f98:
    case 0x0f99:
    case 0x0f9a:
    case 0x0f9b:
    case 0x0f9c:
    case 0x0f9d:
    case 0x0f9e:
    case 0x0f9f:
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
      ir.ot = OT_BYTE;
      if (i386_record_modrm (&ir))
	return -1;
      if (ir.mod == 3)
	I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
					    : (ir.rm & 0x3));
      else
	{
	  if (i386_record_lea_modrm (&ir))
	    return -1;
	}
      break;

    case 0x0f40:    /* cmov Gv, Ev */
    case 0x0f41:
    case 0x0f42:
    case 0x0f43:
    case 0x0f44:
    case 0x0f45:
    case 0x0f46:
    case 0x0f47:
    case 0x0f48:
    case 0x0f49:
    case 0x0f4a:
    case 0x0f4b:
    case 0x0f4c:
    case 0x0f4d:
    case 0x0f4e:
    case 0x0f4f:
      if (i386_record_modrm (&ir))
	return -1;
      ir.reg |= rex_r;
      if (ir.dflag == OT_BYTE)
	ir.reg &= 0x3;
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
      break;

      /* flags */
    case 0x9c:    /* pushf */
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
      if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
	ir.dflag = 2;
      if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
	return -1;
      break;

    case 0x9d:    /* popf */
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
      break;

    case 0x9e:    /* sahf */
      if (ir.regmap[X86_RECORD_R8_REGNUM])
	{
	  ir.addr -= 1;
	  goto no_support;
	}
      /* FALLTHROUGH */
    case 0xf5:    /* cmc */
    case 0xf8:    /* clc */
    case 0xf9:    /* stc */
    case 0xfc:    /* cld */
    case 0xfd:    /* std */
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
      break;

    case 0x9f:    /* lahf */
      if (ir.regmap[X86_RECORD_R8_REGNUM])
	{
	  ir.addr -= 1;
	  goto no_support;
	}
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
      break;

      /* bit operations */
    case 0x0fba:    /* bt/bts/btr/btc Gv, im */
      ir.ot = ir.dflag + OT_WORD;
      if (i386_record_modrm (&ir))
	return -1;
      if (ir.reg < 4)
	{
	  ir.addr -= 2;
	  opcode = opcode << 8 | ir.modrm;
	  goto no_support;
	}
      if (ir.reg != 4)
	{
	  if (ir.mod == 3)
	    I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
	  else
	    {
	      if (i386_record_lea_modrm (&ir))
		return -1;
	    }
	}
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
      break;

    case 0x0fa3:    /* bt Gv, Ev */
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
      break;

    case 0x0fab:    /* bts */
    case 0x0fb3:    /* btr */
    case 0x0fbb:    /* btc */
      ir.ot = ir.dflag + OT_WORD;
      if (i386_record_modrm (&ir))
	return -1;
      if (ir.mod == 3)
	I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
      else
	{
	  uint64_t addr64;
	  if (i386_record_lea_modrm_addr (&ir, &addr64))
	    return -1;
	  regcache_raw_read_unsigned (ir.regcache,
				      ir.regmap[ir.reg | rex_r],
				      &addr);
	  switch (ir.dflag)
	    {
	    case 0:
	      addr64 += ((int16_t) addr >> 4) << 4;
	      break;
	    case 1:
	      addr64 += ((int32_t) addr >> 5) << 5;
	      break;
	    case 2:
	      addr64 += ((int64_t) addr >> 6) << 6;
	      break;
	    }
	  if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
	    return -1;
	  if (i386_record_lea_modrm (&ir))
	    return -1;
	}
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
      break;

    case 0x0fbc:    /* bsf */
    case 0x0fbd:    /* bsr */
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
      break;

      /* bcd */
    case 0x27:    /* daa */
    case 0x2f:    /* das */
    case 0x37:    /* aaa */
    case 0x3f:    /* aas */
    case 0xd4:    /* aam */
    case 0xd5:    /* aad */
      if (ir.regmap[X86_RECORD_R8_REGNUM])
	{
	  ir.addr -= 1;
	  goto no_support;
	}
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
      break;

      /* misc */
    case 0x90:    /* nop */
      if (prefixes & PREFIX_LOCK)
	{
	  ir.addr -= 1;
	  goto no_support;
	}
      break;

    case 0x9b:    /* fwait */
      if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
	return -1;
      opcode = (uint32_t) opcode8;
      ir.addr++;
      goto reswitch;
      break;

      /* XXX */
    case 0xcc:    /* int3 */
      printf_unfiltered (_("Process record does not support instruction "
			   "int3.\n"));
      ir.addr -= 1;
      goto no_support;
      break;

      /* XXX */
    case 0xcd:    /* int */
      {
	int ret;
	uint8_t interrupt;
	if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
	  return -1;
	ir.addr++;
	if (interrupt != 0x80
	    || tdep->i386_intx80_record == NULL)
	  {
	    printf_unfiltered (_("Process record does not support "
				 "instruction int 0x%02x.\n"),
			       interrupt);
	    ir.addr -= 2;
	    goto no_support;
	  }
	ret = tdep->i386_intx80_record (ir.regcache);
	if (ret)
	  return ret;
      }
      break;

      /* XXX */
    case 0xce:    /* into */
      printf_unfiltered (_("Process record does not support "
			   "instruction into.\n"));
      ir.addr -= 1;
      goto no_support;
      break;

    case 0xfa:    /* cli */
    case 0xfb:    /* sti */
      break;

    case 0x62:    /* bound */
      printf_unfiltered (_("Process record does not support "
			   "instruction bound.\n"));
      ir.addr -= 1;
      goto no_support;
      break;

    case 0x0fc8:    /* bswap reg */
    case 0x0fc9:
    case 0x0fca:
    case 0x0fcb:
    case 0x0fcc:
    case 0x0fcd:
    case 0x0fce:
    case 0x0fcf:
      I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
      break;

    case 0xd6:    /* salc */
      if (ir.regmap[X86_RECORD_R8_REGNUM])
	{
	  ir.addr -= 1;
	  goto no_support;
	}
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
      break;

    case 0xe0:    /* loopnz */
    case 0xe1:    /* loopz */
    case 0xe2:    /* loop */
    case 0xe3:    /* jecxz */
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
      break;

    case 0x0f30:    /* wrmsr */
      printf_unfiltered (_("Process record does not support "
			   "instruction wrmsr.\n"));
      ir.addr -= 2;
      goto no_support;
      break;

    case 0x0f32:    /* rdmsr */
      printf_unfiltered (_("Process record does not support "
			   "instruction rdmsr.\n"));
      ir.addr -= 2;
      goto no_support;
      break;

    case 0x0f31:    /* rdtsc */
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
      break;

    case 0x0f34:    /* sysenter */
      {
	int ret;
	if (ir.regmap[X86_RECORD_R8_REGNUM])
	  {
	    ir.addr -= 2;
	    goto no_support;
	  }
	if (tdep->i386_sysenter_record == NULL)
	  {
	    printf_unfiltered (_("Process record does not support "
				 "instruction sysenter.\n"));
	    ir.addr -= 2;
	    goto no_support;
	  }
	ret = tdep->i386_sysenter_record (ir.regcache);
	if (ret)
	  return ret;
      }
      break;

    case 0x0f35:    /* sysexit */
      printf_unfiltered (_("Process record does not support "
			   "instruction sysexit.\n"));
      ir.addr -= 2;
      goto no_support;
      break;

    case 0x0f05:    /* syscall */
      {
	int ret;
	if (tdep->i386_syscall_record == NULL)
	  {
	    printf_unfiltered (_("Process record does not support "
				 "instruction syscall.\n"));
	    ir.addr -= 2;
	    goto no_support;
	  }
	ret = tdep->i386_syscall_record (ir.regcache);
	if (ret)
	  return ret;
      }
      break;

    case 0x0f07:    /* sysret */
      printf_unfiltered (_("Process record does not support "
			   "instruction sysret.\n"));
      ir.addr -= 2;
      goto no_support;
      break;

    case 0x0fa2:    /* cpuid */
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
      break;

    case 0xf4:    /* hlt */
      printf_unfiltered (_("Process record does not support "
			   "instruction hlt.\n"));
      ir.addr -= 1;
      goto no_support;
      break;

    case 0x0f00:
      if (i386_record_modrm (&ir))
	return -1;
      switch (ir.reg)
	{
	case 0:  /* sldt */
	case 1:  /* str  */
	  if (ir.mod == 3)
	    I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
	  else
	    {
	      ir.ot = OT_WORD;
	      if (i386_record_lea_modrm (&ir))
		return -1;
	    }
	  break;
	case 2:  /* lldt */
	case 3:  /* ltr */
	  break;
	case 4:  /* verr */
	case 5:  /* verw */
	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
	  break;
	default:
	  ir.addr -= 3;
	  opcode = opcode << 8 | ir.modrm;
	  goto no_support;
	  break;
	}
      break;

    case 0x0f01:
      if (i386_record_modrm (&ir))
	return -1;
      switch (ir.reg)
	{
	case 0:  /* sgdt */
	  {
	    uint64_t addr64;

