aboutsummaryrefslogtreecommitdiff
path: root/gdb/fr30-tdep.c
blob: 60ac7a913808588bfeb5877f22ac395750c13e9b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
/* Target-dependent code for the NEC V850 for GDB, the GNU debugger.
   Copyright 1996, Free Software Foundation, Inc.

This file is part of GDB.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */

#include "defs.h"
#include "frame.h"
#include "inferior.h"
#include "obstack.h"
#include "target.h"
#include "value.h"
#include "bfd.h"
#include "gdb_string.h"
#include "gdbcore.h"
#include "symfile.h"

niy(char *f, int l)
{
	fprintf(stderr, "%s(%d): Not implemented yet\n", f, l);
}
#define NIY() niy(__FILE__, __LINE__)

void
fr30_pop_frame()
{
	NIY();
}

CORE_ADDR
fr30_frame_chain(struct frame_info *fi)
{
	NIY();
}

CORE_ADDR
fr30_frame_saved_pc(struct frame_info *fi)
{
	NIY();
}

CORE_ADDR
fr30_skip_prologue(CORE_ADDR pc)
{
	NIY();
}


CORE_ADDR
fr30_push_arguments(nargs, args, sp, struct_return, struct_addr)
     int         nargs;
     value_ptr * args;
     CORE_ADDR   sp;
     int         struct_return;
     CORE_ADDR   struct_addr;
{
  int argreg;
  int argnum;
  int stack_offset;
  struct stack_arg {
      char *val;
      int len;
      int offset;
    };
  struct stack_arg *stack_args =
      (struct stack_arg*)alloca (nargs * sizeof (struct stack_arg));
  int nstack_args = 0;


  /* Initialize the integer and float register pointers.  */
  argreg = FIRST_ARGREG;

  /* the struct_return pointer occupies the first parameter-passing reg */
  if (struct_return)
      write_register (argreg++, struct_addr);

#if(0)
  /* The offset onto the stack at which we will start copying parameters
     (after the registers are used up) begins at 16 in the old ABI.
     This leaves room for the "home" area for register parameters.  */
  stack_offset = REGISTER_SIZE * 4;
#else
/* XXX which ABI are we using ? Z.R. */
  stack_offset = 0;
#endif

  /* Process args from left to right.  Store as many as allowed in
	registers, save the rest to be pushed on the stack */
  for(argnum = 0; argnum < nargs; argnum++)
    {
      char *         val;
      value_ptr      arg = args[argnum];
      struct type *  arg_type = check_typedef (VALUE_TYPE (arg));
      struct type *  target_type = TYPE_TARGET_TYPE (arg_type);
      int            len = TYPE_LENGTH (arg_type);
      enum type_code typecode = TYPE_CODE (arg_type);
      CORE_ADDR      regval;
      int newarg;

      val = (char *) VALUE_CONTENTS (arg);

	{
	  /* Copy the argument to general registers or the stack in
	     register-sized pieces.  Large arguments are split between
	     registers and stack.  */
	  while (len > 0)
	    {
	      if (argreg <= LAST_ARGREG)
		{
	          int partial_len = len < REGISTER_SIZE ? len : REGISTER_SIZE;
		  regval = extract_address (val, partial_len);

		  /* It's a simple argument being passed in a general
		     register.  */
		  write_register (argreg, regval);
		  argreg++;
	          len -= partial_len;
	          val += partial_len;
		}
	      else
		{
		  /* keep for later pushing */
		  stack_args[nstack_args].val = val;
		  stack_args[nstack_args++].len = len;
		  break;
		}
	    }
	}
    }
    /* now do the real stack pushing, process args right to left */
    while(nstack_args--)
      {
	sp -= stack_args[nstack_args].len;
	write_memory(sp, stack_args[nstack_args].val,
		stack_args[nstack_args].len);
      }

