aboutsummaryrefslogtreecommitdiff
path: root/gdb/hppa-tdep.c
blob: 576678ae9b2019e61f983be4446fbc268045c4a3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
/* Target-dependent code for the HP PA-RISC architecture.

   Copyright (C) 1986-2022 Free Software Foundation, Inc.

   Contributed by the Center for Software Science at the
   University of Utah (pa-gdb-bugs@cs.utah.edu).

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "bfd.h"
#include "inferior.h"
#include "regcache.h"
#include "completer.h"
#include "osabi.h"
#include "arch-utils.h"
/* For argument passing to the inferior.  */
#include "symtab.h"
#include "dis-asm.h"
#include "trad-frame.h"
#include "frame-unwind.h"
#include "frame-base.h"

#include "gdbcore.h"
#include "gdbcmd.h"
#include "gdbtypes.h"
#include "objfiles.h"
#include "hppa-tdep.h"
#include <algorithm>

static bool hppa_debug = false;

/* Some local constants.  */
static const int hppa32_num_regs = 128;
static const int hppa64_num_regs = 96;

/* We use the objfile->obj_private pointer for two things:
 * 1.  An unwind table;
 *
 * 2.  A pointer to any associated shared library object.
 *
 * #defines are used to help refer to these objects.
 */

/* Info about the unwind table associated with an object file.
 * This is hung off of the "objfile->obj_private" pointer, and
 * is allocated in the objfile's psymbol obstack.  This allows
 * us to have unique unwind info for each executable and shared
 * library that we are debugging.
 */
struct hppa_unwind_info
  {
    struct unwind_table_entry *table;	/* Pointer to unwind info */
    struct unwind_table_entry *cache;	/* Pointer to last entry we found */
    int last;				/* Index of last entry */
  };

struct hppa_objfile_private
  {
    struct hppa_unwind_info *unwind_info = nullptr;	/* a pointer */
    struct so_list *so_info = nullptr;			/* a pointer  */
    CORE_ADDR dp = 0;

    int dummy_call_sequence_reg = 0;
    CORE_ADDR dummy_call_sequence_addr = 0;
  };

/* hppa-specific object data -- unwind and solib info.
   TODO/maybe: think about splitting this into two parts; the unwind data is 
   common to all hppa targets, but is only used in this file; we can register 
   that separately and make this static. The solib data is probably hpux-
   specific, so we can create a separate extern objfile_data that is registered
   by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c.  */
static const struct objfile_key<hppa_objfile_private> hppa_objfile_priv_data;

/* Get at various relevant fields of an instruction word.  */
#define MASK_5 0x1f
#define MASK_11 0x7ff
#define MASK_14 0x3fff
#define MASK_21 0x1fffff

/* Sizes (in bytes) of the native unwind entries.  */
#define UNWIND_ENTRY_SIZE 16
#define STUB_UNWIND_ENTRY_SIZE 8

/* Routines to extract various sized constants out of hppa 
   instructions.  */

/* This assumes that no garbage lies outside of the lower bits of 
   value.  */

static int
hppa_sign_extend (unsigned val, unsigned bits)
{
  return (int) (val >> (bits - 1) ? (-(1 << bits)) | val : val);
}

/* For many immediate values the sign bit is the low bit!  */

static int
hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
{
  return (int) ((val & 0x1 ? (-(1 << (bits - 1))) : 0) | val >> 1);
}

/* Extract the bits at positions between FROM and TO, using HP's numbering
   (MSB = 0).  */

int
hppa_get_field (unsigned word, int from, int to)
{
  return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
}

/* Extract the immediate field from a ld{bhw}s instruction.  */

int
hppa_extract_5_load (unsigned word)
{
  return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
}

/* Extract the immediate field from a break instruction.  */

unsigned
hppa_extract_5r_store (unsigned word)
{
  return (word & MASK_5);
}

/* Extract the immediate field from a {sr}sm instruction.  */

unsigned
hppa_extract_5R_store (unsigned word)
{
  return (word >> 16 & MASK_5);
}

/* Extract a 14 bit immediate field.  */

int
hppa_extract_14 (unsigned word)
{
  return hppa_low_hppa_sign_extend (word & MASK_14, 14);
}

/* Extract a 21 bit constant.  */

int
hppa_extract_21 (unsigned word)
{
  int val;

  word &= MASK_21;
  word <<= 11;
  val = hppa_get_field (word, 20, 20);
  val <<= 11;
  val |= hppa_get_field (word, 9, 19);
  val <<= 2;
  val |= hppa_get_field (word, 5, 6);
  val <<= 5;
  val |= hppa_get_field (word, 0, 4);
  val <<= 2;
  val |= hppa_get_field (word, 7, 8);
  return hppa_sign_extend (val, 21) << 11;
}

/* extract a 17 bit constant from branch instructions, returning the
   19 bit signed value.  */

int
hppa_extract_17 (unsigned word)
{
  return hppa_sign_extend (hppa_get_field (word, 19, 28) |
		      hppa_get_field (word, 29, 29) << 10 |
		      hppa_get_field (word, 11, 15) << 11 |
		      (word & 0x1) << 16, 17) << 2;
}

CORE_ADDR 
hppa_symbol_address(const char *sym)
{
  struct bound_minimal_symbol minsym;

  minsym = lookup_minimal_symbol (sym, NULL, NULL);
  if (minsym.minsym)
    return BMSYMBOL_VALUE_ADDRESS (minsym);
  else
    return (CORE_ADDR)-1;
}



/* Compare the start address for two unwind entries returning 1 if 
   the first address is larger than the second, -1 if the second is
   larger than the first, and zero if they are equal.  */

static int
compare_unwind_entries (const void *arg1, const void *arg2)
{
  const struct unwind_table_entry *a = (const struct unwind_table_entry *) arg1;
  const struct unwind_table_entry *b = (const struct unwind_table_entry *) arg2;

  if (a->region_start > b->region_start)
    return 1;
  else if (a->region_start < b->region_start)
    return -1;
  else
    return 0;
}

static void
record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
{
  if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
       == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
    {
      bfd_vma value = section->vma - section->filepos;
      CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;

      if (value < *low_text_segment_address)
	  *low_text_segment_address = value;
    }
}

static void
internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
		     asection *section, unsigned int entries,
		     size_t size, CORE_ADDR text_offset)
{
  /* We will read the unwind entries into temporary memory, then
     fill in the actual unwind table.  */

  if (size > 0)
    {
      struct gdbarch *gdbarch = objfile->arch ();
      hppa_gdbarch_tdep *tdep = (hppa_gdbarch_tdep *) gdbarch_tdep (gdbarch);
      unsigned long tmp;
      unsigned i;
      char *buf = (char *) alloca (size);
      CORE_ADDR low_text_segment_address;

      /* For ELF targets, then unwinds are supposed to
	 be segment relative offsets instead of absolute addresses.

	 Note that when loading a shared library (text_offset != 0) the
	 unwinds are already relative to the text_offset that will be
	 passed in.  */
      if (tdep->is_elf && text_offset == 0)
	{
	  low_text_segment_address = -1;

	  bfd_map_over_sections (objfile->obfd,
				 record_text_segment_lowaddr, 
				 &low_text_segment_address);

	  text_offset = low_text_segment_address;
	}
      else if (tdep->solib_get_text_base)
	{
	  text_offset = tdep->solib_get_text_base (objfile);
	}

      bfd_get_section_contents (objfile->obfd, section, buf, 0, size);

      /* Now internalize the information being careful to handle host/target
	 endian issues.  */
      for (i = 0; i < entries; i++)
	{
	  table[i].region_start = bfd_get_32 (objfile->obfd,
					      (bfd_byte *) buf);
	  table[i].region_start += text_offset;
	  buf += 4;
	  table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
	  table[i].region_end += text_offset;
	  buf += 4;
	  tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
	  buf += 4;
	  table[i].Cannot_unwind = (tmp >> 31) & 0x1;
	  table[i].Millicode = (tmp >> 30) & 0x1;
	  table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
	  table[i].Region_description = (tmp >> 27) & 0x3;
	  table[i].reserved = (tmp >> 26) & 0x1;
	  table[i].Entry_SR = (tmp >> 25) & 0x1;
	  table[i].Entry_FR = (tmp >> 21) & 0xf;
	  table[i].Entry_GR = (tmp >> 16) & 0x1f;
	  table[i].Args_stored = (tmp >> 15) & 0x1;
	  table[i].Variable_Frame = (tmp >> 14) & 0x1;
	  table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
	  table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
	  table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
	  table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
	  table[i].sr4export = (tmp >> 9) & 0x1;
	  table[i].cxx_info = (tmp >> 8) & 0x1;
	  table[i].cxx_try_catch = (tmp >> 7) & 0x1;
	  table[i].sched_entry_seq = (tmp >> 6) & 0x1;
	  table[i].reserved1 = (tmp >> 5) & 0x1;
	  table[i].Save_SP = (tmp >> 4) & 0x1;
	  table[i].Save_RP = (tmp >> 3) & 0x1;
	  table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
	  table[i].save_r19 = (tmp >> 1) & 0x1;
	  table[i].Cleanup_defined = tmp & 0x1;
	  tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
	  buf += 4;
	  table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
	  table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
	  table[i].Large_frame = (tmp >> 29) & 0x1;
	  table[i].alloca_frame = (tmp >> 28) & 0x1;
	  table[i].reserved2 = (tmp >> 27) & 0x1;
	  table[i].Total_frame_size = tmp & 0x7ffffff;

	  /* Stub unwinds are handled elsewhere.  */
	  table[i].stub_unwind.stub_type = 0;
	  table[i].stub_unwind.padding = 0;
	}
    }
}

/* Read in the backtrace information stored in the `$UNWIND_START$' section of
   the object file.  This info is used mainly by find_unwind_entry() to find
   out the stack frame size and frame pointer used by procedures.  We put
   everything on the psymbol obstack in the objfile so that it automatically
   gets freed when the objfile is destroyed.  */

static void
read_unwind_info (struct objfile *objfile)
{
  asection *unwind_sec, *stub_unwind_sec;
  size_t unwind_size, stub_unwind_size, total_size;
  unsigned index, unwind_entries;
  unsigned stub_entries, total_entries;
  CORE_ADDR text_offset;
  struct hppa_unwind_info *ui;
  struct hppa_objfile_private *obj_private;

  text_offset = objfile->text_section_offset ();
  ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
					   sizeof (struct hppa_unwind_info));

  ui->table = NULL;
  ui->cache = NULL;
  ui->last = -1;

  /* For reasons unknown the HP PA64 tools generate multiple unwinder
     sections in a single executable.  So we just iterate over every
     section in the BFD looking for unwinder sections instead of trying
     to do a lookup with bfd_get_section_by_name.

