aboutsummaryrefslogtreecommitdiff
path: root/gdb/dwarf2loc.c
blob: 196502279c8875d3279ca93baef6cf1f4646abd5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
/* DWARF 2 location expression support for GDB.

   Copyright (C) 2003, 2005, 2007, 2008, 2009, 2010
   Free Software Foundation, Inc.

   Contributed by Daniel Jacobowitz, MontaVista Software, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "ui-out.h"
#include "value.h"
#include "frame.h"
#include "gdbcore.h"
#include "target.h"
#include "inferior.h"
#include "ax.h"
#include "ax-gdb.h"
#include "regcache.h"
#include "objfiles.h"
#include "exceptions.h"
#include "block.h"

#include "dwarf2.h"
#include "dwarf2expr.h"
#include "dwarf2loc.h"
#include "dwarf2-frame.h"

#include "gdb_string.h"
#include "gdb_assert.h"

extern int dwarf2_always_disassemble;

static void
dwarf_expr_frame_base_1 (struct symbol *framefunc, CORE_ADDR pc,
			 const gdb_byte **start, size_t *length);

/* A helper function for dealing with location lists.  Given a
   symbol baton (BATON) and a pc value (PC), find the appropriate
   location expression, set *LOCEXPR_LENGTH, and return a pointer
   to the beginning of the expression.  Returns NULL on failure.

   For now, only return the first matching location expression; there
   can be more than one in the list.  */

static const gdb_byte *
find_location_expression (struct dwarf2_loclist_baton *baton,
			  size_t *locexpr_length, CORE_ADDR pc)
{
  CORE_ADDR low, high;
  const gdb_byte *loc_ptr, *buf_end;
  int length;
  struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
  struct gdbarch *gdbarch = get_objfile_arch (objfile);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
  int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
  CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
  /* Adjust base_address for relocatable objects.  */
  CORE_ADDR base_offset = ANOFFSET (objfile->section_offsets,
				    SECT_OFF_TEXT (objfile));
  CORE_ADDR base_address = baton->base_address + base_offset;

  loc_ptr = baton->data;
  buf_end = baton->data + baton->size;

  while (1)
    {
      if (buf_end - loc_ptr < 2 * addr_size)
	error (_("find_location_expression: Corrupted DWARF expression."));

      if (signed_addr_p)
	low = extract_signed_integer (loc_ptr, addr_size, byte_order);
      else
	low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
      loc_ptr += addr_size;

      if (signed_addr_p)
	high = extract_signed_integer (loc_ptr, addr_size, byte_order);
      else
	high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
      loc_ptr += addr_size;

      /* A base-address-selection entry.  */
      if ((low & base_mask) == base_mask)
	{
	  base_address = high + base_offset;
	  continue;
	}

      /* An end-of-list entry.  */
      if (low == 0 && high == 0)
	return NULL;

      /* Otherwise, a location expression entry.  */
      low += base_address;
      high += base_address;

      length = extract_unsigned_integer (loc_ptr, 2, byte_order);
      loc_ptr += 2;

      if (pc >= low && pc < high)
	{
	  *locexpr_length = length;
	  return loc_ptr;
	}

      loc_ptr += length;
    }
}

/* This is the baton used when performing dwarf2 expression
   evaluation.  */
struct dwarf_expr_baton
{
  struct frame_info *frame;
  struct dwarf2_per_cu_data *per_cu;
};

/* Helper functions for dwarf2_evaluate_loc_desc.  */

/* Using the frame specified in BATON, return the value of register
   REGNUM, treated as a pointer.  */
static CORE_ADDR
dwarf_expr_read_reg (void *baton, int dwarf_regnum)
{
  struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
  struct gdbarch *gdbarch = get_frame_arch (debaton->frame);
  CORE_ADDR result;
  int regnum;

  regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
  result = address_from_register (builtin_type (gdbarch)->builtin_data_ptr,
				  regnum, debaton->frame);
  return result;
}

/* Read memory at ADDR (length LEN) into BUF.  */

static void
dwarf_expr_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
{
  read_memory (addr, buf, len);
}

/* Using the frame specified in BATON, find the location expression
   describing the frame base.  Return a pointer to it in START and
   its length in LENGTH.  */
static void
dwarf_expr_frame_base (void *baton, const gdb_byte **start, size_t * length)
{
  /* FIXME: cagney/2003-03-26: This code should be using
     get_frame_base_address(), and then implement a dwarf2 specific
     this_base method.  */
  struct symbol *framefunc;
  struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;

  /* Use block_linkage_function, which returns a real (not inlined)
     function, instead of get_frame_function, which may return an
     inlined function.  */
  framefunc = block_linkage_function (get_frame_block (debaton->frame, NULL));

  /* If we found a frame-relative symbol then it was certainly within
     some function associated with a frame. If we can't find the frame,
     something has gone wrong.  */
  gdb_assert (framefunc != NULL);

  dwarf_expr_frame_base_1 (framefunc,
			   get_frame_address_in_block (debaton->frame),
			   start, length);
}

static void
dwarf_expr_frame_base_1 (struct symbol *framefunc, CORE_ADDR pc,
			 const gdb_byte **start, size_t *length)
{
  if (SYMBOL_LOCATION_BATON (framefunc) == NULL)
    *start = NULL;
  else if (SYMBOL_COMPUTED_OPS (framefunc) == &dwarf2_loclist_funcs)
    {
      struct dwarf2_loclist_baton *symbaton;

      symbaton = SYMBOL_LOCATION_BATON (framefunc);
      *start = find_location_expression (symbaton, length, pc);
    }
  else
    {
      struct dwarf2_locexpr_baton *symbaton;

      symbaton = SYMBOL_LOCATION_BATON (framefunc);
      if (symbaton != NULL)
	{
	  *length = symbaton->size;
	  *start = symbaton->data;
	}
      else
	*start = NULL;
    }

  if (*start == NULL)
    error (_("Could not find the frame base for \"%s\"."),
	   SYMBOL_NATURAL_NAME (framefunc));
}

