aboutsummaryrefslogtreecommitdiff
path: root/gdb/f-lang.c
blob: 52493743031716f21262e34048879122ea6db128 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
/* Fortran language support routines for GDB, the GNU debugger.

   Copyright (C) 1993-2020 Free Software Foundation, Inc.

   Contributed by Motorola.  Adapted from the C parser by Farooq Butt
   (fmbutt@engage.sps.mot.com).

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "expression.h"
#include "parser-defs.h"
#include "language.h"
#include "varobj.h"
#include "gdbcore.h"
#include "f-lang.h"
#include "valprint.h"
#include "value.h"
#include "cp-support.h"
#include "charset.h"
#include "c-lang.h"
#include "target-float.h"
#include "gdbarch.h"

#include <math.h>

/* Local functions */

/* Return the encoding that should be used for the character type
   TYPE.  */

const char *
f_language::get_encoding (struct type *type)
{
  const char *encoding;

  switch (TYPE_LENGTH (type))
    {
    case 1:
      encoding = target_charset (get_type_arch (type));
      break;
    case 4:
      if (type_byte_order (type) == BFD_ENDIAN_BIG)
	encoding = "UTF-32BE";
      else
	encoding = "UTF-32LE";
      break;

    default:
      error (_("unrecognized character type"));
    }

  return encoding;
}



/* Table of operators and their precedences for printing expressions.  */

const struct op_print f_language::op_print_tab[] =
{
  {"+", BINOP_ADD, PREC_ADD, 0},
  {"+", UNOP_PLUS, PREC_PREFIX, 0},
  {"-", BINOP_SUB, PREC_ADD, 0},
  {"-", UNOP_NEG, PREC_PREFIX, 0},
  {"*", BINOP_MUL, PREC_MUL, 0},
  {"/", BINOP_DIV, PREC_MUL, 0},
  {"DIV", BINOP_INTDIV, PREC_MUL, 0},
  {"MOD", BINOP_REM, PREC_MUL, 0},
  {"=", BINOP_ASSIGN, PREC_ASSIGN, 1},
  {".OR.", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
  {".AND.", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
  {".NOT.", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
  {".EQ.", BINOP_EQUAL, PREC_EQUAL, 0},
  {".NE.", BINOP_NOTEQUAL, PREC_EQUAL, 0},
  {".LE.", BINOP_LEQ, PREC_ORDER, 0},
  {".GE.", BINOP_GEQ, PREC_ORDER, 0},
  {".GT.", BINOP_GTR, PREC_ORDER, 0},
  {".LT.", BINOP_LESS, PREC_ORDER, 0},
  {"**", UNOP_IND, PREC_PREFIX, 0},
  {"@", BINOP_REPEAT, PREC_REPEAT, 0},
  {NULL, OP_NULL, PREC_REPEAT, 0}
};

enum f_primitive_types {
  f_primitive_type_character,
  f_primitive_type_logical,
  f_primitive_type_logical_s1,
  f_primitive_type_logical_s2,
  f_primitive_type_logical_s8,
  f_primitive_type_integer,
  f_primitive_type_integer_s2,
  f_primitive_type_real,
  f_primitive_type_real_s8,
  f_primitive_type_real_s16,
  f_primitive_type_complex_s8,
  f_primitive_type_complex_s16,
  f_primitive_type_void,
  nr_f_primitive_types
};

/* Called from fortran_value_subarray to take a slice of an array or a
   string.  ARRAY is the array or string to be accessed.  EXP, POS, and
   NOSIDE are as for evaluate_subexp_standard.  Return a value that is a
   slice of the array.  */

static struct value *
value_f90_subarray (struct value *array,
		    struct expression *exp, int *pos, enum noside noside)
{
  int pc = (*pos) + 1;
  LONGEST low_bound, high_bound, stride;
  struct type *range = check_typedef (value_type (array)->index_type ());
  enum range_flag range_flag
    = (enum range_flag) longest_to_int (exp->elts[pc].longconst);