	    if (ir.mod == 3)
	      {
		ir.addr -= 3;
		opcode = opcode << 8 | ir.modrm;
		goto no_support;
	      }
	    if (ir.override >= 0)
	      {
		if (record_full_memory_query)
		  {
		    if (yquery (_("\
Process record ignores the memory change of instruction at address %s\n\
because it can't get the value of the segment register.\n\
Do you want to stop the program?"),
				paddress (gdbarch, ir.orig_addr)))
		      return -1;
		  }
	      }
	    else
	      {
		if (i386_record_lea_modrm_addr (&ir, &addr64))
		  return -1;
		if (record_full_arch_list_add_mem (addr64, 2))
		  return -1;
		addr64 += 2;
		if (ir.regmap[X86_RECORD_R8_REGNUM])
		  {
		    if (record_full_arch_list_add_mem (addr64, 8))
		      return -1;
		  }
		else
		  {
		    if (record_full_arch_list_add_mem (addr64, 4))
		      return -1;
		  }
	      }
	  }
	  break;
	case 1:
	  if (ir.mod == 3)
	    {
	      switch (ir.rm)
		{
		case 0:  /* monitor */
		  break;
		case 1:  /* mwait */
		  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
		  break;
		default:
		  ir.addr -= 3;
		  opcode = opcode << 8 | ir.modrm;
		  goto no_support;
		  break;
		}
	    }
	  else
	    {
	      /* sidt */
	      if (ir.override >= 0)
		{
		  if (record_full_memory_query)
		    {
		      if (yquery (_("\
Process record ignores the memory change of instruction at address %s\n\
because it can't get the value of the segment register.\n\
Do you want to stop the program?"),
				  paddress (gdbarch, ir.orig_addr)))
			return -1;
		    }
		}
	      else
		{
		  uint64_t addr64;

		  if (i386_record_lea_modrm_addr (&ir, &addr64))
		    return -1;
		  if (record_full_arch_list_add_mem (addr64, 2))
		    return -1;
		  addr64 += 2;
		  if (ir.regmap[X86_RECORD_R8_REGNUM])
		    {
		      if (record_full_arch_list_add_mem (addr64, 8))
			return -1;
		    }
		  else
		    {
		      if (record_full_arch_list_add_mem (addr64, 4))
			return -1;
		    }
		}
	    }
	  break;
	case 2:  /* lgdt */
	  if (ir.mod == 3)
	    {
	      /* xgetbv */
	      if (ir.rm == 0)
		{
		  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
		  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
		  break;
		}
	      /* xsetbv */
	      else if (ir.rm == 1)
		break;
	    }
	  /* Fall through.  */
	case 3:  /* lidt */
	  if (ir.mod == 3)
	    {
	      ir.addr -= 3;
	      opcode = opcode << 8 | ir.modrm;
	      goto no_support;
	    }
	  break;
	case 4:  /* smsw */
	  if (ir.mod == 3)
	    {
	      if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
		return -1;
	    }
	  else
	    {
	      ir.ot = OT_WORD;
	      if (i386_record_lea_modrm (&ir))
		return -1;
	    }
	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
	  break;
	case 6:  /* lmsw */
	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
	  break;
	case 7:  /* invlpg */
	  if (ir.mod == 3)
	    {
	      if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
		I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
	      else
		{
		  ir.addr -= 3;
		  opcode = opcode << 8 | ir.modrm;
		  goto no_support;
		}
	    }
	  else
	    I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
	  break;
	default:
	  ir.addr -= 3;
	  opcode = opcode << 8 | ir.modrm;
	  goto no_support;
	  break;
	}
      break;

    case 0x0f08:    /* invd */
    case 0x0f09:    /* wbinvd */
      break;

    case 0x63:    /* arpl */
      if (i386_record_modrm (&ir))
	return -1;
      if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
	{
	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
					      ? (ir.reg | rex_r) : ir.rm);
	}
      else
	{
	  ir.ot = ir.dflag ? OT_LONG : OT_WORD;
	  if (i386_record_lea_modrm (&ir))
	    return -1;
	}
      if (!ir.regmap[X86_RECORD_R8_REGNUM])
	I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
      break;

    case 0x0f02:    /* lar */
    case 0x0f03:    /* lsl */
      if (i386_record_modrm (&ir))
	return -1;
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
      break;

    case 0x0f18:
      if (i386_record_modrm (&ir))
	return -1;
      if (ir.mod == 3 && ir.reg == 3)
	{
	  ir.addr -= 3;
	  opcode = opcode << 8 | ir.modrm;
	  goto no_support;
	}
      break;

    case 0x0f19:
    case 0x0f1a:
    case 0x0f1b:
    case 0x0f1c:
    case 0x0f1d:
    case 0x0f1e:
    case 0x0f1f:
      /* nop (multi byte) */
      break;

    case 0x0f20:    /* mov reg, crN */
    case 0x0f22:    /* mov crN, reg */
      if (i386_record_modrm (&ir))
	return -1;
      if ((ir.modrm & 0xc0) != 0xc0)
	{
	  ir.addr -= 3;
	  opcode = opcode << 8 | ir.modrm;
	  goto no_support;
	}
      switch (ir.reg)
	{
	case 0:
	case 2:
	case 3:
	case 4:
	case 8:
	  if (opcode & 2)
	    I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
	  else
	    I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
	  break;
	default:
	  ir.addr -= 3;
	  opcode = opcode << 8 | ir.modrm;
	  goto no_support;
	  break;
	}
      break;

    case 0x0f21:    /* mov reg, drN */
    case 0x0f23:    /* mov drN, reg */
      if (i386_record_modrm (&ir))
	return -1;
      if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
	  || ir.reg == 5 || ir.reg >= 8)
	{
	  ir.addr -= 3;
	  opcode = opcode << 8 | ir.modrm;
	  goto no_support;
	}
      if (opcode & 2)
	I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
      else
	I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
      break;

    case 0x0f06:    /* clts */
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
      break;

    /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */

    case 0x0f0d:    /* 3DNow! prefetch */
      break;

    case 0x0f0e:    /* 3DNow! femms */
    case 0x0f77:    /* emms */
      if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
	goto no_support;
      record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
      break;

    case 0x0f0f:    /* 3DNow! data */
      if (i386_record_modrm (&ir))
	return -1;
      if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
	return -1;
      ir.addr++;
      switch (opcode8)
	{
	case 0x0c:    /* 3DNow! pi2fw */
	case 0x0d:    /* 3DNow! pi2fd */
	case 0x1c:    /* 3DNow! pf2iw */
	case 0x1d:    /* 3DNow! pf2id */
	case 0x8a:    /* 3DNow! pfnacc */
	case 0x8e:    /* 3DNow! pfpnacc */
	case 0x90:    /* 3DNow! pfcmpge */
	case 0x94:    /* 3DNow! pfmin */
	case 0x96:    /* 3DNow! pfrcp */
	case 0x97:    /* 3DNow! pfrsqrt */
	case 0x9a:    /* 3DNow! pfsub */
	case 0x9e:    /* 3DNow! pfadd */
	case 0xa0:    /* 3DNow! pfcmpgt */
	case 0xa4:    /* 3DNow! pfmax */
	case 0xa6:    /* 3DNow! pfrcpit1 */
	case 0xa7:    /* 3DNow! pfrsqit1 */
	case 0xaa:    /* 3DNow! pfsubr */
	case 0xae:    /* 3DNow! pfacc */
	case 0xb0:    /* 3DNow! pfcmpeq */
	case 0xb4:    /* 3DNow! pfmul */
	case 0xb6:    /* 3DNow! pfrcpit2 */
	case 0xb7:    /* 3DNow! pmulhrw */
	case 0xbb:    /* 3DNow! pswapd */
	case 0xbf:    /* 3DNow! pavgusb */
	  if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
	    goto no_support_3dnow_data;
	  record_full_arch_list_add_reg (ir.regcache, ir.reg);
	  break;

	default:
no_support_3dnow_data:
	  opcode = (opcode << 8) | opcode8;
	  goto no_support;
	  break;
	}
      break;

    case 0x0faa:    /* rsm */
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
      I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
      break;

    case 0x0fae:
      if (i386_record_modrm (&ir))
	return -1;
      switch(ir.reg)
	{
	case 0:    /* fxsave */
	  {
	    uint64_t tmpu64;

	    I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
	    if (i386_record_lea_modrm_addr (&ir, &tmpu64))
	      return -1;
	    if (record_full_arch_list_add_mem (tmpu64, 512))
	      return -1;
	  }
	  break;

	case 1:    /* fxrstor */
	  {
	    int i;

