aboutsummaryrefslogtreecommitdiff
path: root/gdb/f-valprint.c
blob: e96892947af8d941cabdc2be26cb42825bc0b99c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
/* Support for printing Fortran values for GDB, the GNU debugger.

   Copyright (C) 1993-2023 Free Software Foundation, Inc.

   Contributed by Motorola.  Adapted from the C definitions by Farooq Butt
   (fmbutt@engage.sps.mot.com), additionally worked over by Stan Shebs.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "annotate.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "expression.h"
#include "value.h"
#include "valprint.h"
#include "language.h"
#include "f-lang.h"
#include "frame.h"
#include "gdbcore.h"
#include "command.h"
#include "block.h"
#include "dictionary.h"
#include "cli/cli-style.h"
#include "gdbarch.h"
#include "f-array-walker.h"

static void f77_get_dynamic_length_of_aggregate (struct type *);

LONGEST
f77_get_lowerbound (struct type *type)
{
  if (type->bounds ()->low.kind () != PROP_CONST)
    error (_("Lower bound may not be '*' in F77"));

  return type->bounds ()->low.const_val ();
}

LONGEST
f77_get_upperbound (struct type *type)
{
  if (type->bounds ()->high.kind () != PROP_CONST)
    {
      /* We have an assumed size array on our hands.  Assume that
	 upper_bound == lower_bound so that we show at least 1 element.
	 If the user wants to see more elements, let him manually ask for 'em
	 and we'll subscript the array and show him.  */

      return f77_get_lowerbound (type);
    }

  return type->bounds ()->high.const_val ();
}

/* Obtain F77 adjustable array dimensions.  */

static void
f77_get_dynamic_length_of_aggregate (struct type *type)
{
  int upper_bound = -1;
  int lower_bound = 1;

  /* Recursively go all the way down into a possibly multi-dimensional
     F77 array and get the bounds.  For simple arrays, this is pretty
     easy but when the bounds are dynamic, we must be very careful 
     to add up all the lengths correctly.  Not doing this right 
     will lead to horrendous-looking arrays in parameter lists.

     This function also works for strings which behave very 
     similarly to arrays.  */

  if (type->target_type ()->code () == TYPE_CODE_ARRAY
      || type->target_type ()->code () == TYPE_CODE_STRING)
    f77_get_dynamic_length_of_aggregate (type->target_type ());

  /* Recursion ends here, start setting up lengths.  */
  lower_bound = f77_get_lowerbound (type);
  upper_bound = f77_get_upperbound (type);

  /* Patch in a valid length value.  */
  type->set_length ((upper_bound - lower_bound + 1)
		    * check_typedef (type->target_type ())->length ());
}

/* Per-dimension statistics.  */

struct dimension_stats
{
  /* The type of the index used to address elements in the dimension.  */
  struct type *index_type;

  /* Total number of elements in the dimension, counted as we go.  */
  int nelts;
};

/* A class used by FORTRAN_PRINT_ARRAY as a specialisation of the array
   walking template.  This specialisation prints Fortran arrays.  */

class fortran_array_printer_impl : public fortran_array_walker_base_impl
{
public:
  /* Constructor.  TYPE is the array type being printed, ADDRESS is the
     address in target memory for the object of TYPE being printed.  VAL is
     the GDB value (of TYPE) being printed.  STREAM is where to print to,
     RECOURSE is passed through (and prevents infinite recursion), and
     OPTIONS are the printing control options.  */
  explicit fortran_array_printer_impl (struct type *type,
				       CORE_ADDR address,
				       struct value *val,
				       struct ui_file *stream,
				       int recurse,
				       const struct value_print_options *options)
    : m_elts (0),
      m_val (val),
      m_stream (stream),
      m_recurse (recurse),
      m_options (options),
      m_dimension (0),
      m_nrepeats (0),
      m_stats (0)
  { /* Nothing.  */ }

  /* Called while iterating over the array bounds.  When SHOULD_CONTINUE is
     false then we must return false, as we have reached the end of the
     array bounds for this dimension.  However, we also return false if we
     have printed too many elements (after printing '...').  In all other
     cases, return true.  */
  bool continue_walking (bool should_continue)
  {
    bool cont = should_continue && (m_elts < m_options->print_max);
    if (!cont && should_continue)
      gdb_puts ("...", m_stream);
    return cont;
  }

