aboutsummaryrefslogtreecommitdiff
path: root/gdb/event-loop.c
blob: affa00b4aa960ac50e168517e977e23ee4d807bd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
/* Event loop machinery for GDB, the GNU debugger.
   Copyright (C) 1999-2019 Free Software Foundation, Inc.
   Written by Elena Zannoni <ezannoni@cygnus.com> of Cygnus Solutions.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "event-loop.h"
#include "event-top.h"
#include "ser-event.h"

#ifdef HAVE_POLL
#if defined (HAVE_POLL_H)
#include <poll.h>
#elif defined (HAVE_SYS_POLL_H)
#include <sys/poll.h>
#endif
#endif

#include <sys/types.h>
#include "gdbsupport/gdb_sys_time.h"
#include "gdb_select.h"
#include "observable.h"
#include "top.h"

/* Tell create_file_handler what events we are interested in.
   This is used by the select version of the event loop.  */

#define GDB_READABLE	(1<<1)
#define GDB_WRITABLE	(1<<2)
#define GDB_EXCEPTION	(1<<3)

/* Data point to pass to the event handler.  */
typedef union event_data
{
  void *ptr;
  int integer;
} event_data;

typedef struct gdb_event gdb_event;
typedef void (event_handler_func) (event_data);

/* Event for the GDB event system.  Events are queued by calling
   async_queue_event and serviced later on by gdb_do_one_event.  An
   event can be, for instance, a file descriptor becoming ready to be
   read.  Servicing an event simply means that the procedure PROC will
   be called.  We have 2 queues, one for file handlers that we listen
   to in the event loop, and one for the file handlers+events that are
   ready.  The procedure PROC associated with each event is dependant
   of the event source.  In the case of monitored file descriptors, it
   is always the same (handle_file_event).  Its duty is to invoke the
   handler associated with the file descriptor whose state change
   generated the event, plus doing other cleanups and such.  In the
   case of async signal handlers, it is
   invoke_async_signal_handler.  */

typedef struct gdb_event
  {
    /* Procedure to call to service this event.  */
    event_handler_func *proc;

    /* Data to pass to the event handler.  */
    event_data data;
  } *gdb_event_p;

/* Information about each file descriptor we register with the event
   loop.  */

typedef struct file_handler
  {
    int fd;			/* File descriptor.  */
    int mask;			/* Events we want to monitor: POLLIN, etc.  */
    int ready_mask;		/* Events that have been seen since
				   the last time.  */
    handler_func *proc;		/* Procedure to call when fd is ready.  */
    gdb_client_data client_data;	/* Argument to pass to proc.  */
    int error;			/* Was an error detected on this fd?  */
    struct file_handler *next_file;	/* Next registered file descriptor.  */
  }
file_handler;

/* PROC is a function to be invoked when the READY flag is set.  This
   happens when there has been a signal and the corresponding signal
   handler has 'triggered' this async_signal_handler for execution.
   The actual work to be done in response to a signal will be carried
   out by PROC at a later time, within process_event.  This provides a
   deferred execution of signal handlers.

   Async_init_signals takes care of setting up such an
   async_signal_handler for each interesting signal.  */

typedef struct async_signal_handler
  {
    int ready;			    /* If ready, call this handler
				       from the main event loop, using
				       invoke_async_handler.  */
    struct async_signal_handler *next_handler;	/* Ptr to next handler.  */
    sig_handler_func *proc;	    /* Function to call to do the work.  */
    gdb_client_data client_data;    /* Argument to async_handler_func.  */
  }
async_signal_handler;

/* PROC is a function to be invoked when the READY flag is set.  This
   happens when the event has been marked with
   MARK_ASYNC_EVENT_HANDLER.  The actual work to be done in response
   to an event will be carried out by PROC at a later time, within
   process_event.  This provides a deferred execution of event
   handlers.  */
typedef struct async_event_handler
  {
    /* If ready, call this handler from the main event loop, using
       invoke_event_handler.  */
    int ready;

    /* Point to next handler.  */
    struct async_event_handler *next_handler;

    /* Function to call to do the work.  */
    async_event_handler_func *proc;

    /* Argument to PROC.  */
    gdb_client_data client_data;
  }
async_event_handler;

/* Gdb_notifier is just a list of file descriptors gdb is interested in.
   These are the input file descriptor, and the target file
   descriptor.  We have two flavors of the notifier, one for platforms
   that have the POLL function, the other for those that don't, and
   only support SELECT.  Each of the elements in the gdb_notifier list is
   basically a description of what kind of events gdb is interested
   in, for each fd.  */

/* As of 1999-04-30 only the input file descriptor is registered with the
   event loop.  */

/* Do we use poll or select ? */
#ifdef HAVE_POLL
#define USE_POLL 1
#else
#define USE_POLL 0
#endif /* HAVE_POLL */

static unsigned char use_poll = USE_POLL;

#ifdef USE_WIN32API
#include <windows.h>
#include <io.h>
#endif

static struct
  {
    /* Ptr to head of file handler list.  */
    file_handler *first_file_handler;

