aboutsummaryrefslogtreecommitdiff
path: root/gdb/findvar.c
blob: b65853e164ef07276f9eccebb224dec40fa3dbe4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
/* Find a variable's value in memory, for GDB, the GNU debugger.
   Copyright 1986, 1987, 1989, 1991 Free Software Foundation, Inc.

This file is part of GDB.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.  */

#include <stdio.h>
#include "defs.h"
#include "symtab.h"
#include "frame.h"
#include "value.h"
#include "gdbcore.h"
#include "inferior.h"
#include "target.h"

#if !defined (GET_SAVED_REGISTER)

/* Return the address in which frame FRAME's value of register REGNUM
   has been saved in memory.  Or return zero if it has not been saved.
   If REGNUM specifies the SP, the value we return is actually
   the SP value, not an address where it was saved.  */

CORE_ADDR
find_saved_register (frame, regnum)
     FRAME frame;
     int regnum;
{
  struct frame_info *fi;
  struct frame_saved_regs saved_regs;

  register FRAME frame1 = 0;
  register CORE_ADDR addr = 0;

  if (frame == 0)		/* No regs saved if want current frame */
    return 0;

#ifdef HAVE_REGISTER_WINDOWS
  /* We assume that a register in a register window will only be saved
     in one place (since the name changes and/or disappears as you go
     towards inner frames), so we only call get_frame_saved_regs on
     the current frame.  This is directly in contradiction to the
     usage below, which assumes that registers used in a frame must be
     saved in a lower (more interior) frame.  This change is a result
     of working on a register window machine; get_frame_saved_regs
     always returns the registers saved within a frame, within the
     context (register namespace) of that frame. */

  /* However, note that we don't want this to return anything if
     nothing is saved (if there's a frame inside of this one).  Also,
     callers to this routine asking for the stack pointer want the
     stack pointer saved for *this* frame; this is returned from the
     next frame.  */
     

  if (REGISTER_IN_WINDOW_P(regnum))
    {
      frame1 = get_next_frame (frame);
      if (!frame1) return 0;	/* Registers of this frame are
				   active.  */
      
      /* Get the SP from the next frame in; it will be this
	 current frame.  */
      if (regnum != SP_REGNUM)
	frame1 = frame;	
	  
      fi = get_frame_info (frame1);
      get_frame_saved_regs (fi, &saved_regs);
      return saved_regs.regs[regnum];	/* ... which might be zero */
    }
#endif /* HAVE_REGISTER_WINDOWS */

  /* Note that this next routine assumes that registers used in
     frame x will be saved only in the frame that x calls and
     frames interior to it.  This is not true on the sparc, but the
     above macro takes care of it, so we should be all right. */
  while (1)
    {
      QUIT;
      frame1 = get_prev_frame (frame1);
      if (frame1 == 0 || frame1 == frame)
	break;
      fi = get_frame_info (frame1);
      get_frame_saved_regs (fi, &saved_regs);
      if (saved_regs.regs[regnum])
	addr = saved_regs.regs[regnum];
    }

  return addr;
}

/* Find register number REGNUM relative to FRAME and put its
   (raw) contents in *RAW_BUFFER.  Set *OPTIMIZED if the variable
   was optimized out (and thus can't be fetched).  Set *LVAL to
   lval_memory, lval_register, or not_lval, depending on whether the
   value was fetched from memory, from a register, or in a strange
   and non-modifiable way (e.g. a frame pointer which was calculated
   rather than fetched).  Set *ADDRP to the address, either in memory
   on as a REGISTER_BYTE offset into the registers array.

   Note that this implementation never sets *LVAL to not_lval.  But
   it can be replaced by defining GET_SAVED_REGISTER and supplying
   your own.