  /* Called when we start iterating over a dimension.  If it's not the
     inner most dimension then print an opening '(' character.  */
  void start_dimension (struct type *index_type, LONGEST nelts, bool inner_p)
  {
    size_t dim_indx = m_dimension++;

    m_elt_type_prev = nullptr;
    if (m_stats.size () < m_dimension)
      {
	m_stats.resize (m_dimension);
	m_stats[dim_indx].index_type = index_type;
	m_stats[dim_indx].nelts = nelts;
      }

    gdb_puts ("(", m_stream);
  }

  /* Called when we finish processing a batch of items within a dimension
     of the array.  Depending on whether this is the inner most dimension
     or not we print different things, but this is all about adding
     separators between elements, and dimensions of the array.  */
  void finish_dimension (bool inner_p, bool last_p)
  {
    gdb_puts (")", m_stream);
    if (!last_p)
      gdb_puts (" ", m_stream);

    m_dimension--;
  }

  /* Called when processing dimensions of the array other than the
     innermost one.  WALK_1 is the walker to normally call, ELT_TYPE is
     the type of the element being extracted, and ELT_OFF is the offset
     of the element from the start of array being walked, INDEX_TYPE
     and INDEX is the type and the value respectively of the element's
     index in the dimension currently being walked and LAST_P is true
     only when this is the last element that will be processed in this
     dimension.  */
  void process_dimension (gdb::function_view<void (struct type *,
						   int, bool)> walk_1,
			  struct type *elt_type, LONGEST elt_off,
			  LONGEST index, bool last_p)
  {
    size_t dim_indx = m_dimension - 1;
    struct type *elt_type_prev = m_elt_type_prev;
    LONGEST elt_off_prev = m_elt_off_prev;
    bool repeated = (m_options->repeat_count_threshold < UINT_MAX
		     && elt_type_prev != nullptr
		     && (m_elts + ((m_nrepeats + 1)
				   * m_stats[dim_indx + 1].nelts)
			 <= m_options->print_max)
		     && dimension_contents_eq (m_val, elt_type,
					       elt_off_prev, elt_off));

    if (repeated)
      m_nrepeats++;
    if (!repeated || last_p)
      {
	LONGEST nrepeats = m_nrepeats;

	m_nrepeats = 0;
	if (nrepeats >= m_options->repeat_count_threshold)
	  {
	    annotate_elt_rep (nrepeats + 1);
	    gdb_printf (m_stream, "%p[<repeats %s times>%p]",
			metadata_style.style ().ptr (),
			plongest (nrepeats + 1),
			nullptr);
	    annotate_elt_rep_end ();
	    if (!repeated)
	      gdb_puts (" ", m_stream);
	    m_elts += nrepeats * m_stats[dim_indx + 1].nelts;
	  }
	else
	  for (LONGEST i = nrepeats; i > 0; i--)
	    {
	      maybe_print_array_index (m_stats[dim_indx].index_type,
				       index - nrepeats + repeated,
				       m_stream, m_options);
	      walk_1 (elt_type_prev, elt_off_prev, repeated && i == 1);
	    }

	if (!repeated)
	  {
	    /* We need to specially handle the case of hitting `print_max'
	       exactly as recursing would cause lone `(...)' to be printed.
	       And we need to print `...' by hand if the skipped element
	       would be the last one processed, because the subsequent call
	       to `continue_walking' from our caller won't do that.  */
	    if (m_elts < m_options->print_max)
	      {
		maybe_print_array_index (m_stats[dim_indx].index_type, index,
					 m_stream, m_options);
		walk_1 (elt_type, elt_off, last_p);
		nrepeats++;
	      }
	    else if (last_p)
	      gdb_puts ("...", m_stream);
	  }
      }

    m_elt_type_prev = elt_type;
    m_elt_off_prev = elt_off;
  }

  /* Called to process an element of ELT_TYPE at offset ELT_OFF from the
     start of the parent object, where INDEX is the value of the element's
     index in the dimension currently being walked and LAST_P is true only
     when this is the last element to be processed in this dimension.  */
  void process_element (struct type *elt_type, LONGEST elt_off,
			LONGEST index, bool last_p)
  {
    size_t dim_indx = m_dimension - 1;
    struct type *elt_type_prev = m_elt_type_prev;
    LONGEST elt_off_prev = m_elt_off_prev;
    bool repeated = false;