    /* Next file handler to handle, for the select variant.  To level
       the fairness across event sources, we serve file handlers in a
       round-robin-like fashion.  The number and order of the polled
       file handlers may change between invocations, but this is good
       enough.  */
    file_handler *next_file_handler;

#ifdef HAVE_POLL
    /* Ptr to array of pollfd structures.  */
    struct pollfd *poll_fds;

    /* Next file descriptor to handle, for the poll variant.  To level
       the fairness across event sources, we poll the file descriptors
       in a round-robin-like fashion.  The number and order of the
       polled file descriptors may change between invocations, but
       this is good enough.  */
    int next_poll_fds_index;

    /* Timeout in milliseconds for calls to poll().  */
    int poll_timeout;
#endif

    /* Masks to be used in the next call to select.
       Bits are set in response to calls to create_file_handler.  */
    fd_set check_masks[3];

    /* What file descriptors were found ready by select.  */
    fd_set ready_masks[3];

    /* Number of file descriptors to monitor (for poll).  */
    /* Number of valid bits (highest fd value + 1) (for select).  */
    int num_fds;

    /* Time structure for calls to select().  */
    struct timeval select_timeout;

    /* Flag to tell whether the timeout should be used.  */
    int timeout_valid;
  }
gdb_notifier;

/* Structure associated with a timer.  PROC will be executed at the
   first occasion after WHEN.  */
struct gdb_timer
  {
    std::chrono::steady_clock::time_point when;
    int timer_id;
    struct gdb_timer *next;
    timer_handler_func *proc;	    /* Function to call to do the work.  */
    gdb_client_data client_data;    /* Argument to async_handler_func.  */
  };

/* List of currently active timers.  It is sorted in order of
   increasing timers.  */
static struct
  {
    /* Pointer to first in timer list.  */
    struct gdb_timer *first_timer;

    /* Id of the last timer created.  */
    int num_timers;
  }
timer_list;

/* All the async_signal_handlers gdb is interested in are kept onto
   this list.  */
static struct
  {
    /* Pointer to first in handler list.  */
    async_signal_handler *first_handler;

    /* Pointer to last in handler list.  */
    async_signal_handler *last_handler;
  }
sighandler_list;

/* All the async_event_handlers gdb is interested in are kept onto
   this list.  */
static struct
  {
    /* Pointer to first in handler list.  */
    async_event_handler *first_handler;

    /* Pointer to last in handler list.  */
    async_event_handler *last_handler;
  }
async_event_handler_list;

static int invoke_async_signal_handlers (void);
static void create_file_handler (int fd, int mask, handler_func *proc,
				 gdb_client_data client_data);
static int check_async_event_handlers (void);
static int gdb_wait_for_event (int);
static int update_wait_timeout (void);
static int poll_timers (void);


/* This event is signalled whenever an asynchronous handler needs to
   defer an action to the event loop.  */
static struct serial_event *async_signal_handlers_serial_event;

/* Callback registered with ASYNC_SIGNAL_HANDLERS_SERIAL_EVENT.  */

static void
async_signals_handler (int error, gdb_client_data client_data)
{
  /* Do nothing.  Handlers are run by invoke_async_signal_handlers
     from instead.  */
}

void
initialize_async_signal_handlers (void)
{
  async_signal_handlers_serial_event = make_serial_event ();

  add_file_handler (serial_event_fd (async_signal_handlers_serial_event),
		    async_signals_handler, NULL);
}

/* Process one high level event.  If nothing is ready at this time,
   wait for something to happen (via gdb_wait_for_event), then process
   it.  Returns >0 if something was done otherwise returns <0 (this
   can happen if there are no event sources to wait for).  */

int
gdb_do_one_event (void)
{
  static int event_source_head = 0;
  const int number_of_sources = 3;
  int current = 0;

  /* First let's see if there are any asynchronous signal handlers
     that are ready.  These would be the result of invoking any of the
     signal handlers.  */
  if (invoke_async_signal_handlers ())
    return 1;

  /* To level the fairness across event sources, we poll them in a
     round-robin fashion.  */
  for (current = 0; current < number_of_sources; current++)
    {
      int res;

      switch (event_source_head)
	{
	case 0:
	  /* Are any timers that are ready?  */
	  res = poll_timers ();
	  break;
	case 1:
	  /* Are there events already waiting to be collected on the
	     monitored file descriptors?  */
	  res = gdb_wait_for_event (0);
	  break;
	case 2:
	  /* Are there any asynchronous event handlers ready?  */
	  res = check_async_event_handlers ();
	  break;
	default:
	  internal_error (__FILE__, __LINE__,
			  "unexpected event_source_head %d",
			  event_source_head);
	}

      event_source_head++;
      if (event_source_head == number_of_sources)
	event_source_head = 0;

      if (res > 0)
	return 1;
    }

  /* Block waiting for a new event.  If gdb_wait_for_event returns -1,
     we should get out because this means that there are no event
     sources left.  This will make the event loop stop, and the
     application exit.  */

  if (gdb_wait_for_event (1) < 0)
    return -1;