/* Helper function for dwarf2_evaluate_loc_desc.  Computes the CFA for
   the frame in BATON.  */

static CORE_ADDR
dwarf_expr_frame_cfa (void *baton)
{
  struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;

  return dwarf2_frame_cfa (debaton->frame);
}

/* Using the objfile specified in BATON, find the address for the
   current thread's thread-local storage with offset OFFSET.  */
static CORE_ADDR
dwarf_expr_tls_address (void *baton, CORE_ADDR offset)
{
  struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
  struct objfile *objfile = dwarf2_per_cu_objfile (debaton->per_cu);

  return target_translate_tls_address (objfile, offset);
}

/* Call DWARF subroutine from DW_AT_location of DIE at DIE_OFFSET in current CU
   (as is PER_CU).  State of the CTX is not affected by the call and return.  */

static void
per_cu_dwarf_call (struct dwarf_expr_context *ctx, size_t die_offset,
		   struct dwarf2_per_cu_data *per_cu)
{
  struct dwarf2_locexpr_baton block;

  block = dwarf2_fetch_die_location_block (die_offset, per_cu);

  /* DW_OP_call_ref is currently not supported.  */
  gdb_assert (block.per_cu == per_cu);

  dwarf_expr_eval (ctx, block.data, block.size);
}

/* Helper interface of per_cu_dwarf_call for dwarf2_evaluate_loc_desc.  */

static void
dwarf_expr_dwarf_call (struct dwarf_expr_context *ctx, size_t die_offset)
{
  struct dwarf_expr_baton *debaton = ctx->baton;

  return per_cu_dwarf_call (ctx, die_offset, debaton->per_cu);
}

struct piece_closure
{
  /* Reference count.  */
  int refc;

  /* The number of pieces used to describe this variable.  */
  int n_pieces;

  /* The target address size, used only for DWARF_VALUE_STACK.  */
  int addr_size;

  /* The pieces themselves.  */
  struct dwarf_expr_piece *pieces;
};

/* Allocate a closure for a value formed from separately-described
   PIECES.  */

static struct piece_closure *
allocate_piece_closure (int n_pieces, struct dwarf_expr_piece *pieces,
			int addr_size)
{
  struct piece_closure *c = XZALLOC (struct piece_closure);

  c->refc = 1;
  c->n_pieces = n_pieces;
  c->addr_size = addr_size;
  c->pieces = XCALLOC (n_pieces, struct dwarf_expr_piece);

  memcpy (c->pieces, pieces, n_pieces * sizeof (struct dwarf_expr_piece));

  return c;
}

/* The lowest-level function to extract bits from a byte buffer.
   SOURCE is the buffer.  It is updated if we read to the end of a
   byte.
   SOURCE_OFFSET_BITS is the offset of the first bit to read.  It is
   updated to reflect the number of bits actually read.
   NBITS is the number of bits we want to read.  It is updated to
   reflect the number of bits actually read.  This function may read
   fewer bits.
   BITS_BIG_ENDIAN is taken directly from gdbarch.
   This function returns the extracted bits.  */

static unsigned int
extract_bits_primitive (const gdb_byte **source,
			unsigned int *source_offset_bits,
			int *nbits, int bits_big_endian)
{
  unsigned int avail, mask, datum;

  gdb_assert (*source_offset_bits < 8);

  avail = 8 - *source_offset_bits;
  if (avail > *nbits)
    avail = *nbits;

  mask = (1 << avail) - 1;
  datum = **source;
  if (bits_big_endian)
    datum >>= 8 - (*source_offset_bits + *nbits);
  else
    datum >>= *source_offset_bits;
  datum &= mask;

  *nbits -= avail;
  *source_offset_bits += avail;
  if (*source_offset_bits >= 8)
    {
      *source_offset_bits -= 8;
      ++*source;
    }

  return datum;
}

/* Extract some bits from a source buffer and move forward in the
   buffer.
   
   SOURCE is the source buffer.  It is updated as bytes are read.
   SOURCE_OFFSET_BITS is the offset into SOURCE.  It is updated as
   bits are read.
   NBITS is the number of bits to read.
   BITS_BIG_ENDIAN is taken directly from gdbarch.
   
   This function returns the bits that were read.  */

static unsigned int
extract_bits (const gdb_byte **source, unsigned int *source_offset_bits,
	      int nbits, int bits_big_endian)
{
  unsigned int datum;

  gdb_assert (nbits > 0 && nbits <= 8);

  datum = extract_bits_primitive (source, source_offset_bits, &nbits,
				  bits_big_endian);
  if (nbits > 0)
    {
      unsigned int more;

      more = extract_bits_primitive (source, source_offset_bits, &nbits,
				     bits_big_endian);
      if (bits_big_endian)
	datum <<= nbits;
      else
	more <<= nbits;
      datum |= more;
    }

  return datum;
}

/* Write some bits into a buffer and move forward in the buffer.
   
   DATUM is the bits to write.  The low-order bits of DATUM are used.
   DEST is the destination buffer.  It is updated as bytes are
   written.
   DEST_OFFSET_BITS is the bit offset in DEST at which writing is
   done.
   NBITS is the number of valid bits in DATUM.
   BITS_BIG_ENDIAN is taken directly from gdbarch.  */

static void
insert_bits (unsigned int datum,
	     gdb_byte *dest, unsigned int dest_offset_bits,
	     int nbits, int bits_big_endian)
{
  unsigned int mask;

  gdb_assert (dest_offset_bits >= 0 && dest_offset_bits + nbits <= 8);

  mask = (1 << nbits) - 1;
  if (bits_big_endian)
    {
      datum <<= 8 - (dest_offset_bits + nbits);
      mask <<= 8 - (dest_offset_bits + nbits);
    }
  else
    {
      datum <<= dest_offset_bits;
      mask <<= dest_offset_bits;
    }

  gdb_assert ((datum & ~mask) == 0);

  *dest = (*dest & ~mask) | datum;
}

/* Copy bits from a source to a destination.
   