  /* Return adjusted stack pointer.  */
  return sp;
}

_initialize_fr30_tdep()
{
	extern int print_insn_fr30(bfd_vma, disassemble_info *);

	tm_print_insn = print_insn_fr30;
}


#if(0) /* Z.R. for now */
/* Info gleaned from scanning a function's prologue.  */

struct pifsr			/* Info about one saved reg */
{
  int framereg;			/* Frame reg (SP or FP) */
  int offset;			/* Offset from framereg */
  int cur_frameoffset;		/* Current frameoffset */
  int reg;			/* Saved register number */
};

struct prologue_info
{
  int framereg;
  int frameoffset;
  int start_function;
  struct pifsr *pifsrs;
};

static CORE_ADDR xfr30_scan_prologue PARAMS ((CORE_ADDR pc, 
					     struct prologue_info *fs));

/* Function: scan_prologue
   Scan the prologue of the function that contains PC, and record what
   we find in PI.  PI->fsr must be zeroed by the called.  Returns the
   pc after the prologue.  Note that the addresses saved in pi->fsr
   are actually just frame relative (negative offsets from the frame
   pointer).  This is because we don't know the actual value of the
   frame pointer yet.  In some circumstances, the frame pointer can't
   be determined till after we have scanned the prologue.  */

static CORE_ADDR
xfr30_scan_prologue (pc, pi)
     CORE_ADDR pc;
     struct prologue_info *pi;
{
  CORE_ADDR func_addr, prologue_end, current_pc;
  struct pifsr *pifsr, *pifsr_tmp;
  int fp_used;
  int ep_used;
  int reg;
  CORE_ADDR save_pc, save_end;
  int regsave_func_p;
  int current_sp_size;
  int r12_tmp;

  /* First, figure out the bounds of the prologue so that we can limit the
     search to something reasonable.  */

  if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
    {
      struct symtab_and_line sal;

      sal = find_pc_line (func_addr, 0);

      if (func_addr == entry_point_address ())
	pi->start_function = 1;
      else
	pi->start_function = 0;

#if 0
      if (sal.line == 0)
	prologue_end = pc;
      else
	prologue_end = sal.end;
#else
      prologue_end = pc;
#endif
    }
  else
    {				/* We're in the boondocks */
      func_addr = pc - 100;
      prologue_end = pc;
    }

  prologue_end = min (prologue_end, pc);

  /* Now, search the prologue looking for instructions that setup fp, save
     rp, adjust sp and such.  We also record the frame offset of any saved
     registers. */ 

  pi->frameoffset = 0;
  pi->framereg = SP_REGNUM;
  fp_used = 0;
  ep_used = 0;
  pifsr = pi->pifsrs;
  regsave_func_p = 0;
  save_pc = 0;
  save_end = 0;
  r12_tmp = 0;

#ifdef DEBUG
  printf_filtered ("Current_pc = 0x%.8lx, prologue_end = 0x%.8lx\n",
		   (long)func_addr, (long)prologue_end);
#endif

  for (current_pc = func_addr; current_pc < prologue_end; current_pc += 2)
    {
      int insn;

#ifdef DEBUG
      printf_filtered ("0x%.8lx ", (long)current_pc);
      (*tm_print_insn) (current_pc, &tm_print_insn_info);
#endif

      insn = read_memory_unsigned_integer (current_pc, 2);

      if ((insn & 0xffc0) == ((10 << 11) | 0x0780) && !regsave_func_p)
	{			/* jarl <func>,10 */
	  long low_disp = read_memory_unsigned_integer (current_pc + 2, 2) & ~ (long) 1;
	  long disp = (((((insn & 0x3f) << 16) + low_disp)
			& ~ (long) 1) ^ 0x00200000) - 0x00200000;

	  save_pc = current_pc;
	  save_end = prologue_end;
	  regsave_func_p = 1;
	  current_pc += disp - 2;
	  prologue_end = (current_pc
			  + (2 * 3)	/* moves to/from ep */
			  + 4		/* addi <const>,sp,sp */
			  + 2		/* jmp [r10] */
			  + (2 * 12)	/* sst.w to save r2, r20-r29, r31 */
			  + 20);	/* slop area */