    if (m_options->repeat_count_threshold < UINT_MAX
	&& elt_type_prev != nullptr)
      {
	struct value *e_val = value_from_component (m_val, elt_type, elt_off);
	struct value *e_prev = value_from_component (m_val, elt_type,
						     elt_off_prev);
	repeated = ((e_prev->entirely_available ()
		     && e_val->entirely_available ()
		     && e_prev->contents_eq (e_val))
		    || (e_prev->entirely_unavailable ()
			&& e_val->entirely_unavailable ()));
      }

    if (repeated)
      m_nrepeats++;
    if (!repeated || last_p || m_elts + 1 == m_options->print_max)
      {
	LONGEST nrepeats = m_nrepeats;
	bool printed = false;

	if (nrepeats != 0)
	  {
	    m_nrepeats = 0;
	    if (nrepeats >= m_options->repeat_count_threshold)
	      {
		annotate_elt_rep (nrepeats + 1);
		gdb_printf (m_stream, "%p[<repeats %s times>%p]",
			    metadata_style.style ().ptr (),
			    plongest (nrepeats + 1),
			    nullptr);
		annotate_elt_rep_end ();
	      }
	    else
	      {
		/* Extract the element value from the parent value.  */
		struct value *e_val
		  = value_from_component (m_val, elt_type, elt_off_prev);

		for (LONGEST i = nrepeats; i > 0; i--)
		  {
		    maybe_print_array_index (m_stats[dim_indx].index_type,
					     index - i + 1,
					     m_stream, m_options);
		    common_val_print (e_val, m_stream, m_recurse, m_options,
				      current_language);
		    if (i > 1)
		      gdb_puts (", ", m_stream);
		  }
	      }
	    printed = true;
	  }

	if (!repeated)
	  {
	    /* Extract the element value from the parent value.  */
	    struct value *e_val
	      = value_from_component (m_val, elt_type, elt_off);

	    if (printed)
	      gdb_puts (", ", m_stream);
	    maybe_print_array_index (m_stats[dim_indx].index_type, index,
				     m_stream, m_options);
	    common_val_print (e_val, m_stream, m_recurse, m_options,
			      current_language);
	  }
	if (!last_p)
	  gdb_puts (", ", m_stream);
      }

    m_elt_type_prev = elt_type;
    m_elt_off_prev = elt_off;
    ++m_elts;
  }

private:
  /* Called to compare two VAL elements of ELT_TYPE at offsets OFFSET1
     and OFFSET2 each.  Handle subarrays recursively, because they may
     have been sliced and we do not want to compare any memory contents
     present between the slices requested.  */
  bool
  dimension_contents_eq (struct value *val, struct type *type,
			 LONGEST offset1, LONGEST offset2)
  {
    if (type->code () == TYPE_CODE_ARRAY
	&& type->target_type ()->code () != TYPE_CODE_CHAR)
      {
	/* Extract the range, and get lower and upper bounds.  */
	struct type *range_type = check_typedef (type)->index_type ();
	LONGEST lowerbound, upperbound;
	if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
	  error ("failed to get range bounds");

	/* CALC is used to calculate the offsets for each element.  */
	fortran_array_offset_calculator calc (type);

	struct type *subarray_type = check_typedef (type->target_type ());
	for (LONGEST i = lowerbound; i < upperbound + 1; i++)
	  {
	    /* Use the index and the stride to work out a new offset.  */
	    LONGEST index_offset = calc.index_offset (i);

	    if (!dimension_contents_eq (val, subarray_type,
					offset1 + index_offset,
					offset2 + index_offset))
	      return false;
	  }
	return true;
      }
    else
      {
	struct value *e_val1 = value_from_component (val, type, offset1);
	struct value *e_val2 = value_from_component (val, type, offset2);

	return ((e_val1->entirely_available ()
		 && e_val2->entirely_available ()
		 && e_val1->contents_eq (e_val2))
		|| (e_val1->entirely_unavailable ()
		    && e_val2->entirely_unavailable ()));
      }
  }

  /* The number of elements printed so far.  */
  int m_elts;

  /* The value from which we are printing elements.  */
  struct value *m_val;

  /* The stream we should print too.  */
  struct ui_file *m_stream;

  /* The recursion counter, passed through when we print each element.  */
  int m_recurse;

  /* The print control options.  Gives us the maximum number of elements to
     print, and is passed through to each element that we print.  */
  const struct value_print_options *m_options = nullptr;

  /* The number of the current dimension being handled.  */
  LONGEST m_dimension;

  /* The number of element repetitions in the current series.  */
  LONGEST m_nrepeats;