     First determine the total size of the unwind tables so that we
     can allocate memory in a nice big hunk.  */
  total_entries = 0;
  for (unwind_sec = objfile->obfd->sections;
       unwind_sec;
       unwind_sec = unwind_sec->next)
    {
      if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
	  || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
	{
	  unwind_size = bfd_section_size (unwind_sec);
	  unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;

	  total_entries += unwind_entries;
	}
    }

  /* Now compute the size of the stub unwinds.  Note the ELF tools do not
     use stub unwinds at the current time.  */
  stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");

  if (stub_unwind_sec)
    {
      stub_unwind_size = bfd_section_size (stub_unwind_sec);
      stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
    }
  else
    {
      stub_unwind_size = 0;
      stub_entries = 0;
    }

  /* Compute total number of unwind entries and their total size.  */
  total_entries += stub_entries;
  total_size = total_entries * sizeof (struct unwind_table_entry);

  /* Allocate memory for the unwind table.  */
  ui->table = (struct unwind_table_entry *)
    obstack_alloc (&objfile->objfile_obstack, total_size);
  ui->last = total_entries - 1;

  /* Now read in each unwind section and internalize the standard unwind
     entries.  */
  index = 0;
  for (unwind_sec = objfile->obfd->sections;
       unwind_sec;
       unwind_sec = unwind_sec->next)
    {
      if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
	  || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
	{
	  unwind_size = bfd_section_size (unwind_sec);
	  unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;

	  internalize_unwinds (objfile, &ui->table[index], unwind_sec,
			       unwind_entries, unwind_size, text_offset);
	  index += unwind_entries;
	}
    }

  /* Now read in and internalize the stub unwind entries.  */
  if (stub_unwind_size > 0)
    {
      unsigned int i;
      char *buf = (char *) alloca (stub_unwind_size);

      /* Read in the stub unwind entries.  */
      bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
				0, stub_unwind_size);

      /* Now convert them into regular unwind entries.  */
      for (i = 0; i < stub_entries; i++, index++)
	{
	  /* Clear out the next unwind entry.  */
	  memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));

	  /* Convert offset & size into region_start and region_end.
	     Stuff away the stub type into "reserved" fields.  */
	  ui->table[index].region_start = bfd_get_32 (objfile->obfd,
						      (bfd_byte *) buf);
	  ui->table[index].region_start += text_offset;
	  buf += 4;
	  ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
							  (bfd_byte *) buf);
	  buf += 2;
	  ui->table[index].region_end
	    = ui->table[index].region_start + 4 *
	    (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
	  buf += 2;
	}

    }

  /* Unwind table needs to be kept sorted.  */
  qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
	 compare_unwind_entries);

  /* Keep a pointer to the unwind information.  */
  obj_private = hppa_objfile_priv_data.get (objfile);
  if (obj_private == NULL)
    obj_private = hppa_objfile_priv_data.emplace (objfile);

  obj_private->unwind_info = ui;
}

/* Lookup the unwind (stack backtrace) info for the given PC.  We search all
   of the objfiles seeking the unwind table entry for this PC.  Each objfile
   contains a sorted list of struct unwind_table_entry.  Since we do a binary
   search of the unwind tables, we depend upon them to be sorted.  */

struct unwind_table_entry *
find_unwind_entry (CORE_ADDR pc)
{
  int first, middle, last;

  if (hppa_debug)
    gdb_printf (gdb_stdlog, "{ find_unwind_entry %s -> ",
		hex_string (pc));

  /* A function at address 0?  Not in HP-UX!  */
  if (pc == (CORE_ADDR) 0)
    {
      if (hppa_debug)
	gdb_printf (gdb_stdlog, "NULL }\n");
      return NULL;
    }

  for (objfile *objfile : current_program_space->objfiles ())
    {
      struct hppa_unwind_info *ui;
      ui = NULL;
      struct hppa_objfile_private *priv = hppa_objfile_priv_data.get (objfile);
      if (priv)
	ui = priv->unwind_info;

      if (!ui)
	{
	  read_unwind_info (objfile);
	  priv = hppa_objfile_priv_data.get (objfile);
	  if (priv == NULL)
	    error (_("Internal error reading unwind information."));
	  ui = priv->unwind_info;
	}

      /* First, check the cache.  */

      if (ui->cache
	  && pc >= ui->cache->region_start
	  && pc <= ui->cache->region_end)
	{
	  if (hppa_debug)
	    gdb_printf (gdb_stdlog, "%s (cached) }\n",
			hex_string ((uintptr_t) ui->cache));
	  return ui->cache;
	}

      /* Not in the cache, do a binary search.  */

      first = 0;
      last = ui->last;

      while (first <= last)
	{
	  middle = (first + last) / 2;
	  if (pc >= ui->table[middle].region_start
	      && pc <= ui->table[middle].region_end)
	    {
	      ui->cache = &ui->table[middle];
	      if (hppa_debug)
		gdb_printf (gdb_stdlog, "%s }\n",
			    hex_string ((uintptr_t) ui->cache));
	      return &ui->table[middle];
	    }

	  if (pc < ui->table[middle].region_start)
	    last = middle - 1;
	  else
	    first = middle + 1;
	}
    }

  if (hppa_debug)
    gdb_printf (gdb_stdlog, "NULL (not found) }\n");

  return NULL;
}

/* Implement the stack_frame_destroyed_p gdbarch method.

   The epilogue is defined here as the area either on the `bv' instruction 
   itself or an instruction which destroys the function's stack frame.
   
   We do not assume that the epilogue is at the end of a function as we can
   also have return sequences in the middle of a function.  */

static int
hppa_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  unsigned long status;
  unsigned int inst;
  gdb_byte buf[4];

  status = target_read_memory (pc, buf, 4);
  if (status != 0)
    return 0;

  inst = extract_unsigned_integer (buf, 4, byte_order);

  /* The most common way to perform a stack adjustment ldo X(sp),sp 
     We are destroying a stack frame if the offset is negative.  */
  if ((inst & 0xffffc000) == 0x37de0000
      && hppa_extract_14 (inst) < 0)
    return 1;

  /* ldw,mb D(sp),X or ldd,mb D(sp),X */
  if (((inst & 0x0fc010e0) == 0x0fc010e0 
       || (inst & 0x0fc010e0) == 0x0fc010e0)
      && hppa_extract_14 (inst) < 0)
    return 1;

  /* bv %r0(%rp) or bv,n %r0(%rp) */
  if (inst == 0xe840c000 || inst == 0xe840c002)
    return 1;

  return 0;
}

constexpr gdb_byte hppa_break_insn[] = {0x00, 0x01, 0x00, 0x04};

typedef BP_MANIPULATION (hppa_break_insn) hppa_breakpoint;

/* Return the name of a register.  */

static const char *
hppa32_register_name (struct gdbarch *gdbarch, int i)
{
  static const char *names[] = {
    "flags",  "r1",      "rp",     "r3",
    "r4",     "r5",      "r6",     "r7",
    "r8",     "r9",      "r10",    "r11",
    "r12",    "r13",     "r14",    "r15",
    "r16",    "r17",     "r18",    "r19",
    "r20",    "r21",     "r22",    "r23",
    "r24",    "r25",     "r26",    "dp",
    "ret0",   "ret1",    "sp",     "r31",
    "sar",    "pcoqh",   "pcsqh",  "pcoqt",
    "pcsqt",  "eiem",    "iir",    "isr",
    "ior",    "ipsw",    "goto",   "sr4",
    "sr0",    "sr1",     "sr2",    "sr3",
    "sr5",    "sr6",     "sr7",    "cr0",
    "cr8",    "cr9",     "ccr",    "cr12",
    "cr13",   "cr24",    "cr25",   "cr26",
    "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
    "fpsr",    "fpe1",   "fpe2",   "fpe3",
    "fpe4",   "fpe5",    "fpe6",   "fpe7",
    "fr4",     "fr4R",   "fr5",    "fr5R",
    "fr6",    "fr6R",    "fr7",    "fr7R",
    "fr8",     "fr8R",   "fr9",    "fr9R",
    "fr10",   "fr10R",   "fr11",   "fr11R",
    "fr12",    "fr12R",  "fr13",   "fr13R",
    "fr14",   "fr14R",   "fr15",   "fr15R",
    "fr16",    "fr16R",  "fr17",   "fr17R",
    "fr18",   "fr18R",   "fr19",   "fr19R",
    "fr20",    "fr20R",  "fr21",   "fr21R",
    "fr22",   "fr22R",   "fr23",   "fr23R",
    "fr24",    "fr24R",  "fr25",   "fr25R",
    "fr26",   "fr26R",   "fr27",   "fr27R",
    "fr28",    "fr28R",  "fr29",   "fr29R",
    "fr30",   "fr30R",   "fr31",   "fr31R"
  };
  if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
    return NULL;
  else
    return names[i];
}

static const char *
hppa64_register_name (struct gdbarch *gdbarch, int i)
{
  static const char *names[] = {
    "flags",  "r1",      "rp",     "r3",
    "r4",     "r5",      "r6",     "r7",
    "r8",     "r9",      "r10",    "r11",
    "r12",    "r13",     "r14",    "r15",
    "r16",    "r17",     "r18",    "r19",
    "r20",    "r21",     "r22",    "r23",
    "r24",    "r25",     "r26",    "dp",
    "ret0",   "ret1",    "sp",     "r31",
    "sar",    "pcoqh",   "pcsqh",  "pcoqt",
    "pcsqt",  "eiem",    "iir",    "isr",
    "ior",    "ipsw",    "goto",   "sr4",
    "sr0",    "sr1",     "sr2",    "sr3",
    "sr5",    "sr6",     "sr7",    "cr0",
    "cr8",    "cr9",     "ccr",    "cr12",
    "cr13",   "cr24",    "cr25",   "cr26",
    "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
    "fpsr",    "fpe1",   "fpe2",   "fpe3",
    "fr4",    "fr5",     "fr6",    "fr7",
    "fr8",     "fr9",    "fr10",   "fr11",
    "fr12",   "fr13",    "fr14",   "fr15",
    "fr16",    "fr17",   "fr18",   "fr19",
    "fr20",   "fr21",    "fr22",   "fr23",
    "fr24",    "fr25",   "fr26",   "fr27",
    "fr28",  "fr29",    "fr30",   "fr31"
  };
  if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
    return NULL;
  else
    return names[i];
}

/* Map dwarf DBX register numbers to GDB register numbers.  */
static int
hppa64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
{
  /* The general registers and the sar are the same in both sets.  */
  if (reg >= 0 && reg <= 32)
    return reg;

  /* fr4-fr31 are mapped from 72 in steps of 2.  */
  if (reg >= 72 && reg < 72 + 28 * 2 && !(reg & 1))
    return HPPA64_FP4_REGNUM + (reg - 72) / 2;

  return -1;
}

/* This function pushes a stack frame with arguments as part of the
   inferior function calling mechanism.

   This is the version of the function for the 32-bit PA machines, in
   which later arguments appear at lower addresses.  (The stack always
   grows towards higher addresses.)

   We simply allocate the appropriate amount of stack space and put
   arguments into their proper slots.  */
   
static CORE_ADDR
hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
			struct regcache *regcache, CORE_ADDR bp_addr,
			int nargs, struct value **args, CORE_ADDR sp,
			function_call_return_method return_method,
			CORE_ADDR struct_addr)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);

  /* Stack base address at which any pass-by-reference parameters are
     stored.  */
  CORE_ADDR struct_end = 0;
  /* Stack base address at which the first parameter is stored.  */
  CORE_ADDR param_end = 0;

  /* Two passes.  First pass computes the location of everything,
     second pass writes the bytes out.  */
  int write_pass;

  /* Global pointer (r19) of the function we are trying to call.  */
  CORE_ADDR gp;

  hppa_gdbarch_tdep *tdep = (hppa_gdbarch_tdep *) gdbarch_tdep (gdbarch);

  for (write_pass = 0; write_pass < 2; write_pass++)
    {
      CORE_ADDR struct_ptr = 0;
      /* The first parameter goes into sp-36, each stack slot is 4-bytes.
	 struct_ptr is adjusted for each argument below, so the first
	 argument will end up at sp-36.  */
      CORE_ADDR param_ptr = 32;
      int i;
      int small_struct = 0;

      for (i = 0; i < nargs; i++)
	{
	  struct value *arg = args[i];
	  struct type *type = check_typedef (value_type (arg));
	  /* The corresponding parameter that is pushed onto the
	     stack, and [possibly] passed in a register.  */
	  gdb_byte param_val[8];
	  int param_len;
	  memset (param_val, 0, sizeof param_val);
	  if (TYPE_LENGTH (type) > 8)
	    {
	      /* Large parameter, pass by reference.  Store the value
		 in "struct" area and then pass its address.  */
	      param_len = 4;
	      struct_ptr += align_up (TYPE_LENGTH (type), 8);
	      if (write_pass)
		write_memory (struct_end - struct_ptr,
			      value_contents (arg).data (), TYPE_LENGTH (type));
	      store_unsigned_integer (param_val, 4, byte_order,
				      struct_end - struct_ptr);
	    }
	  else if (type->code () == TYPE_CODE_INT
		   || type->code () == TYPE_CODE_ENUM)
	    {
	      /* Integer value store, right aligned.  "unpack_long"
		 takes care of any sign-extension problems.  */
	      param_len = align_up (TYPE_LENGTH (type), 4);
	      store_unsigned_integer
		(param_val, param_len, byte_order,
		 unpack_long (type, value_contents (arg).data ()));
	    }
	  else if (type->code () == TYPE_CODE_FLT)
	    {
	      /* Floating point value store, right aligned.  */
	      param_len = align_up (TYPE_LENGTH (type), 4);
	      memcpy (param_val, value_contents (arg).data (), param_len);
	    }
	  else
	    {
	      param_len = align_up (TYPE_LENGTH (type), 4);

	      /* Small struct value are stored right-aligned.  */
	      memcpy (param_val + param_len - TYPE_LENGTH (type),
		      value_contents (arg).data (), TYPE_LENGTH (type));

	      /* Structures of size 5, 6 and 7 bytes are special in that
		 the higher-ordered word is stored in the lower-ordered
		 argument, and even though it is a 8-byte quantity the
		 registers need not be 8-byte aligned.  */
	      if (param_len > 4 && param_len < 8)
		small_struct = 1;
	    }

	  param_ptr += param_len;
	  if (param_len == 8 && !small_struct)
	    param_ptr = align_up (param_ptr, 8);

	  /* First 4 non-FP arguments are passed in gr26-gr23.
	     First 4 32-bit FP arguments are passed in fr4L-fr7L.
	     First 2 64-bit FP arguments are passed in fr5 and fr7.