   DEST is where the bits should be written.
   DEST_OFFSET_BITS is the bit offset into DEST.
   SOURCE is the source of bits.
   SOURCE_OFFSET_BITS is the bit offset into SOURCE.
   BIT_COUNT is the number of bits to copy.
   BITS_BIG_ENDIAN is taken directly from gdbarch.  */

static void
copy_bitwise (gdb_byte *dest, unsigned int dest_offset_bits,
	      const gdb_byte *source, unsigned int source_offset_bits,
	      unsigned int bit_count,
	      int bits_big_endian)
{
  unsigned int dest_avail;
  int datum;

  /* Reduce everything to byte-size pieces.  */
  dest += dest_offset_bits / 8;
  dest_offset_bits %= 8;
  source += source_offset_bits / 8;
  source_offset_bits %= 8;

  dest_avail = 8 - dest_offset_bits % 8;

  /* See if we can fill the first destination byte.  */
  if (dest_avail < bit_count)
    {
      datum = extract_bits (&source, &source_offset_bits, dest_avail,
			    bits_big_endian);
      insert_bits (datum, dest, dest_offset_bits, dest_avail, bits_big_endian);
      ++dest;
      dest_offset_bits = 0;
      bit_count -= dest_avail;
    }

  /* Now, either DEST_OFFSET_BITS is byte-aligned, or we have fewer
     than 8 bits remaining.  */
  gdb_assert (dest_offset_bits % 8 == 0 || bit_count < 8);
  for (; bit_count >= 8; bit_count -= 8)
    {
      datum = extract_bits (&source, &source_offset_bits, 8, bits_big_endian);
      *dest++ = (gdb_byte) datum;
    }

  /* Finally, we may have a few leftover bits.  */
  gdb_assert (bit_count <= 8 - dest_offset_bits % 8);
  if (bit_count > 0)
    {
      datum = extract_bits (&source, &source_offset_bits, bit_count,
			    bits_big_endian);
      insert_bits (datum, dest, dest_offset_bits, bit_count, bits_big_endian);
    }
}

static void
read_pieced_value (struct value *v)
{
  int i;
  long offset = 0;
  ULONGEST bits_to_skip;
  gdb_byte *contents;
  struct piece_closure *c = (struct piece_closure *) value_computed_closure (v);
  struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (v));
  size_t type_len;
  size_t buffer_size = 0;
  char *buffer = NULL;
  struct cleanup *cleanup;
  int bits_big_endian
    = gdbarch_bits_big_endian (get_type_arch (value_type (v)));

  if (value_type (v) != value_enclosing_type (v))
    internal_error (__FILE__, __LINE__,
		    _("Should not be able to create a lazy value with "
		      "an enclosing type"));

  cleanup = make_cleanup (free_current_contents, &buffer);

  contents = value_contents_raw (v);
  bits_to_skip = 8 * value_offset (v);
  if (value_bitsize (v))
    {
      bits_to_skip += value_bitpos (v);
      type_len = value_bitsize (v);
    }
  else
    type_len = 8 * TYPE_LENGTH (value_type (v));

  for (i = 0; i < c->n_pieces && offset < type_len; i++)
    {
      struct dwarf_expr_piece *p = &c->pieces[i];
      size_t this_size, this_size_bits;
      long dest_offset_bits, source_offset_bits, source_offset;
      const gdb_byte *intermediate_buffer;

      /* Compute size, source, and destination offsets for copying, in
	 bits.  */
      this_size_bits = p->size;
      if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
	{
	  bits_to_skip -= this_size_bits;
	  continue;
	}
      if (this_size_bits > type_len - offset)
	this_size_bits = type_len - offset;
      if (bits_to_skip > 0)
	{
	  dest_offset_bits = 0;
	  source_offset_bits = bits_to_skip;
	  this_size_bits -= bits_to_skip;
	  bits_to_skip = 0;
	}
      else
	{
	  dest_offset_bits = offset;
	  source_offset_bits = 0;
	}

      this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
      source_offset = source_offset_bits / 8;
      if (buffer_size < this_size)
	{
	  buffer_size = this_size;
	  buffer = xrealloc (buffer, buffer_size);
	}
      intermediate_buffer = buffer;

      /* Copy from the source to DEST_BUFFER.  */
      switch (p->location)
	{
	case DWARF_VALUE_REGISTER:
	  {
	    struct gdbarch *arch = get_frame_arch (frame);
	    int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, p->v.value);
	    int reg_offset = source_offset;

	    if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
		&& this_size < register_size (arch, gdb_regnum))
	      {
		/* Big-endian, and we want less than full size.  */
		reg_offset = register_size (arch, gdb_regnum) - this_size;
		/* We want the lower-order THIS_SIZE_BITS of the bytes
		   we extract from the register.  */
		source_offset_bits += 8 * this_size - this_size_bits;
	      }

	    if (gdb_regnum != -1)
	      {
		get_frame_register_bytes (frame, gdb_regnum, reg_offset, 
					  this_size, buffer);
	      }
	    else
	      {
		error (_("Unable to access DWARF register number %s"),
		       paddress (arch, p->v.value));
	      }
	  }
	  break;

	case DWARF_VALUE_MEMORY:
	  if (p->v.mem.in_stack_memory)
	    read_stack (p->v.mem.addr + source_offset, buffer, this_size);
	  else
	    read_memory (p->v.mem.addr + source_offset, buffer, this_size);
	  break;

	case DWARF_VALUE_STACK:
	  {
	    struct gdbarch *gdbarch = get_type_arch (value_type (v));
	    size_t n = this_size;

	    if (n > c->addr_size - source_offset)
	      n = (c->addr_size >= source_offset
		   ? c->addr_size - source_offset
		   : 0);
	    if (n == 0)
	      {
		/* Nothing.  */
	      }
	    else if (source_offset == 0)
	      store_unsigned_integer (buffer, n,
				      gdbarch_byte_order (gdbarch),
				      p->v.value);
	    else
	      {
		gdb_byte bytes[sizeof (ULONGEST)];

		store_unsigned_integer (bytes, n + source_offset,
					gdbarch_byte_order (gdbarch),
					p->v.value);
		memcpy (buffer, bytes + source_offset, n);
	      }
	  }
	  break;

	case DWARF_VALUE_LITERAL:
	  {
	    size_t n = this_size;