   The argument RAW_BUFFER must point to aligned memory.  */
void
get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
     char *raw_buffer;
     int *optimized;
     CORE_ADDR *addrp;
     FRAME frame;
     int regnum;
     enum lval_type *lval;
{
  CORE_ADDR addr;
  /* Normal systems don't optimize out things with register numbers.  */
  if (optimized != NULL)
    *optimized = 0;
  addr = find_saved_register (frame, regnum);
  if (addr != NULL)
    {
      if (lval != NULL)
	*lval = lval_memory;
      if (regnum == SP_REGNUM)
	{
	  if (raw_buffer != NULL)
	    *(CORE_ADDR *)raw_buffer = addr;
	  if (addrp != NULL)
	    *addrp = 0;
	  return;
	}
      if (raw_buffer != NULL)
	read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
    }
  else
    {
      if (lval != NULL)
	*lval = lval_register;
      addr = REGISTER_BYTE (regnum);
      if (raw_buffer != NULL)
	read_register_gen (regnum, raw_buffer);
    }
  if (addrp != NULL)
    *addrp = addr;
}
#endif /* GET_SAVED_REGISTER.  */

/* Copy the bytes of register REGNUM, relative to the current stack frame,
   into our memory at MYADDR, in target byte order.
   The number of bytes copied is REGISTER_RAW_SIZE (REGNUM).

   Returns 1 if could not be read, 0 if could.  */

int
read_relative_register_raw_bytes (regnum, myaddr)
     int regnum;
     char *myaddr;
{
  int optim;
  if (regnum == FP_REGNUM && selected_frame)
    {
      bcopy (&FRAME_FP(selected_frame), myaddr, sizeof (CORE_ADDR));
      SWAP_TARGET_AND_HOST (myaddr, sizeof (CORE_ADDR)); /* in target order */
      return 0;
    }

  get_saved_register (myaddr, &optim, (CORE_ADDR *) NULL, selected_frame,
                      regnum, (enum lval_type *)NULL);
  return optim;
}

/* Return a `value' with the contents of register REGNUM
   in its virtual format, with the type specified by
   REGISTER_VIRTUAL_TYPE.  */

value
value_of_register (regnum)
     int regnum;
{
  CORE_ADDR addr;
  int optim;
  register value val;
  char raw_buffer[MAX_REGISTER_RAW_SIZE];
  char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
  enum lval_type lval;

  get_saved_register (raw_buffer, &optim, &addr,
		      selected_frame, regnum, &lval);

  target_convert_to_virtual (regnum, raw_buffer, virtual_buffer);
  val = allocate_value (REGISTER_VIRTUAL_TYPE (regnum));
  bcopy (virtual_buffer, VALUE_CONTENTS_RAW (val),
	 REGISTER_VIRTUAL_SIZE (regnum));
  VALUE_LVAL (val) = lval;
  VALUE_ADDRESS (val) = addr;
  VALUE_REGNO (val) = regnum;
  VALUE_OPTIMIZED_OUT (val) = optim;
  return val;
}

/* Low level examining and depositing of registers.

   The caller is responsible for making
   sure that the inferior is stopped before calling the fetching routines,
   or it will get garbage.  (a change from GDB version 3, in which
   the caller got the value from the last stop).  */

/* Contents of the registers in target byte order.
   We allocate some extra slop since we do a lot of bcopy's around `registers',
   and failing-soft is better than failing hard.  */
char registers[REGISTER_BYTES + /* SLOP */ 256];

/* Nonzero if that register has been fetched.  */
char register_valid[NUM_REGS];

/* Indicate that registers may have changed, so invalidate the cache.  */
void
registers_changed ()
{
  int i;
  for (i = 0; i < NUM_REGS; i++)
    register_valid[i] = 0;
}

/* Indicate that all registers have been fetched, so mark them all valid.  */
void
registers_fetched ()
{
  int i;
  for (i = 0; i < NUM_REGS; i++)
    register_valid[i] = 1;
}

/* Copy LEN bytes of consecutive data from registers
   starting with the REGBYTE'th byte of register data
   into memory at MYADDR.  */

void
read_register_bytes (regbyte, myaddr, len)
     int regbyte;
     char *myaddr;
     int len;
{
  /* Fetch all registers.  */
  int i;
  for (i = 0; i < NUM_REGS; i++)
    if (!register_valid[i])
      {
	target_fetch_registers (-1);
	break;
      }
  if (myaddr != NULL)
    bcopy (&registers[regbyte], myaddr, len);
}

/* Read register REGNO into memory at MYADDR, which must be large enough
   for REGISTER_RAW_BYTES (REGNO).  Target byte-order.
   If the register is known to be the size of a CORE_ADDR or smaller,
   read_register can be used instead.  */
void
read_register_gen (regno, myaddr)
     int regno;
     char *myaddr;
{
  if (!register_valid[regno])
    target_fetch_registers (regno);
  bcopy (&registers[REGISTER_BYTE (regno)], myaddr, REGISTER_RAW_SIZE (regno));
}

