aboutsummaryrefslogtreecommitdiff
path: root/gdb/gdbsupport/thread-pool.c
blob: d19ae02e3ef18d8b42f4661ce3dcb023a28194e1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
/* Thread pool

   Copyright (C) 2019 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "common-defs.h"

#if CXX_STD_THREAD

#include "gdbsupport/thread-pool.h"
#include "gdbsupport/alt-stack.h"
#include "gdbsupport/block-signals.h"
#include <algorithm>

/* On the off chance that we have the pthread library on a Windows
   host, but std::thread is not using it, avoid calling
   pthread_setname_np on Windows.  */
#ifndef _WIN32
#ifdef HAVE_PTHREAD_SETNAME_NP
#define USE_PTHREAD_SETNAME_NP
#endif
#endif

#ifdef USE_PTHREAD_SETNAME_NP
#include <pthread.h>
#endif

namespace gdb
{

/* The thread pool detach()s its threads, so that the threads will not
   prevent the process from exiting.  However, it was discovered that
   if any detached threads were still waiting on a condition variable,
   then the condition variable's destructor would wait for the threads
   to exit -- defeating the purpose.

   Allocating the thread pool on the heap and simply "leaking" it
   avoids this problem.
*/
thread_pool *thread_pool::g_thread_pool = new thread_pool ();

thread_pool::~thread_pool ()
{
  /* Because this is a singleton, we don't need to clean up.  The
     threads are detached so that they won't prevent process exit.
     And, cleaning up here would be actively harmful in at least one
     case -- see the comment by the definition of g_thread_pool.  */
}

void
thread_pool::set_thread_count (size_t num_threads)
{
  std::lock_guard<std::mutex> guard (m_tasks_mutex);

  /* If the new size is larger, start some new threads.  */
  if (m_thread_count < num_threads)
    {
      /* Ensure that signals used by gdb are blocked in the new
	 threads.  */
      block_signals blocker;
      for (size_t i = m_thread_count; i < num_threads; ++i)
	{
	  std::thread thread (&thread_pool::thread_function, this);
#ifdef USE_PTHREAD_SETNAME_NP
	  pthread_setname_np (thread.native_handle (), "gdb worker");
#endif
	  thread.detach ();
	}
    }
  /* If the new size is smaller, terminate some existing threads.  */
  if (num_threads < m_thread_count)
    {
      for (size_t i = num_threads; i < m_thread_count; ++i)
	m_tasks.emplace ();
      m_tasks_cv.notify_all ();
    }

  m_thread_count = num_threads;
}

std::future<void>
thread_pool::post_task (std::function<void ()> func)
{
  std::packaged_task<void ()> t (func);
  std::future<void> f = t.get_future ();

  if (m_thread_count == 0)
    {
      /* Just execute it now.  */
      t ();
    }
  else
    {
      std::lock_guard<std::mutex> guard (m_tasks_mutex);
      m_tasks.emplace (std::move (t));
      m_tasks_cv.notify_one ();
    }
  return f;
}

void
thread_pool::thread_function ()
{
  /* Ensure that SIGSEGV is delivered to an alternate signal
     stack.  */
  gdb::alternate_signal_stack signal_stack;

  while (true)
    {
      optional<task> t;

      {
	/* We want to hold the lock while examining the task list, but
	   not while invoking the task function.  */
	std::unique_lock<std::mutex> guard (m_tasks_mutex);
	while (m_tasks.empty ())
	  m_tasks_cv.wait (guard);
	t = std::move (m_tasks.front());
	m_tasks.pop ();
      }

      if (!t.has_value ())
	break;
      (*t) ();
    }
}

}

#endif /* CXX_STD_THREAD */