	     The rest go on the stack, starting at sp-36, towards lower
	     addresses.  8-byte arguments must be aligned to a 8-byte
	     stack boundary.  */
	  if (write_pass)
	    {
	      write_memory (param_end - param_ptr, param_val, param_len);

	      /* There are some cases when we don't know the type
		 expected by the callee (e.g. for variadic functions), so 
		 pass the parameters in both general and fp regs.  */
	      if (param_ptr <= 48)
		{
		  int grreg = 26 - (param_ptr - 36) / 4;
		  int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
		  int fpreg = 74 + (param_ptr - 32) / 8 * 4;

		  regcache->cooked_write (grreg, param_val);
		  regcache->cooked_write (fpLreg, param_val);

		  if (param_len > 4)
		    {
		      regcache->cooked_write (grreg + 1, param_val + 4);

		      regcache->cooked_write (fpreg, param_val);
		      regcache->cooked_write (fpreg + 1, param_val + 4);
		    }
		}
	    }
	}

      /* Update the various stack pointers.  */
      if (!write_pass)
	{
	  struct_end = sp + align_up (struct_ptr, 64);
	  /* PARAM_PTR already accounts for all the arguments passed
	     by the user.  However, the ABI mandates minimum stack
	     space allocations for outgoing arguments.  The ABI also
	     mandates minimum stack alignments which we must
	     preserve.  */
	  param_end = struct_end + align_up (param_ptr, 64);
	}
    }

  /* If a structure has to be returned, set up register 28 to hold its
     address.  */
  if (return_method == return_method_struct)
    regcache_cooked_write_unsigned (regcache, 28, struct_addr);

  gp = tdep->find_global_pointer (gdbarch, function);

  if (gp != 0)
    regcache_cooked_write_unsigned (regcache, 19, gp);

  /* Set the return address.  */
  if (!gdbarch_push_dummy_code_p (gdbarch))
    regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);

  /* Update the Stack Pointer.  */
  regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);

  return param_end;
}

/* The 64-bit PA-RISC calling conventions are documented in "64-Bit
   Runtime Architecture for PA-RISC 2.0", which is distributed as part
   as of the HP-UX Software Transition Kit (STK).  This implementation
   is based on version 3.3, dated October 6, 1997.  */

/* Check whether TYPE is an "Integral or Pointer Scalar Type".  */

static int
hppa64_integral_or_pointer_p (const struct type *type)
{
  switch (type->code ())
    {
    case TYPE_CODE_INT:
    case TYPE_CODE_BOOL:
    case TYPE_CODE_CHAR:
    case TYPE_CODE_ENUM:
    case TYPE_CODE_RANGE:
      {
	int len = TYPE_LENGTH (type);
	return (len == 1 || len == 2 || len == 4 || len == 8);
      }
    case TYPE_CODE_PTR:
    case TYPE_CODE_REF:
    case TYPE_CODE_RVALUE_REF:
      return (TYPE_LENGTH (type) == 8);
    default:
      break;
    }

  return 0;
}

/* Check whether TYPE is a "Floating Scalar Type".  */

static int
hppa64_floating_p (const struct type *type)
{
  switch (type->code ())
    {
    case TYPE_CODE_FLT:
      {
	int len = TYPE_LENGTH (type);
	return (len == 4 || len == 8 || len == 16);
      }
    default:
      break;
    }

  return 0;
}

/* If CODE points to a function entry address, try to look up the corresponding
   function descriptor and return its address instead.  If CODE is not a
   function entry address, then just return it unchanged.  */
static CORE_ADDR
hppa64_convert_code_addr_to_fptr (struct gdbarch *gdbarch, CORE_ADDR code)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  struct obj_section *sec, *opd;

  sec = find_pc_section (code);

  if (!sec)
    return code;

  /* If CODE is in a data section, assume it's already a fptr.  */
  if (!(sec->the_bfd_section->flags & SEC_CODE))
    return code;

  ALL_OBJFILE_OSECTIONS (sec->objfile, opd)
    {
      if (strcmp (opd->the_bfd_section->name, ".opd") == 0)
	break;
    }

  if (opd < sec->objfile->sections_end)
    {
      for (CORE_ADDR addr = opd->addr (); addr < opd->endaddr (); addr += 2 * 8)
	{
	  ULONGEST opdaddr;
	  gdb_byte tmp[8];

	  if (target_read_memory (addr, tmp, sizeof (tmp)))
	      break;
	  opdaddr = extract_unsigned_integer (tmp, sizeof (tmp), byte_order);

	  if (opdaddr == code)
	    return addr - 16;
	}
    }

  return code;
}

static CORE_ADDR
hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
			struct regcache *regcache, CORE_ADDR bp_addr,
			int nargs, struct value **args, CORE_ADDR sp,
			function_call_return_method return_method,
			CORE_ADDR struct_addr)
{
  hppa_gdbarch_tdep *tdep = (hppa_gdbarch_tdep *) gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int i, offset = 0;
  CORE_ADDR gp;

  /* "The outgoing parameter area [...] must be aligned at a 16-byte
     boundary."  */
  sp = align_up (sp, 16);

  for (i = 0; i < nargs; i++)
    {
      struct value *arg = args[i];
      struct type *type = value_type (arg);
      int len = TYPE_LENGTH (type);
      const bfd_byte *valbuf;
      bfd_byte fptrbuf[8];
      int regnum;

      /* "Each parameter begins on a 64-bit (8-byte) boundary."  */
      offset = align_up (offset, 8);

      if (hppa64_integral_or_pointer_p (type))
	{
	  /* "Integral scalar parameters smaller than 64 bits are
	     padded on the left (i.e., the value is in the
	     least-significant bits of the 64-bit storage unit, and
	     the high-order bits are undefined)."  Therefore we can
	     safely sign-extend them.  */
	  if (len < 8)
	    {
	      arg = value_cast (builtin_type (gdbarch)->builtin_int64, arg);
	      len = 8;
	    }
	}
      else if (hppa64_floating_p (type))
	{
	  if (len > 8)
	    {
	      /* "Quad-precision (128-bit) floating-point scalar
		 parameters are aligned on a 16-byte boundary."  */
	      offset = align_up (offset, 16);

	      /* "Double-extended- and quad-precision floating-point
		 parameters within the first 64 bytes of the parameter
		 list are always passed in general registers."  */
	    }
	  else
	    {
	      if (len == 4)
		{
		  /* "Single-precision (32-bit) floating-point scalar
		     parameters are padded on the left with 32 bits of
		     garbage (i.e., the floating-point value is in the
		     least-significant 32 bits of a 64-bit storage
		     unit)."  */
		  offset += 4;
		}

	      /* "Single- and double-precision floating-point
		 parameters in this area are passed according to the
		 available formal parameter information in a function
		 prototype.  [...]  If no prototype is in scope,
		 floating-point parameters must be passed both in the
		 corresponding general registers and in the
		 corresponding floating-point registers."  */
	      regnum = HPPA64_FP4_REGNUM + offset / 8;

	      if (regnum < HPPA64_FP4_REGNUM + 8)
		{
		  /* "Single-precision floating-point parameters, when
		     passed in floating-point registers, are passed in
		     the right halves of the floating point registers;
		     the left halves are unused."  */
		  regcache->cooked_write_part (regnum, offset % 8, len,
					       value_contents (arg).data ());
		}
	    }
	}
      else
	{
	  if (len > 8)
	    {
	      /* "Aggregates larger than 8 bytes are aligned on a
		 16-byte boundary, possibly leaving an unused argument
		 slot, which is filled with garbage.  If necessary,
		 they are padded on the right (with garbage), to a
		 multiple of 8 bytes."  */
	      offset = align_up (offset, 16);
	    }
	}

      /* If we are passing a function pointer, make sure we pass a function
	 descriptor instead of the function entry address.  */
      if (type->code () == TYPE_CODE_PTR
	  && TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_FUNC)
	{
	  ULONGEST codeptr, fptr;

	  codeptr = unpack_long (type, value_contents (arg).data ());
	  fptr = hppa64_convert_code_addr_to_fptr (gdbarch, codeptr);
	  store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), byte_order,
				  fptr);
	  valbuf = fptrbuf;
	}
      else
	{
	  valbuf = value_contents (arg).data ();
	}

      /* Always store the argument in memory.  */
      write_memory (sp + offset, valbuf, len);

      regnum = HPPA_ARG0_REGNUM - offset / 8;
      while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
	{
	  regcache->cooked_write_part (regnum, offset % 8, std::min (len, 8),
				       valbuf);
	  offset += std::min (len, 8);
	  valbuf += std::min (len, 8);
	  len -= std::min (len, 8);
	  regnum--;
	}

      offset += len;
    }

  /* Set up GR29 (%ret1) to hold the argument pointer (ap).  */
  regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);

  /* Allocate the outgoing parameter area.  Make sure the outgoing
     parameter area is multiple of 16 bytes in length.  */
  sp += std::max (align_up (offset, 16), (ULONGEST) 64);

  /* Allocate 32-bytes of scratch space.  The documentation doesn't
     mention this, but it seems to be needed.  */
  sp += 32;

  /* Allocate the frame marker area.  */
  sp += 16;

  /* If a structure has to be returned, set up GR 28 (%ret0) to hold
     its address.  */
  if (return_method == return_method_struct)
    regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);

  /* Set up GR27 (%dp) to hold the global pointer (gp).  */
  gp = tdep->find_global_pointer (gdbarch, function);
  if (gp != 0)
    regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);

  /* Set up GR2 (%rp) to hold the return pointer (rp).  */
  if (!gdbarch_push_dummy_code_p (gdbarch))
    regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);

  /* Set up GR30 to hold the stack pointer (sp).  */
  regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);

  return sp;
}


/* Handle 32/64-bit struct return conventions.  */

static enum return_value_convention
hppa32_return_value (struct gdbarch *gdbarch, struct value *function,
		     struct type *type, struct regcache *regcache,
		     gdb_byte *readbuf, const gdb_byte *writebuf)
{
  if (TYPE_LENGTH (type) <= 2 * 4)
    {
      /* The value always lives in the right hand end of the register
	 (or register pair)?  */
      int b;
      int reg = type->code () == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
      int part = TYPE_LENGTH (type) % 4;
      /* The left hand register contains only part of the value,
	 transfer that first so that the rest can be xfered as entire
	 4-byte registers.  */
      if (part > 0)
	{
	  if (readbuf != NULL)
	    regcache->cooked_read_part (reg, 4 - part, part, readbuf);
	  if (writebuf != NULL)
	    regcache->cooked_write_part (reg, 4 - part, part, writebuf);
	  reg++;
	}
      /* Now transfer the remaining register values.  */
      for (b = part; b < TYPE_LENGTH (type); b += 4)
	{
	  if (readbuf != NULL)
	    regcache->cooked_read (reg, readbuf + b);
	  if (writebuf != NULL)
	    regcache->cooked_write (reg, writebuf + b);
	  reg++;
	}
      return RETURN_VALUE_REGISTER_CONVENTION;
    }
  else
    return RETURN_VALUE_STRUCT_CONVENTION;
}

static enum return_value_convention
hppa64_return_value (struct gdbarch *gdbarch, struct value *function,
		     struct type *type, struct regcache *regcache,
		     gdb_byte *readbuf, const gdb_byte *writebuf)
{
  int len = TYPE_LENGTH (type);
  int regnum, offset;

  if (len > 16)
    {
      /* All return values larger than 128 bits must be aggregate
	 return values.  */
      gdb_assert (!hppa64_integral_or_pointer_p (type));
      gdb_assert (!hppa64_floating_p (type));

      /* "Aggregate return values larger than 128 bits are returned in
	 a buffer allocated by the caller.  The address of the buffer
	 must be passed in GR 28."  */
      return RETURN_VALUE_STRUCT_CONVENTION;
    }

  if (hppa64_integral_or_pointer_p (type))
    {
      /* "Integral return values are returned in GR 28.  Values
	 smaller than 64 bits are padded on the left (with garbage)."  */
      regnum = HPPA_RET0_REGNUM;
      offset = 8 - len;
    }
  else if (hppa64_floating_p (type))
    {
      if (len > 8)
	{
	  /* "Double-extended- and quad-precision floating-point
	     values are returned in GRs 28 and 29.  The sign,
	     exponent, and most-significant bits of the mantissa are
	     returned in GR 28; the least-significant bits of the
	     mantissa are passed in GR 29.  For double-extended
	     precision values, GR 29 is padded on the right with 48
	     bits of garbage."  */
	  regnum = HPPA_RET0_REGNUM;
	  offset = 0;
	}
      else
	{
	  /* "Single-precision and double-precision floating-point
	     return values are returned in FR 4R (single precision) or
	     FR 4 (double-precision)."  */
	  regnum = HPPA64_FP4_REGNUM;
	  offset = 8 - len;
	}
    }
  else
    {
      /* "Aggregate return values up to 64 bits in size are returned
	 in GR 28.  Aggregates smaller than 64 bits are left aligned
	 in the register; the pad bits on the right are undefined."