  /* If gdb_wait_for_event has returned 1, it means that one event has
     been handled.  We break out of the loop.  */
  return 1;
}

/* Start up the event loop.  This is the entry point to the event loop
   from the command loop.  */

void
start_event_loop (void)
{
  /* Loop until there is nothing to do.  This is the entry point to
     the event loop engine.  gdb_do_one_event will process one event
     for each invocation.  It blocks waiting for an event and then
     processes it.  */
  while (1)
    {
      int result = 0;

      try
	{
	  result = gdb_do_one_event ();
	}
      catch (const gdb_exception &ex)
	{
	  exception_print (gdb_stderr, ex);

	  /* If any exception escaped to here, we better enable
	     stdin.  Otherwise, any command that calls async_disable_stdin,
	     and then throws, will leave stdin inoperable.  */
	  async_enable_stdin ();
	  /* If we long-jumped out of do_one_event, we probably didn't
	     get around to resetting the prompt, which leaves readline
	     in a messed-up state.  Reset it here.  */
	  current_ui->prompt_state = PROMPT_NEEDED;
	  gdb::observers::command_error.notify ();
	  /* This call looks bizarre, but it is required.  If the user
	     entered a command that caused an error,
	     after_char_processing_hook won't be called from
	     rl_callback_read_char_wrapper.  Using a cleanup there
	     won't work, since we want this function to be called
	     after a new prompt is printed.  */
	  if (after_char_processing_hook)
	    (*after_char_processing_hook) ();
	  /* Maybe better to set a flag to be checked somewhere as to
	     whether display the prompt or not.  */
	}

      if (result < 0)
	break;
    }

  /* We are done with the event loop.  There are no more event sources
     to listen to.  So we exit GDB.  */
  return;
}


/* Wrapper function for create_file_handler, so that the caller
   doesn't have to know implementation details about the use of poll
   vs. select.  */
void
add_file_handler (int fd, handler_func * proc, gdb_client_data client_data)
{
#ifdef HAVE_POLL
  struct pollfd fds;
#endif

  if (use_poll)
    {
#ifdef HAVE_POLL
      /* Check to see if poll () is usable.  If not, we'll switch to
         use select.  This can happen on systems like
         m68k-motorola-sys, `poll' cannot be used to wait for `stdin'.
         On m68k-motorola-sysv, tty's are not stream-based and not
         `poll'able.  */
      fds.fd = fd;
      fds.events = POLLIN;
      if (poll (&fds, 1, 0) == 1 && (fds.revents & POLLNVAL))
	use_poll = 0;
#else
      internal_error (__FILE__, __LINE__,
		      _("use_poll without HAVE_POLL"));
#endif /* HAVE_POLL */
    }
  if (use_poll)
    {
#ifdef HAVE_POLL
      create_file_handler (fd, POLLIN, proc, client_data);
#else
      internal_error (__FILE__, __LINE__,
		      _("use_poll without HAVE_POLL"));
#endif
    }
  else
    create_file_handler (fd, GDB_READABLE | GDB_EXCEPTION, 
			 proc, client_data);
}

/* Add a file handler/descriptor to the list of descriptors we are
   interested in.

   FD is the file descriptor for the file/stream to be listened to.

   For the poll case, MASK is a combination (OR) of POLLIN,
   POLLRDNORM, POLLRDBAND, POLLPRI, POLLOUT, POLLWRNORM, POLLWRBAND:
   these are the events we are interested in.  If any of them occurs,
   proc should be called.

   For the select case, MASK is a combination of READABLE, WRITABLE,
   EXCEPTION.  PROC is the procedure that will be called when an event
   occurs for FD.  CLIENT_DATA is the argument to pass to PROC.  */

static void
create_file_handler (int fd, int mask, handler_func * proc, 
		     gdb_client_data client_data)
{
  file_handler *file_ptr;

  /* Do we already have a file handler for this file?  (We may be
     changing its associated procedure).  */
  for (file_ptr = gdb_notifier.first_file_handler; file_ptr != NULL;
       file_ptr = file_ptr->next_file)
    {
      if (file_ptr->fd == fd)
	break;
    }