	    if (n > p->v.literal.length - source_offset)
	      n = (p->v.literal.length >= source_offset
		   ? p->v.literal.length - source_offset
		   : 0);
	    if (n != 0)
	      intermediate_buffer = p->v.literal.data + source_offset;
	  }
	  break;

	case DWARF_VALUE_OPTIMIZED_OUT:
	  set_value_optimized_out (v, 1);
	  break;

	default:
	  internal_error (__FILE__, __LINE__, _("invalid location type"));
	}

      if (p->location != DWARF_VALUE_OPTIMIZED_OUT)
	copy_bitwise (contents, dest_offset_bits,
		      intermediate_buffer, source_offset_bits % 8,
		      this_size_bits, bits_big_endian);

      offset += this_size_bits;
    }

  do_cleanups (cleanup);
}

static void
write_pieced_value (struct value *to, struct value *from)
{
  int i;
  long offset = 0;
  ULONGEST bits_to_skip;
  const gdb_byte *contents;
  struct piece_closure *c = (struct piece_closure *) value_computed_closure (to);
  struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (to));
  size_t type_len;
  size_t buffer_size = 0;
  char *buffer = NULL;
  struct cleanup *cleanup;
  int bits_big_endian
    = gdbarch_bits_big_endian (get_type_arch (value_type (to)));

  if (frame == NULL)
    {
      set_value_optimized_out (to, 1);
      return;
    }

  cleanup = make_cleanup (free_current_contents, &buffer);

  contents = value_contents (from);
  bits_to_skip = 8 * value_offset (to);
  if (value_bitsize (to))
    {
      bits_to_skip += value_bitpos (to);
      type_len = value_bitsize (to);
    }
  else
    type_len = 8 * TYPE_LENGTH (value_type (to));

  for (i = 0; i < c->n_pieces && offset < type_len; i++)
    {
      struct dwarf_expr_piece *p = &c->pieces[i];
      size_t this_size_bits, this_size;
      long dest_offset_bits, source_offset_bits, dest_offset, source_offset;
      int need_bitwise;
      const gdb_byte *source_buffer;

      this_size_bits = p->size;
      if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
	{
	  bits_to_skip -= this_size_bits;
	  continue;
	}
      if (this_size_bits > type_len - offset)
	this_size_bits = type_len - offset;
      if (bits_to_skip > 0)
	{
	  dest_offset_bits = bits_to_skip;
	  source_offset_bits = 0;
	  this_size_bits -= bits_to_skip;
	  bits_to_skip = 0;
	}
      else
	{
	  dest_offset_bits = 0;
	  source_offset_bits = offset;
	}

      this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
      source_offset = source_offset_bits / 8;
      dest_offset = dest_offset_bits / 8;
      if (dest_offset_bits % 8 == 0 && source_offset_bits % 8 == 0)
	{
	  source_buffer = contents + source_offset;
	  need_bitwise = 0;
	}
      else
	{
	  if (buffer_size < this_size)
	    {
	      buffer_size = this_size;
	      buffer = xrealloc (buffer, buffer_size);
	    }
	  source_buffer = buffer;
	  need_bitwise = 1;
	}

      switch (p->location)
	{
	case DWARF_VALUE_REGISTER:
	  {
	    struct gdbarch *arch = get_frame_arch (frame);
	    int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, p->v.value);
	    int reg_offset = dest_offset;

	    if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
		&& this_size <= register_size (arch, gdb_regnum))
	      /* Big-endian, and we want less than full size.  */
	      reg_offset = register_size (arch, gdb_regnum) - this_size;

	    if (gdb_regnum != -1)
	      {
		if (need_bitwise)
		  {
		    get_frame_register_bytes (frame, gdb_regnum, reg_offset,
					      this_size, buffer);
		    copy_bitwise (buffer, dest_offset_bits,
				  contents, source_offset_bits,
				  this_size_bits,
				  bits_big_endian);
		  }

		put_frame_register_bytes (frame, gdb_regnum, reg_offset, 
					  this_size, source_buffer);
	      }
	    else
	      {
		error (_("Unable to write to DWARF register number %s"),
		       paddress (arch, p->v.value));
	      }
	  }
	  break;
	case DWARF_VALUE_MEMORY:
	  if (need_bitwise)
	    {
	      /* Only the first and last bytes can possibly have any
		 bits reused.  */
	      read_memory (p->v.mem.addr + dest_offset, buffer, 1);
	      read_memory (p->v.mem.addr + dest_offset + this_size - 1,
			   buffer + this_size - 1, 1);
	      copy_bitwise (buffer, dest_offset_bits,
			    contents, source_offset_bits,
			    this_size_bits,
			    bits_big_endian);
	    }

	  write_memory (p->v.mem.addr + dest_offset,
			source_buffer, this_size);
	  break;
	default:
	  set_value_optimized_out (to, 1);
	  break;
	}
      offset += this_size_bits;
    }

  do_cleanups (cleanup);
}

static int
check_pieced_value_bits (const struct value *value, int bit_offset,
			 int bit_length, int validity)
{
  struct piece_closure *c
    = (struct piece_closure *) value_computed_closure (value);
  int i;

  bit_offset += 8 * value_offset (value);
  if (value_bitsize (value))
    bit_offset += value_bitpos (value);

  for (i = 0; i < c->n_pieces && bit_length > 0; i++)
    {
      struct dwarf_expr_piece *p = &c->pieces[i];
      size_t this_size_bits = p->size;

      if (bit_offset > 0)
	{
	  if (bit_offset >= this_size_bits)
	    {
	      bit_offset -= this_size_bits;
	      continue;
	    }

	  bit_length -= this_size_bits - bit_offset;
	  bit_offset = 0;
	}
      else
	bit_length -= this_size_bits;

      if (p->location == DWARF_VALUE_OPTIMIZED_OUT)
	{
	  if (validity)
	    return 0;
	}
      else
	{
	  if (!validity)
	    return 1;
	}
    }

  return validity;
}

static int
check_pieced_value_validity (const struct value *value, int bit_offset,
			     int bit_length)
{
  return check_pieced_value_bits (value, bit_offset, bit_length, 1);
}

static int
check_pieced_value_invalid (const struct value *value)
{
  return check_pieced_value_bits (value, 0,
				  8 * TYPE_LENGTH (value_type (value)), 0);
}

static void *
copy_pieced_value_closure (const struct value *v)
{
  struct piece_closure *c = (struct piece_closure *) value_computed_closure (v);
  