  *pos += 3;

  if (range_flag & RANGE_LOW_BOUND_DEFAULT)
    low_bound = range->bounds ()->low.const_val ();
  else
    low_bound = value_as_long (evaluate_subexp (nullptr, exp, pos, noside));

  if (range_flag & RANGE_HIGH_BOUND_DEFAULT)
    high_bound = range->bounds ()->high.const_val ();
  else
    high_bound = value_as_long (evaluate_subexp (nullptr, exp, pos, noside));

  if (range_flag & RANGE_HAS_STRIDE)
    stride = value_as_long (evaluate_subexp (nullptr, exp, pos, noside));
  else
    stride = 1;

  if (stride != 1)
    error (_("Fortran array strides are not currently supported"));

  return value_slice (array, low_bound, high_bound - low_bound + 1);
}

/* Helper for skipping all the arguments in an undetermined argument list.
   This function was designed for use in the OP_F77_UNDETERMINED_ARGLIST
   case of evaluate_subexp_standard as multiple, but not all, code paths
   require a generic skip.  */

static void
skip_undetermined_arglist (int nargs, struct expression *exp, int *pos,
			   enum noside noside)
{
  for (int i = 0; i < nargs; ++i)
    evaluate_subexp (nullptr, exp, pos, noside);
}

/* Return the number of dimensions for a Fortran array or string.  */

int
calc_f77_array_dims (struct type *array_type)
{
  int ndimen = 1;
  struct type *tmp_type;

  if ((array_type->code () == TYPE_CODE_STRING))
    return 1;

  if ((array_type->code () != TYPE_CODE_ARRAY))
    error (_("Can't get dimensions for a non-array type"));

  tmp_type = array_type;

  while ((tmp_type = TYPE_TARGET_TYPE (tmp_type)))
    {
      if (tmp_type->code () == TYPE_CODE_ARRAY)
	++ndimen;
    }
  return ndimen;
}

/* Called from evaluate_subexp_standard to perform array indexing, and
   sub-range extraction, for Fortran.  As well as arrays this function
   also handles strings as they can be treated like arrays of characters.
   ARRAY is the array or string being accessed.  EXP, POS, and NOSIDE are
   as for evaluate_subexp_standard, and NARGS is the number of arguments
   in this access (e.g. 'array (1,2,3)' would be NARGS 3).  */

static struct value *
fortran_value_subarray (struct value *array, struct expression *exp,
			int *pos, int nargs, enum noside noside)
{
  if (exp->elts[*pos].opcode == OP_RANGE)
    return value_f90_subarray (array, exp, pos, noside);

  if (noside == EVAL_SKIP)
    {
      skip_undetermined_arglist (nargs, exp, pos, noside);
      /* Return the dummy value with the correct type.  */
      return array;
    }

  LONGEST subscript_array[MAX_FORTRAN_DIMS];
  int ndimensions = 1;
  struct type *type = check_typedef (value_type (array));

  if (nargs > MAX_FORTRAN_DIMS)
    error (_("Too many subscripts for F77 (%d Max)"), MAX_FORTRAN_DIMS);

  ndimensions = calc_f77_array_dims (type);

  if (nargs != ndimensions)
    error (_("Wrong number of subscripts"));

  gdb_assert (nargs > 0);

  /* Now that we know we have a legal array subscript expression let us
     actually find out where this element exists in the array.  */

  /* Take array indices left to right.  */
  for (int i = 0; i < nargs; i++)
    {
      /* Evaluate each subscript; it must be a legal integer in F77.  */
      value *arg2 = evaluate_subexp_with_coercion (exp, pos, noside);

      /* Fill in the subscript array.  */
      subscript_array[i] = value_as_long (arg2);
    }