#ifdef DEBUG
	  printf_filtered ("\tfound jarl <func>,r10, disp = %ld, low_disp = %ld, new pc = 0x%.8lx\n",
			   disp, low_disp, (long)current_pc + 2);
#endif
	  continue;
	}
      else if ((insn & 0xffe0) == 0x0060 && regsave_func_p)
	{			/* jmp after processing register save function */
	  current_pc = save_pc + 2;
	  prologue_end = save_end;
	  regsave_func_p = 0;
#ifdef DEBUG
	  printf_filtered ("\tfound jmp after regsave func");
#endif
	}
      else if ((insn & 0x07c0) == 0x0780	/* jarl or jr */
	       || (insn & 0xffe0) == 0x0060	/* jmp */
	       || (insn & 0x0780) == 0x0580)	/* branch */
	{
#ifdef DEBUG
	  printf_filtered ("\n");
#endif
	  break;				/* Ran into end of prologue */
	}

      else if ((insn & 0xffe0) == ((SP_REGNUM << 11) | 0x0240))		/* add <imm>,sp */
	pi->frameoffset += ((insn & 0x1f) ^ 0x10) - 0x10;
      else if (insn == ((SP_REGNUM << 11) | 0x0600 | SP_REGNUM))	/* addi <imm>,sp,sp */
	pi->frameoffset += read_memory_integer (current_pc + 2, 2);
      else if (insn == ((FP_RAW_REGNUM << 11) | 0x0000 | SP_REGNUM))	/* mov sp,fp */
	{
	  fp_used = 1;
	  pi->framereg = FP_RAW_REGNUM;
	}

      else if (insn == ((R12_REGNUM << 11) | 0x0640 | R0_REGNUM))	/* movhi hi(const),r0,r12 */
	r12_tmp = read_memory_integer (current_pc + 2, 2) << 16;
      else if (insn == ((R12_REGNUM << 11) | 0x0620 | R12_REGNUM))	/* movea lo(const),r12,r12 */
	r12_tmp += read_memory_integer (current_pc + 2, 2);
      else if (insn == ((SP_REGNUM << 11) | 0x01c0 | R12_REGNUM) && r12_tmp) /* add r12,sp */
	pi->frameoffset = r12_tmp;
      else if (insn == ((EP_REGNUM << 11) | 0x0000 | SP_REGNUM))	/* mov sp,ep */
	ep_used = 1;
      else if (insn == ((EP_REGNUM << 11) | 0x0000 | R1_REGNUM))	/* mov r1,ep */
	ep_used = 0;
      else if (((insn & 0x07ff) == (0x0760 | SP_REGNUM)			/* st.w <reg>,<offset>[sp] */
		|| (fp_used
		    && (insn & 0x07ff) == (0x0760 | FP_RAW_REGNUM)))	/* st.w <reg>,<offset>[fp] */
	       && pifsr
	       && (((reg = (insn >> 11) & 0x1f) >= SAVE1_START_REGNUM && reg <= SAVE1_END_REGNUM)
		   || (reg >= SAVE2_START_REGNUM && reg <= SAVE2_END_REGNUM)
		   || (reg >= SAVE3_START_REGNUM && reg <= SAVE3_END_REGNUM)))
	{
	  pifsr->reg = reg;
	  pifsr->offset = read_memory_integer (current_pc + 2, 2) & ~1;
	  pifsr->cur_frameoffset = pi->frameoffset;
#ifdef DEBUG
	  printf_filtered ("\tSaved register r%d, offset %d", reg, pifsr->offset);
#endif
	  pifsr++;
	}

      else if (ep_used						/* sst.w <reg>,<offset>[ep] */
	       && ((insn & 0x0781) == 0x0501)
	       && pifsr
	       && (((reg = (insn >> 11) & 0x1f) >= SAVE1_START_REGNUM && reg <= SAVE1_END_REGNUM)
		   || (reg >= SAVE2_START_REGNUM && reg <= SAVE2_END_REGNUM)
		   || (reg >= SAVE3_START_REGNUM && reg <= SAVE3_END_REGNUM)))
	{
	  pifsr->reg = reg;
	  pifsr->offset = (insn & 0x007e) << 1;
	  pifsr->cur_frameoffset = pi->frameoffset;
#ifdef DEBUG
	  printf_filtered ("\tSaved register r%d, offset %d", reg, pifsr->offset);
#endif
	  pifsr++;
	}

      if ((insn & 0x0780) >= 0x0600) /* Four byte instruction? */
	current_pc += 2;