	    I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);

	    for (i = I387_MM0_REGNUM (tdep);
		 i386_mmx_regnum_p (gdbarch, i); i++)
	      record_full_arch_list_add_reg (ir.regcache, i);

	    for (i = I387_XMM0_REGNUM (tdep);
		 i386_xmm_regnum_p (gdbarch, i); i++)
	      record_full_arch_list_add_reg (ir.regcache, i);

	    if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
	      record_full_arch_list_add_reg (ir.regcache,
					     I387_MXCSR_REGNUM(tdep));

	    for (i = I387_ST0_REGNUM (tdep);
		 i386_fp_regnum_p (gdbarch, i); i++)
	      record_full_arch_list_add_reg (ir.regcache, i);

	    for (i = I387_FCTRL_REGNUM (tdep);
		 i386_fpc_regnum_p (gdbarch, i); i++)
	      record_full_arch_list_add_reg (ir.regcache, i);
	  }
	  break;

	case 2:    /* ldmxcsr */
	  if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
	    goto no_support;
	  record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
	  break;

	case 3:    /* stmxcsr */
	  ir.ot = OT_LONG;
	  if (i386_record_lea_modrm (&ir))
	    return -1;
	  break;

	case 5:    /* lfence */
	case 6:    /* mfence */
	case 7:    /* sfence clflush */
	  break;

	default:
	  opcode = (opcode << 8) | ir.modrm;
	  goto no_support;
	  break;
	}
      break;

    case 0x0fc3:    /* movnti */
      ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
      if (i386_record_modrm (&ir))
	return -1;
      if (ir.mod == 3)
	goto no_support;
      ir.reg |= rex_r;
      if (i386_record_lea_modrm (&ir))
	return -1;
      break;

    /* Add prefix to opcode.  */
    case 0x0f10:
    case 0x0f11:
    case 0x0f12:
    case 0x0f13:
    case 0x0f14:
    case 0x0f15:
    case 0x0f16:
    case 0x0f17:
    case 0x0f28:
    case 0x0f29:
    case 0x0f2a:
    case 0x0f2b:
    case 0x0f2c:
    case 0x0f2d:
    case 0x0f2e:
    case 0x0f2f:
    case 0x0f38:
    case 0x0f39:
    case 0x0f3a:
    case 0x0f50:
    case 0x0f51:
    case 0x0f52:
    case 0x0f53:
    case 0x0f54:
    case 0x0f55:
    case 0x0f56:
    case 0x0f57:
    case 0x0f58:
    case 0x0f59:
    case 0x0f5a:
    case 0x0f5b:
    case 0x0f5c:
    case 0x0f5d:
    case 0x0f5e:
    case 0x0f5f:
    case 0x0f60:
    case 0x0f61:
    case 0x0f62:
    case 0x0f63:
    case 0x0f64:
    case 0x0f65:
    case 0x0f66:
    case 0x0f67:
    case 0x0f68:
    case 0x0f69:
    case 0x0f6a:
    case 0x0f6b:
    case 0x0f6c:
    case 0x0f6d:
    case 0x0f6e:
    case 0x0f6f:
    case 0x0f70:
    case 0x0f71:
    case 0x0f72:
    case 0x0f73:
    case 0x0f74:
    case 0x0f75:
    case 0x0f76:
    case 0x0f7c:
    case 0x0f7d:
    case 0x0f7e:
    case 0x0f7f:
    case 0x0fb8:
    case 0x0fc2:
    case 0x0fc4:
    case 0x0fc5:
    case 0x0fc6:
    case 0x0fd0:
    case 0x0fd1:
    case 0x0fd2:
    case 0x0fd3:
    case 0x0fd4:
    case 0x0fd5:
    case 0x0fd6:
    case 0x0fd7:
    case 0x0fd8:
    case 0x0fd9:
    case 0x0fda:
    case 0x0fdb:
    case 0x0fdc:
    case 0x0fdd:
    case 0x0fde:
    case 0x0fdf:
    case 0x0fe0:
    case 0x0fe1:
    case 0x0fe2:
    case 0x0fe3:
    case 0x0fe4:
    case 0x0fe5:
    case 0x0fe6:
    case 0x0fe7:
    case 0x0fe8:
    case 0x0fe9:
    case 0x0fea:
    case 0x0feb:
    case 0x0fec:
    case 0x0fed:
    case 0x0fee:
    case 0x0fef:
    case 0x0ff0:
    case 0x0ff1:
    case 0x0ff2:
    case 0x0ff3:
    case 0x0ff4:
    case 0x0ff5:
    case 0x0ff6:
    case 0x0ff7:
    case 0x0ff8:
    case 0x0ff9:
    case 0x0ffa:
    case 0x0ffb:
    case 0x0ffc:
    case 0x0ffd:
    case 0x0ffe:
      /* Mask out PREFIX_ADDR.  */
      switch ((prefixes & ~PREFIX_ADDR))
	{
	case PREFIX_REPNZ:
	  opcode |= 0xf20000;
	  break;
	case PREFIX_DATA:
	  opcode |= 0x660000;
	  break;
	case PREFIX_REPZ:
	  opcode |= 0xf30000;
	  break;
	}
reswitch_prefix_add:
      switch (opcode)
	{
	case 0x0f38:
	case 0x660f38:
	case 0xf20f38:
	case 0x0f3a:
	case 0x660f3a:
	  if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
	    return -1;
	  ir.addr++;
	  opcode = (uint32_t) opcode8 | opcode << 8;
	  goto reswitch_prefix_add;
	  break;