	 "Aggregate return values between 65 and 128 bits are returned
	 in GRs 28 and 29.  The first 64 bits are placed in GR 28, and
	 the remaining bits are placed, left aligned, in GR 29.  The
	 pad bits on the right of GR 29 (if any) are undefined."  */
      regnum = HPPA_RET0_REGNUM;
      offset = 0;
    }

  if (readbuf)
    {
      while (len > 0)
	{
	  regcache->cooked_read_part (regnum, offset, std::min (len, 8),
				      readbuf);
	  readbuf += std::min (len, 8);
	  len -= std::min (len, 8);
	  regnum++;
	}
    }

  if (writebuf)
    {
      while (len > 0)
	{
	  regcache->cooked_write_part (regnum, offset, std::min (len, 8),
				       writebuf);
	  writebuf += std::min (len, 8);
	  len -= std::min (len, 8);
	  regnum++;
	}
    }

  return RETURN_VALUE_REGISTER_CONVENTION;
}


static CORE_ADDR
hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
				   struct target_ops *targ)
{
  if (addr & 2)
    {
      struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
      CORE_ADDR plabel = addr & ~3;
      return read_memory_typed_address (plabel, func_ptr_type);
    }

  return addr;
}

static CORE_ADDR
hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
{
  /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
     and not _bit_)!  */
  return align_up (addr, 64);
}

/* Force all frames to 16-byte alignment.  Better safe than sorry.  */

static CORE_ADDR
hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
{
  /* Just always 16-byte align.  */
  return align_up (addr, 16);
}

static CORE_ADDR
hppa_read_pc (readable_regcache *regcache)
{
  ULONGEST ipsw;
  ULONGEST pc;

  regcache->cooked_read (HPPA_IPSW_REGNUM, &ipsw);
  regcache->cooked_read (HPPA_PCOQ_HEAD_REGNUM, &pc);

  /* If the current instruction is nullified, then we are effectively
     still executing the previous instruction.  Pretend we are still
     there.  This is needed when single stepping; if the nullified
     instruction is on a different line, we don't want GDB to think
     we've stepped onto that line.  */
  if (ipsw & 0x00200000)
    pc -= 4;

  return pc & ~0x3;
}

void
hppa_write_pc (struct regcache *regcache, CORE_ADDR pc)
{
  regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pc);
  regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pc + 4);
}

/* For the given instruction (INST), return any adjustment it makes
   to the stack pointer or zero for no adjustment.

   This only handles instructions commonly found in prologues.  */

static int
prologue_inst_adjust_sp (unsigned long inst)
{
  /* This must persist across calls.  */
  static int save_high21;

  /* The most common way to perform a stack adjustment ldo X(sp),sp */
  if ((inst & 0xffffc000) == 0x37de0000)
    return hppa_extract_14 (inst);

  /* stwm X,D(sp) */
  if ((inst & 0xffe00000) == 0x6fc00000)
    return hppa_extract_14 (inst);

  /* std,ma X,D(sp) */
  if ((inst & 0xffe00008) == 0x73c00008)
    return (inst & 0x1 ? -(1 << 13) : 0) | (((inst >> 4) & 0x3ff) << 3);

  /* addil high21,%r30; ldo low11,(%r1),%r30)
     save high bits in save_high21 for later use.  */
  if ((inst & 0xffe00000) == 0x2bc00000)
    {
      save_high21 = hppa_extract_21 (inst);
      return 0;
    }

  if ((inst & 0xffff0000) == 0x343e0000)
    return save_high21 + hppa_extract_14 (inst);

  /* fstws as used by the HP compilers.  */
  if ((inst & 0xffffffe0) == 0x2fd01220)
    return hppa_extract_5_load (inst);

  /* No adjustment.  */
  return 0;
}

/* Return nonzero if INST is a branch of some kind, else return zero.  */

static int
is_branch (unsigned long inst)
{
  switch (inst >> 26)
    {
    case 0x20:
    case 0x21:
    case 0x22:
    case 0x23:
    case 0x27:
    case 0x28:
    case 0x29:
    case 0x2a:
    case 0x2b:
    case 0x2f:
    case 0x30:
    case 0x31:
    case 0x32:
    case 0x33:
    case 0x38:
    case 0x39:
    case 0x3a:
    case 0x3b:
      return 1;

    default:
      return 0;
    }
}

/* Return the register number for a GR which is saved by INST or
   zero if INST does not save a GR.

   Referenced from:

     parisc 1.1:
     https://parisc.wiki.kernel.org/images-parisc/6/68/Pa11_acd.pdf

     parisc 2.0:
     https://parisc.wiki.kernel.org/images-parisc/7/73/Parisc2.0.pdf

     According to Table 6-5 of Chapter 6 (Memory Reference Instructions)
     on page 106 in parisc 2.0, all instructions for storing values from
     the general registers are:

       Store:          stb, sth, stw, std (according to Chapter 7, they
		       are only in both "inst >> 26" and "inst >> 6".
       Store Absolute: stwa, stda (according to Chapter 7, they are only
		       in "inst >> 6".
       Store Bytes:    stby, stdby (according to Chapter 7, they are
		       only in "inst >> 6").

   For (inst >> 26), according to Chapter 7:

     The effective memory reference address is formed by the addition
     of an immediate displacement to a base value.

    - stb: 0x18, store a byte from a general register.

    - sth: 0x19, store a halfword from a general register.

    - stw: 0x1a, store a word from a general register.

    - stwm: 0x1b, store a word from a general register and perform base
      register modification (2.0 will still treat it as stw).

    - std: 0x1c, store a doubleword from a general register (2.0 only).

    - stw: 0x1f, store a word from a general register (2.0 only).

   For (inst >> 6) when ((inst >> 26) == 0x03), according to Chapter 7:

     The effective memory reference address is formed by the addition
     of an index value to a base value specified in the instruction.

    - stb: 0x08, store a byte from a general register (1.1 calls stbs).

    - sth: 0x09, store a halfword from a general register (1.1 calls
      sths).

    - stw: 0x0a, store a word from a general register (1.1 calls stws).

    - std: 0x0b: store a doubleword from a general register (2.0 only)

     Implement fast byte moves (stores) to unaligned word or doubleword
     destination.

    - stby: 0x0c, for unaligned word (1.1 calls stbys).

    - stdby: 0x0d for unaligned doubleword (2.0 only).

     Store a word or doubleword using an absolute memory address formed
     using short or long displacement or indexed

    - stwa: 0x0e, store a word from a general register to an absolute
      address (1.0 calls stwas).

    - stda: 0x0f, store a doubleword from a general register to an
      absolute address (2.0 only).  */

static int
inst_saves_gr (unsigned long inst)
{
  switch ((inst >> 26) & 0x0f)
    {
      case 0x03:
	switch ((inst >> 6) & 0x0f)
	  {
	    case 0x08:
	    case 0x09:
	    case 0x0a:
	    case 0x0b:
	    case 0x0c:
	    case 0x0d:
	    case 0x0e:
	    case 0x0f:
	      return hppa_extract_5R_store (inst);
	    default:
	      return 0;
	  }
      case 0x18:
      case 0x19:
      case 0x1a:
      case 0x1b:
      case 0x1c:
      /* no 0x1d or 0x1e -- according to parisc 2.0 document */
      case 0x1f:
	return hppa_extract_5R_store (inst);
      default:
	return 0;
    }
}

/* Return the register number for a FR which is saved by INST or
   zero it INST does not save a FR.

   Note we only care about full 64bit register stores (that's the only
   kind of stores the prologue will use).

   FIXME: What about argument stores with the HP compiler in ANSI mode? */

static int
inst_saves_fr (unsigned long inst)
{
  /* Is this an FSTD?  */
  if ((inst & 0xfc00dfc0) == 0x2c001200)
    return hppa_extract_5r_store (inst);
  if ((inst & 0xfc000002) == 0x70000002)
    return hppa_extract_5R_store (inst);
  /* Is this an FSTW?  */
  if ((inst & 0xfc00df80) == 0x24001200)
    return hppa_extract_5r_store (inst);
  if ((inst & 0xfc000002) == 0x7c000000)
    return hppa_extract_5R_store (inst);
  return 0;
}

/* Advance PC across any function entry prologue instructions
   to reach some "real" code.

   Use information in the unwind table to determine what exactly should
   be in the prologue.  */


static CORE_ADDR
skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR pc,
			int stop_before_branch)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  gdb_byte buf[4];
  CORE_ADDR orig_pc = pc;
  unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
  unsigned long args_stored, status, i, restart_gr, restart_fr;
  struct unwind_table_entry *u;
  int final_iteration;

  restart_gr = 0;
  restart_fr = 0;

restart:
  u = find_unwind_entry (pc);
  if (!u)
    return pc;

  /* If we are not at the beginning of a function, then return now.  */
  if ((pc & ~0x3) != u->region_start)
    return pc;

  /* This is how much of a frame adjustment we need to account for.  */
  stack_remaining = u->Total_frame_size << 3;

  /* Magic register saves we want to know about.  */
  save_rp = u->Save_RP;
  save_sp = u->Save_SP;

  /* An indication that args may be stored into the stack.  Unfortunately
     the HPUX compilers tend to set this in cases where no args were
     stored too!.  */
  args_stored = 1;

  /* Turn the Entry_GR field into a bitmask.  */
  save_gr = 0;
  for (i = 3; i < u->Entry_GR + 3; i++)
    {
      /* Frame pointer gets saved into a special location.  */
      if (u->Save_SP && i == HPPA_FP_REGNUM)
	continue;

      save_gr |= (1 << i);
    }
  save_gr &= ~restart_gr;

  /* Turn the Entry_FR field into a bitmask too.  */
  save_fr = 0;
  for (i = 12; i < u->Entry_FR + 12; i++)
    save_fr |= (1 << i);
  save_fr &= ~restart_fr;

  final_iteration = 0;

  /* Loop until we find everything of interest or hit a branch.

     For unoptimized GCC code and for any HP CC code this will never ever
     examine any user instructions.

     For optimized GCC code we're faced with problems.  GCC will schedule
     its prologue and make prologue instructions available for delay slot
     filling.  The end result is user code gets mixed in with the prologue
     and a prologue instruction may be in the delay slot of the first branch
     or call.