  /* Internal type of array is arranged right to left.  */
  for (int i = nargs; i > 0; i--)
    {
      struct type *array_type = check_typedef (value_type (array));
      LONGEST index = subscript_array[i - 1];

      array = value_subscripted_rvalue (array, index,
					f77_get_lowerbound (array_type));
    }

  return array;
}

/* Special expression evaluation cases for Fortran.  */

static struct value *
evaluate_subexp_f (struct type *expect_type, struct expression *exp,
		   int *pos, enum noside noside)
{
  struct value *arg1 = NULL, *arg2 = NULL;
  enum exp_opcode op;
  int pc;
  struct type *type;

  pc = *pos;
  *pos += 1;
  op = exp->elts[pc].opcode;

  switch (op)
    {
    default:
      *pos -= 1;
      return evaluate_subexp_standard (expect_type, exp, pos, noside);

    case UNOP_ABS:
      arg1 = evaluate_subexp (nullptr, exp, pos, noside);
      if (noside == EVAL_SKIP)
	return eval_skip_value (exp);
      type = value_type (arg1);
      switch (type->code ())
	{
	case TYPE_CODE_FLT:
	  {
	    double d
	      = fabs (target_float_to_host_double (value_contents (arg1),
						   value_type (arg1)));
	    return value_from_host_double (type, d);
	  }
	case TYPE_CODE_INT:
	  {
	    LONGEST l = value_as_long (arg1);
	    l = llabs (l);
	    return value_from_longest (type, l);
	  }
	}
      error (_("ABS of type %s not supported"), TYPE_SAFE_NAME (type));

    case BINOP_MOD:
      arg1 = evaluate_subexp (nullptr, exp, pos, noside);
      arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
      if (noside == EVAL_SKIP)
	return eval_skip_value (exp);
      type = value_type (arg1);
      if (type->code () != value_type (arg2)->code ())
	error (_("non-matching types for parameters to MOD ()"));
      switch (type->code ())
	{
	case TYPE_CODE_FLT:
	  {
	    double d1
	      = target_float_to_host_double (value_contents (arg1),
					     value_type (arg1));
	    double d2
	      = target_float_to_host_double (value_contents (arg2),
					     value_type (arg2));
	    double d3 = fmod (d1, d2);
	    return value_from_host_double (type, d3);
	  }
	case TYPE_CODE_INT:
	  {
	    LONGEST v1 = value_as_long (arg1);
	    LONGEST v2 = value_as_long (arg2);
	    if (v2 == 0)
	      error (_("calling MOD (N, 0) is undefined"));
	    LONGEST v3 = v1 - (v1 / v2) * v2;
	    return value_from_longest (value_type (arg1), v3);
	  }
	}
      error (_("MOD of type %s not supported"), TYPE_SAFE_NAME (type));

    case UNOP_FORTRAN_CEILING:
      {
	arg1 = evaluate_subexp (nullptr, exp, pos, noside);
	if (noside == EVAL_SKIP)
	  return eval_skip_value (exp);
	type = value_type (arg1);
	if (type->code () != TYPE_CODE_FLT)
	  error (_("argument to CEILING must be of type float"));
	double val
	  = target_float_to_host_double (value_contents (arg1),
					 value_type (arg1));
	val = ceil (val);
	return value_from_host_double (type, val);
      }

    case UNOP_FORTRAN_FLOOR:
      {
	arg1 = evaluate_subexp (nullptr, exp, pos, noside);
	if (noside == EVAL_SKIP)
	  return eval_skip_value (exp);
	type = value_type (arg1);
	if (type->code () != TYPE_CODE_FLT)
	  error (_("argument to FLOOR must be of type float"));
	double val
	  = target_float_to_host_double (value_contents (arg1),
					 value_type (arg1));
	val = floor (val);
	return value_from_host_double (type, val);
      }

    case BINOP_FORTRAN_MODULO:
      {
	arg1 = evaluate_subexp (nullptr, exp, pos, noside);
	arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
	if (noside == EVAL_SKIP)
	  return eval_skip_value (exp);
	type = value_type (arg1);
	if (type->code () != value_type (arg2)->code ())
	  error (_("non-matching types for parameters to MODULO ()"));
        /* MODULO(A, P) = A - FLOOR (A / P) * P */
	switch (type->code ())
	  {
	  case TYPE_CODE_INT:
	    {
	      LONGEST a = value_as_long (arg1);
	      LONGEST p = value_as_long (arg2);
	      LONGEST result = a - (a / p) * p;
	      if (result != 0 && (a < 0) != (p < 0))
		result += p;
	      return value_from_longest (value_type (arg1), result);
	    }
	  case TYPE_CODE_FLT:
	    {
	      double a
		= target_float_to_host_double (value_contents (arg1),
					       value_type (arg1));
	      double p
		= target_float_to_host_double (value_contents (arg2),
					       value_type (arg2));
	      double result = fmod (a, p);
	      if (result != 0 && (a < 0.0) != (p < 0.0))
		result += p;
	      return value_from_host_double (type, result);
	    }
	  }
	error (_("MODULO of type %s not supported"), TYPE_SAFE_NAME (type));
      }