	case 0x0f10:        /* movups */
	case 0x660f10:      /* movupd */
	case 0xf30f10:      /* movss */
	case 0xf20f10:      /* movsd */
	case 0x0f12:        /* movlps */
	case 0x660f12:      /* movlpd */
	case 0xf30f12:      /* movsldup */
	case 0xf20f12:      /* movddup */
	case 0x0f14:        /* unpcklps */
	case 0x660f14:      /* unpcklpd */
	case 0x0f15:        /* unpckhps */
	case 0x660f15:      /* unpckhpd */
	case 0x0f16:        /* movhps */
	case 0x660f16:      /* movhpd */
	case 0xf30f16:      /* movshdup */
	case 0x0f28:        /* movaps */
	case 0x660f28:      /* movapd */
	case 0x0f2a:        /* cvtpi2ps */
	case 0x660f2a:      /* cvtpi2pd */
	case 0xf30f2a:      /* cvtsi2ss */
	case 0xf20f2a:      /* cvtsi2sd */
	case 0x0f2c:        /* cvttps2pi */
	case 0x660f2c:      /* cvttpd2pi */
	case 0x0f2d:        /* cvtps2pi */
	case 0x660f2d:      /* cvtpd2pi */
	case 0x660f3800:    /* pshufb */
	case 0x660f3801:    /* phaddw */
	case 0x660f3802:    /* phaddd */
	case 0x660f3803:    /* phaddsw */
	case 0x660f3804:    /* pmaddubsw */
	case 0x660f3805:    /* phsubw */
	case 0x660f3806:    /* phsubd */
	case 0x660f3807:    /* phsubsw */
	case 0x660f3808:    /* psignb */
	case 0x660f3809:    /* psignw */
	case 0x660f380a:    /* psignd */
	case 0x660f380b:    /* pmulhrsw */
	case 0x660f3810:    /* pblendvb */
	case 0x660f3814:    /* blendvps */
	case 0x660f3815:    /* blendvpd */
	case 0x660f381c:    /* pabsb */
	case 0x660f381d:    /* pabsw */
	case 0x660f381e:    /* pabsd */
	case 0x660f3820:    /* pmovsxbw */
	case 0x660f3821:    /* pmovsxbd */
	case 0x660f3822:    /* pmovsxbq */
	case 0x660f3823:    /* pmovsxwd */
	case 0x660f3824:    /* pmovsxwq */
	case 0x660f3825:    /* pmovsxdq */
	case 0x660f3828:    /* pmuldq */
	case 0x660f3829:    /* pcmpeqq */
	case 0x660f382a:    /* movntdqa */
	case 0x660f3a08:    /* roundps */
	case 0x660f3a09:    /* roundpd */
	case 0x660f3a0a:    /* roundss */
	case 0x660f3a0b:    /* roundsd */
	case 0x660f3a0c:    /* blendps */
	case 0x660f3a0d:    /* blendpd */
	case 0x660f3a0e:    /* pblendw */
	case 0x660f3a0f:    /* palignr */
	case 0x660f3a20:    /* pinsrb */
	case 0x660f3a21:    /* insertps */
	case 0x660f3a22:    /* pinsrd pinsrq */
	case 0x660f3a40:    /* dpps */
	case 0x660f3a41:    /* dppd */
	case 0x660f3a42:    /* mpsadbw */
	case 0x660f3a60:    /* pcmpestrm */
	case 0x660f3a61:    /* pcmpestri */
	case 0x660f3a62:    /* pcmpistrm */
	case 0x660f3a63:    /* pcmpistri */
	case 0x0f51:        /* sqrtps */
	case 0x660f51:      /* sqrtpd */
	case 0xf20f51:      /* sqrtsd */
	case 0xf30f51:      /* sqrtss */
	case 0x0f52:        /* rsqrtps */
	case 0xf30f52:      /* rsqrtss */
	case 0x0f53:        /* rcpps */
	case 0xf30f53:      /* rcpss */
	case 0x0f54:        /* andps */
	case 0x660f54:      /* andpd */
	case 0x0f55:        /* andnps */
	case 0x660f55:      /* andnpd */
	case 0x0f56:        /* orps */
	case 0x660f56:      /* orpd */
	case 0x0f57:        /* xorps */
	case 0x660f57:      /* xorpd */
	case 0x0f58:        /* addps */
	case 0x660f58:      /* addpd */
	case 0xf20f58:      /* addsd */
	case 0xf30f58:      /* addss */
	case 0x0f59:        /* mulps */
	case 0x660f59:      /* mulpd */
	case 0xf20f59:      /* mulsd */
	case 0xf30f59:      /* mulss */
	case 0x0f5a:        /* cvtps2pd */
	case 0x660f5a:      /* cvtpd2ps */
	case 0xf20f5a:      /* cvtsd2ss */
	case 0xf30f5a:      /* cvtss2sd */
	case 0x0f5b:        /* cvtdq2ps */
	case 0x660f5b:      /* cvtps2dq */
	case 0xf30f5b:      /* cvttps2dq */
	case 0x0f5c:        /* subps */
	case 0x660f5c:      /* subpd */
	case 0xf20f5c:      /* subsd */
	case 0xf30f5c:      /* subss */
	case 0x0f5d:        /* minps */
	case 0x660f5d:      /* minpd */
	case 0xf20f5d:      /* minsd */
	case 0xf30f5d:      /* minss */
	case 0x0f5e:        /* divps */
	case 0x660f5e:      /* divpd */
	case 0xf20f5e:      /* divsd */
	case 0xf30f5e:      /* divss */
	case 0x0f5f:        /* maxps */
	case 0x660f5f:      /* maxpd */
	case 0xf20f5f:      /* maxsd */
	case 0xf30f5f:      /* maxss */
	case 0x660f60:      /* punpcklbw */
	case 0x660f61:      /* punpcklwd */
	case 0x660f62:      /* punpckldq */
	case 0x660f63:      /* packsswb */
	case 0x660f64:      /* pcmpgtb */
	case 0x660f65:      /* pcmpgtw */
	case 0x660f66:      /* pcmpgtd */
	case 0x660f67:      /* packuswb */
	case 0x660f68:      /* punpckhbw */
	case 0x660f69:      /* punpckhwd */
	case 0x660f6a:      /* punpckhdq */
	case 0x660f6b:      /* packssdw */
	case 0x660f6c:      /* punpcklqdq */
	case 0x660f6d:      /* punpckhqdq */
	case 0x660f6e:      /* movd */
	case 0x660f6f:      /* movdqa */
	case 0xf30f6f:      /* movdqu */
	case 0x660f70:      /* pshufd */
	case 0xf20f70:      /* pshuflw */
	case 0xf30f70:      /* pshufhw */
	case 0x660f74:      /* pcmpeqb */
	case 0x660f75:      /* pcmpeqw */
	case 0x660f76:      /* pcmpeqd */
	case 0x660f7c:      /* haddpd */
	case 0xf20f7c:      /* haddps */
	case 0x660f7d:      /* hsubpd */
	case 0xf20f7d:      /* hsubps */
	case 0xf30f7e:      /* movq */
	case 0x0fc2:        /* cmpps */
	case 0x660fc2:      /* cmppd */
	case 0xf20fc2:      /* cmpsd */
	case 0xf30fc2:      /* cmpss */
	case 0x660fc4:      /* pinsrw */
	case 0x0fc6:        /* shufps */
	case 0x660fc6:      /* shufpd */
	case 0x660fd0:      /* addsubpd */
	case 0xf20fd0:      /* addsubps */
	case 0x660fd1:      /* psrlw */
	case 0x660fd2:      /* psrld */
	case 0x660fd3:      /* psrlq */
	case 0x660fd4:      /* paddq */
	case 0x660fd5:      /* pmullw */
	case 0xf30fd6:      /* movq2dq */
	case 0x660fd8:      /* psubusb */
	case 0x660fd9:      /* psubusw */
	case 0x660fda:      /* pminub */
	case 0x660fdb:      /* pand */
	case 0x660fdc:      /* paddusb */
	case 0x660fdd:      /* paddusw */
	case 0x660fde:      /* pmaxub */
	case 0x660fdf:      /* pandn */
	case 0x660fe0:      /* pavgb */
	case 0x660fe1:      /* psraw */
	case 0x660fe2:      /* psrad */
	case 0x660fe3:      /* pavgw */
	case 0x660fe4:      /* pmulhuw */
	case 0x660fe5:      /* pmulhw */
	case 0x660fe6:      /* cvttpd2dq */
	case 0xf20fe6:      /* cvtpd2dq */
	case 0xf30fe6:      /* cvtdq2pd */
	case 0x660fe8:      /* psubsb */
	case 0x660fe9:      /* psubsw */
	case 0x660fea:      /* pminsw */
	case 0x660feb:      /* por */
	case 0x660fec:      /* paddsb */
	case 0x660fed:      /* paddsw */
	case 0x660fee:      /* pmaxsw */
	case 0x660fef:      /* pxor */
	case 0xf20ff0:      /* lddqu */
	case 0x660ff1:      /* psllw */
	case 0x660ff2:      /* pslld */
	case 0x660ff3:      /* psllq */
	case 0x660ff4:      /* pmuludq */
	case 0x660ff5:      /* pmaddwd */
	case 0x660ff6:      /* psadbw */
	case 0x660ff8:      /* psubb */
	case 0x660ff9:      /* psubw */
	case 0x660ffa:      /* psubd */
	case 0x660ffb:      /* psubq */
	case 0x660ffc:      /* paddb */
	case 0x660ffd:      /* paddw */
	case 0x660ffe:      /* paddd */
	  if (i386_record_modrm (&ir))
	    return -1;
	  ir.reg |= rex_r;
	  if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
	    goto no_support;
	  record_full_arch_list_add_reg (ir.regcache,
					 I387_XMM0_REGNUM (tdep) + ir.reg);
	  if ((opcode & 0xfffffffc) == 0x660f3a60)
	    I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
	  break;

	case 0x0f11:        /* movups */
	case 0x660f11:      /* movupd */
	case 0xf30f11:      /* movss */
	case 0xf20f11:      /* movsd */
	case 0x0f13:        /* movlps */
	case 0x660f13:      /* movlpd */
	case 0x0f17:        /* movhps */
	case 0x660f17:      /* movhpd */
	case 0x0f29:        /* movaps */
	case 0x660f29:      /* movapd */
	case 0x660f3a14:    /* pextrb */
	case 0x660f3a15:    /* pextrw */
	case 0x660f3a16:    /* pextrd pextrq */
	case 0x660f3a17:    /* extractps */
	case 0x660f7f:      /* movdqa */
	case 0xf30f7f:      /* movdqu */
	  if (i386_record_modrm (&ir))
	    return -1;
	  if (ir.mod == 3)
	    {
	      if (opcode == 0x0f13 || opcode == 0x660f13
		  || opcode == 0x0f17 || opcode == 0x660f17)
		goto no_support;
	      ir.rm |= ir.rex_b;
	      if (!i386_xmm_regnum_p (gdbarch,
				      I387_XMM0_REGNUM (tdep) + ir.rm))
		goto no_support;
	      record_full_arch_list_add_reg (ir.regcache,
					     I387_XMM0_REGNUM (tdep) + ir.rm);
	    }
	  else
	    {
	      switch (opcode)
		{
		  case 0x660f3a14:
		    ir.ot = OT_BYTE;
		    break;
		  case 0x660f3a15:
		    ir.ot = OT_WORD;
		    break;
		  case 0x660f3a16:
		    ir.ot = OT_LONG;
		    break;
		  case 0x660f3a17:
		    ir.ot = OT_QUAD;
		    break;
		  default:
		    ir.ot = OT_DQUAD;
		    break;
		}
	      if (i386_record_lea_modrm (&ir))
		return -1;
	    }
	  break;

	case 0x0f2b:      /* movntps */
	case 0x660f2b:    /* movntpd */
	case 0x0fe7:      /* movntq */
	case 0x660fe7:    /* movntdq */
	  if (ir.mod == 3)
	    goto no_support;
	  if (opcode == 0x0fe7)
	    ir.ot = OT_QUAD;
	  else
	    ir.ot = OT_DQUAD;
	  if (i386_record_lea_modrm (&ir))
	    return -1;
	  break;

	case 0xf30f2c:      /* cvttss2si */
	case 0xf20f2c:      /* cvttsd2si */
	case 0xf30f2d:      /* cvtss2si */
	case 0xf20f2d:      /* cvtsd2si */
	case 0xf20f38f0:    /* crc32 */
	case 0xf20f38f1:    /* crc32 */
	case 0x0f50:        /* movmskps */
	case 0x660f50:      /* movmskpd */
	case 0x0fc5:        /* pextrw */
	case 0x660fc5:      /* pextrw */
	case 0x0fd7:        /* pmovmskb */
	case 0x660fd7:      /* pmovmskb */
	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
	  break;