     Some unexpected things are expected with debugging optimized code, so
     we allow this routine to walk past user instructions in optimized
     GCC code.  */
  while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
	 || args_stored)
    {
      unsigned int reg_num;
      unsigned long old_stack_remaining, old_save_gr, old_save_fr;
      unsigned long old_save_rp, old_save_sp, next_inst;

      /* Save copies of all the triggers so we can compare them later
	 (only for HPC).  */
      old_save_gr = save_gr;
      old_save_fr = save_fr;
      old_save_rp = save_rp;
      old_save_sp = save_sp;
      old_stack_remaining = stack_remaining;

      status = target_read_memory (pc, buf, 4);
      inst = extract_unsigned_integer (buf, 4, byte_order);

      /* Yow! */
      if (status != 0)
	return pc;

      /* Note the interesting effects of this instruction.  */
      stack_remaining -= prologue_inst_adjust_sp (inst);

      /* There are limited ways to store the return pointer into the
	 stack.  */
      if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1)
	save_rp = 0;

      /* These are the only ways we save SP into the stack.  At this time
	 the HP compilers never bother to save SP into the stack.  */
      if ((inst & 0xffffc000) == 0x6fc10000
	  || (inst & 0xffffc00c) == 0x73c10008)
	save_sp = 0;

      /* Are we loading some register with an offset from the argument
	 pointer?  */
      if ((inst & 0xffe00000) == 0x37a00000
	  || (inst & 0xffffffe0) == 0x081d0240)
	{
	  pc += 4;
	  continue;
	}

      /* Account for general and floating-point register saves.  */
      reg_num = inst_saves_gr (inst);
      save_gr &= ~(1 << reg_num);

      /* Ugh.  Also account for argument stores into the stack.
	 Unfortunately args_stored only tells us that some arguments
	 where stored into the stack.  Not how many or what kind!

	 This is a kludge as on the HP compiler sets this bit and it
	 never does prologue scheduling.  So once we see one, skip past
	 all of them.   We have similar code for the fp arg stores below.

	 FIXME.  Can still die if we have a mix of GR and FR argument
	 stores!  */
      if (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
	  && reg_num <= 26)
	{
	  while (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
		 && reg_num <= 26)
	    {
	      pc += 4;
	      status = target_read_memory (pc, buf, 4);
	      inst = extract_unsigned_integer (buf, 4, byte_order);
	      if (status != 0)
		return pc;
	      reg_num = inst_saves_gr (inst);
	    }
	  args_stored = 0;
	  continue;
	}

      reg_num = inst_saves_fr (inst);
      save_fr &= ~(1 << reg_num);

      status = target_read_memory (pc + 4, buf, 4);
      next_inst = extract_unsigned_integer (buf, 4, byte_order);

      /* Yow! */
      if (status != 0)
	return pc;

      /* We've got to be read to handle the ldo before the fp register
	 save.  */
      if ((inst & 0xfc000000) == 0x34000000
	  && inst_saves_fr (next_inst) >= 4
	  && inst_saves_fr (next_inst)
	       <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
	{
	  /* So we drop into the code below in a reasonable state.  */
	  reg_num = inst_saves_fr (next_inst);
	  pc -= 4;
	}

      /* Ugh.  Also account for argument stores into the stack.
	 This is a kludge as on the HP compiler sets this bit and it
	 never does prologue scheduling.  So once we see one, skip past
	 all of them.  */
      if (reg_num >= 4
	  && reg_num <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
	{
	  while (reg_num >= 4
		 && reg_num
		      <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
	    {
	      pc += 8;
	      status = target_read_memory (pc, buf, 4);
	      inst = extract_unsigned_integer (buf, 4, byte_order);
	      if (status != 0)
		return pc;
	      if ((inst & 0xfc000000) != 0x34000000)
		break;
	      status = target_read_memory (pc + 4, buf, 4);
	      next_inst = extract_unsigned_integer (buf, 4, byte_order);
	      if (status != 0)
		return pc;
	      reg_num = inst_saves_fr (next_inst);
	    }
	  args_stored = 0;
	  continue;
	}

      /* Quit if we hit any kind of branch.  This can happen if a prologue
	 instruction is in the delay slot of the first call/branch.  */
      if (is_branch (inst) && stop_before_branch)
	break;

      /* What a crock.  The HP compilers set args_stored even if no
	 arguments were stored into the stack (boo hiss).  This could
	 cause this code to then skip a bunch of user insns (up to the
	 first branch).

	 To combat this we try to identify when args_stored was bogusly
	 set and clear it.   We only do this when args_stored is nonzero,
	 all other resources are accounted for, and nothing changed on
	 this pass.  */
      if (args_stored
       && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
	  && old_save_gr == save_gr && old_save_fr == save_fr
	  && old_save_rp == save_rp && old_save_sp == save_sp
	  && old_stack_remaining == stack_remaining)
	break;

      /* Bump the PC.  */
      pc += 4;

      /* !stop_before_branch, so also look at the insn in the delay slot 
	 of the branch.  */
      if (final_iteration)
	break;
      if (is_branch (inst))
	final_iteration = 1;
    }

  /* We've got a tentative location for the end of the prologue.  However
     because of limitations in the unwind descriptor mechanism we may
     have went too far into user code looking for the save of a register
     that does not exist.  So, if there registers we expected to be saved
     but never were, mask them out and restart.

     This should only happen in optimized code, and should be very rare.  */
  if (save_gr || (save_fr && !(restart_fr || restart_gr)))
    {
      pc = orig_pc;
      restart_gr = save_gr;
      restart_fr = save_fr;
      goto restart;
    }

  return pc;
}


/* Return the address of the PC after the last prologue instruction if
   we can determine it from the debug symbols.  Else return zero.  */

static CORE_ADDR
after_prologue (CORE_ADDR pc)
{
  struct symtab_and_line sal;
  CORE_ADDR func_addr, func_end;

  /* If we can not find the symbol in the partial symbol table, then
     there is no hope we can determine the function's start address
     with this code.  */
  if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
    return 0;

  /* Get the line associated with FUNC_ADDR.  */
  sal = find_pc_line (func_addr, 0);

  /* There are only two cases to consider.  First, the end of the source line
     is within the function bounds.  In that case we return the end of the
     source line.  Second is the end of the source line extends beyond the
     bounds of the current function.  We need to use the slow code to
     examine instructions in that case.

     Anything else is simply a bug elsewhere.  Fixing it here is absolutely
     the wrong thing to do.  In fact, it should be entirely possible for this
     function to always return zero since the slow instruction scanning code
     is supposed to *always* work.  If it does not, then it is a bug.  */
  if (sal.end < func_end)
    return sal.end;
  else
    return 0;
}

/* To skip prologues, I use this predicate.  Returns either PC itself
   if the code at PC does not look like a function prologue; otherwise
   returns an address that (if we're lucky) follows the prologue.
   
   hppa_skip_prologue is called by gdb to place a breakpoint in a function.
   It doesn't necessarily skips all the insns in the prologue.  In fact
   we might not want to skip all the insns because a prologue insn may
   appear in the delay slot of the first branch, and we don't want to
   skip over the branch in that case.  */

static CORE_ADDR
hppa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  CORE_ADDR post_prologue_pc;

  /* See if we can determine the end of the prologue via the symbol table.
     If so, then return either PC, or the PC after the prologue, whichever
     is greater.  */

  post_prologue_pc = after_prologue (pc);

  /* If after_prologue returned a useful address, then use it.  Else
     fall back on the instruction skipping code.

     Some folks have claimed this causes problems because the breakpoint
     may be the first instruction of the prologue.  If that happens, then
     the instruction skipping code has a bug that needs to be fixed.  */
  if (post_prologue_pc != 0)
    return std::max (pc, post_prologue_pc);
  else
    return (skip_prologue_hard_way (gdbarch, pc, 1));
}

/* Return an unwind entry that falls within the frame's code block.  */

static struct unwind_table_entry *
hppa_find_unwind_entry_in_block (struct frame_info *this_frame)
{
  CORE_ADDR pc = get_frame_address_in_block (this_frame);

  /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the
     result of get_frame_address_in_block implies a problem.
     The bits should have been removed earlier, before the return
     value of gdbarch_unwind_pc.  That might be happening already;
     if it isn't, it should be fixed.  Then this call can be
     removed.  */
  pc = gdbarch_addr_bits_remove (get_frame_arch (this_frame), pc);
  return find_unwind_entry (pc);
}

struct hppa_frame_cache
{
  CORE_ADDR base;
  trad_frame_saved_reg *saved_regs;
};

static struct hppa_frame_cache *
hppa_frame_cache (struct frame_info *this_frame, void **this_cache)
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int word_size = gdbarch_ptr_bit (gdbarch) / 8;
  struct hppa_frame_cache *cache;
  long saved_gr_mask;
  long saved_fr_mask;
  long frame_size;
  struct unwind_table_entry *u;
  CORE_ADDR prologue_end;
  int fp_in_r1 = 0;
  int i;

  if (hppa_debug)
    gdb_printf (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
		frame_relative_level(this_frame));

  if ((*this_cache) != NULL)
    {
      if (hppa_debug)
	gdb_printf (gdb_stdlog, "base=%s (cached) }",
		    paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
      return (struct hppa_frame_cache *) (*this_cache);
    }
  cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
  (*this_cache) = cache;
  cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);

  /* Yow! */
  u = hppa_find_unwind_entry_in_block (this_frame);
  if (!u)
    {
      if (hppa_debug)
	gdb_printf (gdb_stdlog, "base=NULL (no unwind entry) }");
      return (struct hppa_frame_cache *) (*this_cache);
    }

  /* Turn the Entry_GR field into a bitmask.  */
  saved_gr_mask = 0;
  for (i = 3; i < u->Entry_GR + 3; i++)
    {
      /* Frame pointer gets saved into a special location.  */
      if (u->Save_SP && i == HPPA_FP_REGNUM)
	continue;
	
      saved_gr_mask |= (1 << i);
    }

  /* Turn the Entry_FR field into a bitmask too.  */
  saved_fr_mask = 0;
  for (i = 12; i < u->Entry_FR + 12; i++)
    saved_fr_mask |= (1 << i);

  /* Loop until we find everything of interest or hit a branch.

     For unoptimized GCC code and for any HP CC code this will never ever
     examine any user instructions.

     For optimized GCC code we're faced with problems.  GCC will schedule
     its prologue and make prologue instructions available for delay slot
     filling.  The end result is user code gets mixed in with the prologue
     and a prologue instruction may be in the delay slot of the first branch
     or call.

     Some unexpected things are expected with debugging optimized code, so
     we allow this routine to walk past user instructions in optimized
     GCC code.  */
  {
    int final_iteration = 0;
    CORE_ADDR pc, start_pc, end_pc;
    int looking_for_sp = u->Save_SP;
    int looking_for_rp = u->Save_RP;
    int fp_loc = -1;

    /* We have to use skip_prologue_hard_way instead of just 
       skip_prologue_using_sal, in case we stepped into a function without
       symbol information.  hppa_skip_prologue also bounds the returned
       pc by the passed in pc, so it will not return a pc in the next
       function.
       