    case BINOP_FORTRAN_CMPLX:
      arg1 = evaluate_subexp (nullptr, exp, pos, noside);
      arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
      if (noside == EVAL_SKIP)
	return eval_skip_value (exp);
      type = builtin_f_type(exp->gdbarch)->builtin_complex_s16;
      return value_literal_complex (arg1, arg2, type);

    case UNOP_FORTRAN_KIND:
      arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
      type = value_type (arg1);

      switch (type->code ())
        {
          case TYPE_CODE_STRUCT:
          case TYPE_CODE_UNION:
          case TYPE_CODE_MODULE:
          case TYPE_CODE_FUNC:
            error (_("argument to kind must be an intrinsic type"));
        }

      if (!TYPE_TARGET_TYPE (type))
        return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
				   TYPE_LENGTH (type));
      return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
				 TYPE_LENGTH (TYPE_TARGET_TYPE (type)));


    case OP_F77_UNDETERMINED_ARGLIST:
      /* Remember that in F77, functions, substring ops and array subscript
         operations cannot be disambiguated at parse time.  We have made
         all array subscript operations, substring operations as well as
         function calls come here and we now have to discover what the heck
         this thing actually was.  If it is a function, we process just as
         if we got an OP_FUNCALL.  */
      int nargs = longest_to_int (exp->elts[pc + 1].longconst);
      (*pos) += 2;

      /* First determine the type code we are dealing with.  */
      arg1 = evaluate_subexp (nullptr, exp, pos, noside);
      type = check_typedef (value_type (arg1));
      enum type_code code = type->code ();

      if (code == TYPE_CODE_PTR)
	{
	  /* Fortran always passes variable to subroutines as pointer.
	     So we need to look into its target type to see if it is
	     array, string or function.  If it is, we need to switch
	     to the target value the original one points to.  */
	  struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));

	  if (target_type->code () == TYPE_CODE_ARRAY
	      || target_type->code () == TYPE_CODE_STRING
	      || target_type->code () == TYPE_CODE_FUNC)
	    {
	      arg1 = value_ind (arg1);
	      type = check_typedef (value_type (arg1));
	      code = type->code ();
	    }
	}

      switch (code)
	{
	case TYPE_CODE_ARRAY:
	case TYPE_CODE_STRING:
	  return fortran_value_subarray (arg1, exp, pos, nargs, noside);

	case TYPE_CODE_PTR:
	case TYPE_CODE_FUNC:
	case TYPE_CODE_INTERNAL_FUNCTION:
	  {
	    /* It's a function call.  Allocate arg vector, including
	    space for the function to be called in argvec[0] and a
	    termination NULL.  */
	    struct value **argvec = (struct value **)
	      alloca (sizeof (struct value *) * (nargs + 2));
	    argvec[0] = arg1;
	    int tem = 1;
	    for (; tem <= nargs; tem++)
	      {
		argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
		/* Arguments in Fortran are passed by address.  Coerce the
		   arguments here rather than in value_arg_coerce as
		   otherwise the call to malloc to place the non-lvalue
		   parameters in target memory is hit by this Fortran
		   specific logic.  This results in malloc being called
		   with a pointer to an integer followed by an attempt to
		   malloc the arguments to malloc in target memory.
		   Infinite recursion ensues.  */
		if (code == TYPE_CODE_PTR || code == TYPE_CODE_FUNC)
		  {
		    bool is_artificial
		      = TYPE_FIELD_ARTIFICIAL (value_type (arg1), tem - 1);
		    argvec[tem] = fortran_argument_convert (argvec[tem],
							    is_artificial);
		  }
	      }
	    argvec[tem] = 0;	/* signal end of arglist */
	    if (noside == EVAL_SKIP)
	      return eval_skip_value (exp);
	    return evaluate_subexp_do_call (exp, noside, nargs, argvec, NULL,
					    expect_type);
	  }