  /* The type and offset from M_VAL of the element handled in the previous
     iteration over the current dimension.  */
  struct type *m_elt_type_prev;
  LONGEST m_elt_off_prev;

  /* Per-dimension stats.  */
  std::vector<struct dimension_stats> m_stats;
};

/* This function gets called to print a Fortran array.  */

static void
fortran_print_array (struct type *type, CORE_ADDR address,
		     struct ui_file *stream, int recurse,
		     const struct value *val,
		     const struct value_print_options *options)
{
  fortran_array_walker<fortran_array_printer_impl> p
    (type, address, (struct value *) val, stream, recurse, options);
  p.walk ();
}


/* Decorations for Fortran.  */

static const struct generic_val_print_decorations f_decorations =
{
  "(",
  ",",
  ")",
  ".TRUE.",
  ".FALSE.",
  "void",
  "{",
  "}"
};

/* See f-lang.h.  */

void
f_language::value_print_inner (struct value *val, struct ui_file *stream,
			       int recurse,
			       const struct value_print_options *options) const
{
  struct type *type = check_typedef (val->type ());
  struct gdbarch *gdbarch = type->arch ();
  int printed_field = 0; /* Number of fields printed.  */
  struct type *elttype;
  CORE_ADDR addr;
  int index;
  const gdb_byte *valaddr = val->contents_for_printing ().data ();
  const CORE_ADDR address = val->address ();

  switch (type->code ())
    {
    case TYPE_CODE_STRING:
      f77_get_dynamic_length_of_aggregate (type);
      printstr (stream, builtin_type (gdbarch)->builtin_char, valaddr,
		type->length (), NULL, 0, options);
      break;

    case TYPE_CODE_ARRAY:
      if (type->target_type ()->code () != TYPE_CODE_CHAR)
	fortran_print_array (type, address, stream, recurse, val, options);
      else
	{
	  struct type *ch_type = type->target_type ();

	  f77_get_dynamic_length_of_aggregate (type);
	  printstr (stream, ch_type, valaddr,
		    type->length () / ch_type->length (), NULL, 0,
		    options);
	}
      break;

    case TYPE_CODE_PTR:
      if (options->format && options->format != 's')
	{
	  value_print_scalar_formatted (val, options, 0, stream);
	  break;
	}
      else
	{
	  int want_space = 0;

	  addr = unpack_pointer (type, valaddr);
	  elttype = check_typedef (type->target_type ());

	  if (elttype->code () == TYPE_CODE_FUNC)
	    {
	      /* Try to print what function it points to.  */
	      print_function_pointer_address (options, gdbarch, addr, stream);
	      return;
	    }

	  if (options->symbol_print)
	    want_space = print_address_demangle (options, gdbarch, addr,
						 stream, demangle);
	  else if (options->addressprint && options->format != 's')
	    {
	      gdb_puts (paddress (gdbarch, addr), stream);
	      want_space = 1;
	    }

	  /* For a pointer to char or unsigned char, also print the string
	     pointed to, unless pointer is null.  */
	  if (elttype->length () == 1
	      && elttype->code () == TYPE_CODE_INT
	      && (options->format == 0 || options->format == 's')
	      && addr != 0)
	    {
	      if (want_space)
		gdb_puts (" ", stream);
	      val_print_string (type->target_type (), NULL, addr, -1,
				stream, options);
	    }
	  return;
	}
      break;

    case TYPE_CODE_STRUCT:
    case TYPE_CODE_UNION:
    case TYPE_CODE_NAMELIST:
      /* Starting from the Fortran 90 standard, Fortran supports derived
	 types.  */
      gdb_printf (stream, "( ");
      for (index = 0; index < type->num_fields (); index++)
	{
	  struct type *field_type
	    = check_typedef (type->field (index).type ());

	  if (field_type->code () != TYPE_CODE_FUNC)
	    {
	      const char *field_name = type->field (index).name ();
	      struct value *field;

	      if (type->code () == TYPE_CODE_NAMELIST)
		{
		  /* While printing namelist items, fetch the appropriate
		     value field before printing its value.  */
		  struct block_symbol sym
		    = lookup_symbol (field_name, get_selected_block (nullptr),
				     VAR_DOMAIN, nullptr);
		  if (sym.symbol == nullptr)
		    error (_("failed to find symbol for name list component %s"),
			   field_name);
		  field = value_of_variable (sym.symbol, sym.block);
		}
	      else
		field = value_field (val, index);

	      if (printed_field > 0)
		gdb_puts (", ", stream);

	      if (field_name != NULL)
		{
		  fputs_styled (field_name, variable_name_style.style (),
				stream);
		  gdb_puts (" = ", stream);
		}

	      common_val_print (field, stream, recurse + 1,
				options, current_language);