  /* It is a new file descriptor.  Add it to the list.  Otherwise, just
     change the data associated with it.  */
  if (file_ptr == NULL)
    {
      file_ptr = XNEW (file_handler);
      file_ptr->fd = fd;
      file_ptr->ready_mask = 0;
      file_ptr->next_file = gdb_notifier.first_file_handler;
      gdb_notifier.first_file_handler = file_ptr;

      if (use_poll)
	{
#ifdef HAVE_POLL
	  gdb_notifier.num_fds++;
	  if (gdb_notifier.poll_fds)
	    gdb_notifier.poll_fds =
	      (struct pollfd *) xrealloc (gdb_notifier.poll_fds,
					  (gdb_notifier.num_fds
					   * sizeof (struct pollfd)));
	  else
	    gdb_notifier.poll_fds =
	      XNEW (struct pollfd);
	  (gdb_notifier.poll_fds + gdb_notifier.num_fds - 1)->fd = fd;
	  (gdb_notifier.poll_fds + gdb_notifier.num_fds - 1)->events = mask;
	  (gdb_notifier.poll_fds + gdb_notifier.num_fds - 1)->revents = 0;
#else
	  internal_error (__FILE__, __LINE__,
			  _("use_poll without HAVE_POLL"));
#endif /* HAVE_POLL */
	}
      else
	{
	  if (mask & GDB_READABLE)
	    FD_SET (fd, &gdb_notifier.check_masks[0]);
	  else
	    FD_CLR (fd, &gdb_notifier.check_masks[0]);

	  if (mask & GDB_WRITABLE)
	    FD_SET (fd, &gdb_notifier.check_masks[1]);
	  else
	    FD_CLR (fd, &gdb_notifier.check_masks[1]);

	  if (mask & GDB_EXCEPTION)
	    FD_SET (fd, &gdb_notifier.check_masks[2]);
	  else
	    FD_CLR (fd, &gdb_notifier.check_masks[2]);

	  if (gdb_notifier.num_fds <= fd)
	    gdb_notifier.num_fds = fd + 1;
	}
    }

  file_ptr->proc = proc;
  file_ptr->client_data = client_data;
  file_ptr->mask = mask;
}

/* Return the next file handler to handle, and advance to the next
   file handler, wrapping around if the end of the list is
   reached.  */

static file_handler *
get_next_file_handler_to_handle_and_advance (void)
{
  file_handler *curr_next;

  /* The first time around, this is still NULL.  */
  if (gdb_notifier.next_file_handler == NULL)
    gdb_notifier.next_file_handler = gdb_notifier.first_file_handler;

  curr_next = gdb_notifier.next_file_handler;
  gdb_assert (curr_next != NULL);

  /* Advance.  */
  gdb_notifier.next_file_handler = curr_next->next_file;
  /* Wrap around, if necessary.  */
  if (gdb_notifier.next_file_handler == NULL)
    gdb_notifier.next_file_handler = gdb_notifier.first_file_handler;

  return curr_next;
}

/* Remove the file descriptor FD from the list of monitored fd's: 
   i.e. we don't care anymore about events on the FD.  */
void
delete_file_handler (int fd)
{
  file_handler *file_ptr, *prev_ptr = NULL;
  int i;
#ifdef HAVE_POLL
  int j;
  struct pollfd *new_poll_fds;
#endif

  /* Find the entry for the given file.  */

  for (file_ptr = gdb_notifier.first_file_handler; file_ptr != NULL;
       file_ptr = file_ptr->next_file)
    {
      if (file_ptr->fd == fd)
	break;
    }

  if (file_ptr == NULL)
    return;

  if (use_poll)
    {
#ifdef HAVE_POLL
      /* Create a new poll_fds array by copying every fd's information
         but the one we want to get rid of.  */

      new_poll_fds = (struct pollfd *) 
	xmalloc ((gdb_notifier.num_fds - 1) * sizeof (struct pollfd));

      for (i = 0, j = 0; i < gdb_notifier.num_fds; i++)
	{
	  if ((gdb_notifier.poll_fds + i)->fd != fd)
	    {
	      (new_poll_fds + j)->fd = (gdb_notifier.poll_fds + i)->fd;
	      (new_poll_fds + j)->events = (gdb_notifier.poll_fds + i)->events;
	      (new_poll_fds + j)->revents
		= (gdb_notifier.poll_fds + i)->revents;
	      j++;
	    }
	}
      xfree (gdb_notifier.poll_fds);
      gdb_notifier.poll_fds = new_poll_fds;
      gdb_notifier.num_fds--;
#else
      internal_error (__FILE__, __LINE__,
		      _("use_poll without HAVE_POLL"));
#endif /* HAVE_POLL */
    }
  else
    {
      if (file_ptr->mask & GDB_READABLE)
	FD_CLR (fd, &gdb_notifier.check_masks[0]);
      if (file_ptr->mask & GDB_WRITABLE)
	FD_CLR (fd, &gdb_notifier.check_masks[1]);
      if (file_ptr->mask & GDB_EXCEPTION)
	FD_CLR (fd, &gdb_notifier.check_masks[2]);

      /* Find current max fd.  */

      if ((fd + 1) == gdb_notifier.num_fds)
	{
	  gdb_notifier.num_fds--;
	  for (i = gdb_notifier.num_fds; i; i--)
	    {
	      if (FD_ISSET (i - 1, &gdb_notifier.check_masks[0])
		  || FD_ISSET (i - 1, &gdb_notifier.check_masks[1])
		  || FD_ISSET (i - 1, &gdb_notifier.check_masks[2]))
		break;
	    }
	  gdb_notifier.num_fds = i;
	}
    }