	default:
	  error (_("Cannot perform substring on this type"));
	}
    }

  /* Should be unreachable.  */
  return nullptr;
}

/* Special expression lengths for Fortran.  */

static void
operator_length_f (const struct expression *exp, int pc, int *oplenp,
		   int *argsp)
{
  int oplen = 1;
  int args = 0;

  switch (exp->elts[pc - 1].opcode)
    {
    default:
      operator_length_standard (exp, pc, oplenp, argsp);
      return;

    case UNOP_FORTRAN_KIND:
    case UNOP_FORTRAN_FLOOR:
    case UNOP_FORTRAN_CEILING:
      oplen = 1;
      args = 1;
      break;

    case BINOP_FORTRAN_CMPLX:
    case BINOP_FORTRAN_MODULO:
      oplen = 1;
      args = 2;
      break;

    case OP_F77_UNDETERMINED_ARGLIST:
      oplen = 3;
      args = 1 + longest_to_int (exp->elts[pc - 2].longconst);
      break;
    }

  *oplenp = oplen;
  *argsp = args;
}

/* Helper for PRINT_SUBEXP_F.  Arguments are as for PRINT_SUBEXP_F, except
   the extra argument NAME which is the text that should be printed as the
   name of this operation.  */

static void
print_unop_subexp_f (struct expression *exp, int *pos,
		     struct ui_file *stream, enum precedence prec,
		     const char *name)
{
  (*pos)++;
  fprintf_filtered (stream, "%s(", name);
  print_subexp (exp, pos, stream, PREC_SUFFIX);
  fputs_filtered (")", stream);
}

/* Helper for PRINT_SUBEXP_F.  Arguments are as for PRINT_SUBEXP_F, except
   the extra argument NAME which is the text that should be printed as the
   name of this operation.  */

static void
print_binop_subexp_f (struct expression *exp, int *pos,
		      struct ui_file *stream, enum precedence prec,
		      const char *name)
{
  (*pos)++;
  fprintf_filtered (stream, "%s(", name);
  print_subexp (exp, pos, stream, PREC_SUFFIX);
  fputs_filtered (",", stream);
  print_subexp (exp, pos, stream, PREC_SUFFIX);
  fputs_filtered (")", stream);
}

/* Special expression printing for Fortran.  */

static void
print_subexp_f (struct expression *exp, int *pos,
		struct ui_file *stream, enum precedence prec)
{
  int pc = *pos;
  enum exp_opcode op = exp->elts[pc].opcode;

  switch (op)
    {
    default:
      print_subexp_standard (exp, pos, stream, prec);
      return;

    case UNOP_FORTRAN_KIND:
      print_unop_subexp_f (exp, pos, stream, prec, "KIND");
      return;

    case UNOP_FORTRAN_FLOOR:
      print_unop_subexp_f (exp, pos, stream, prec, "FLOOR");
      return;

    case UNOP_FORTRAN_CEILING:
      print_unop_subexp_f (exp, pos, stream, prec, "CEILING");
      return;

    case BINOP_FORTRAN_CMPLX:
      print_binop_subexp_f (exp, pos, stream, prec, "CMPLX");
      return;

    case BINOP_FORTRAN_MODULO:
      print_binop_subexp_f (exp, pos, stream, prec, "MODULO");
      return;

    case OP_F77_UNDETERMINED_ARGLIST:
      print_subexp_funcall (exp, pos, stream);
      return;
    }
}

/* Special expression names for Fortran.  */

static const char *
op_name_f (enum exp_opcode opcode)
{
  switch (opcode)
    {
    default:
      return op_name_standard (opcode);

#define OP(name)	\
    case name:		\
      return #name ;
#include "fortran-operator.def"
#undef OP
    }
}