  ++c->refc;
  return c;
}

static void
free_pieced_value_closure (struct value *v)
{
  struct piece_closure *c = (struct piece_closure *) value_computed_closure (v);

  --c->refc;
  if (c->refc == 0)
    {
      xfree (c->pieces);
      xfree (c);
    }
}

/* Functions for accessing a variable described by DW_OP_piece.  */
static struct lval_funcs pieced_value_funcs = {
  read_pieced_value,
  write_pieced_value,
  check_pieced_value_validity,
  check_pieced_value_invalid,
  copy_pieced_value_closure,
  free_pieced_value_closure
};

/* Evaluate a location description, starting at DATA and with length
   SIZE, to find the current location of variable of TYPE in the context
   of FRAME.  */

static struct value *
dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
			  const gdb_byte *data, unsigned short size,
			  struct dwarf2_per_cu_data *per_cu)
{
  struct value *retval;
  struct dwarf_expr_baton baton;
  struct dwarf_expr_context *ctx;
  struct cleanup *old_chain;

  if (size == 0)
    {
      retval = allocate_value (type);
      VALUE_LVAL (retval) = not_lval;
      set_value_optimized_out (retval, 1);
      return retval;
    }

  baton.frame = frame;
  baton.per_cu = per_cu;

  ctx = new_dwarf_expr_context ();
  old_chain = make_cleanup_free_dwarf_expr_context (ctx);

  ctx->gdbarch = get_objfile_arch (dwarf2_per_cu_objfile (per_cu));
  ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
  ctx->baton = &baton;
  ctx->read_reg = dwarf_expr_read_reg;
  ctx->read_mem = dwarf_expr_read_mem;
  ctx->get_frame_base = dwarf_expr_frame_base;
  ctx->get_frame_cfa = dwarf_expr_frame_cfa;
  ctx->get_tls_address = dwarf_expr_tls_address;
  ctx->dwarf_call = dwarf_expr_dwarf_call;

  dwarf_expr_eval (ctx, data, size);
  if (ctx->num_pieces > 0)
    {
      struct piece_closure *c;
      struct frame_id frame_id = get_frame_id (frame);

      c = allocate_piece_closure (ctx->num_pieces, ctx->pieces,
				  ctx->addr_size);
      retval = allocate_computed_value (type, &pieced_value_funcs, c);
      VALUE_FRAME_ID (retval) = frame_id;
    }
  else
    {
      switch (ctx->location)
	{
	case DWARF_VALUE_REGISTER:
	  {
	    struct gdbarch *arch = get_frame_arch (frame);
	    ULONGEST dwarf_regnum = dwarf_expr_fetch (ctx, 0);
	    int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_regnum);

	    if (gdb_regnum != -1)
	      retval = value_from_register (type, gdb_regnum, frame);
	    else
	      error (_("Unable to access DWARF register number %s"),
		     paddress (arch, dwarf_regnum));
	  }
	  break;

	case DWARF_VALUE_MEMORY:
	  {
	    CORE_ADDR address = dwarf_expr_fetch_address (ctx, 0);
	    int in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 0);

	    retval = allocate_value (type);
	    VALUE_LVAL (retval) = lval_memory;
	    set_value_lazy (retval, 1);
	    if (in_stack_memory)
	      set_value_stack (retval, 1);
	    set_value_address (retval, address);
	  }
	  break;

	case DWARF_VALUE_STACK:
	  {
	    ULONGEST value = dwarf_expr_fetch (ctx, 0);
	    bfd_byte *contents;
	    size_t n = ctx->addr_size;

	    retval = allocate_value (type);
	    contents = value_contents_raw (retval);
	    if (n > TYPE_LENGTH (type))
	      n = TYPE_LENGTH (type);
	    store_unsigned_integer (contents, n,
				    gdbarch_byte_order (ctx->gdbarch),
				    value);
	  }
	  break;

	case DWARF_VALUE_LITERAL:
	  {
	    bfd_byte *contents;
	    size_t n = ctx->len;

	    retval = allocate_value (type);
	    contents = value_contents_raw (retval);
	    if (n > TYPE_LENGTH (type))
	      n = TYPE_LENGTH (type);
	    memcpy (contents, ctx->data, n);
	  }
	  break;

	  /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
	     it can only be encountered when making a piece.  */
	case DWARF_VALUE_OPTIMIZED_OUT:
	default:
	  internal_error (__FILE__, __LINE__, _("invalid location type"));
	}
    }

  set_value_initialized (retval, ctx->initialized);

  do_cleanups (old_chain);

  return retval;
}

/* Helper functions and baton for dwarf2_loc_desc_needs_frame.  */

struct needs_frame_baton
{
  int needs_frame;
  struct dwarf2_per_cu_data *per_cu;
};

/* Reads from registers do require a frame.  */
static CORE_ADDR
needs_frame_read_reg (void *baton, int regnum)
{
  struct needs_frame_baton *nf_baton = baton;

  nf_baton->needs_frame = 1;
  return 1;
}

/* Reads from memory do not require a frame.  */
static void
needs_frame_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
{
  memset (buf, 0, len);
}

/* Frame-relative accesses do require a frame.  */
static void
needs_frame_frame_base (void *baton, const gdb_byte **start, size_t * length)
{
  static gdb_byte lit0 = DW_OP_lit0;
  struct needs_frame_baton *nf_baton = baton;

