1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
|
/* Definitions for expressions stored in reversed prefix form, for GDB.
Copyright (C) 1986-2024 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#if !defined (EXPRESSION_H)
#define EXPRESSION_H 1
#include "gdbtypes.h"
#include "symtab.h"
/* While parsing expressions we need to track the innermost lexical block
that we encounter. In some situations we need to track the innermost
block just for symbols, and in other situations we want to track the
innermost block for symbols and registers. These flags are used by the
innermost block tracker to control which blocks we consider for the
innermost block. These flags can be combined together as needed. */
enum innermost_block_tracker_type
{
/* Track the innermost block for symbols within an expression. */
INNERMOST_BLOCK_FOR_SYMBOLS = (1 << 0),
/* Track the innermost block for registers within an expression. */
INNERMOST_BLOCK_FOR_REGISTERS = (1 << 1)
};
DEF_ENUM_FLAGS_TYPE (enum innermost_block_tracker_type,
innermost_block_tracker_types);
enum exp_opcode : uint8_t
{
#define OP(name) name ,
#include "std-operator.def"
#undef OP
};
/* Values of NOSIDE argument to eval_subexp. */
enum noside
{
EVAL_NORMAL,
EVAL_AVOID_SIDE_EFFECTS /* Don't modify any variables or
call any functions. The value
returned will have the correct
type, and will have an
approximately correct lvalue
type (inaccuracy: anything that is
listed as being in a register in
the function in which it was
declared will be lval_register).
Ideally this would not even read
target memory, but currently it
does in many situations. */
};
struct expression;
struct agent_expr;
struct axs_value;
struct type;
struct ui_file;
namespace expr
{
class operation;
typedef std::unique_ptr<operation> operation_up;
/* Base class for an operation. An operation is a single component of
an expression. */
class operation
{
protected:
operation () = default;
DISABLE_COPY_AND_ASSIGN (operation);
public:
virtual ~operation () = default;
/* Evaluate this operation. */
virtual value *evaluate (struct type *expect_type,
struct expression *exp,
enum noside noside) = 0;
/* Evaluate this operation in a context where C-like coercion is
needed. */
virtual value *evaluate_with_coercion (struct expression *exp,
enum noside noside)
{
return evaluate (nullptr, exp, noside);
}
/* Evaluate this expression in the context of a cast to
EXPECT_TYPE. */
virtual value *evaluate_for_cast (struct type *expect_type,
struct expression *exp,
enum noside noside);
/* Evaluate this expression in the context of a sizeof
operation. */
virtual value *evaluate_for_sizeof (struct expression *exp,
enum noside noside);
/* Evaluate this expression in the context of an address-of
operation. Must return the address. */
virtual value *evaluate_for_address (struct expression *exp,
enum noside noside);
/* Evaluate a function call, with this object as the callee.
EXPECT_TYPE, EXP, and NOSIDE have the same meaning as in
'evaluate'. ARGS holds the operations that should be evaluated
to get the arguments to the call. */
virtual value *evaluate_funcall (struct type *expect_type,
struct expression *exp,
enum noside noside,
const std::vector<operation_up> &args)
{
/* Defer to the helper overload. */
return evaluate_funcall (expect_type, exp, noside, nullptr, args);
}
/* True if this is a constant expression. */
virtual bool constant_p () const
{ return false; }
/* Return true if this operation uses OBJFILE (and will become
dangling when OBJFILE is unloaded), otherwise return false.
OBJFILE must not be a separate debug info file. */
virtual bool uses_objfile (struct objfile *objfile) const
{ return false; }
/* Some expression nodes represent a type, not a value. This method
should be overridden to return 'true' in these situations. */
virtual bool type_p () const
{ return false; }
/* Generate agent expression bytecodes for this operation. */
void generate_ax (struct expression *exp, struct agent_expr *ax,
struct axs_value *value,
struct type *cast_type = nullptr);
/* Return the opcode that is implemented by this operation. */
virtual enum exp_opcode opcode () const = 0;
/* Print this operation to STREAM. */
virtual void dump (struct ui_file *stream, int depth) const = 0;
/* Call to indicate that this is the outermost operation in the
expression. This should almost never be overridden. */
virtual void set_outermost () { }
protected:
/* A helper overload that wraps evaluate_subexp_do_call. */
value *evaluate_funcall (struct type *expect_type,
struct expression *exp,
enum noside noside,
const char *function_name,
const std::vector<operation_up> &args);
/* Called by generate_ax to do the work for this particular
operation. */
virtual void do_generate_ax (struct expression *exp,
struct agent_expr *ax,
struct axs_value *value,
struct type *cast_type)
{
error (_("Cannot translate to agent expression"));
}
};
/* A helper function for creating an operation_up, given a type. */
template<typename T, typename... Arg>
operation_up
make_operation (Arg... args)
{
return operation_up (new T (std::forward<Arg> (args)...));
}
}
struct expression
{
expression (const struct language_defn *lang, struct gdbarch *arch)
: language_defn (lang),
gdbarch (arch)
{
}
DISABLE_COPY_AND_ASSIGN (expression);
/* Return the opcode for the outermost sub-expression of this
expression. */
enum exp_opcode first_opcode () const
{
return op->opcode ();
}
/* Dump the expression to STREAM. */
void dump (struct ui_file *stream)
{
op->dump (stream, 0);
}
/* Call the type_p method on the outermost sub-expression of this
expression, and return the result. */
bool type_p () const
{ return op->type_p (); }
/* Return true if this expression uses OBJFILE (and will become
dangling when OBJFILE is unloaded), otherwise return false.