#ifdef DEBUG
      printf_filtered ("\n");
#endif
    }

  if (pifsr)
    pifsr->framereg = 0;	/* Tie off last entry */

  /* Fix up any offsets to the final offset.  If a frame pointer was created, use it
     instead of the stack pointer.  */
  for (pifsr_tmp = pi->pifsrs; pifsr_tmp && pifsr_tmp != pifsr; pifsr_tmp++)
    {
      pifsr_tmp->offset -= pi->frameoffset - pifsr_tmp->cur_frameoffset;
      pifsr_tmp->framereg = pi->framereg;

#ifdef DEBUG
      printf_filtered ("Saved register r%d, offset = %d, framereg = r%d\n",
		       pifsr_tmp->reg, pifsr_tmp->offset, pifsr_tmp->framereg);
#endif
    }

#ifdef DEBUG
  printf_filtered ("Framereg = r%d, frameoffset = %d\n", pi->framereg, pi->frameoffset);
#endif

  return current_pc;
}

/* Function: init_extra_frame_info
   Setup the frame's frame pointer, pc, and frame addresses for saved
   registers.  Most of the work is done in scan_prologue().

   Note that when we are called for the last frame (currently active frame),
   that fi->pc and fi->frame will already be setup.  However, fi->frame will
   be valid only if this routine uses FP.  For previous frames, fi-frame will
   always be correct (since that is derived from xfr30_frame_chain ()).

   We can be called with the PC in the call dummy under two circumstances.
   First, during normal backtracing, second, while figuring out the frame
   pointer just prior to calling the target function (see run_stack_dummy).  */

void
xfr30_init_extra_frame_info (fi)
     struct frame_info *fi;
{
  struct prologue_info pi;
  struct pifsr pifsrs[NUM_REGS + 1], *pifsr;
  int reg;

  if (fi->next)
    fi->pc = FRAME_SAVED_PC (fi->next);

  memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs);

  /* The call dummy doesn't save any registers on the stack, so we can return
     now.  */
  if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
      return;

  pi.pifsrs = pifsrs;

  xfr30_scan_prologue (fi->pc, &pi);

  if (!fi->next && pi.framereg == SP_REGNUM)
    fi->frame = read_register (pi.framereg) - pi.frameoffset;

  for (pifsr = pifsrs; pifsr->framereg; pifsr++)
    {
      fi->fsr.regs[pifsr->reg] = pifsr->offset + fi->frame;

      if (pifsr->framereg == SP_REGNUM)
	fi->fsr.regs[pifsr->reg] += pi.frameoffset;
    }
}

/* Function: frame_chain
   Figure out the frame prior to FI.  Unfortunately, this involves
   scanning the prologue of the caller, which will also be done
   shortly by xfr30_init_extra_frame_info.  For the dummy frame, we
   just return the stack pointer that was in use at the time the
   function call was made.  */

CORE_ADDR
xfr30_frame_chain (fi)
     struct frame_info *fi;
{
  struct prologue_info pi;
  CORE_ADDR callers_pc, fp;

  /* First, find out who called us */
  callers_pc = FRAME_SAVED_PC (fi);
  /* If caller is a call-dummy, then our FP bears no relation to his FP! */
  fp = xfr30_find_callers_reg (fi, FP_RAW_REGNUM);
  if (PC_IN_CALL_DUMMY(callers_pc, fp, fp))
    return fp;	/* caller is call-dummy: return oldest value of FP */