	case 0x0f3800:    /* pshufb */
	case 0x0f3801:    /* phaddw */
	case 0x0f3802:    /* phaddd */
	case 0x0f3803:    /* phaddsw */
	case 0x0f3804:    /* pmaddubsw */
	case 0x0f3805:    /* phsubw */
	case 0x0f3806:    /* phsubd */
	case 0x0f3807:    /* phsubsw */
	case 0x0f3808:    /* psignb */
	case 0x0f3809:    /* psignw */
	case 0x0f380a:    /* psignd */
	case 0x0f380b:    /* pmulhrsw */
	case 0x0f381c:    /* pabsb */
	case 0x0f381d:    /* pabsw */
	case 0x0f381e:    /* pabsd */
	case 0x0f382b:    /* packusdw */
	case 0x0f3830:    /* pmovzxbw */
	case 0x0f3831:    /* pmovzxbd */
	case 0x0f3832:    /* pmovzxbq */
	case 0x0f3833:    /* pmovzxwd */
	case 0x0f3834:    /* pmovzxwq */
	case 0x0f3835:    /* pmovzxdq */
	case 0x0f3837:    /* pcmpgtq */
	case 0x0f3838:    /* pminsb */
	case 0x0f3839:    /* pminsd */
	case 0x0f383a:    /* pminuw */
	case 0x0f383b:    /* pminud */
	case 0x0f383c:    /* pmaxsb */
	case 0x0f383d:    /* pmaxsd */
	case 0x0f383e:    /* pmaxuw */
	case 0x0f383f:    /* pmaxud */
	case 0x0f3840:    /* pmulld */
	case 0x0f3841:    /* phminposuw */
	case 0x0f3a0f:    /* palignr */
	case 0x0f60:      /* punpcklbw */
	case 0x0f61:      /* punpcklwd */
	case 0x0f62:      /* punpckldq */
	case 0x0f63:      /* packsswb */
	case 0x0f64:      /* pcmpgtb */
	case 0x0f65:      /* pcmpgtw */
	case 0x0f66:      /* pcmpgtd */
	case 0x0f67:      /* packuswb */
	case 0x0f68:      /* punpckhbw */
	case 0x0f69:      /* punpckhwd */
	case 0x0f6a:      /* punpckhdq */
	case 0x0f6b:      /* packssdw */
	case 0x0f6e:      /* movd */
	case 0x0f6f:      /* movq */
	case 0x0f70:      /* pshufw */
	case 0x0f74:      /* pcmpeqb */
	case 0x0f75:      /* pcmpeqw */
	case 0x0f76:      /* pcmpeqd */
	case 0x0fc4:      /* pinsrw */
	case 0x0fd1:      /* psrlw */
	case 0x0fd2:      /* psrld */
	case 0x0fd3:      /* psrlq */
	case 0x0fd4:      /* paddq */
	case 0x0fd5:      /* pmullw */
	case 0xf20fd6:    /* movdq2q */
	case 0x0fd8:      /* psubusb */
	case 0x0fd9:      /* psubusw */
	case 0x0fda:      /* pminub */
	case 0x0fdb:      /* pand */
	case 0x0fdc:      /* paddusb */
	case 0x0fdd:      /* paddusw */
	case 0x0fde:      /* pmaxub */
	case 0x0fdf:      /* pandn */
	case 0x0fe0:      /* pavgb */
	case 0x0fe1:      /* psraw */
	case 0x0fe2:      /* psrad */
	case 0x0fe3:      /* pavgw */
	case 0x0fe4:      /* pmulhuw */
	case 0x0fe5:      /* pmulhw */
	case 0x0fe8:      /* psubsb */
	case 0x0fe9:      /* psubsw */
	case 0x0fea:      /* pminsw */
	case 0x0feb:      /* por */
	case 0x0fec:      /* paddsb */
	case 0x0fed:      /* paddsw */
	case 0x0fee:      /* pmaxsw */
	case 0x0fef:      /* pxor */
	case 0x0ff1:      /* psllw */
	case 0x0ff2:      /* pslld */
	case 0x0ff3:      /* psllq */
	case 0x0ff4:      /* pmuludq */
	case 0x0ff5:      /* pmaddwd */
	case 0x0ff6:      /* psadbw */
	case 0x0ff8:      /* psubb */
	case 0x0ff9:      /* psubw */
	case 0x0ffa:      /* psubd */
	case 0x0ffb:      /* psubq */
	case 0x0ffc:      /* paddb */
	case 0x0ffd:      /* paddw */
	case 0x0ffe:      /* paddd */
	  if (i386_record_modrm (&ir))
	    return -1;
	  if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
	    goto no_support;
	  record_full_arch_list_add_reg (ir.regcache,
					 I387_MM0_REGNUM (tdep) + ir.reg);
	  break;

	case 0x0f71:    /* psllw */
	case 0x0f72:    /* pslld */
	case 0x0f73:    /* psllq */
	  if (i386_record_modrm (&ir))
	    return -1;
	  if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
	    goto no_support;
	  record_full_arch_list_add_reg (ir.regcache,
					 I387_MM0_REGNUM (tdep) + ir.rm);
	  break;

	case 0x660f71:    /* psllw */
	case 0x660f72:    /* pslld */
	case 0x660f73:    /* psllq */
	  if (i386_record_modrm (&ir))
	    return -1;
	  ir.rm |= ir.rex_b;
	  if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
	    goto no_support;
	  record_full_arch_list_add_reg (ir.regcache,
					 I387_XMM0_REGNUM (tdep) + ir.rm);
	  break;

	case 0x0f7e:      /* movd */
	case 0x660f7e:    /* movd */
	  if (i386_record_modrm (&ir))
	    return -1;
	  if (ir.mod == 3)
	    I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
	  else
	    {
	      if (ir.dflag == 2)
		ir.ot = OT_QUAD;
	      else
		ir.ot = OT_LONG;
	      if (i386_record_lea_modrm (&ir))
		return -1;
	    }
	  break;

	case 0x0f7f:    /* movq */
	  if (i386_record_modrm (&ir))
	    return -1;
	  if (ir.mod == 3)
	    {
	      if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
		goto no_support;
	      record_full_arch_list_add_reg (ir.regcache,
					     I387_MM0_REGNUM (tdep) + ir.rm);
	    }
	  else
	    {
	      ir.ot = OT_QUAD;
	      if (i386_record_lea_modrm (&ir))
		return -1;
	    }
	  break;

	case 0xf30fb8:    /* popcnt */
	  if (i386_record_modrm (&ir))
	    return -1;
	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
	  break;

	case 0x660fd6:    /* movq */
	  if (i386_record_modrm (&ir))
	    return -1;
	  if (ir.mod == 3)
	    {
	      ir.rm |= ir.rex_b;
	      if (!i386_xmm_regnum_p (gdbarch,
				      I387_XMM0_REGNUM (tdep) + ir.rm))
		goto no_support;
	      record_full_arch_list_add_reg (ir.regcache,
					     I387_XMM0_REGNUM (tdep) + ir.rm);
	    }
	  else
	    {
	      ir.ot = OT_QUAD;
	      if (i386_record_lea_modrm (&ir))
		return -1;
	    }
	  break;

	case 0x660f3817:    /* ptest */
	case 0x0f2e:        /* ucomiss */
	case 0x660f2e:      /* ucomisd */
	case 0x0f2f:        /* comiss */
	case 0x660f2f:      /* comisd */
	  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
	  break;

	case 0x0ff7:    /* maskmovq */
	  regcache_raw_read_unsigned (ir.regcache,
				      ir.regmap[X86_RECORD_REDI_REGNUM],
				      &addr);
	  if (record_full_arch_list_add_mem (addr, 64))
	    return -1;
	  break;

	case 0x660ff7:    /* maskmovdqu */
	  regcache_raw_read_unsigned (ir.regcache,
				      ir.regmap[X86_RECORD_REDI_REGNUM],
				      &addr);
	  if (record_full_arch_list_add_mem (addr, 128))
	    return -1;
	  break;

	default:
	  goto no_support;
	  break;
	}
      break;

    default:
      goto no_support;
      break;
    }

  /* In the future, maybe still need to deal with need_dasm.  */
  I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
  if (record_full_arch_list_add_end ())
    return -1;

  return 0;

 no_support:
  printf_unfiltered (_("Process record does not support instruction 0x%02x "
		       "at address %s.\n"),
		     (unsigned int) (opcode),
		     paddress (gdbarch, ir.orig_addr));
  return -1;
}

static const int i386_record_regmap[] =
{
  I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
  I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
  0, 0, 0, 0, 0, 0, 0, 0,
  I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
  I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
};

/* Check that the given address appears suitable for a fast
   tracepoint, which on x86-64 means that we need an instruction of at
   least 5 bytes, so that we can overwrite it with a 4-byte-offset
   jump and not have to worry about program jumps to an address in the
   middle of the tracepoint jump.  On x86, it may be possible to use
   4-byte jumps with a 2-byte offset to a trampoline located in the
   bottom 64 KiB of memory.  Returns 1 if OK, and writes a size
   of instruction to replace, and 0 if not, plus an explanatory
   string.  */

static int
i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
			       std::string *msg)
{
  int len, jumplen;

  /*  Ask the target for the minimum instruction length supported.  */
  jumplen = target_get_min_fast_tracepoint_insn_len ();

  if (jumplen < 0)
    {
      /* If the target does not support the get_min_fast_tracepoint_insn_len
	 operation, assume that fast tracepoints will always be implemented
	 using 4-byte relative jumps on both x86 and x86-64.  */
      jumplen = 5;
    }
  else if (jumplen == 0)
    {
      /* If the target does support get_min_fast_tracepoint_insn_len but
	 returns zero, then the IPA has not loaded yet.  In this case,
	 we optimistically assume that truncated 2-byte relative jumps
	 will be available on x86, and compensate later if this assumption
	 turns out to be incorrect.  On x86-64 architectures, 4-byte relative
	 jumps will always be used.  */
      jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
    }