/* Special expression dumping for Fortran.  */

static int
dump_subexp_body_f (struct expression *exp,
		    struct ui_file *stream, int elt)
{
  int opcode = exp->elts[elt].opcode;
  int oplen, nargs, i;

  switch (opcode)
    {
    default:
      return dump_subexp_body_standard (exp, stream, elt);

    case UNOP_FORTRAN_KIND:
    case UNOP_FORTRAN_FLOOR:
    case UNOP_FORTRAN_CEILING:
    case BINOP_FORTRAN_CMPLX:
    case BINOP_FORTRAN_MODULO:
      operator_length_f (exp, (elt + 1), &oplen, &nargs);
      break;

    case OP_F77_UNDETERMINED_ARGLIST:
      return dump_subexp_body_funcall (exp, stream, elt);
    }

  elt += oplen;
  for (i = 0; i < nargs; i += 1)
    elt = dump_subexp (exp, stream, elt);

  return elt;
}

/* Special expression checking for Fortran.  */

static int
operator_check_f (struct expression *exp, int pos,
		  int (*objfile_func) (struct objfile *objfile,
				       void *data),
		  void *data)
{
  const union exp_element *const elts = exp->elts;

  switch (elts[pos].opcode)
    {
    case UNOP_FORTRAN_KIND:
    case UNOP_FORTRAN_FLOOR:
    case UNOP_FORTRAN_CEILING:
    case BINOP_FORTRAN_CMPLX:
    case BINOP_FORTRAN_MODULO:
      /* Any references to objfiles are held in the arguments to this
	 expression, not within the expression itself, so no additional
	 checking is required here, the outer expression iteration code
	 will take care of checking each argument.  */
      break;

    default:
      return operator_check_standard (exp, pos, objfile_func, data);
    }

  return 0;
}

/* Expression processing for Fortran.  */
const struct exp_descriptor f_language::exp_descriptor_tab =
{
  print_subexp_f,
  operator_length_f,
  operator_check_f,
  op_name_f,
  dump_subexp_body_f,
  evaluate_subexp_f
};

/* See language.h.  */

void
f_language::language_arch_info (struct gdbarch *gdbarch,
				struct language_arch_info *lai) const
{
  const struct builtin_f_type *builtin = builtin_f_type (gdbarch);

  lai->string_char_type = builtin->builtin_character;
  lai->primitive_type_vector
    = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_f_primitive_types + 1,
			      struct type *);

  lai->primitive_type_vector [f_primitive_type_character]
    = builtin->builtin_character;
  lai->primitive_type_vector [f_primitive_type_logical]
    = builtin->builtin_logical;
  lai->primitive_type_vector [f_primitive_type_logical_s1]
    = builtin->builtin_logical_s1;
  lai->primitive_type_vector [f_primitive_type_logical_s2]
    = builtin->builtin_logical_s2;
  lai->primitive_type_vector [f_primitive_type_logical_s8]
    = builtin->builtin_logical_s8;
  lai->primitive_type_vector [f_primitive_type_real]
    = builtin->builtin_real;
  lai->primitive_type_vector [f_primitive_type_real_s8]
    = builtin->builtin_real_s8;
  lai->primitive_type_vector [f_primitive_type_real_s16]
    = builtin->builtin_real_s16;
  lai->primitive_type_vector [f_primitive_type_complex_s8]
    = builtin->builtin_complex_s8;
  lai->primitive_type_vector [f_primitive_type_complex_s16]
    = builtin->builtin_complex_s16;
  lai->primitive_type_vector [f_primitive_type_void]
    = builtin->builtin_void;

  lai->bool_type_symbol = "logical";
  lai->bool_type_default = builtin->builtin_logical_s2;
}

/* See language.h.  */

unsigned int
f_language::search_name_hash (const char *name) const
{
  return cp_search_name_hash (name);
}

/* See language.h.  */

struct block_symbol
f_language::lookup_symbol_nonlocal (const char *name,
				    const struct block *block,
				    const domain_enum domain) const
{
  return cp_lookup_symbol_nonlocal (this, name, block, domain);
}

/* See language.h.  */

symbol_name_matcher_ftype *
f_language::get_symbol_name_matcher_inner
	(const lookup_name_info &lookup_name) const
{
  return cp_get_symbol_name_matcher (lookup_name);
}