  /* Deactivate the file descriptor, by clearing its mask, 
     so that it will not fire again.  */

  file_ptr->mask = 0;

  /* If this file handler was going to be the next one to be handled,
     advance to the next's next, if any.  */
  if (gdb_notifier.next_file_handler == file_ptr)
    {
      if (file_ptr->next_file == NULL
	  && file_ptr == gdb_notifier.first_file_handler)
	gdb_notifier.next_file_handler = NULL;
      else
	get_next_file_handler_to_handle_and_advance ();
    }

  /* Get rid of the file handler in the file handler list.  */
  if (file_ptr == gdb_notifier.first_file_handler)
    gdb_notifier.first_file_handler = file_ptr->next_file;
  else
    {
      for (prev_ptr = gdb_notifier.first_file_handler;
	   prev_ptr->next_file != file_ptr;
	   prev_ptr = prev_ptr->next_file)
	;
      prev_ptr->next_file = file_ptr->next_file;
    }
  xfree (file_ptr);
}

/* Handle the given event by calling the procedure associated to the
   corresponding file handler.  */

static void
handle_file_event (file_handler *file_ptr, int ready_mask)
{
  int mask;
#ifdef HAVE_POLL
  int error_mask;
#endif

    {
	{
	  /* With poll, the ready_mask could have any of three events
	     set to 1: POLLHUP, POLLERR, POLLNVAL.  These events
	     cannot be used in the requested event mask (events), but
	     they can be returned in the return mask (revents).  We
	     need to check for those event too, and add them to the
	     mask which will be passed to the handler.  */

	  /* See if the desired events (mask) match the received
	     events (ready_mask).  */

	  if (use_poll)
	    {
#ifdef HAVE_POLL
	      /* POLLHUP means EOF, but can be combined with POLLIN to
		 signal more data to read.  */
	      error_mask = POLLHUP | POLLERR | POLLNVAL;
	      mask = ready_mask & (file_ptr->mask | error_mask);

	      if ((mask & (POLLERR | POLLNVAL)) != 0)
		{
		  /* Work in progress.  We may need to tell somebody
		     what kind of error we had.  */
		  if (mask & POLLERR)
		    printf_unfiltered (_("Error detected on fd %d\n"),
				       file_ptr->fd);
		  if (mask & POLLNVAL)
		    printf_unfiltered (_("Invalid or non-`poll'able fd %d\n"),
				       file_ptr->fd);
		  file_ptr->error = 1;
		}
	      else
		file_ptr->error = 0;
#else
	      internal_error (__FILE__, __LINE__,
			      _("use_poll without HAVE_POLL"));
#endif /* HAVE_POLL */
	    }
	  else
	    {
	      if (ready_mask & GDB_EXCEPTION)
		{
		  printf_unfiltered (_("Exception condition detected "
				       "on fd %d\n"), file_ptr->fd);
		  file_ptr->error = 1;
		}
	      else
		file_ptr->error = 0;
	      mask = ready_mask & file_ptr->mask;
	    }

	  /* If there was a match, then call the handler.  */
	  if (mask != 0)
	    (*file_ptr->proc) (file_ptr->error, file_ptr->client_data);
	}
    }
}

/* Wait for new events on the monitored file descriptors.  Run the
   event handler if the first descriptor that is detected by the poll.
   If BLOCK and if there are no events, this function will block in
   the call to poll.  Return 1 if an event was handled.  Return -1 if
   there are no file descriptors to monitor.  Return 1 if an event was
   handled, otherwise returns 0.  */

static int
gdb_wait_for_event (int block)
{
  file_handler *file_ptr;
  int num_found = 0;

  /* Make sure all output is done before getting another event.  */
  gdb_flush (gdb_stdout);
  gdb_flush (gdb_stderr);

  if (gdb_notifier.num_fds == 0)
    return -1;

  if (block)
    update_wait_timeout ();

  if (use_poll)
    {
#ifdef HAVE_POLL
      int timeout;

      if (block)
	timeout = gdb_notifier.timeout_valid ? gdb_notifier.poll_timeout : -1;
      else
	timeout = 0;

      num_found = poll (gdb_notifier.poll_fds,
			(unsigned long) gdb_notifier.num_fds, timeout);

      /* Don't print anything if we get out of poll because of a
	 signal.  */
      if (num_found == -1 && errno != EINTR)
	perror_with_name (("poll"));
#else
      internal_error (__FILE__, __LINE__,
		      _("use_poll without HAVE_POLL"));
#endif /* HAVE_POLL */
    }
  else
    {
      struct timeval select_timeout;
      struct timeval *timeout_p;

      if (block)
	timeout_p = gdb_notifier.timeout_valid
	  ? &gdb_notifier.select_timeout : NULL;
      else
	{
	  memset (&select_timeout, 0, sizeof (select_timeout));
	  timeout_p = &select_timeout;
	}

      gdb_notifier.ready_masks[0] = gdb_notifier.check_masks[0];
      gdb_notifier.ready_masks[1] = gdb_notifier.check_masks[1];
      gdb_notifier.ready_masks[2] = gdb_notifier.check_masks[2];
      num_found = gdb_select (gdb_notifier.num_fds,
			      &gdb_notifier.ready_masks[0],
			      &gdb_notifier.ready_masks[1],
			      &gdb_notifier.ready_masks[2],
			      timeout_p);