       We used to call hppa_skip_prologue to find the end of the prologue,
       but if some non-prologue instructions get scheduled into the prologue,
       and the program is compiled with debug information, the "easy" way
       in hppa_skip_prologue will return a prologue end that is too early
       for us to notice any potential frame adjustments.  */

    /* We used to use get_frame_func to locate the beginning of the
       function to pass to skip_prologue.  However, when objects are
       compiled without debug symbols, get_frame_func can return the wrong
       function (or 0).  We can do better than that by using unwind records.
       This only works if the Region_description of the unwind record
       indicates that it includes the entry point of the function.
       HP compilers sometimes generate unwind records for regions that
       do not include the entry or exit point of a function.  GNU tools
       do not do this.  */

    if ((u->Region_description & 0x2) == 0)
      start_pc = u->region_start;
    else
      start_pc = get_frame_func (this_frame);

    prologue_end = skip_prologue_hard_way (gdbarch, start_pc, 0);
    end_pc = get_frame_pc (this_frame);

    if (prologue_end != 0 && end_pc > prologue_end)
      end_pc = prologue_end;

    frame_size = 0;

    for (pc = start_pc;
	 ((saved_gr_mask || saved_fr_mask
	   || looking_for_sp || looking_for_rp
	   || frame_size < (u->Total_frame_size << 3))
	  && pc < end_pc);
	 pc += 4)
      {
	int reg;
	gdb_byte buf4[4];
	long inst;

	if (!safe_frame_unwind_memory (this_frame, pc, buf4))
	  {
	    error (_("Cannot read instruction at %s."),
		   paddress (gdbarch, pc));
	    return (struct hppa_frame_cache *) (*this_cache);
	  }

	inst = extract_unsigned_integer (buf4, sizeof buf4, byte_order);

	/* Note the interesting effects of this instruction.  */
	frame_size += prologue_inst_adjust_sp (inst);
	
	/* There are limited ways to store the return pointer into the
	   stack.  */
	if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
	  {
	    looking_for_rp = 0;
	    cache->saved_regs[HPPA_RP_REGNUM].set_addr (-20);
	  }
	else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
	  {
	    looking_for_rp = 0;
	    cache->saved_regs[HPPA_RP_REGNUM].set_addr (-24);
	  }
	else if (inst == 0x0fc212c1 
		 || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
	  {
	    looking_for_rp = 0;
	    cache->saved_regs[HPPA_RP_REGNUM].set_addr (-16);
	  }
	
	/* Check to see if we saved SP into the stack.  This also
	   happens to indicate the location of the saved frame
	   pointer.  */
	if ((inst & 0xffffc000) == 0x6fc10000  /* stw,ma r1,N(sr0,sp) */
	    || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
	  {
	    looking_for_sp = 0;
	    cache->saved_regs[HPPA_FP_REGNUM].set_addr (0);
	  }
	else if (inst == 0x08030241) /* copy %r3, %r1 */
	  {
	    fp_in_r1 = 1;
	  }
	
	/* Account for general and floating-point register saves.  */
	reg = inst_saves_gr (inst);
	if (reg >= 3 && reg <= 18
	    && (!u->Save_SP || reg != HPPA_FP_REGNUM))
	  {
	    saved_gr_mask &= ~(1 << reg);
	    if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
	      /* stwm with a positive displacement is a _post_
		 _modify_.  */
	      cache->saved_regs[reg].set_addr (0);
	    else if ((inst & 0xfc00000c) == 0x70000008)
	      /* A std has explicit post_modify forms.  */
	      cache->saved_regs[reg].set_addr (0);
	    else
	      {
		CORE_ADDR offset;
		
		if ((inst >> 26) == 0x1c)
		  offset = (inst & 0x1 ? -(1 << 13) : 0)
		    | (((inst >> 4) & 0x3ff) << 3);
		else if ((inst >> 26) == 0x03)
		  offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
		else
		  offset = hppa_extract_14 (inst);
		
		/* Handle code with and without frame pointers.  */
		if (u->Save_SP)
		  cache->saved_regs[reg].set_addr (offset);
		else
		  cache->saved_regs[reg].set_addr ((u->Total_frame_size << 3)
						   + offset);
	      }
	  }

	/* GCC handles callee saved FP regs a little differently.  
	   
	   It emits an instruction to put the value of the start of
	   the FP store area into %r1.  It then uses fstds,ma with a
	   basereg of %r1 for the stores.

	   HP CC emits them at the current stack pointer modifying the
	   stack pointer as it stores each register.  */
	
	/* ldo X(%r3),%r1 or ldo X(%r30),%r1.  */
	if ((inst & 0xffffc000) == 0x34610000
	    || (inst & 0xffffc000) == 0x37c10000)
	  fp_loc = hppa_extract_14 (inst);
	
	reg = inst_saves_fr (inst);
	if (reg >= 12 && reg <= 21)
	  {
	    /* Note +4 braindamage below is necessary because the FP
	       status registers are internally 8 registers rather than
	       the expected 4 registers.  */
	    saved_fr_mask &= ~(1 << reg);
	    if (fp_loc == -1)
	      {
		/* 1st HP CC FP register store.  After this
		   instruction we've set enough state that the GCC and
		   HPCC code are both handled in the same manner.  */
		cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].set_addr (0);
		fp_loc = 8;
	      }
	    else
	      {
		cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].set_addr (fp_loc);
		fp_loc += 8;
	      }
	  }
	
	/* Quit if we hit any kind of branch the previous iteration.  */
	if (final_iteration)
	  break;
	/* We want to look precisely one instruction beyond the branch
	   if we have not found everything yet.  */
	if (is_branch (inst))
	  final_iteration = 1;
      }
  }

  {
    /* The frame base always represents the value of %sp at entry to
       the current function (and is thus equivalent to the "saved"
       stack pointer.  */
    CORE_ADDR this_sp = get_frame_register_unsigned (this_frame,
						     HPPA_SP_REGNUM);
    CORE_ADDR fp;

    if (hppa_debug)
      gdb_printf (gdb_stdlog, " (this_sp=%s, pc=%s, "
		  "prologue_end=%s) ",
		  paddress (gdbarch, this_sp),
		  paddress (gdbarch, get_frame_pc (this_frame)),
		  paddress (gdbarch, prologue_end));

     /* Check to see if a frame pointer is available, and use it for
	frame unwinding if it is.
 
	There are some situations where we need to rely on the frame
	pointer to do stack unwinding.  For example, if a function calls
	alloca (), the stack pointer can get adjusted inside the body of
	the function.  In this case, the ABI requires that the compiler
	maintain a frame pointer for the function.
 
	The unwind record has a flag (alloca_frame) that indicates that
	a function has a variable frame; unfortunately, gcc/binutils 
	does not set this flag.  Instead, whenever a frame pointer is used
	and saved on the stack, the Save_SP flag is set.  We use this to
	decide whether to use the frame pointer for unwinding.
	
	TODO: For the HP compiler, maybe we should use the alloca_frame flag 
	instead of Save_SP.  */
 
     fp = get_frame_register_unsigned (this_frame, HPPA_FP_REGNUM);

     if (u->alloca_frame)
       fp -= u->Total_frame_size << 3;
 
     if (get_frame_pc (this_frame) >= prologue_end
	 && (u->Save_SP || u->alloca_frame) && fp != 0)
      {
	cache->base = fp;
 
	if (hppa_debug)
	  gdb_printf (gdb_stdlog, " (base=%s) [frame pointer]",
		      paddress (gdbarch, cache->base));
      }
     else if (u->Save_SP 
	      && cache->saved_regs[HPPA_SP_REGNUM].is_addr ())
      {
	    /* Both we're expecting the SP to be saved and the SP has been
	       saved.  The entry SP value is saved at this frame's SP
	       address.  */
	    cache->base = read_memory_integer (this_sp, word_size, byte_order);

	    if (hppa_debug)
	      gdb_printf (gdb_stdlog, " (base=%s) [saved]",
			  paddress (gdbarch, cache->base));
      }
     else
      {
	/* The prologue has been slowly allocating stack space.  Adjust
	   the SP back.  */
	cache->base = this_sp - frame_size;
	if (hppa_debug)
	  gdb_printf (gdb_stdlog, " (base=%s) [unwind adjust]",
		      paddress (gdbarch, cache->base));

      }
    cache->saved_regs[HPPA_SP_REGNUM].set_value (cache->base);
  }

  /* The PC is found in the "return register", "Millicode" uses "r31"
     as the return register while normal code uses "rp".  */
  if (u->Millicode)
    {
      if (cache->saved_regs[31].is_addr ())
	{
	  cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
	  if (hppa_debug)
	    gdb_printf (gdb_stdlog, " (pc=r31) [stack] } ");
	}
      else
	{
	  ULONGEST r31 = get_frame_register_unsigned (this_frame, 31);
	  cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM].set_value (r31);
	  if (hppa_debug)
	    gdb_printf (gdb_stdlog, " (pc=r31) [frame] } ");
	}
    }
  else
    {
      if (cache->saved_regs[HPPA_RP_REGNUM].is_addr ())
	{
	  cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = 
	    cache->saved_regs[HPPA_RP_REGNUM];
	  if (hppa_debug)
	    gdb_printf (gdb_stdlog, " (pc=rp) [stack] } ");
	}
      else
	{
	  ULONGEST rp = get_frame_register_unsigned (this_frame,
						     HPPA_RP_REGNUM);
	  cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM].set_value (rp);
	  if (hppa_debug)
	    gdb_printf (gdb_stdlog, " (pc=rp) [frame] } ");
	}
    }

  /* If Save_SP is set, then we expect the frame pointer to be saved in the
     frame.  However, there is a one-insn window where we haven't saved it
     yet, but we've already clobbered it.  Detect this case and fix it up.

     The prologue sequence for frame-pointer functions is:
	0: stw %rp, -20(%sp)
	4: copy %r3, %r1
	8: copy %sp, %r3
	c: stw,ma %r1, XX(%sp)

     So if we are at offset c, the r3 value that we want is not yet saved
     on the stack, but it's been overwritten.  The prologue analyzer will
     set fp_in_r1 when it sees the copy insn so we know to get the value 
     from r1 instead.  */
  if (u->Save_SP && !cache->saved_regs[HPPA_FP_REGNUM].is_addr ()
      && fp_in_r1)
    {
      ULONGEST r1 = get_frame_register_unsigned (this_frame, 1);
      cache->saved_regs[HPPA_FP_REGNUM].set_value (r1);
    }

  {
    /* Convert all the offsets into addresses.  */
    int reg;
    for (reg = 0; reg < gdbarch_num_regs (gdbarch); reg++)
      {
	if (cache->saved_regs[reg].is_addr ())
	  cache->saved_regs[reg].set_addr (cache->saved_regs[reg].addr ()
					   + cache->base);
      }
  }

  {
    hppa_gdbarch_tdep *tdep = (hppa_gdbarch_tdep *) gdbarch_tdep (gdbarch);

    if (tdep->unwind_adjust_stub)
      tdep->unwind_adjust_stub (this_frame, cache->base, cache->saved_regs);
  }

  if (hppa_debug)
    gdb_printf (gdb_stdlog, "base=%s }",
		paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
  return (struct hppa_frame_cache *) (*this_cache);
}

static void
hppa_frame_this_id (struct frame_info *this_frame, void **this_cache,
		    struct frame_id *this_id)
{
  struct hppa_frame_cache *info;
  struct unwind_table_entry *u;

  info = hppa_frame_cache (this_frame, this_cache);
  u = hppa_find_unwind_entry_in_block (this_frame);

  (*this_id) = frame_id_build (info->base, u->region_start);
}

static struct value *
hppa_frame_prev_register (struct frame_info *this_frame,
			  void **this_cache, int regnum)
{
  struct hppa_frame_cache *info = hppa_frame_cache (this_frame, this_cache);

  return hppa_frame_prev_register_helper (this_frame,
					  info->saved_regs, regnum);
}

static int
hppa_frame_unwind_sniffer (const struct frame_unwind *self,
			   struct frame_info *this_frame, void **this_cache)
{
  if (hppa_find_unwind_entry_in_block (this_frame))
    return 1;

  return 0;
}

static const struct frame_unwind hppa_frame_unwind =
{
  "hppa unwind table",
  NORMAL_FRAME,
  default_frame_unwind_stop_reason,
  hppa_frame_this_id,
  hppa_frame_prev_register,
  NULL,
  hppa_frame_unwind_sniffer
};

/* This is a generic fallback frame unwinder that kicks in if we fail all
   the other ones.  Normally we would expect the stub and regular unwinder
   to work, but in some cases we might hit a function that just doesn't
   have any unwind information available.  In this case we try to do
   unwinding solely based on code reading.  This is obviously going to be
   slow, so only use this as a last resort.  Currently this will only
   identify the stack and pc for the frame.  */

static struct hppa_frame_cache *
hppa_fallback_frame_cache (struct frame_info *this_frame, void **this_cache)
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  struct hppa_frame_cache *cache;
  unsigned int frame_size = 0;
  int found_rp = 0;
  CORE_ADDR start_pc;

  if (hppa_debug)
    gdb_printf (gdb_stdlog,
		"{ hppa_fallback_frame_cache (frame=%d) -> ",
		frame_relative_level (this_frame));

  cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
  (*this_cache) = cache;
  cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);

  start_pc = get_frame_func (this_frame);
  if (start_pc)
    {
      CORE_ADDR cur_pc = get_frame_pc (this_frame);
      CORE_ADDR pc;

      for (pc = start_pc; pc < cur_pc; pc += 4)
	{
	  unsigned int insn;

	  insn = read_memory_unsigned_integer (pc, 4, byte_order);
	  frame_size += prologue_inst_adjust_sp (insn);