  /* Caller is NOT a call-dummy, so everything else should just work.
     Even if THIS frame is a call-dummy! */
  pi.pifsrs = NULL;

  xfr30_scan_prologue (callers_pc, &pi);

  if (pi.start_function)
    return 0;			/* Don't chain beyond the start function */

  if (pi.framereg == FP_RAW_REGNUM)
    return xfr30_find_callers_reg (fi, pi.framereg);

  return fi->frame - pi.frameoffset;
}

/* Function: find_callers_reg
   Find REGNUM on the stack.  Otherwise, it's in an active register.
   One thing we might want to do here is to check REGNUM against the
   clobber mask, and somehow flag it as invalid if it isn't saved on
   the stack somewhere.  This would provide a graceful failure mode
   when trying to get the value of caller-saves registers for an inner
   frame.  */

CORE_ADDR
xfr30_find_callers_reg (fi, regnum)
     struct frame_info *fi;
     int regnum;
{
  for (; fi; fi = fi->next)
    if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
      return generic_read_register_dummy (fi->pc, fi->frame, regnum);
    else if (fi->fsr.regs[regnum] != 0)
      return read_memory_unsigned_integer (fi->fsr.regs[regnum], 
					   REGISTER_RAW_SIZE(regnum));

  return read_register (regnum);
}

/* Function: skip_prologue
   Return the address of the first code past the prologue of the function.  */

CORE_ADDR
xfr30_skip_prologue (pc)
     CORE_ADDR pc;
{
  CORE_ADDR func_addr, func_end;

  /* See what the symbol table says */

  if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
    {
      struct symtab_and_line sal;

      sal = find_pc_line (func_addr, 0);

      if (sal.line != 0 && sal.end < func_end)
	return sal.end;
      else
	/* Either there's no line info, or the line after the prologue is after
	   the end of the function.  In this case, there probably isn't a
	   prologue.  */
	return pc;
    }

/* We can't find the start of this function, so there's nothing we can do. */
  return pc;
}

/* Function: pop_frame
   This routine gets called when either the user uses the `return'
   command, or the call dummy breakpoint gets hit.  */

void
xfr30_pop_frame (frame)
     struct frame_info *frame;
{
  int regnum;

  if (PC_IN_CALL_DUMMY(frame->pc, frame->frame, frame->frame))
    generic_pop_dummy_frame ();
  else
    {
      write_register (PC_REGNUM, FRAME_SAVED_PC (frame));

      for (regnum = 0; regnum < NUM_REGS; regnum++)
	if (frame->fsr.regs[regnum] != 0)
	  write_register (regnum,
			  read_memory_unsigned_integer (frame->fsr.regs[regnum],
							REGISTER_RAW_SIZE(regnum)));

      write_register (SP_REGNUM, FRAME_FP (frame));
    }

  flush_cached_frames ();
}

/* Function: push_arguments
   Setup arguments and RP for a call to the target.  First four args
   go in R6->R9, subsequent args go into sp + 16 -> sp + ...  Structs
   are passed by reference.  64 bit quantities (doubles and long
   longs) may be split between the regs and the stack.  When calling a
   function that returns a struct, a pointer to the struct is passed
   in as a secret first argument (always in R6).

   Stack space for the args has NOT been allocated: that job is up to us.
   */

CORE_ADDR
xfr30_push_arguments (nargs, args, sp, struct_return, struct_addr)
     int nargs;
     value_ptr *args;
     CORE_ADDR sp;
     unsigned char struct_return;
     CORE_ADDR struct_addr;
{
  int argreg;
  int argnum;
  int len = 0;
  int stack_offset;

  /* First, just for safety, make sure stack is aligned */
  sp &= ~3;

  /* Now make space on the stack for the args. */
  for (argnum = 0; argnum < nargs; argnum++)
    len += ((TYPE_LENGTH(VALUE_TYPE(args[argnum])) + 3) & ~3);
  sp -= len;	/* possibly over-allocating, but it works... */
		/* (you might think we could allocate 16 bytes */
		/* less, but the ABI seems to use it all! )  */
  argreg = ARG0_REGNUM;