      /* Clear the masks after an error from select.  */
      if (num_found == -1)
	{
	  FD_ZERO (&gdb_notifier.ready_masks[0]);
	  FD_ZERO (&gdb_notifier.ready_masks[1]);
	  FD_ZERO (&gdb_notifier.ready_masks[2]);

	  /* Dont print anything if we got a signal, let gdb handle
	     it.  */
	  if (errno != EINTR)
	    perror_with_name (("select"));
	}
    }

  /* Avoid looking at poll_fds[i]->revents if no event fired.  */
  if (num_found <= 0)
    return 0;

  /* Run event handlers.  We always run just one handler and go back
     to polling, in case a handler changes the notifier list.  Since
     events for sources we haven't consumed yet wake poll/select
     immediately, no event is lost.  */

  /* To level the fairness across event descriptors, we handle them in
     a round-robin-like fashion.  The number and order of descriptors
     may change between invocations, but this is good enough.  */
  if (use_poll)
    {
#ifdef HAVE_POLL
      int i;
      int mask;

      while (1)
	{
	  if (gdb_notifier.next_poll_fds_index >= gdb_notifier.num_fds)
	    gdb_notifier.next_poll_fds_index = 0;
	  i = gdb_notifier.next_poll_fds_index++;

	  gdb_assert (i < gdb_notifier.num_fds);
	  if ((gdb_notifier.poll_fds + i)->revents)
	    break;
	}

      for (file_ptr = gdb_notifier.first_file_handler;
	   file_ptr != NULL;
	   file_ptr = file_ptr->next_file)
	{
	  if (file_ptr->fd == (gdb_notifier.poll_fds + i)->fd)
	    break;
	}
      gdb_assert (file_ptr != NULL);

      mask = (gdb_notifier.poll_fds + i)->revents;
      handle_file_event (file_ptr, mask);
      return 1;
#else
      internal_error (__FILE__, __LINE__,
		      _("use_poll without HAVE_POLL"));
#endif /* HAVE_POLL */
    }
  else
    {
      /* See comment about even source fairness above.  */
      int mask = 0;

      do
	{
	  file_ptr = get_next_file_handler_to_handle_and_advance ();

	  if (FD_ISSET (file_ptr->fd, &gdb_notifier.ready_masks[0]))
	    mask |= GDB_READABLE;
	  if (FD_ISSET (file_ptr->fd, &gdb_notifier.ready_masks[1]))
	    mask |= GDB_WRITABLE;
	  if (FD_ISSET (file_ptr->fd, &gdb_notifier.ready_masks[2]))
	    mask |= GDB_EXCEPTION;
	}
      while (mask == 0);

      handle_file_event (file_ptr, mask);
      return 1;
    }
  return 0;
}


/* Create an asynchronous handler, allocating memory for it.
   Return a pointer to the newly created handler.
   This pointer will be used to invoke the handler by 
   invoke_async_signal_handler.
   PROC is the function to call with CLIENT_DATA argument 
   whenever the handler is invoked.  */
async_signal_handler *
create_async_signal_handler (sig_handler_func * proc,
			     gdb_client_data client_data)
{
  async_signal_handler *async_handler_ptr;

  async_handler_ptr = XNEW (async_signal_handler);
  async_handler_ptr->ready = 0;
  async_handler_ptr->next_handler = NULL;
  async_handler_ptr->proc = proc;
  async_handler_ptr->client_data = client_data;
  if (sighandler_list.first_handler == NULL)
    sighandler_list.first_handler = async_handler_ptr;
  else
    sighandler_list.last_handler->next_handler = async_handler_ptr;
  sighandler_list.last_handler = async_handler_ptr;
  return async_handler_ptr;
}

/* Mark the handler (ASYNC_HANDLER_PTR) as ready.  This information
   will be used when the handlers are invoked, after we have waited
   for some event.  The caller of this function is the interrupt
   handler associated with a signal.  */
void
mark_async_signal_handler (async_signal_handler * async_handler_ptr)
{
  async_handler_ptr->ready = 1;
  serial_event_set (async_signal_handlers_serial_event);
}

/* See event-loop.h.  */

void
clear_async_signal_handler (async_signal_handler *async_handler_ptr)
{
  async_handler_ptr->ready = 0;
}

/* See event-loop.h.  */

int
async_signal_handler_is_marked (async_signal_handler *async_handler_ptr)
{
  return async_handler_ptr->ready;
}

/* Call all the handlers that are ready.  Returns true if any was
   indeed ready.  */

static int
invoke_async_signal_handlers (void)
{
  async_signal_handler *async_handler_ptr;
  int any_ready = 0;