/* Single instance of the Fortran language class.  */

static f_language f_language_defn;

static void *
build_fortran_types (struct gdbarch *gdbarch)
{
  struct builtin_f_type *builtin_f_type
    = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_f_type);

  builtin_f_type->builtin_void
    = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");

  builtin_f_type->builtin_character
    = arch_type (gdbarch, TYPE_CODE_CHAR, TARGET_CHAR_BIT, "character");

  builtin_f_type->builtin_logical_s1
    = arch_boolean_type (gdbarch, TARGET_CHAR_BIT, 1, "logical*1");

  builtin_f_type->builtin_integer_s2
    = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch), 0,
			 "integer*2");

  builtin_f_type->builtin_integer_s8
    = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch), 0,
			 "integer*8");

  builtin_f_type->builtin_logical_s2
    = arch_boolean_type (gdbarch, gdbarch_short_bit (gdbarch), 1,
			 "logical*2");

  builtin_f_type->builtin_logical_s8
    = arch_boolean_type (gdbarch, gdbarch_long_long_bit (gdbarch), 1,
			 "logical*8");

  builtin_f_type->builtin_integer
    = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), 0,
			 "integer");

  builtin_f_type->builtin_logical
    = arch_boolean_type (gdbarch, gdbarch_int_bit (gdbarch), 1,
			 "logical*4");

  builtin_f_type->builtin_real
    = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
		       "real", gdbarch_float_format (gdbarch));
  builtin_f_type->builtin_real_s8
    = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
		       "real*8", gdbarch_double_format (gdbarch));
  auto fmt = gdbarch_floatformat_for_type (gdbarch, "real(kind=16)", 128);
  if (fmt != nullptr)
    builtin_f_type->builtin_real_s16
      = arch_float_type (gdbarch, 128, "real*16", fmt);
  else if (gdbarch_long_double_bit (gdbarch) == 128)
    builtin_f_type->builtin_real_s16
      = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
			 "real*16", gdbarch_long_double_format (gdbarch));
  else
    builtin_f_type->builtin_real_s16
      = arch_type (gdbarch, TYPE_CODE_ERROR, 128, "real*16");

  builtin_f_type->builtin_complex_s8
    = init_complex_type ("complex*8", builtin_f_type->builtin_real);
  builtin_f_type->builtin_complex_s16
    = init_complex_type ("complex*16", builtin_f_type->builtin_real_s8);

  if (builtin_f_type->builtin_real_s16->code () == TYPE_CODE_ERROR)
    builtin_f_type->builtin_complex_s32
      = arch_type (gdbarch, TYPE_CODE_ERROR, 256, "complex*32");
  else
    builtin_f_type->builtin_complex_s32
      = init_complex_type ("complex*32", builtin_f_type->builtin_real_s16);

  return builtin_f_type;
}

static struct gdbarch_data *f_type_data;

const struct builtin_f_type *
builtin_f_type (struct gdbarch *gdbarch)
{
  return (const struct builtin_f_type *) gdbarch_data (gdbarch, f_type_data);
}

void _initialize_f_language ();
void
_initialize_f_language ()
{
  f_type_data = gdbarch_data_register_post_init (build_fortran_types);
}

/* See f-lang.h.  */

struct value *
fortran_argument_convert (struct value *value, bool is_artificial)
{
  if (!is_artificial)
    {
      /* If the value is not in the inferior e.g. registers values,
	 convenience variables and user input.  */
      if (VALUE_LVAL (value) != lval_memory)
	{
	  struct type *type = value_type (value);
	  const int length = TYPE_LENGTH (type);
	  const CORE_ADDR addr
	    = value_as_long (value_allocate_space_in_inferior (length));
	  write_memory (addr, value_contents (value), length);
	  struct value *val
	    = value_from_contents_and_address (type, value_contents (value),
					       addr);
	  return value_addr (val);
	}
      else
	return value_addr (value); /* Program variables, e.g. arrays.  */
    }
    return value;
}

/* See f-lang.h.  */

struct type *
fortran_preserve_arg_pointer (struct value *arg, struct type *type)
{
  if (value_type (arg)->code () == TYPE_CODE_PTR)
    return value_type (arg);
  return type;
}