  *start = &lit0;
  *length = 1;

  nf_baton->needs_frame = 1;
}

/* CFA accesses require a frame.  */

static CORE_ADDR
needs_frame_frame_cfa (void *baton)
{
  struct needs_frame_baton *nf_baton = baton;

  nf_baton->needs_frame = 1;
  return 1;
}

/* Thread-local accesses do require a frame.  */
static CORE_ADDR
needs_frame_tls_address (void *baton, CORE_ADDR offset)
{
  struct needs_frame_baton *nf_baton = baton;

  nf_baton->needs_frame = 1;
  return 1;
}

/* Helper interface of per_cu_dwarf_call for dwarf2_loc_desc_needs_frame.  */

static void
needs_frame_dwarf_call (struct dwarf_expr_context *ctx, size_t die_offset)
{
  struct needs_frame_baton *nf_baton = ctx->baton;

  return per_cu_dwarf_call (ctx, die_offset, nf_baton->per_cu);
}

/* Return non-zero iff the location expression at DATA (length SIZE)
   requires a frame to evaluate.  */

static int
dwarf2_loc_desc_needs_frame (const gdb_byte *data, unsigned short size,
			     struct dwarf2_per_cu_data *per_cu)
{
  struct needs_frame_baton baton;
  struct dwarf_expr_context *ctx;
  int in_reg;
  struct cleanup *old_chain;

  baton.needs_frame = 0;
  baton.per_cu = per_cu;

  ctx = new_dwarf_expr_context ();
  old_chain = make_cleanup_free_dwarf_expr_context (ctx);

  ctx->gdbarch = get_objfile_arch (dwarf2_per_cu_objfile (per_cu));
  ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
  ctx->baton = &baton;
  ctx->read_reg = needs_frame_read_reg;
  ctx->read_mem = needs_frame_read_mem;
  ctx->get_frame_base = needs_frame_frame_base;
  ctx->get_frame_cfa = needs_frame_frame_cfa;
  ctx->get_tls_address = needs_frame_tls_address;
  ctx->dwarf_call = needs_frame_dwarf_call;

  dwarf_expr_eval (ctx, data, size);

  in_reg = ctx->location == DWARF_VALUE_REGISTER;

  if (ctx->num_pieces > 0)
    {
      int i;

      /* If the location has several pieces, and any of them are in
         registers, then we will need a frame to fetch them from.  */
      for (i = 0; i < ctx->num_pieces; i++)
        if (ctx->pieces[i].location == DWARF_VALUE_REGISTER)
          in_reg = 1;
    }

  do_cleanups (old_chain);

  return baton.needs_frame || in_reg;
}

/* A helper function that throws an unimplemented error mentioning a
   given DWARF operator.  */

static void
unimplemented (unsigned int op)
{
  error (_("DWARF operator %s cannot be translated to an agent expression"),
	 dwarf_stack_op_name (op, 1));
}

/* A helper function to convert a DWARF register to an arch register.
   ARCH is the architecture.
   DWARF_REG is the register.
   This will throw an exception if the DWARF register cannot be
   translated to an architecture register.  */

static int
translate_register (struct gdbarch *arch, int dwarf_reg)
{
  int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
  if (reg == -1)
    error (_("Unable to access DWARF register number %d"), dwarf_reg);
  return reg;
}

/* A helper function that emits an access to memory.  ARCH is the
   target architecture.  EXPR is the expression which we are building.
   NBITS is the number of bits we want to read.  This emits the
   opcodes needed to read the memory and then extract the desired
   bits.  */

static void
access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
{
  ULONGEST nbytes = (nbits + 7) / 8;

  gdb_assert (nbits > 0 && nbits <= sizeof (LONGEST));

  if (trace_kludge)
    ax_trace_quick (expr, nbytes);

  if (nbits <= 8)
    ax_simple (expr, aop_ref8);
  else if (nbits <= 16)
    ax_simple (expr, aop_ref16);
  else if (nbits <= 32)
    ax_simple (expr, aop_ref32);
  else
    ax_simple (expr, aop_ref64);

  /* If we read exactly the number of bytes we wanted, we're done.  */
  if (8 * nbytes == nbits)
    return;

  if (gdbarch_bits_big_endian (arch))
    {
      /* On a bits-big-endian machine, we want the high-order
	 NBITS.  */
      ax_const_l (expr, 8 * nbytes - nbits);
      ax_simple (expr, aop_rsh_unsigned);
    }
  else
    {
      /* On a bits-little-endian box, we want the low-order NBITS.  */
      ax_zero_ext (expr, nbits);
    }
}

/* Compile a DWARF location expression to an agent expression.
   
   EXPR is the agent expression we are building.
   LOC is the agent value we modify.
   ARCH is the architecture.
   ADDR_SIZE is the size of addresses, in bytes.
   OP_PTR is the start of the location expression.
   OP_END is one past the last byte of the location expression.
   
   This will throw an exception for various kinds of errors -- for
   example, if the expression cannot be compiled, or if the expression
   is invalid.  */

static void
compile_dwarf_to_ax (struct agent_expr *expr, struct axs_value *loc,
		     struct gdbarch *arch, unsigned int addr_size,
		     const gdb_byte *op_ptr, const gdb_byte *op_end,
		     struct dwarf2_per_cu_data *per_cu)
{
  struct cleanup *cleanups;
  int i, *offsets;
  VEC(int) *dw_labels = NULL, *patches = NULL;
  const gdb_byte * const base = op_ptr;
  const gdb_byte *previous_piece = op_ptr;
  enum bfd_endian byte_order = gdbarch_byte_order (arch);
  ULONGEST bits_collected = 0;
  unsigned int addr_size_bits = 8 * addr_size;
  int bits_big_endian = gdbarch_bits_big_endian (arch);

  offsets = xmalloc ((op_end - op_ptr) * sizeof (int));
  cleanups = make_cleanup (xfree, offsets);

  for (i = 0; i < op_end - op_ptr; ++i)
    offsets[i] = -1;

  make_cleanup (VEC_cleanup (int), &dw_labels);
  make_cleanup (VEC_cleanup (int), &patches);

  /* By default we are making an address.  */
  loc->kind = axs_lvalue_memory;

  while (op_ptr < op_end)
    {
      enum dwarf_location_atom op = *op_ptr;
      ULONGEST uoffset, reg;
      LONGEST offset;
      int i;

      offsets[op_ptr - base] = expr->len;
      ++op_ptr;

      /* Our basic approach to code generation is to map DWARF
	 operations directly to AX operations.  However, there are
	 some differences.