  /* We're going to handle all pending signals, so no need to wake up
     the event loop again the next time around.  Note this must be
     cleared _before_ calling the callbacks, to avoid races.  */
  serial_event_clear (async_signal_handlers_serial_event);

  /* Invoke all ready handlers.  */

  while (1)
    {
      for (async_handler_ptr = sighandler_list.first_handler;
	   async_handler_ptr != NULL;
	   async_handler_ptr = async_handler_ptr->next_handler)
	{
	  if (async_handler_ptr->ready)
	    break;
	}
      if (async_handler_ptr == NULL)
	break;
      any_ready = 1;
      async_handler_ptr->ready = 0;
      /* Async signal handlers have no connection to whichever was the
	 current UI, and thus always run on the main one.  */
      current_ui = main_ui;
      (*async_handler_ptr->proc) (async_handler_ptr->client_data);
    }

  return any_ready;
}

/* Delete an asynchronous handler (ASYNC_HANDLER_PTR).
   Free the space allocated for it.  */
void
delete_async_signal_handler (async_signal_handler ** async_handler_ptr)
{
  async_signal_handler *prev_ptr;

  if (sighandler_list.first_handler == (*async_handler_ptr))
    {
      sighandler_list.first_handler = (*async_handler_ptr)->next_handler;
      if (sighandler_list.first_handler == NULL)
	sighandler_list.last_handler = NULL;
    }
  else
    {
      prev_ptr = sighandler_list.first_handler;
      while (prev_ptr && prev_ptr->next_handler != (*async_handler_ptr))
	prev_ptr = prev_ptr->next_handler;
      gdb_assert (prev_ptr);
      prev_ptr->next_handler = (*async_handler_ptr)->next_handler;
      if (sighandler_list.last_handler == (*async_handler_ptr))
	sighandler_list.last_handler = prev_ptr;
    }
  xfree ((*async_handler_ptr));
  (*async_handler_ptr) = NULL;
}

/* Create an asynchronous event handler, allocating memory for it.
   Return a pointer to the newly created handler.  PROC is the
   function to call with CLIENT_DATA argument whenever the handler is
   invoked.  */
async_event_handler *
create_async_event_handler (async_event_handler_func *proc,
			    gdb_client_data client_data)
{
  async_event_handler *h;

  h = XNEW (struct async_event_handler);
  h->ready = 0;
  h->next_handler = NULL;
  h->proc = proc;
  h->client_data = client_data;
  if (async_event_handler_list.first_handler == NULL)
    async_event_handler_list.first_handler = h;
  else
    async_event_handler_list.last_handler->next_handler = h;
  async_event_handler_list.last_handler = h;
  return h;
}

/* Mark the handler (ASYNC_HANDLER_PTR) as ready.  This information
   will be used by gdb_do_one_event.  The caller will be whoever
   created the event source, and wants to signal that the event is
   ready to be handled.  */
void
mark_async_event_handler (async_event_handler *async_handler_ptr)
{
  async_handler_ptr->ready = 1;
}

/* See event-loop.h.  */

void
clear_async_event_handler (async_event_handler *async_handler_ptr)
{
  async_handler_ptr->ready = 0;
}

/* Check if asynchronous event handlers are ready, and call the
   handler function for one that is.  */

static int
check_async_event_handlers (void)
{
  async_event_handler *async_handler_ptr;

  for (async_handler_ptr = async_event_handler_list.first_handler;
       async_handler_ptr != NULL;
       async_handler_ptr = async_handler_ptr->next_handler)
    {
      if (async_handler_ptr->ready)
	{
	  async_handler_ptr->ready = 0;
	  (*async_handler_ptr->proc) (async_handler_ptr->client_data);
	  return 1;
	}
    }

  return 0;
}

/* Delete an asynchronous handler (ASYNC_HANDLER_PTR).
   Free the space allocated for it.  */
void
delete_async_event_handler (async_event_handler **async_handler_ptr)
{
  async_event_handler *prev_ptr;

  if (async_event_handler_list.first_handler == *async_handler_ptr)
    {
      async_event_handler_list.first_handler
	= (*async_handler_ptr)->next_handler;
      if (async_event_handler_list.first_handler == NULL)
	async_event_handler_list.last_handler = NULL;
    }
  else
    {
      prev_ptr = async_event_handler_list.first_handler;
      while (prev_ptr && prev_ptr->next_handler != *async_handler_ptr)
	prev_ptr = prev_ptr->next_handler;
      gdb_assert (prev_ptr);
      prev_ptr->next_handler = (*async_handler_ptr)->next_handler;
      if (async_event_handler_list.last_handler == (*async_handler_ptr))
	async_event_handler_list.last_handler = prev_ptr;
    }
  xfree (*async_handler_ptr);
  *async_handler_ptr = NULL;
}