  /* Check for fit.  */
  len = gdb_insn_length (gdbarch, addr);

  if (len < jumplen)
    {
      /* Return a bit of target-specific detail to add to the caller's
	 generic failure message.  */
      if (msg)
	*msg = string_printf (_("; instruction is only %d bytes long, "
				"need at least %d bytes for the jump"),
			      len, jumplen);
      return 0;
    }
  else
    {
      if (msg)
	msg->clear ();
      return 1;
    }
}

/* Return a floating-point format for a floating-point variable of
   length LEN in bits.  If non-NULL, NAME is the name of its type.
   If no suitable type is found, return NULL.  */

static const struct floatformat **
i386_floatformat_for_type (struct gdbarch *gdbarch,
			   const char *name, int len)
{
  if (len == 128 && name)
    if (strcmp (name, "__float128") == 0
	|| strcmp (name, "_Float128") == 0
	|| strcmp (name, "complex _Float128") == 0
	|| strcmp (name, "complex(kind=16)") == 0
	|| strcmp (name, "complex*32") == 0
	|| strcmp (name, "COMPLEX*32") == 0
	|| strcmp (name, "quad complex") == 0
	|| strcmp (name, "real(kind=16)") == 0
	|| strcmp (name, "real*16") == 0
	|| strcmp (name, "REAL*16") == 0)
      return floatformats_ia64_quad;

  return default_floatformat_for_type (gdbarch, name, len);
}

static int
i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
		       struct tdesc_arch_data *tdesc_data)
{
  const struct target_desc *tdesc = tdep->tdesc;
  const struct tdesc_feature *feature_core;

  const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
			     *feature_avx512, *feature_pkeys, *feature_segments;
  int i, num_regs, valid_p;

  if (! tdesc_has_registers (tdesc))
    return 0;

  /* Get core registers.  */
  feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
  if (feature_core == NULL)
    return 0;

  /* Get SSE registers.  */
  feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");

  /* Try AVX registers.  */
  feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");

  /* Try MPX registers.  */
  feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");

  /* Try AVX512 registers.  */
  feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");

  /* Try segment base registers.  */
  feature_segments = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments");

  /* Try PKEYS  */
  feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");

  valid_p = 1;

  /* The XCR0 bits.  */
  if (feature_avx512)
    {
      /* AVX512 register description requires AVX register description.  */
      if (!feature_avx)
	return 0;

      tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;

      /* It may have been set by OSABI initialization function.  */
      if (tdep->k0_regnum < 0)
	{
	  tdep->k_register_names = i386_k_names;
	  tdep->k0_regnum = I386_K0_REGNUM;
	}

      for (i = 0; i < I387_NUM_K_REGS; i++)
	valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
					    tdep->k0_regnum + i,
					    i386_k_names[i]);

      if (tdep->num_zmm_regs == 0)
	{
	  tdep->zmmh_register_names = i386_zmmh_names;
	  tdep->num_zmm_regs = 8;
	  tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
	}

      for (i = 0; i < tdep->num_zmm_regs; i++)
	valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
					    tdep->zmm0h_regnum + i,
					    tdep->zmmh_register_names[i]);

      for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
	valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
					    tdep->xmm16_regnum + i,
					    tdep->xmm_avx512_register_names[i]);

      for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
	valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
					    tdep->ymm16h_regnum + i,
					    tdep->ymm16h_register_names[i]);
    }
  if (feature_avx)
    {
      /* AVX register description requires SSE register description.  */
      if (!feature_sse)
	return 0;

      if (!feature_avx512)
	tdep->xcr0 = X86_XSTATE_AVX_MASK;

      /* It may have been set by OSABI initialization function.  */
      if (tdep->num_ymm_regs == 0)
	{
	  tdep->ymmh_register_names = i386_ymmh_names;
	  tdep->num_ymm_regs = 8;
	  tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
	}

      for (i = 0; i < tdep->num_ymm_regs; i++)
	valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
					    tdep->ymm0h_regnum + i,
					    tdep->ymmh_register_names[i]);
    }
  else if (feature_sse)
    tdep->xcr0 = X86_XSTATE_SSE_MASK;
  else
    {
      tdep->xcr0 = X86_XSTATE_X87_MASK;
      tdep->num_xmm_regs = 0;
    }

  num_regs = tdep->num_core_regs;
  for (i = 0; i < num_regs; i++)
    valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
					tdep->register_names[i]);

  if (feature_sse)
    {
      /* Need to include %mxcsr, so add one.  */
      num_regs += tdep->num_xmm_regs + 1;
      for (; i < num_regs; i++)
	valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
					    tdep->register_names[i]);
    }

  if (feature_mpx)
    {
      tdep->xcr0 |= X86_XSTATE_MPX_MASK;

      if (tdep->bnd0r_regnum < 0)
	{
	  tdep->mpx_register_names = i386_mpx_names;
	  tdep->bnd0r_regnum = I386_BND0R_REGNUM;
	  tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
	}

      for (i = 0; i < I387_NUM_MPX_REGS; i++)
	valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
	    I387_BND0R_REGNUM (tdep) + i,
	    tdep->mpx_register_names[i]);
    }

  if (feature_segments)
    {
      if (tdep->fsbase_regnum < 0)
	tdep->fsbase_regnum = I386_FSBASE_REGNUM;
      valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
					  tdep->fsbase_regnum, "fs_base");
      valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
					  tdep->fsbase_regnum + 1, "gs_base");
    }

  if (feature_pkeys)
    {
      tdep->xcr0 |= X86_XSTATE_PKRU;
      if (tdep->pkru_regnum < 0)
	{
	  tdep->pkeys_register_names = i386_pkeys_names;
	  tdep->pkru_regnum = I386_PKRU_REGNUM;
	  tdep->num_pkeys_regs = 1;
	}

      for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
	valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
					    I387_PKRU_REGNUM (tdep) + i,
					    tdep->pkeys_register_names[i]);
    }

  return valid_p;
}



/* Implement the type_align gdbarch function.  */

static ULONGEST
i386_type_align (struct gdbarch *gdbarch, struct type *type)
{
  type = check_typedef (type);

  if (gdbarch_ptr_bit (gdbarch) == 32)
    {
      if ((type->code () == TYPE_CODE_INT
	   || type->code () == TYPE_CODE_FLT)
	  && TYPE_LENGTH (type) > 4)
	return 4;

      /* Handle x86's funny long double.  */
      if (type->code () == TYPE_CODE_FLT
	  && gdbarch_long_double_bit (gdbarch) == TYPE_LENGTH (type) * 8)
	return 4;
    }

  return 0;
}


/* Note: This is called for both i386 and amd64.  */

static struct gdbarch *
i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
  struct gdbarch_tdep *tdep;
  struct gdbarch *gdbarch;
  const struct target_desc *tdesc;
  int mm0_regnum;
  int ymm0_regnum;
  int bnd0_regnum;
  int num_bnd_cooked;

  /* If there is already a candidate, use it.  */
  arches = gdbarch_list_lookup_by_info (arches, &info);
  if (arches != NULL)
    return arches->gdbarch;

  /* Allocate space for the new architecture.  Assume i386 for now.  */
  tdep = XCNEW (struct gdbarch_tdep);
  gdbarch = gdbarch_alloc (&info, tdep);

  /* General-purpose registers.  */
  tdep->gregset_reg_offset = NULL;
  tdep->gregset_num_regs = I386_NUM_GREGS;
  tdep->sizeof_gregset = 0;

  /* Floating-point registers.  */
  tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
  tdep->fpregset = &i386_fpregset;

  /* The default settings include the FPU registers, the MMX registers
     and the SSE registers.  This can be overridden for a specific ABI
     by adjusting the members `st0_regnum', `mm0_regnum' and
     `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
     will show up in the output of "info all-registers".  */

  tdep->st0_regnum = I386_ST0_REGNUM;

  /* I386_NUM_XREGS includes %mxcsr, so substract one.  */
  tdep->num_xmm_regs = I386_NUM_XREGS - 1;

  tdep->jb_pc_offset = -1;
  tdep->struct_return = pcc_struct_return;
  tdep->sigtramp_start = 0;
  tdep->sigtramp_end = 0;
  tdep->sigtramp_p = i386_sigtramp_p;
  tdep->sigcontext_addr = NULL;
  tdep->sc_reg_offset = NULL;
  tdep->sc_pc_offset = -1;
  tdep->sc_sp_offset = -1;

  tdep->xsave_xcr0_offset = -1;

  tdep->record_regmap = i386_record_regmap;

  set_gdbarch_type_align (gdbarch, i386_type_align);

  /* The format used for `long double' on almost all i386 targets is
     the i387 extended floating-point format.  In fact, of all targets
     in the GCC 2.95 tree, only OSF/1 does it different, and insists
     on having a `long double' that's not `long' at all.  */
  set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);

  /* Although the i387 extended floating-point has only 80 significant
     bits, a `long double' actually takes up 96, probably to enforce
     alignment.  */
  set_gdbarch_long_double_bit (gdbarch, 96);

  /* Support of bfloat16 format.  */
  set_gdbarch_bfloat16_format (gdbarch, floatformats_bfloat16);

  /* Support for floating-point data type variants.  */
  set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);

  /* Register numbers of various important registers.  */
  set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
  set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
  set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
  set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */

  /* NOTE: kettenis/20040418: GCC does have two possible register
     numbering schemes on the i386: dbx and SVR4.  These schemes
     differ in how they number %ebp, %esp, %eflags, and the
     floating-point registers, and are implemented by the arrays
     dbx_register_map[] and svr4_dbx_register_map in
     gcc/config/i386.c.  GCC also defines a third numbering scheme in
     gcc/config/i386.c, which it designates as the "default" register
     map used in 64bit mode.  This last register numbering scheme is
     implemented in dbx64_register_map, and is used for AMD64; see
     amd64-tdep.c.