	 First, DWARF works on address-sized units, but AX always uses
	 LONGEST.  For most operations we simply ignore this
	 difference; instead we generate sign extensions as needed
	 before division and comparison operations.  It would be nice
	 to omit the sign extensions, but there is no way to determine
	 the size of the target's LONGEST.  (This code uses the size
	 of the host LONGEST in some cases -- that is a bug but it is
	 difficult to fix.)

	 Second, some DWARF operations cannot be translated to AX.
	 For these we simply fail.  See
	 http://sourceware.org/bugzilla/show_bug.cgi?id=11662.  */
      switch (op)
	{
	case DW_OP_lit0:
	case DW_OP_lit1:
	case DW_OP_lit2:
	case DW_OP_lit3:
	case DW_OP_lit4:
	case DW_OP_lit5:
	case DW_OP_lit6:
	case DW_OP_lit7:
	case DW_OP_lit8:
	case DW_OP_lit9:
	case DW_OP_lit10:
	case DW_OP_lit11:
	case DW_OP_lit12:
	case DW_OP_lit13:
	case DW_OP_lit14:
	case DW_OP_lit15:
	case DW_OP_lit16:
	case DW_OP_lit17:
	case DW_OP_lit18:
	case DW_OP_lit19:
	case DW_OP_lit20:
	case DW_OP_lit21:
	case DW_OP_lit22:
	case DW_OP_lit23:
	case DW_OP_lit24:
	case DW_OP_lit25:
	case DW_OP_lit26:
	case DW_OP_lit27:
	case DW_OP_lit28:
	case DW_OP_lit29:
	case DW_OP_lit30:
	case DW_OP_lit31:
	  ax_const_l (expr, op - DW_OP_lit0);
	  break;

	case DW_OP_addr:
	  ax_const_l (expr, extract_unsigned_integer (op_ptr,
						      addr_size, byte_order));
	  op_ptr += addr_size;
	  break;

	case DW_OP_const1u:
	  ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
	  op_ptr += 1;
	  break;
	case DW_OP_const1s:
	  ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
	  op_ptr += 1;
	  break;
	case DW_OP_const2u:
	  ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
	  op_ptr += 2;
	  break;
	case DW_OP_const2s:
	  ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
	  op_ptr += 2;
	  break;
	case DW_OP_const4u:
	  ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
	  op_ptr += 4;
	  break;
	case DW_OP_const4s:
	  ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
	  op_ptr += 4;
	  break;
	case DW_OP_const8u:
	  ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
	  op_ptr += 8;
	  break;
	case DW_OP_const8s:
	  ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
	  op_ptr += 8;
	  break;
	case DW_OP_constu:
	  op_ptr = read_uleb128 (op_ptr, op_end, &uoffset);
	  ax_const_l (expr, uoffset);
	  break;
	case DW_OP_consts:
	  op_ptr = read_sleb128 (op_ptr, op_end, &offset);
	  ax_const_l (expr, offset);
	  break;

	case DW_OP_reg0:
	case DW_OP_reg1:
	case DW_OP_reg2:
	case DW_OP_reg3:
	case DW_OP_reg4:
	case DW_OP_reg5:
	case DW_OP_reg6:
	case DW_OP_reg7:
	case DW_OP_reg8:
	case DW_OP_reg9:
	case DW_OP_reg10:
	case DW_OP_reg11:
	case DW_OP_reg12:
	case DW_OP_reg13:
	case DW_OP_reg14:
	case DW_OP_reg15:
	case DW_OP_reg16:
	case DW_OP_reg17:
	case DW_OP_reg18:
	case DW_OP_reg19:
	case DW_OP_reg20:
	case DW_OP_reg21:
	case DW_OP_reg22:
	case DW_OP_reg23:
	case DW_OP_reg24:
	case DW_OP_reg25:
	case DW_OP_reg26:
	case DW_OP_reg27:
	case DW_OP_reg28:
	case DW_OP_reg29:
	case DW_OP_reg30:
	case DW_OP_reg31:
	  dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
	  loc->u.reg = translate_register (arch, op - DW_OP_reg0);
	  loc->kind = axs_lvalue_register;
	  break;

	case DW_OP_regx:
	  op_ptr = read_uleb128 (op_ptr, op_end, &reg);
	  dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
	  loc->u.reg = translate_register (arch, reg);
	  loc->kind = axs_lvalue_register;
	  break;

	case DW_OP_implicit_value:
	  {
	    ULONGEST len;

	    op_ptr = read_uleb128 (op_ptr, op_end, &len);
	    if (op_ptr + len > op_end)
	      error (_("DW_OP_implicit_value: too few bytes available."));
	    if (len > sizeof (ULONGEST))
	      error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
		     (int) len);

	    ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
							byte_order));
	    op_ptr += len;
	    dwarf_expr_require_composition (op_ptr, op_end,
					    "DW_OP_implicit_value");

	    loc->kind = axs_rvalue;
	  }
	  break;

	case DW_OP_stack_value:
	  dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
	  loc->kind = axs_rvalue;
	  break;

	case DW_OP_breg0:
	case DW_OP_breg1:
	case DW_OP_breg2:
	case DW_OP_breg3:
	case DW_OP_breg4:
	case DW_OP_breg5:
	case DW_OP_breg6:
	case DW_OP_breg7:
	case DW_OP_breg8:
	case DW_OP_breg9:
	case DW_OP_breg10:
	case DW_OP_breg11:
	case DW_OP_breg12:
	case DW_OP_breg13:
	case DW_OP_breg14:
	case DW_OP_breg15:
	case DW_OP_breg16:
	case DW_OP_breg17:
	case DW_OP_breg18:
	case DW_OP_breg19:
	case DW_OP_breg20:
	case DW_OP_breg21:
	case DW_OP_breg22:
	case DW_OP_breg23:
	case DW_OP_breg24:
	case DW_OP_breg25:
	case DW_OP_breg26:
	case DW_OP_breg27:
	case DW_OP_breg28:
	case DW_OP_breg29:
	case DW_OP_breg30:
	case DW_OP_breg31:
	  op_ptr = read_sleb128 (op_ptr, op_end, &offset);
	  i = translate_register (arch, op - DW_OP_breg0);
	  ax_reg (expr, i);
	  if (offset != 0)
	    {
	      ax_const_l (expr, offset);
	      ax_simple (expr, aop_add);
	    }
	  break;
	case DW_OP_bregx:
	  {
	    op_ptr = read_uleb128 (op_ptr, op_end, &reg);
	    op_ptr = read_sleb128 (op_ptr, op_end, &offset);
	    i = translate_register (arch, reg);
	    ax_reg (expr, i);
	    if (offset != 0)
	      {
		ax_const_l (expr, offset);
		ax_simple (expr, aop_add);
	      }
	  }
	  break;
	case DW_OP_fbreg:
	  {
	    const gdb_byte *datastart;
	    size_t datalen;
	    unsigned int before_stack_len;
	    struct block *b;
	    struct symbol *framefunc;
	    LONGEST base_offset = 0;