/* Copy LEN bytes of consecutive data from memory at MYADDR
   into registers starting with the REGBYTE'th byte of register data.  */

void
write_register_bytes (regbyte, myaddr, len)
     int regbyte;
     char *myaddr;
     int len;
{
  /* Make sure the entire registers array is valid.  */
  read_register_bytes (0, (char *)NULL, REGISTER_BYTES);
  bcopy (myaddr, &registers[regbyte], len);
  target_store_registers (-1);
}

/* Return the contents of register REGNO, regarding it as an integer.  */

CORE_ADDR
read_register (regno)
     int regno;
{
  int reg;
  if (!register_valid[regno])
    target_fetch_registers (regno);
  /* FIXME, this loses when REGISTER_RAW_SIZE (regno) != sizeof (int) */
  reg = *(int *) &registers[REGISTER_BYTE (regno)];
  SWAP_TARGET_AND_HOST (&reg, sizeof (int));
  return reg;
}

/* Registers we shouldn't try to store.  */
#if !defined (CANNOT_STORE_REGISTER)
#define CANNOT_STORE_REGISTER(regno) 0
#endif

/* Store VALUE in the register number REGNO, regarded as an integer.  */

void
write_register (regno, val)
     int regno, val;
{
  /* On the sparc, writing %g0 is a no-op, so we don't even want to change
     the registers array if something writes to this register.  */
  if (CANNOT_STORE_REGISTER (regno))
    return;

  SWAP_TARGET_AND_HOST (&val, sizeof (int));

  target_prepare_to_store ();

  register_valid [regno] = 1;
  /* FIXME, this loses when REGISTER_RAW_SIZE (regno) != sizeof (int) */
  /* FIXME, this depends on REGISTER_BYTE (regno) being aligned for host */
  *(int *) &registers[REGISTER_BYTE (regno)] = val;

  target_store_registers (regno);
}

/* Record that register REGNO contains VAL.
   This is used when the value is obtained from the inferior or core dump,
   so there is no need to store the value there.  */

void
supply_register (regno, val)
     int regno;
     char *val;
{
  register_valid[regno] = 1;
  bcopy (val, &registers[REGISTER_BYTE (regno)], REGISTER_RAW_SIZE (regno));
}

/* Given a struct symbol for a variable,
   and a stack frame id, read the value of the variable
   and return a (pointer to a) struct value containing the value. 
   If the variable cannot be found, return a zero pointer.
   If FRAME is NULL, use the selected_frame.  */

value
read_var_value (var, frame)
     register struct symbol *var;
     FRAME frame;
{
  register value v;
  struct frame_info *fi;
  struct type *type = SYMBOL_TYPE (var);
  CORE_ADDR addr;
  register int len;

  v = allocate_value (type);
  VALUE_LVAL (v) = lval_memory;	/* The most likely possibility.  */
  len = TYPE_LENGTH (type);

  if (frame == 0) frame = selected_frame;

  switch (SYMBOL_CLASS (var))
    {
    case LOC_CONST:
      bcopy (&SYMBOL_VALUE (var), VALUE_CONTENTS_RAW (v), len);
      SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (v), len);
      VALUE_LVAL (v) = not_lval;
      return v;

    case LOC_LABEL:
      addr = SYMBOL_VALUE_ADDRESS (var);
      bcopy (&addr, VALUE_CONTENTS_RAW (v), len);
      SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (v), len);
      VALUE_LVAL (v) = not_lval;
      return v;

    case LOC_CONST_BYTES:
      {
	char *bytes_addr;
	bytes_addr = SYMBOL_VALUE_BYTES (var);
	bcopy (bytes_addr, VALUE_CONTENTS_RAW (v), len);
	VALUE_LVAL (v) = not_lval;
	return v;
      }

    case LOC_STATIC:
      addr = SYMBOL_VALUE_ADDRESS (var);
      break;