     Currently, each GCC i386 target always uses the same register
     numbering scheme across all its supported debugging formats
     i.e. SDB (COFF), stabs and DWARF 2.  This is because
     gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
     DBX_REGISTER_NUMBER macro which is defined by each target's
     respective config header in a manner independent of the requested
     output debugging format.

     This does not match the arrangement below, which presumes that
     the SDB and stabs numbering schemes differ from the DWARF and
     DWARF 2 ones.  The reason for this arrangement is that it is
     likely to get the numbering scheme for the target's
     default/native debug format right.  For targets where GCC is the
     native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
     targets where the native toolchain uses a different numbering
     scheme for a particular debug format (stabs-in-ELF on Solaris)
     the defaults below will have to be overridden, like
     i386_elf_init_abi() does.  */

  /* Use the dbx register numbering scheme for stabs and COFF.  */
  set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
  set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);

  /* Use the SVR4 register numbering scheme for DWARF 2.  */
  set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);

  /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
     be in use on any of the supported i386 targets.  */

  set_gdbarch_print_float_info (gdbarch, i387_print_float_info);

  set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);

  /* Call dummy code.  */
  set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
  set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
  set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
  set_gdbarch_frame_align (gdbarch, i386_frame_align);

  set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
  set_gdbarch_register_to_value (gdbarch,  i386_register_to_value);
  set_gdbarch_value_to_register (gdbarch, i386_value_to_register);

  set_gdbarch_return_value (gdbarch, i386_return_value);

  set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);

  /* Stack grows downward.  */
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);

  set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
  set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);

  set_gdbarch_decr_pc_after_break (gdbarch, 1);
  set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);

  set_gdbarch_frame_args_skip (gdbarch, 8);

  set_gdbarch_print_insn (gdbarch, i386_print_insn);

  set_gdbarch_dummy_id (gdbarch, i386_dummy_id);

  set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);

  /* Add the i386 register groups.  */
  i386_add_reggroups (gdbarch);
  tdep->register_reggroup_p = i386_register_reggroup_p;

  /* Helper for function argument information.  */
  set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);

  /* Hook the function epilogue frame unwinder.  This unwinder is
     appended to the list first, so that it supercedes the DWARF
     unwinder in function epilogues (where the DWARF unwinder
     currently fails).  */
  frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);

  /* Hook in the DWARF CFI frame unwinder.  This unwinder is appended
     to the list before the prologue-based unwinders, so that DWARF
     CFI info will be used if it is available.  */
  dwarf2_append_unwinders (gdbarch);

  frame_base_set_default (gdbarch, &i386_frame_base);

  /* Pseudo registers may be changed by amd64_init_abi.  */
  set_gdbarch_pseudo_register_read_value (gdbarch,
					  i386_pseudo_register_read_value);
  set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
  set_gdbarch_ax_pseudo_register_collect (gdbarch,
					  i386_ax_pseudo_register_collect);

  set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
  set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);

  /* Override the normal target description method to make the AVX
     upper halves anonymous.  */
  set_gdbarch_register_name (gdbarch, i386_register_name);

  /* Even though the default ABI only includes general-purpose registers,
     floating-point registers and the SSE registers, we have to leave a
     gap for the upper AVX, MPX and AVX512 registers.  */
  set_gdbarch_num_regs (gdbarch, I386_NUM_REGS);

  set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);

  /* Get the x86 target description from INFO.  */
  tdesc = info.target_desc;
  if (! tdesc_has_registers (tdesc))
    tdesc = i386_target_description (X86_XSTATE_SSE_MASK, false);
  tdep->tdesc = tdesc;

  tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
  tdep->register_names = i386_register_names;

  /* No upper YMM registers.  */
  tdep->ymmh_register_names = NULL;
  tdep->ymm0h_regnum = -1;

  /* No upper ZMM registers.  */
  tdep->zmmh_register_names = NULL;
  tdep->zmm0h_regnum = -1;

  /* No high XMM registers.  */
  tdep->xmm_avx512_register_names = NULL;
  tdep->xmm16_regnum = -1;

  /* No upper YMM16-31 registers.  */
  tdep->ymm16h_register_names = NULL;
  tdep->ymm16h_regnum = -1;

  tdep->num_byte_regs = 8;
  tdep->num_word_regs = 8;
  tdep->num_dword_regs = 0;
  tdep->num_mmx_regs = 8;
  tdep->num_ymm_regs = 0;

  /* No MPX registers.  */
  tdep->bnd0r_regnum = -1;
  tdep->bndcfgu_regnum = -1;

  /* No AVX512 registers.  */
  tdep->k0_regnum = -1;
  tdep->num_zmm_regs = 0;
  tdep->num_ymm_avx512_regs = 0;
  tdep->num_xmm_avx512_regs = 0;

  /* No PKEYS registers  */
  tdep->pkru_regnum = -1;
  tdep->num_pkeys_regs = 0;

  /* No segment base registers.  */
  tdep->fsbase_regnum = -1;

  tdesc_arch_data_up tdesc_data = tdesc_data_alloc ();

  set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);

  set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);

  set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
  set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
  set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);

  /* Hook in ABI-specific overrides, if they have been registered.
     Note: If INFO specifies a 64 bit arch, this is where we turn
     a 32-bit i386 into a 64-bit amd64.  */
  info.tdesc_data = tdesc_data.get ();
  gdbarch_init_osabi (info, gdbarch);

  if (!i386_validate_tdesc_p (tdep, tdesc_data.get ()))
    {
      xfree (tdep);
      gdbarch_free (gdbarch);
      return NULL;
    }

  num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);

  /* Wire in pseudo registers.  Number of pseudo registers may be
     changed.  */
  set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
					 + tdep->num_word_regs
					 + tdep->num_dword_regs
					 + tdep->num_mmx_regs
					 + tdep->num_ymm_regs
					 + num_bnd_cooked
					 + tdep->num_ymm_avx512_regs
					 + tdep->num_zmm_regs));

  /* Target description may be changed.  */
  tdesc = tdep->tdesc;

  tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));

  /* Override gdbarch_register_reggroup_p set in tdesc_use_registers.  */
  set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);

  /* Make %al the first pseudo-register.  */
  tdep->al_regnum = gdbarch_num_regs (gdbarch);
  tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;

  ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
  if (tdep->num_dword_regs)
    {
      /* Support dword pseudo-register if it hasn't been disabled.  */
      tdep->eax_regnum = ymm0_regnum;
      ymm0_regnum += tdep->num_dword_regs;
    }
  else
    tdep->eax_regnum = -1;

  mm0_regnum = ymm0_regnum;
  if (tdep->num_ymm_regs)
    {
      /* Support YMM pseudo-register if it is available.  */
      tdep->ymm0_regnum = ymm0_regnum;
      mm0_regnum += tdep->num_ymm_regs;
    }
  else
    tdep->ymm0_regnum = -1;

  if (tdep->num_ymm_avx512_regs)
    {
      /* Support YMM16-31 pseudo registers if available.  */
      tdep->ymm16_regnum = mm0_regnum;
      mm0_regnum += tdep->num_ymm_avx512_regs;
    }
  else
    tdep->ymm16_regnum = -1;

  if (tdep->num_zmm_regs)
    {
      /* Support ZMM pseudo-register if it is available.  */
      tdep->zmm0_regnum = mm0_regnum;
      mm0_regnum += tdep->num_zmm_regs;
    }
  else
    tdep->zmm0_regnum = -1;

  bnd0_regnum = mm0_regnum;
  if (tdep->num_mmx_regs != 0)
    {
      /* Support MMX pseudo-register if MMX hasn't been disabled.  */
      tdep->mm0_regnum = mm0_regnum;
      bnd0_regnum += tdep->num_mmx_regs;
    }
  else
    tdep->mm0_regnum = -1;

  if (tdep->bnd0r_regnum > 0)
      tdep->bnd0_regnum = bnd0_regnum;
  else
    tdep-> bnd0_regnum = -1;

  /* Hook in the legacy prologue-based unwinders last (fallback).  */
  frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
  frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
  frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);