OBJFILE must not be a separate debug info file. */
bool uses_objfile (struct objfile *objfile) const;
/* Evaluate the expression. EXPECT_TYPE is the context type of the
expression; normally this should be nullptr. NOSIDE controls how
evaluation is performed. */
struct value *evaluate (struct type *expect_type = nullptr,
enum noside noside = EVAL_NORMAL);
/* Evaluate an expression, avoiding all memory references
and getting a value whose type alone is correct. */
struct value *evaluate_type ()
{ return evaluate (nullptr, EVAL_AVOID_SIDE_EFFECTS); }
/* Language it was entered in. */
const struct language_defn *language_defn;
/* Architecture it was parsed in. */
struct gdbarch *gdbarch;
expr::operation_up op;
};
typedef std::unique_ptr<expression> expression_up;
/* When parsing expressions we track the innermost block that was
referenced. */
class innermost_block_tracker
{
public:
innermost_block_tracker (innermost_block_tracker_types types
= INNERMOST_BLOCK_FOR_SYMBOLS)
: m_types (types),
m_innermost_block (NULL)
{ /* Nothing. */ }
/* Update the stored innermost block if the new block B is more inner
than the currently stored block, or if no block is stored yet. The
type T tells us whether the block B was for a symbol or for a
register. The stored innermost block is only updated if the type T is
a type we are interested in, the types we are interested in are held
in M_TYPES and set during RESET. */
void update (const struct block *b, innermost_block_tracker_types t);
/* Overload of main UPDATE method which extracts the block from BS. */
void update (const struct block_symbol &bs)
{
update (bs.block, INNERMOST_BLOCK_FOR_SYMBOLS);
}
/* Return the stored innermost block. Can be nullptr if no symbols or
registers were found during an expression parse, and so no innermost
block was defined. */
const struct block *block () const
{
return m_innermost_block;
}
private:
/* The type of innermost block being looked for. */
innermost_block_tracker_types m_types;
/* The currently stored innermost block found while parsing an
expression. */
const struct block *m_innermost_block;
};
/* Flags that can affect the parsers. */
enum parser_flag
{
/* This flag is set if the expression is being evaluated in a
context where a 'void' result type is expected. Parsers are free
to ignore this, or to use it to help with overload resolution
decisions. */
PARSER_VOID_CONTEXT = (1 << 0),
/* This flag is set if a top-level comma terminates the
expression. */
PARSER_COMMA_TERMINATES = (1 << 1),
/* This flag is set if the parser should print debugging output as
it parses. For yacc-based parsers, this translates to setting
yydebug. */
PARSER_DEBUG = (1 << 2),
/* Normally the expression-parsing functions like parse_exp_1 will
attempt to find a context block if one is not passed in. If set,
this flag suppresses this search and uses a null context for the
parse. */
PARSER_LEAVE_BLOCK_ALONE = (1 << 3),
};
DEF_ENUM_FLAGS_TYPE (enum parser_flag, parser_flags);
/* From parse.c */
extern expression_up parse_expression (const char *,
innermost_block_tracker * = nullptr,
parser_flags flags = 0);
extern expression_up parse_expression_with_language (const char *string,
enum language lang);
class completion_tracker;
/* Base class for expression completion. An instance of this
represents a completion request from the parser. */
struct expr_completion_base
{
/* Perform this object's completion. EXP is the expression in which
the completion occurs. TRACKER is the tracker to update with the
results. Return true if completion was possible (even if no
completions were found), false to fall back to ordinary
expression completion (i.e., symbol names). */
virtual bool complete (struct expression *exp,
completion_tracker &tracker) = 0;
virtual ~expr_completion_base () = default;
};
extern expression_up parse_expression_for_completion
(const char *, std::unique_ptr<expr_completion_base> *completer);
extern expression_up parse_exp_1 (const char **, CORE_ADDR pc,
const struct block *,
parser_flags flags,
innermost_block_tracker * = nullptr);
/* From eval.c */
/* Evaluate a function call. The function to be called is in CALLEE and
the arguments passed to the function are in ARGVEC.
FUNCTION_NAME is the name of the function, if known.
DEFAULT_RETURN_TYPE is used as the function's return type if the return
type is unknown. */
extern struct value *evaluate_subexp_do_call (expression *exp,
enum noside noside,
value *callee,
gdb::array_view<value *> argvec,
const char *function_name,
type *default_return_type);
/* In an OP_RANGE expression, either bound could be empty, indicating
that its value is by default that of the corresponding bound of the
array or string. Also, the upper end of the range can be exclusive
or inclusive. So we have six sorts of subrange. This enumeration
type is to identify this. */
enum range_flag : unsigned
{
/* This is a standard range. Both the lower and upper bounds are
defined, and the bounds are inclusive. */
RANGE_STANDARD = 0,
/* The low bound was not given. */
RANGE_LOW_BOUND_DEFAULT = 1 << 0,
/* The high bound was not given. */
RANGE_HIGH_BOUND_DEFAULT = 1 << 1,
/* The high bound of this range is exclusive. */
RANGE_HIGH_BOUND_EXCLUSIVE = 1 << 2,
/* The range has a stride. */
RANGE_HAS_STRIDE = 1 << 3,
};
DEF_ENUM_FLAGS_TYPE (enum range_flag, range_flags);
#endif /* !defined (EXPRESSION_H) */
|