/* Nonzero if a struct which is located in a register or a LOC_ARG
   really contains
   the address of the struct, not the struct itself.  GCC_P is nonzero
   if the function was compiled with GCC.  */
#if !defined (REG_STRUCT_HAS_ADDR)
#define REG_STRUCT_HAS_ADDR(gcc_p) 0
#endif

    case LOC_ARG:
      fi = get_frame_info (frame);
      if (fi == NULL)
	return 0;
      addr = FRAME_ARGS_ADDRESS (fi);
      if (!addr) {
	return 0;
      }
      addr += SYMBOL_VALUE (var);
      break;
      
    case LOC_REF_ARG:
      fi = get_frame_info (frame);
      if (fi == NULL)
	return 0;
      addr = FRAME_ARGS_ADDRESS (fi);
      if (!addr) {
	return 0;
      }
      addr += SYMBOL_VALUE (var);
      read_memory (addr, &addr, sizeof (CORE_ADDR));
      break;
      
    case LOC_LOCAL:
    case LOC_LOCAL_ARG:
      fi = get_frame_info (frame);
      if (fi == NULL)
	return 0;
      addr = SYMBOL_VALUE (var) + FRAME_LOCALS_ADDRESS (fi);
      break;

    case LOC_TYPEDEF:
      error ("Cannot look up value of a typedef");
      break;

    case LOC_BLOCK:
      VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (var));
      return v;

    case LOC_REGISTER:
    case LOC_REGPARM:
      {
	struct block *b;

	if (frame == NULL)
	  return 0;
	b = get_frame_block (frame);
	
	v = value_from_register (type, SYMBOL_VALUE (var), frame);

	if (REG_STRUCT_HAS_ADDR (BLOCK_GCC_COMPILED (b))
	    && TYPE_CODE (type) == TYPE_CODE_STRUCT)
	  addr = *(CORE_ADDR *)VALUE_CONTENTS (v);
	else
	  return v;
      }
      break;

    default:
      error ("Cannot look up value of a botched symbol.");
      break;
    }

  VALUE_ADDRESS (v) = addr;
  VALUE_LAZY (v) = 1;
  return v;
}

/* Return a value of type TYPE, stored in register REGNUM, in frame
   FRAME. */

value
value_from_register (type, regnum, frame)
     struct type *type;
     int regnum;
     FRAME frame;
{
  char raw_buffer [MAX_REGISTER_RAW_SIZE];
  char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
  CORE_ADDR addr;
  int optim;
  value v = allocate_value (type);
  int len = TYPE_LENGTH (type);
  char *value_bytes = 0;
  int value_bytes_copied = 0;
  int num_storage_locs;
  enum lval_type lval;

  VALUE_REGNO (v) = regnum;

  num_storage_locs = (len > REGISTER_VIRTUAL_SIZE (regnum) ?
		      ((len - 1) / REGISTER_RAW_SIZE (regnum)) + 1 :
		      1);

  if (num_storage_locs > 1)
    {
      /* Value spread across multiple storage locations.  */
      
      int local_regnum;
      int mem_stor = 0, reg_stor = 0;
      int mem_tracking = 1;
      CORE_ADDR last_addr = 0;
      CORE_ADDR first_addr;

      value_bytes = (char *) alloca (len + MAX_REGISTER_RAW_SIZE);

      /* Copy all of the data out, whereever it may be.  */

      for (local_regnum = regnum;
	   value_bytes_copied < len;
	   (value_bytes_copied += REGISTER_RAW_SIZE (local_regnum),
	    ++local_regnum))
	{
	  get_saved_register (value_bytes + value_bytes_copied,
			      &optim,
			      &addr,
			      frame,
			      local_regnum,
			      &lval);
	  if (lval == lval_register)
	    reg_stor++;
	  else
	    {
	      mem_stor++;

	      if (regnum == local_regnum)
		first_addr = addr;
	      
	      mem_tracking =
		(mem_tracking
		 && (regnum == local_regnum
		     || addr == last_addr));
	    }
	  last_addr = addr;
	}

      if ((reg_stor && mem_stor)
	  || (mem_stor && !mem_tracking))
	/* Mixed storage; all of the hassle we just went through was
	   for some good purpose.  */
	{
	  VALUE_LVAL (v) = lval_reg_frame_relative;
	  VALUE_FRAME (v) = FRAME_FP (frame);
	  VALUE_FRAME_REGNUM (v) = regnum;
	}
      else if (mem_stor)
	{
	  VALUE_LVAL (v) = lval_memory;
	  VALUE_ADDRESS (v) = first_addr;
	}
      else if (reg_stor)
	{
	  VALUE_LVAL (v) = lval_register;
	  VALUE_ADDRESS (v) = first_addr;
	}
      else
	fatal ("value_from_register: Value not stored anywhere!");