	      ++printed_field;
	    }
	 }
      gdb_printf (stream, " )");
      break;     

    case TYPE_CODE_BOOL:
      if (options->format || options->output_format)
	{
	  struct value_print_options opts = *options;
	  opts.format = (options->format ? options->format
			 : options->output_format);
	  value_print_scalar_formatted (val, &opts, 0, stream);
	}
      else
	{
	  LONGEST longval = value_as_long (val);
	  /* The Fortran standard doesn't specify how logical types are
	     represented.  Different compilers use different non zero
	     values to represent logical true.  */
	  if (longval == 0)
	    gdb_puts (f_decorations.false_name, stream);
	  else
	    gdb_puts (f_decorations.true_name, stream);
	}
      break;

    case TYPE_CODE_INT:
    case TYPE_CODE_REF:
    case TYPE_CODE_FUNC:
    case TYPE_CODE_FLAGS:
    case TYPE_CODE_FLT:
    case TYPE_CODE_VOID:
    case TYPE_CODE_ERROR:
    case TYPE_CODE_RANGE:
    case TYPE_CODE_UNDEF:
    case TYPE_CODE_COMPLEX:
    case TYPE_CODE_CHAR:
    default:
      generic_value_print (val, stream, recurse, options, &f_decorations);
      break;
    }
}

static void
info_common_command_for_block (const struct block *block, const char *comname,
			       int *any_printed)
{
  struct block_iterator iter;
  struct symbol *sym;
  struct value_print_options opts;

  get_user_print_options (&opts);

  ALL_BLOCK_SYMBOLS (block, iter, sym)
    if (sym->domain () == COMMON_BLOCK_DOMAIN)
      {
	const struct common_block *common = sym->value_common_block ();
	size_t index;

	gdb_assert (sym->aclass () == LOC_COMMON_BLOCK);

	if (comname && (!sym->linkage_name ()
			|| strcmp (comname, sym->linkage_name ()) != 0))
	  continue;

	if (*any_printed)
	  gdb_putc ('\n');
	else
	  *any_printed = 1;
	if (sym->print_name ())
	  gdb_printf (_("Contents of F77 COMMON block '%s':\n"),
		      sym->print_name ());
	else
	  gdb_printf (_("Contents of blank COMMON block:\n"));
	
	for (index = 0; index < common->n_entries; index++)
	  {
	    struct value *val = NULL;

	    gdb_printf ("%s = ",
			common->contents[index]->print_name ());

	    try
	      {
		val = value_of_variable (common->contents[index], block);
		value_print (val, gdb_stdout, &opts);
	      }

	    catch (const gdb_exception_error &except)
	      {
		fprintf_styled (gdb_stdout, metadata_style.style (),
				"<error reading variable: %s>",
				except.what ());
	      }

	    gdb_putc ('\n');
	  }
      }
}

/* This function is used to print out the values in a given COMMON 
   block.  It will always use the most local common block of the 
   given name.  */

static void
info_common_command (const char *comname, int from_tty)
{
  frame_info_ptr fi;
  const struct block *block;
  int values_printed = 0;

  /* We have been told to display the contents of F77 COMMON 
     block supposedly visible in this function.  Let us 
     first make sure that it is visible and if so, let 
     us display its contents.  */

  fi = get_selected_frame (_("No frame selected"));

  /* The following is generally ripped off from stack.c's routine 
     print_frame_info().  */

  block = get_frame_block (fi, 0);
  if (block == NULL)
    {
      gdb_printf (_("No symbol table info available.\n"));
      return;
    }

  while (block)
    {
      info_common_command_for_block (block, comname, &values_printed);
      /* After handling the function's top-level block, stop.  Don't
	 continue to its superblock, the block of per-file symbols.  */
      if (block->function ())
	break;
      block = block->superblock ();
    }

  if (!values_printed)
    {
      if (comname)
	gdb_printf (_("No common block '%s'.\n"), comname);
      else
	gdb_printf (_("No common blocks.\n"));
    }
}

void _initialize_f_valprint ();
void
_initialize_f_valprint ()
{
  add_info ("common", info_common_command,
	    _("Print out the values contained in a Fortran COMMON block."));
}