	  /* There are limited ways to store the return pointer into the
	     stack.  */
	  if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
	    {
	      cache->saved_regs[HPPA_RP_REGNUM].set_addr (-20);
	      found_rp = 1;
	    }
	  else if (insn == 0x0fc212c1
		   || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
	    {
	      cache->saved_regs[HPPA_RP_REGNUM].set_addr (-16);
	      found_rp = 1;
	    }
	}
    }

  if (hppa_debug)
    gdb_printf (gdb_stdlog, " frame_size=%d, found_rp=%d }\n",
		frame_size, found_rp);

  cache->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
  cache->base -= frame_size;
  cache->saved_regs[HPPA_SP_REGNUM].set_value (cache->base);

  if (cache->saved_regs[HPPA_RP_REGNUM].is_addr ())
    {
      cache->saved_regs[HPPA_RP_REGNUM].set_addr (cache->saved_regs[HPPA_RP_REGNUM].addr ()
						  + cache->base);
      cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = 
	cache->saved_regs[HPPA_RP_REGNUM];
    }
  else
    {
      ULONGEST rp;
      rp = get_frame_register_unsigned (this_frame, HPPA_RP_REGNUM);
      cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM].set_value (rp);
    }

  return cache;
}

static void
hppa_fallback_frame_this_id (struct frame_info *this_frame, void **this_cache,
			     struct frame_id *this_id)
{
  struct hppa_frame_cache *info = 
    hppa_fallback_frame_cache (this_frame, this_cache);

  (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
}

static struct value *
hppa_fallback_frame_prev_register (struct frame_info *this_frame,
				   void **this_cache, int regnum)
{
  struct hppa_frame_cache *info
    = hppa_fallback_frame_cache (this_frame, this_cache);

  return hppa_frame_prev_register_helper (this_frame,
					  info->saved_regs, regnum);
}

static const struct frame_unwind hppa_fallback_frame_unwind =
{
  "hppa prologue",
  NORMAL_FRAME,
  default_frame_unwind_stop_reason,
  hppa_fallback_frame_this_id,
  hppa_fallback_frame_prev_register,
  NULL,
  default_frame_sniffer
};

/* Stub frames, used for all kinds of call stubs.  */
struct hppa_stub_unwind_cache
{
  CORE_ADDR base;
  trad_frame_saved_reg *saved_regs;
};

static struct hppa_stub_unwind_cache *
hppa_stub_frame_unwind_cache (struct frame_info *this_frame,
			      void **this_cache)
{
  struct hppa_stub_unwind_cache *info;

  if (*this_cache)
    return (struct hppa_stub_unwind_cache *) *this_cache;

  info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
  *this_cache = info;
  info->saved_regs = trad_frame_alloc_saved_regs (this_frame);

  info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);

  /* By default we assume that stubs do not change the rp.  */
  info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].set_realreg (HPPA_RP_REGNUM);

  return info;
}

static void
hppa_stub_frame_this_id (struct frame_info *this_frame,
			 void **this_prologue_cache,
			 struct frame_id *this_id)
{
  struct hppa_stub_unwind_cache *info
    = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);

  if (info)
    *this_id = frame_id_build (info->base, get_frame_func (this_frame));
}

static struct value *
hppa_stub_frame_prev_register (struct frame_info *this_frame,
			       void **this_prologue_cache, int regnum)
{
  struct hppa_stub_unwind_cache *info
    = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);

  if (info == NULL)
    error (_("Requesting registers from null frame."));

  return hppa_frame_prev_register_helper (this_frame,
					  info->saved_regs, regnum);
}

static int
hppa_stub_unwind_sniffer (const struct frame_unwind *self,
			  struct frame_info *this_frame,
			  void **this_cache)
{
  CORE_ADDR pc = get_frame_address_in_block (this_frame);
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  hppa_gdbarch_tdep *tdep = (hppa_gdbarch_tdep *) gdbarch_tdep (gdbarch);

  if (pc == 0
      || (tdep->in_solib_call_trampoline != NULL
	  && tdep->in_solib_call_trampoline (gdbarch, pc))
      || gdbarch_in_solib_return_trampoline (gdbarch, pc, NULL))
    return 1;
  return 0;
}

static const struct frame_unwind hppa_stub_frame_unwind = {
  "hppa stub",
  NORMAL_FRAME,
  default_frame_unwind_stop_reason,
  hppa_stub_frame_this_id,
  hppa_stub_frame_prev_register,
  NULL,
  hppa_stub_unwind_sniffer
};

CORE_ADDR
hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
  ULONGEST ipsw;
  CORE_ADDR pc;

  ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
  pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);

  /* If the current instruction is nullified, then we are effectively
     still executing the previous instruction.  Pretend we are still
     there.  This is needed when single stepping; if the nullified
     instruction is on a different line, we don't want GDB to think
     we've stepped onto that line.  */
  if (ipsw & 0x00200000)
    pc -= 4;

  return pc & ~0x3;
}

/* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
   Return NULL if no such symbol was found.  */

struct bound_minimal_symbol
hppa_lookup_stub_minimal_symbol (const char *name,
				 enum unwind_stub_types stub_type)
{
  struct bound_minimal_symbol result;

  for (objfile *objfile : current_program_space->objfiles ())
    {
      for (minimal_symbol *msym : objfile->msymbols ())
	{
	  if (strcmp (msym->linkage_name (), name) == 0)
	    {
	      struct unwind_table_entry *u;

	      u = find_unwind_entry (MSYMBOL_VALUE (msym));
	      if (u != NULL && u->stub_unwind.stub_type == stub_type)
		{
		  result.objfile = objfile;
		  result.minsym = msym;
		  return result;
		}
	    }
	}
    }

  return result;
}

static void
unwind_command (const char *exp, int from_tty)
{
  CORE_ADDR address;
  struct unwind_table_entry *u;

  /* If we have an expression, evaluate it and use it as the address.  */

  if (exp != 0 && *exp != 0)
    address = parse_and_eval_address (exp);
  else
    return;

  u = find_unwind_entry (address);

  if (!u)
    {
      gdb_printf ("Can't find unwind table entry for %s\n", exp);
      return;
    }

  gdb_printf ("unwind_table_entry (%s):\n", host_address_to_string (u));

  gdb_printf ("\tregion_start = %s\n", hex_string (u->region_start));

  gdb_printf ("\tregion_end = %s\n", hex_string (u->region_end));

#define pif(FLD) if (u->FLD) gdb_printf (" "#FLD);

  gdb_printf ("\n\tflags =");
  pif (Cannot_unwind);
  pif (Millicode);
  pif (Millicode_save_sr0);
  pif (Entry_SR);
  pif (Args_stored);
  pif (Variable_Frame);
  pif (Separate_Package_Body);
  pif (Frame_Extension_Millicode);
  pif (Stack_Overflow_Check);
  pif (Two_Instruction_SP_Increment);
  pif (sr4export);
  pif (cxx_info);
  pif (cxx_try_catch);
  pif (sched_entry_seq);
  pif (Save_SP);
  pif (Save_RP);
  pif (Save_MRP_in_frame);
  pif (save_r19);
  pif (Cleanup_defined);
  pif (MPE_XL_interrupt_marker);
  pif (HP_UX_interrupt_marker);
  pif (Large_frame);
  pif (alloca_frame);

  gdb_putc ('\n');

#define pin(FLD) gdb_printf ("\t"#FLD" = 0x%x\n", u->FLD);

  pin (Region_description);
  pin (Entry_FR);
  pin (Entry_GR);
  pin (Total_frame_size);

  if (u->stub_unwind.stub_type)
    {
      gdb_printf ("\tstub type = ");
      switch (u->stub_unwind.stub_type)
	{
	  case LONG_BRANCH:
	    gdb_printf ("long branch\n");
	    break;
	  case PARAMETER_RELOCATION:
	    gdb_printf ("parameter relocation\n");
	    break;
	  case EXPORT:
	    gdb_printf ("export\n");
	    break;
	  case IMPORT:
	    gdb_printf ("import\n");
	    break;
	  case IMPORT_SHLIB:
	    gdb_printf ("import shlib\n");
	    break;
	  default:
	    gdb_printf ("unknown (%d)\n", u->stub_unwind.stub_type);
	}
    }
}

/* Return the GDB type object for the "standard" data type of data in
   register REGNUM.  */

static struct type *
hppa32_register_type (struct gdbarch *gdbarch, int regnum)
{
   if (regnum < HPPA_FP4_REGNUM)
     return builtin_type (gdbarch)->builtin_uint32;
   else
     return builtin_type (gdbarch)->builtin_float;
}

static struct type *
hppa64_register_type (struct gdbarch *gdbarch, int regnum)
{
   if (regnum < HPPA64_FP4_REGNUM)
     return builtin_type (gdbarch)->builtin_uint64;
   else
     return builtin_type (gdbarch)->builtin_double;
}

/* Return non-zero if REGNUM is not a register available to the user
   through ptrace/ttrace.  */

static int
hppa32_cannot_store_register (struct gdbarch *gdbarch, int regnum)
{
  return (regnum == 0
	  || regnum == HPPA_PCSQ_HEAD_REGNUM
	  || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
	  || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
}

static int
hppa32_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
{
  /* cr26 and cr27 are readable (but not writable) from userspace.  */
  if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
    return 0;
  else
    return hppa32_cannot_store_register (gdbarch, regnum);
}

static int
hppa64_cannot_store_register (struct gdbarch *gdbarch, int regnum)
{
  return (regnum == 0
	  || regnum == HPPA_PCSQ_HEAD_REGNUM
	  || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
	  || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
}

static int
hppa64_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
{
  /* cr26 and cr27 are readable (but not writable) from userspace.  */
  if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
    return 0;
  else
    return hppa64_cannot_store_register (gdbarch, regnum);
}

static CORE_ADDR
hppa_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
{
  /* The low two bits of the PC on the PA contain the privilege level.
     Some genius implementing a (non-GCC) compiler apparently decided
     this means that "addresses" in a text section therefore include a
     privilege level, and thus symbol tables should contain these bits.
     This seems like a bonehead thing to do--anyway, it seems to work
     for our purposes to just ignore those bits.  */

  return (addr &= ~0x3);
}

/* Get the ARGIth function argument for the current function.  */

static CORE_ADDR
hppa_fetch_pointer_argument (struct frame_info *frame, int argi, 
			     struct type *type)
{
  return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi);
}

static enum register_status
hppa_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
			   int regnum, gdb_byte *buf)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  ULONGEST tmp;
  enum register_status status;

  status = regcache->raw_read (regnum, &tmp);
  if (status == REG_VALID)
    {
      if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
	tmp &= ~0x3;
      store_unsigned_integer (buf, sizeof tmp, byte_order, tmp);
    }
  return status;
}

static CORE_ADDR
hppa_find_global_pointer (struct gdbarch *gdbarch, struct value *function)
{
  return 0;
}

struct value *
hppa_frame_prev_register_helper (struct frame_info *this_frame,
				 trad_frame_saved_reg saved_regs[],
				 int regnum)
{
  struct gdbarch *arch = get_frame_arch (this_frame);
  enum bfd_endian byte_order = gdbarch_byte_order (arch);

  if (regnum == HPPA_PCOQ_TAIL_REGNUM)
    {
      int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
      CORE_ADDR pc;
      struct value *pcoq_val =
	trad_frame_get_prev_register (this_frame, saved_regs,
				      HPPA_PCOQ_HEAD_REGNUM);

      pc = extract_unsigned_integer (value_contents_all (pcoq_val).data (),
				     size, byte_order);
      return frame_unwind_got_constant (this_frame, regnum, pc + 4);
    }

  return trad_frame_get_prev_register (this_frame, saved_regs, regnum);
}


/* An instruction to match.  */
struct insn_pattern
{
  unsigned int data;            /* See if it matches this....  */
  unsigned int mask;            /* ... with this mask.  */
};

/* See bfd/elf32-hppa.c */
static struct insn_pattern hppa_long_branch_stub[] = {
  /* ldil LR'xxx,%r1 */
  { 0x20200000, 0xffe00000 },
  /* be,n RR'xxx(%sr4,%r1) */
  { 0xe0202002, 0xffe02002 }, 
  { 0, 0 }
};

static struct insn_pattern hppa_long_branch_pic_stub[] = {
  /* b,l .+8, %r1 */
  { 0xe8200000, 0xffe00000 },
  /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */
  { 0x28200000, 0xffe00000 },
  /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */
  { 0xe0202002, 0xffe02002 }, 
  { 0, 0 }
};

static struct insn_pattern hppa_import_stub[] = {
  /* addil LR'xxx, %dp */
  { 0x2b600000, 0xffe00000 },
  /* ldw RR'xxx(%r1), %r21 */
  { 0x48350000, 0xffffb000 },
  /* bv %r0(%r21) */
  { 0xeaa0c000, 0xffffffff },
  /* ldw RR'xxx+4(%r1), %r19 */
  { 0x48330000, 0xffffb000 },
  { 0, 0 }
};

static struct insn_pattern hppa_import_pic_stub[] = {
  /* addil LR'xxx,%r19 */
  { 0x2a600000, 0xffe00000 },
  /* ldw RR'xxx(%r1),%r21 */
  { 0x48350000, 0xffffb000 },
  /* bv %r0(%r21) */
  { 0xeaa0c000, 0xffffffff },
  /* ldw RR'xxx+4(%r1),%r19 */
  { 0x48330000, 0xffffb000 },
  { 0, 0 },
};

static struct insn_pattern hppa_plt_stub[] = {
  /* b,l 1b, %r20 - 1b is 3 insns before here */
  { 0xea9f1fdd, 0xffffffff },
  /* depi 0,31,2,%r20 */
  { 0xd6801c1e, 0xffffffff },
  { 0, 0 }
};

/* Maximum number of instructions on the patterns above.  */
#define HPPA_MAX_INSN_PATTERN_LEN	4

/* Return non-zero if the instructions at PC match the series
   described in PATTERN, or zero otherwise.  PATTERN is an array of
   'struct insn_pattern' objects, terminated by an entry whose mask is
   zero.