/* Create a timer that will expire in MS milliseconds from now.  When
   the timer is ready, PROC will be executed.  At creation, the timer
   is added to the timers queue.  This queue is kept sorted in order
   of increasing timers.  Return a handle to the timer struct.  */

int
create_timer (int ms, timer_handler_func *proc,
	      gdb_client_data client_data)
{
  using namespace std::chrono;
  struct gdb_timer *timer_ptr, *timer_index, *prev_timer;

  steady_clock::time_point time_now = steady_clock::now ();

  timer_ptr = new gdb_timer ();
  timer_ptr->when = time_now + milliseconds (ms);
  timer_ptr->proc = proc;
  timer_ptr->client_data = client_data;
  timer_list.num_timers++;
  timer_ptr->timer_id = timer_list.num_timers;

  /* Now add the timer to the timer queue, making sure it is sorted in
     increasing order of expiration.  */

  for (timer_index = timer_list.first_timer;
       timer_index != NULL;
       timer_index = timer_index->next)
    {
      if (timer_index->when > timer_ptr->when)
	break;
    }

  if (timer_index == timer_list.first_timer)
    {
      timer_ptr->next = timer_list.first_timer;
      timer_list.first_timer = timer_ptr;

    }
  else
    {
      for (prev_timer = timer_list.first_timer;
	   prev_timer->next != timer_index;
	   prev_timer = prev_timer->next)
	;

      prev_timer->next = timer_ptr;
      timer_ptr->next = timer_index;
    }

  gdb_notifier.timeout_valid = 0;
  return timer_ptr->timer_id;
}

/* There is a chance that the creator of the timer wants to get rid of
   it before it expires.  */
void
delete_timer (int id)
{
  struct gdb_timer *timer_ptr, *prev_timer = NULL;

  /* Find the entry for the given timer.  */

  for (timer_ptr = timer_list.first_timer; timer_ptr != NULL;
       timer_ptr = timer_ptr->next)
    {
      if (timer_ptr->timer_id == id)
	break;
    }

  if (timer_ptr == NULL)
    return;
  /* Get rid of the timer in the timer list.  */
  if (timer_ptr == timer_list.first_timer)
    timer_list.first_timer = timer_ptr->next;
  else
    {
      for (prev_timer = timer_list.first_timer;
	   prev_timer->next != timer_ptr;
	   prev_timer = prev_timer->next)
	;
      prev_timer->next = timer_ptr->next;
    }
  delete timer_ptr;

  gdb_notifier.timeout_valid = 0;
}

/* Convert a std::chrono duration to a struct timeval.  */

template<typename Duration>
static struct timeval
duration_cast_timeval (const Duration &d)
{
  using namespace std::chrono;
  seconds sec = duration_cast<seconds> (d);
  microseconds msec = duration_cast<microseconds> (d - sec);

  struct timeval tv;
  tv.tv_sec = sec.count ();
  tv.tv_usec = msec.count ();
  return tv;
}

/* Update the timeout for the select() or poll().  Returns true if the
   timer has already expired, false otherwise.  */

static int
update_wait_timeout (void)
{
  if (timer_list.first_timer != NULL)
    {
      using namespace std::chrono;
      steady_clock::time_point time_now = steady_clock::now ();
      struct timeval timeout;

      if (timer_list.first_timer->when < time_now)
	{
	  /* It expired already.  */
	  timeout.tv_sec = 0;
	  timeout.tv_usec = 0;
	}
      else
	{
	  steady_clock::duration d = timer_list.first_timer->when - time_now;
	  timeout = duration_cast_timeval (d);
	}

      /* Update the timeout for select/ poll.  */
      if (use_poll)
	{
#ifdef HAVE_POLL
	  gdb_notifier.poll_timeout = timeout.tv_sec * 1000;
#else
	  internal_error (__FILE__, __LINE__,
			  _("use_poll without HAVE_POLL"));
#endif /* HAVE_POLL */
	}
      else
	{
	  gdb_notifier.select_timeout.tv_sec = timeout.tv_sec;
	  gdb_notifier.select_timeout.tv_usec = timeout.tv_usec;
	}
      gdb_notifier.timeout_valid = 1;

      if (timer_list.first_timer->when < time_now)
	return 1;
    }
  else
    gdb_notifier.timeout_valid = 0;

  return 0;
}

/* Check whether a timer in the timers queue is ready.  If a timer is
   ready, call its handler and return.  Update the timeout for the
   select() or poll() as well.  Return 1 if an event was handled,
   otherwise returns 0.*/

static int
poll_timers (void)
{
  if (update_wait_timeout ())
    {
      struct gdb_timer *timer_ptr = timer_list.first_timer;
      timer_handler_func *proc = timer_ptr->proc;
      gdb_client_data client_data = timer_ptr->client_data;

      /* Get rid of the timer from the beginning of the list.  */
      timer_list.first_timer = timer_ptr->next;

      /* Delete the timer before calling the callback, not after, in
	 case the callback itself decides to try deleting the timer
	 too.  */
      delete timer_ptr;

      /* Call the procedure associated with that timer.  */
      (proc) (client_data);

      return 1;
    }

  return 0;
}