      VALUE_OPTIMIZED_OUT (v) = optim;

      /* Any structure stored in more than one register will always be
	 an integral number of registers.  Otherwise, you'd need to do
	 some fiddling with the last register copied here for little
	 endian machines.  */

      /* Copy into the contents section of the value.  */
      bcopy (value_bytes, VALUE_CONTENTS_RAW (v), len);

      return v;
    }

  /* Data is completely contained within a single register.  Locate the
     register's contents in a real register or in core;
     read the data in raw format.  */

  get_saved_register (raw_buffer, &optim, &addr, frame, regnum, &lval);
  VALUE_OPTIMIZED_OUT (v) = optim;
  VALUE_LVAL (v) = lval;
  VALUE_ADDRESS (v) = addr;
  
  /* Convert the raw contents to virtual contents.
     (Just copy them if the formats are the same.)  */
  
  target_convert_to_virtual (regnum, raw_buffer, virtual_buffer);
  
  if (REGISTER_CONVERTIBLE (regnum))
    {
      /* When the raw and virtual formats differ, the virtual format
	 corresponds to a specific data type.  If we want that type,
	 copy the data into the value.
	 Otherwise, do a type-conversion.  */
      
      if (type != REGISTER_VIRTUAL_TYPE (regnum))
	{
	  /* eg a variable of type `float' in a 68881 register
	     with raw type `extended' and virtual type `double'.
	     Fetch it as a `double' and then convert to `float'.  */
	  v = allocate_value (REGISTER_VIRTUAL_TYPE (regnum));
	  bcopy (virtual_buffer, VALUE_CONTENTS_RAW (v), len);
	  v = value_cast (type, v);
	}
      else
	bcopy (virtual_buffer, VALUE_CONTENTS_RAW (v), len);
    }
  else
    {
      /* Raw and virtual formats are the same for this register.  */

#if TARGET_BYTE_ORDER == BIG_ENDIAN
      if (len < REGISTER_RAW_SIZE (regnum))
	{
  	  /* Big-endian, and we want less than full size.  */
	  VALUE_OFFSET (v) = REGISTER_RAW_SIZE (regnum) - len;
	}
#endif

      bcopy (virtual_buffer + VALUE_OFFSET (v),
	     VALUE_CONTENTS_RAW (v), len);
    }
  
  return v;
}

/* Given a struct symbol for a variable or function,
   and a stack frame id, 
   return a (pointer to a) struct value containing the properly typed
   address.  */

value
locate_var_value (var, frame)
     register struct symbol *var;
     FRAME frame;
{
  CORE_ADDR addr = 0;
  struct type *type = SYMBOL_TYPE (var);
  value lazy_value;

  /* Evaluate it first; if the result is a memory address, we're fine.
     Lazy evaluation pays off here. */

  lazy_value = read_var_value (var, frame);
  if (lazy_value == 0)
    error ("Address of \"%s\" is unknown.", SYMBOL_NAME (var));

  if (VALUE_LAZY (lazy_value)
      || TYPE_CODE (type) == TYPE_CODE_FUNC)
    {
      addr = VALUE_ADDRESS (lazy_value);

      /* C++: The "address" of a reference should yield the address
       * of the object pointed to. So force an extra de-reference. */

      if (TYPE_CODE (type) == TYPE_CODE_REF)
	{
	  char *buf = alloca (TYPE_LENGTH (type));
	  read_memory (addr, buf, TYPE_LENGTH (type));
	  addr = unpack_pointer (type, buf);
	  type = TYPE_TARGET_TYPE (type);
	}

      return value_from_longest (lookup_pointer_type (type), (LONGEST) addr);
    }

  /* Not a memory address; check what the problem was.  */
  switch (VALUE_LVAL (lazy_value)) 
    {
    case lval_register:
    case lval_reg_frame_relative:
      error ("Address requested for identifier \"%s\" which is in a register.",
	     SYMBOL_NAME (var));
      break;

    default:
      error ("Can't take address of \"%s\" which isn't an lvalue.",
	     SYMBOL_NAME (var));
      break;
    }
  return 0;  /* For lint -- never reached */
}