  /* the struct_return pointer occupies the first parameter-passing reg */
  if (struct_return)
      write_register (argreg++, struct_addr);

  stack_offset = 16;
  /* The offset onto the stack at which we will start copying parameters
     (after the registers are used up) begins at 16 rather than at zero.
     I don't really know why, that's just the way it seems to work.  */

  /* Now load as many as possible of the first arguments into
     registers, and push the rest onto the stack.  There are 16 bytes
     in four registers available.  Loop thru args from first to last.  */
  for (argnum = 0; argnum < nargs; argnum++)
    {
      int len;
      char *val;
      char valbuf[REGISTER_RAW_SIZE(ARG0_REGNUM)];

      if (TYPE_CODE (VALUE_TYPE (*args)) == TYPE_CODE_STRUCT
	  && TYPE_LENGTH (VALUE_TYPE (*args)) > 8)
	{
	  store_address (valbuf, 4, VALUE_ADDRESS (*args));
	  len = 4;
	  val = valbuf;
	}
      else
	{
	  len = TYPE_LENGTH (VALUE_TYPE (*args));
	  val = (char *)VALUE_CONTENTS (*args);
	}

      while (len > 0)
	if  (argreg <= ARGLAST_REGNUM)
	  {
	    CORE_ADDR regval;

	    regval = extract_address (val, REGISTER_RAW_SIZE (argreg));
	    write_register (argreg, regval);

	    len -= REGISTER_RAW_SIZE (argreg);
	    val += REGISTER_RAW_SIZE (argreg);
	    argreg++;
	  }
	else
	  {
	    write_memory (sp + stack_offset, val, 4);

	    len -= 4;
	    val += 4;
	    stack_offset += 4;
	  }
      args++;
    }
  return sp;
}

/* Function: push_return_address (pc)
   Set up the return address for the inferior function call.
   Needed for targets where we don't actually execute a JSR/BSR instruction */
 
CORE_ADDR
xfr30_push_return_address (pc, sp)
     CORE_ADDR pc;
     CORE_ADDR sp;
{
  write_register (RP_REGNUM, CALL_DUMMY_ADDRESS ());
  return sp;
}
 
/* Function: frame_saved_pc 
   Find the caller of this frame.  We do this by seeing if RP_REGNUM
   is saved in the stack anywhere, otherwise we get it from the
   registers.  If the inner frame is a dummy frame, return its PC
   instead of RP, because that's where "caller" of the dummy-frame
   will be found.  */

CORE_ADDR
xfr30_frame_saved_pc (fi)
     struct frame_info *fi;
{
  if (PC_IN_CALL_DUMMY(fi->pc, fi->frame, fi->frame))
    return generic_read_register_dummy(fi->pc, fi->frame, PC_REGNUM);
  else
    return xfr30_find_callers_reg (fi, RP_REGNUM);
}

void
get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
     char *raw_buffer;
     int *optimized;
     CORE_ADDR *addrp;
     struct frame_info *frame;
     int regnum;
     enum lval_type *lval;
{
  generic_get_saved_register (raw_buffer, optimized, addrp, 
			      frame, regnum, lval);
}


/* Function: fix_call_dummy
   Pokes the callee function's address into the CALL_DUMMY assembly stub.
   Assumes that the CALL_DUMMY looks like this:
	jarl <offset24>, r31
	trap
   */

int
xfr30_fix_call_dummy (dummy, sp, fun, nargs, args, type, gcc_p)
     char *dummy;
     CORE_ADDR sp;
     CORE_ADDR fun;
     int nargs;
     value_ptr *args;
     struct type *type;
     int gcc_p;
{
  long offset24;

  offset24 = (long) fun - (long) entry_point_address ();
  offset24 &= 0x3fffff;
  offset24 |= 0xff800000;	/* jarl <offset24>, r31 */

  store_unsigned_integer ((unsigned int *)&dummy[2], 2, offset24 & 0xffff);
  store_unsigned_integer ((unsigned int *)&dummy[0], 2, offset24 >> 16);
  return 0;
}

#endif /* Z.R. */