   When the match is successful, fill INSN[i] with what PATTERN[i]
   matched.  */

static int
hppa_match_insns (struct gdbarch *gdbarch, CORE_ADDR pc,
		  struct insn_pattern *pattern, unsigned int *insn)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  CORE_ADDR npc = pc;
  int i;

  for (i = 0; pattern[i].mask; i++)
    {
      gdb_byte buf[HPPA_INSN_SIZE];

      target_read_memory (npc, buf, HPPA_INSN_SIZE);
      insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE, byte_order);
      if ((insn[i] & pattern[i].mask) == pattern[i].data)
	npc += 4;
      else
	return 0;
    }

  return 1;
}

/* This relaxed version of the instruction matcher allows us to match
   from somewhere inside the pattern, by looking backwards in the
   instruction scheme.  */

static int
hppa_match_insns_relaxed (struct gdbarch *gdbarch, CORE_ADDR pc,
			  struct insn_pattern *pattern, unsigned int *insn)
{
  int offset, len = 0;

  while (pattern[len].mask)
    len++;

  for (offset = 0; offset < len; offset++)
    if (hppa_match_insns (gdbarch, pc - offset * HPPA_INSN_SIZE,
			  pattern, insn))
      return 1;

  return 0;
}

static int
hppa_in_dyncall (CORE_ADDR pc)
{
  struct unwind_table_entry *u;

  u = find_unwind_entry (hppa_symbol_address ("$$dyncall"));
  if (!u)
    return 0;

  return (pc >= u->region_start && pc <= u->region_end);
}

int
hppa_in_solib_call_trampoline (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
  struct unwind_table_entry *u;

  if (in_plt_section (pc) || hppa_in_dyncall (pc))
    return 1;

  /* The GNU toolchain produces linker stubs without unwind
     information.  Since the pattern matching for linker stubs can be
     quite slow, so bail out if we do have an unwind entry.  */

  u = find_unwind_entry (pc);
  if (u != NULL)
    return 0;

  return
    (hppa_match_insns_relaxed (gdbarch, pc, hppa_import_stub, insn)
     || hppa_match_insns_relaxed (gdbarch, pc, hppa_import_pic_stub, insn)
     || hppa_match_insns_relaxed (gdbarch, pc, hppa_long_branch_stub, insn)
     || hppa_match_insns_relaxed (gdbarch, pc,
				  hppa_long_branch_pic_stub, insn));
}

/* This code skips several kind of "trampolines" used on PA-RISC
   systems: $$dyncall, import stubs and PLT stubs.  */

CORE_ADDR
hppa_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;

  unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
  int dp_rel;

  /* $$dyncall handles both PLABELs and direct addresses.  */
  if (hppa_in_dyncall (pc))
    {
      pc = get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 22);

      /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it.  */
      if (pc & 0x2)
	pc = read_memory_typed_address (pc & ~0x3, func_ptr_type);

      return pc;
    }

  dp_rel = hppa_match_insns (gdbarch, pc, hppa_import_stub, insn);
  if (dp_rel || hppa_match_insns (gdbarch, pc, hppa_import_pic_stub, insn))
    {
      /* Extract the target address from the addil/ldw sequence.  */
      pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]);

      if (dp_rel)
	pc += get_frame_register_unsigned (frame, HPPA_DP_REGNUM);
      else
	pc += get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 19);

      /* fallthrough */
    }

  if (in_plt_section (pc))
    {
      pc = read_memory_typed_address (pc, func_ptr_type);

      /* If the PLT slot has not yet been resolved, the target will be
	 the PLT stub.  */
      if (in_plt_section (pc))
	{
	  /* Sanity check: are we pointing to the PLT stub?  */
	  if (!hppa_match_insns (gdbarch, pc, hppa_plt_stub, insn))
	    {
	      warning (_("Cannot resolve PLT stub at %s."),
		       paddress (gdbarch, pc));
	      return 0;
	    }

	  /* This should point to the fixup routine.  */
	  pc = read_memory_typed_address (pc + 8, func_ptr_type);
	}
    }

  return pc;
}


/* Here is a table of C type sizes on hppa with various compiles
   and options.  I measured this on PA 9000/800 with HP-UX 11.11
   and these compilers:

     /usr/ccs/bin/cc    HP92453-01 A.11.01.21
     /opt/ansic/bin/cc  HP92453-01 B.11.11.28706.GP
     /opt/aCC/bin/aCC   B3910B A.03.45
     gcc                gcc 3.3.2 native hppa2.0w-hp-hpux11.11

     cc            : 1 2 4 4 8 : 4 8 -- : 4 4
     ansic +DA1.1  : 1 2 4 4 8 : 4 8 16 : 4 4
     ansic +DA2.0  : 1 2 4 4 8 : 4 8 16 : 4 4
     ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
     acc   +DA1.1  : 1 2 4 4 8 : 4 8 16 : 4 4
     acc   +DA2.0  : 1 2 4 4 8 : 4 8 16 : 4 4
     acc   +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
     gcc           : 1 2 4 4 8 : 4 8 16 : 4 4

   Each line is:

     compiler and options
     char, short, int, long, long long
     float, double, long double
     char *, void (*)()

   So all these compilers use either ILP32 or LP64 model.
   TODO: gcc has more options so it needs more investigation.

   For floating point types, see:

     http://docs.hp.com/hpux/pdf/B3906-90006.pdf
     HP-UX floating-point guide, hpux 11.00

   -- chastain 2003-12-18  */

static struct gdbarch *
hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
  struct gdbarch *gdbarch;

  /* find a candidate among the list of pre-declared architectures.  */
  arches = gdbarch_list_lookup_by_info (arches, &info);
  if (arches != NULL)
    return (arches->gdbarch);

  /* If none found, then allocate and initialize one.  */
  hppa_gdbarch_tdep *tdep = new hppa_gdbarch_tdep;
  gdbarch = gdbarch_alloc (&info, tdep);

  /* Determine from the bfd_arch_info structure if we are dealing with
     a 32 or 64 bits architecture.  If the bfd_arch_info is not available,
     then default to a 32bit machine.  */
  if (info.bfd_arch_info != NULL)
    tdep->bytes_per_address =
      info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
  else
    tdep->bytes_per_address = 4;

  tdep->find_global_pointer = hppa_find_global_pointer;

  /* Some parts of the gdbarch vector depend on whether we are running
     on a 32 bits or 64 bits target.  */
  switch (tdep->bytes_per_address)
    {
      case 4:
	set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
	set_gdbarch_register_name (gdbarch, hppa32_register_name);
	set_gdbarch_register_type (gdbarch, hppa32_register_type);
	set_gdbarch_cannot_store_register (gdbarch,
					   hppa32_cannot_store_register);
	set_gdbarch_cannot_fetch_register (gdbarch,
					   hppa32_cannot_fetch_register);
	break;
      case 8:
	set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
	set_gdbarch_register_name (gdbarch, hppa64_register_name);
	set_gdbarch_register_type (gdbarch, hppa64_register_type);
	set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
	set_gdbarch_cannot_store_register (gdbarch,
					   hppa64_cannot_store_register);
	set_gdbarch_cannot_fetch_register (gdbarch,
					   hppa64_cannot_fetch_register);
	break;
      default:
	internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"),
			tdep->bytes_per_address);
    }

  set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
  set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);

  /* The following gdbarch vector elements are the same in both ILP32
     and LP64, but might show differences some day.  */
  set_gdbarch_long_long_bit (gdbarch, 64);
  set_gdbarch_long_double_bit (gdbarch, 128);
  set_gdbarch_long_double_format (gdbarch, floatformats_ieee_quad);

  /* The following gdbarch vector elements do not depend on the address
     size, or in any other gdbarch element previously set.  */
  set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
  set_gdbarch_stack_frame_destroyed_p (gdbarch,
				       hppa_stack_frame_destroyed_p);
  set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
  set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
  set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
  set_gdbarch_addr_bits_remove (gdbarch, hppa_addr_bits_remove);
  set_gdbarch_believe_pcc_promotion (gdbarch, 1);
  set_gdbarch_read_pc (gdbarch, hppa_read_pc);
  set_gdbarch_write_pc (gdbarch, hppa_write_pc);

  /* Helper for function argument information.  */
  set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);

  /* When a hardware watchpoint triggers, we'll move the inferior past
     it by removing all eventpoints; stepping past the instruction
     that caused the trigger; reinserting eventpoints; and checking
     whether any watched location changed.  */
  set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);

  /* Inferior function call methods.  */
  switch (tdep->bytes_per_address)
    {
    case 4:
      set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
      set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
      set_gdbarch_convert_from_func_ptr_addr
	(gdbarch, hppa32_convert_from_func_ptr_addr);
      break;
    case 8:
      set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
      set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
      break;
    default:
      internal_error (__FILE__, __LINE__, _("bad switch"));
    }
      
  /* Struct return methods.  */
  switch (tdep->bytes_per_address)
    {
    case 4:
      set_gdbarch_return_value (gdbarch, hppa32_return_value);
      break;
    case 8:
      set_gdbarch_return_value (gdbarch, hppa64_return_value);
      break;
    default:
      internal_error (__FILE__, __LINE__, _("bad switch"));
    }
      
  set_gdbarch_breakpoint_kind_from_pc (gdbarch, hppa_breakpoint::kind_from_pc);
  set_gdbarch_sw_breakpoint_from_kind (gdbarch, hppa_breakpoint::bp_from_kind);
  set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);

  /* Frame unwind methods.  */
  set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);

  /* Hook in ABI-specific overrides, if they have been registered.  */
  gdbarch_init_osabi (info, gdbarch);

  /* Hook in the default unwinders.  */
  frame_unwind_append_unwinder (gdbarch, &hppa_stub_frame_unwind);
  frame_unwind_append_unwinder (gdbarch, &hppa_frame_unwind);
  frame_unwind_append_unwinder (gdbarch, &hppa_fallback_frame_unwind);

  return gdbarch;
}

static void
hppa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
{
  hppa_gdbarch_tdep *tdep = (hppa_gdbarch_tdep *) gdbarch_tdep (gdbarch);

  gdb_printf (file, "bytes_per_address = %d\n", 
	      tdep->bytes_per_address);
  gdb_printf (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
}

void _initialize_hppa_tdep ();
void
_initialize_hppa_tdep ()
{
  gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);

  add_cmd ("unwind", class_maintenance, unwind_command,
	   _("Print unwind table entry at given address."),
	   &maintenanceprintlist);

  /* Debug this files internals.  */
  add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\
Set whether hppa target specific debugging information should be displayed."),
			   _("\
Show whether hppa target specific debugging information is displayed."), _("\
This flag controls whether hppa target specific debugging information is\n\
displayed.  This information is particularly useful for debugging frame\n\
unwinding problems."),
			   NULL,
			   NULL, /* FIXME: i18n: hppa debug flag is %s.  */
			   &setdebuglist, &showdebuglist);
}