  /* If we have a register mapping, enable the generic core file
     support, unless it has already been enabled.  */
  if (tdep->gregset_reg_offset
      && !gdbarch_iterate_over_regset_sections_p (gdbarch))
    set_gdbarch_iterate_over_regset_sections
      (gdbarch, i386_iterate_over_regset_sections);

  set_gdbarch_fast_tracepoint_valid_at (gdbarch,
					i386_fast_tracepoint_valid_at);

  return gdbarch;
}



/* Return the target description for a specified XSAVE feature mask.  */

const struct target_desc *
i386_target_description (uint64_t xcr0, bool segments)
{
  static target_desc *i386_tdescs \
    [2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
  target_desc **tdesc;

  tdesc = &i386_tdescs[(xcr0 & X86_XSTATE_SSE) ? 1 : 0]
    [(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
    [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
    [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
    [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0]
    [segments ? 1 : 0];

  if (*tdesc == NULL)
    *tdesc = i386_create_target_description (xcr0, false, segments);

  return *tdesc;
}

#define MPX_BASE_MASK (~(ULONGEST) 0xfff)

/* Find the bound directory base address.  */

static unsigned long
i386_mpx_bd_base (void)
{
  struct regcache *rcache;
  struct gdbarch_tdep *tdep;
  ULONGEST ret;
  enum register_status regstatus;

  rcache = get_current_regcache ();
  tdep = gdbarch_tdep (rcache->arch ());

  regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);

  if (regstatus != REG_VALID)
    error (_("BNDCFGU register invalid, read status %d."), regstatus);

  return ret & MPX_BASE_MASK;
}

int
i386_mpx_enabled (void)
{
  const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
  const struct target_desc *tdesc = tdep->tdesc;

  return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
}

#define MPX_BD_MASK     0xfffffff00000ULL	/* select bits [47:20]  */
#define MPX_BT_MASK     0x0000000ffff8	        /* select bits [19:3]   */
#define MPX_BD_MASK_32  0xfffff000	        /* select bits [31:12]  */
#define MPX_BT_MASK_32  0x00000ffc	        /* select bits [11:2]   */

/* Find the bound table entry given the pointer location and the base
   address of the table.  */

static CORE_ADDR
i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
{
  CORE_ADDR offset1;
  CORE_ADDR offset2;
  CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
  CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
  CORE_ADDR bd_entry_addr;
  CORE_ADDR bt_addr;
  CORE_ADDR bd_entry;
  struct gdbarch *gdbarch = get_current_arch ();
  struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;


  if (gdbarch_ptr_bit (gdbarch) == 64)
    {
      mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
      bd_ptr_r_shift = 20;
      bd_ptr_l_shift = 3;
      bt_select_r_shift = 3;
      bt_select_l_shift = 5;
      bt_mask = (CORE_ADDR) MPX_BT_MASK;

      if ( sizeof (CORE_ADDR) == 4)
	error (_("bound table examination not supported\
 for 64-bit process with 32-bit GDB"));
    }
  else
    {
      mpx_bd_mask = MPX_BD_MASK_32;
      bd_ptr_r_shift = 12;
      bd_ptr_l_shift = 2;
      bt_select_r_shift = 2;
      bt_select_l_shift = 4;
      bt_mask = MPX_BT_MASK_32;
    }

  offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
  bd_entry_addr = bd_base + offset1;
  bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);

  if ((bd_entry & 0x1) == 0)
    error (_("Invalid bounds directory entry at %s."),
	   paddress (get_current_arch (), bd_entry_addr));

  /* Clearing status bit.  */
  bd_entry--;
  bt_addr = bd_entry & ~bt_select_r_shift;
  offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;

  return bt_addr + offset2;
}

/* Print routine for the mpx bounds.  */

static void
i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
{
  struct ui_out *uiout = current_uiout;
  LONGEST size;
  struct gdbarch *gdbarch = get_current_arch ();
  CORE_ADDR onecompl = ~((CORE_ADDR) 0);
  int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);

  if (bounds_in_map == 1)
    {
      uiout->text ("Null bounds on map:");
      uiout->text (" pointer value = ");
      uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
      uiout->text (".");
      uiout->text ("\n");
    }
  else
    {
      uiout->text ("{lbound = ");
      uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
      uiout->text (", ubound = ");

      /* The upper bound is stored in 1's complement.  */
      uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
      uiout->text ("}: pointer value = ");
      uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);

      if (gdbarch_ptr_bit (gdbarch) == 64)
	size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
      else
	size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);

      /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
	 -1 represents in this sense full memory access, and there is no need
	 one to the size.  */

      size = (size > -1 ? size + 1 : size);
      uiout->text (", size = ");
      uiout->field_string ("size", plongest (size));

      uiout->text (", metadata = ");
      uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
      uiout->text ("\n");
    }
}

/* Implement the command "show mpx bound".  */

static void
i386_mpx_info_bounds (const char *args, int from_tty)
{
  CORE_ADDR bd_base = 0;
  CORE_ADDR addr;
  CORE_ADDR bt_entry_addr = 0;
  CORE_ADDR bt_entry[4];
  int i;
  struct gdbarch *gdbarch = get_current_arch ();
  struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;

  if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
      || !i386_mpx_enabled ())
    {
      printf_unfiltered (_("Intel Memory Protection Extensions not "
			   "supported on this target.\n"));
      return;
    }

  if (args == NULL)
    {
      printf_unfiltered (_("Address of pointer variable expected.\n"));
      return;
    }

  addr = parse_and_eval_address (args);

  bd_base = i386_mpx_bd_base ();
  bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);

  memset (bt_entry, 0, sizeof (bt_entry));

  for (i = 0; i < 4; i++)
    bt_entry[i] = read_memory_typed_address (bt_entry_addr
					     + i * TYPE_LENGTH (data_ptr_type),
					     data_ptr_type);

  i386_mpx_print_bounds (bt_entry);
}

/* Implement the command "set mpx bound".  */

static void
i386_mpx_set_bounds (const char *args, int from_tty)
{
  CORE_ADDR bd_base = 0;
  CORE_ADDR addr, lower, upper;
  CORE_ADDR bt_entry_addr = 0;
  CORE_ADDR bt_entry[2];
  const char *input = args;
  int i;
  struct gdbarch *gdbarch = get_current_arch ();
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;

  if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
      || !i386_mpx_enabled ())
    error (_("Intel Memory Protection Extensions not supported\
 on this target."));

  if (args == NULL)
    error (_("Pointer value expected."));

  addr = value_as_address (parse_to_comma_and_eval (&input));

  if (input[0] == ',')
    ++input;
  if (input[0] == '\0')
    error (_("wrong number of arguments: missing lower and upper bound."));
  lower = value_as_address (parse_to_comma_and_eval (&input));

  if (input[0] == ',')
    ++input;
  if (input[0] == '\0')
    error (_("Wrong number of arguments; Missing upper bound."));
  upper = value_as_address (parse_to_comma_and_eval (&input));

  bd_base = i386_mpx_bd_base ();
  bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
  for (i = 0; i < 2; i++)
    bt_entry[i] = read_memory_typed_address (bt_entry_addr
					     + i * TYPE_LENGTH (data_ptr_type),
					     data_ptr_type);
  bt_entry[0] = (uint64_t) lower;
  bt_entry[1] = ~(uint64_t) upper;

  for (i = 0; i < 2; i++)
    write_memory_unsigned_integer (bt_entry_addr
				   + i * TYPE_LENGTH (data_ptr_type),
				   TYPE_LENGTH (data_ptr_type), byte_order,
				   bt_entry[i]);
}

static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;

void _initialize_i386_tdep ();
void
_initialize_i386_tdep ()
{
  register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);

  /* Add the variable that controls the disassembly flavor.  */
  add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
			&disassembly_flavor, _("\
Set the disassembly flavor."), _("\
Show the disassembly flavor."), _("\
The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
			NULL,
			NULL, /* FIXME: i18n: */
			&setlist, &showlist);

  /* Add the variable that controls the convention for returning
     structs.  */
  add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
			&struct_convention, _("\
Set the convention for returning small structs."), _("\
Show the convention for returning small structs."), _("\
Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
is \"default\"."),
			NULL,
			NULL, /* FIXME: i18n: */
			&setlist, &showlist);

  /* Add "mpx" prefix for the set commands.  */

  add_basic_prefix_cmd ("mpx", class_support, _("\
Set Intel Memory Protection Extensions specific variables."),
			&mpx_set_cmdlist,
			0 /* allow-unknown */, &setlist);

  /* Add "mpx" prefix for the show commands.  */

  add_show_prefix_cmd ("mpx", class_support, _("\
Show Intel Memory Protection Extensions specific variables."),
		       &mpx_show_cmdlist,
		       0 /* allow-unknown */, &showlist);

  /* Add "bound" command for the show mpx commands list.  */

  add_cmd ("bound", no_class, i386_mpx_info_bounds,
	   "Show the memory bounds for a given array/pointer storage\
 in the bound table.",
	   &mpx_show_cmdlist);

  /* Add "bound" command for the set mpx commands list.  */

  add_cmd ("bound", no_class, i386_mpx_set_bounds,
	   "Set the memory bounds for a given array/pointer storage\
 in the bound table.",
	   &mpx_set_cmdlist);

  gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
			  i386_svr4_init_abi);

  /* Initialize the i386-specific register groups.  */
  i386_init_reggroups ();

  /* Tell remote stub that we support XML target description.  */
  register_remote_support_xml ("i386");
}