	    b = block_for_pc (expr->scope);

	    if (!b)
	      error (_("No block found for address"));

	    framefunc = block_linkage_function (b);

	    if (!framefunc)
	      error (_("No function found for block"));

	    dwarf_expr_frame_base_1 (framefunc, expr->scope,
				     &datastart, &datalen);

	    op_ptr = read_sleb128 (op_ptr, op_end, &offset);
	    compile_dwarf_to_ax (expr, loc, arch, addr_size, datastart,
				 datastart + datalen, per_cu);

	    if (offset != 0)
	      {
		ax_const_l (expr, offset);
		ax_simple (expr, aop_add);
	      }

	    loc->kind = axs_lvalue_memory;
	  }
	  break;

	case DW_OP_dup:
	  ax_simple (expr, aop_dup);
	  break;

	case DW_OP_drop:
	  ax_simple (expr, aop_pop);
	  break;

	case DW_OP_pick:
	  offset = *op_ptr++;
	  unimplemented (op);
	  break;
	  
	case DW_OP_swap:
	  ax_simple (expr, aop_swap);
	  break;

	case DW_OP_over:
	  /* We can't directly support DW_OP_over, but GCC emits it as
	     part of a sequence to implement signed modulus.  As a
	     hack, we recognize this sequence.  Note that if GCC ever
	     generates a branch to the middle of this sequence, then
	     we will die somehow.  */
	  if (op_end - op_ptr >= 4
	      && op_ptr[0] == DW_OP_over
	      && op_ptr[1] == DW_OP_div
	      && op_ptr[2] == DW_OP_mul
	      && op_ptr[3] == DW_OP_minus)
	    {
	      /* Sign extend the operands.  */
	      ax_ext (expr, addr_size_bits);
	      ax_simple (expr, aop_swap);
	      ax_ext (expr, addr_size_bits);
	      ax_simple (expr, aop_swap);
	      ax_simple (expr, aop_rem_signed);
	      op_ptr += 4;
	    }
	  else
	    unimplemented (op);
	  break;

	case DW_OP_rot:
	  unimplemented (op);
	  break;

	case DW_OP_deref:
	case DW_OP_deref_size:
	  {
	    int size;

	    if (op == DW_OP_deref_size)
	      size = *op_ptr++;
	    else
	      size = addr_size;

	    switch (size)
	      {
	      case 8:
		ax_simple (expr, aop_ref8);
		break;
	      case 16:
		ax_simple (expr, aop_ref16);
		break;
	      case 32:
		ax_simple (expr, aop_ref32);
		break;
	      case 64:
		ax_simple (expr, aop_ref64);
		break;
	      default:
		error (_("Unsupported size %d in %s"),
		       size, dwarf_stack_op_name (op, 1));
	      }
	  }
	  break;

	case DW_OP_abs:
	  /* Sign extend the operand.  */
	  ax_ext (expr, addr_size_bits);
	  ax_simple (expr, aop_dup);
	  ax_const_l (expr, 0);
	  ax_simple (expr, aop_less_signed);
	  ax_simple (expr, aop_log_not);
	  i = ax_goto (expr, aop_if_goto);
	  /* We have to emit 0 - X.  */
	  ax_const_l (expr, 0);
	  ax_simple (expr, aop_swap);
	  ax_simple (expr, aop_sub);
	  ax_label (expr, i, expr->len);
	  break;

	case DW_OP_neg:
	  /* No need to sign extend here.  */
	  ax_const_l (expr, 0);
	  ax_simple (expr, aop_swap);
	  ax_simple (expr, aop_sub);
	  break;

	case DW_OP_not:
	  /* Sign extend the operand.  */
	  ax_ext (expr, addr_size_bits);
	  ax_simple (expr, aop_bit_not);
	  break;

	case DW_OP_plus_uconst:
	  op_ptr = read_uleb128 (op_ptr, op_end, &reg);
	  /* It would be really weird to emit `DW_OP_plus_uconst 0',
	     but we micro-optimize anyhow.  */
	  if (reg != 0)
	    {
	      ax_const_l (expr, reg);
	      ax_simple (expr, aop_add);
	    }
	  break;

	case DW_OP_and:
	  ax_simple (expr, aop_bit_and);
	  break;

	case DW_OP_div:
	  /* Sign extend the operands.  */
	  ax_ext (expr, addr_size_bits);
	  ax_simple (expr, aop_swap);
	  ax_ext (expr, addr_size_bits);
	  ax_simple (expr, aop_swap);
	  ax_simple (expr, aop_div_signed);
	  break;

	case DW_OP_minus:
	  ax_simple (expr, aop_sub);
	  break;

	case DW_OP_mod:
	  ax_simple (expr, aop_rem_unsigned);
	  break;

	case DW_OP_mul:
	  ax_simple (expr, aop_mul);
	  break;

	case DW_OP_or:
	  ax_simple (expr, aop_bit_or);
	  break;

	case DW_OP_plus:
	  ax_simple (expr, aop_add);
	  break;

	case DW_OP_shl:
	  ax_simple (expr, aop_lsh);
	  break;

	case DW_OP_shr:
	  ax_simple (expr, aop_rsh_unsigned);
	  break;

	case DW_OP_shra:
	  ax_simple (expr, aop_rsh_signed);
	  break;

	case DW_OP_xor:
	  ax_simple (expr, aop_bit_xor);
	  break;

	case DW_OP_le:
	  /* Sign extend the operands.  */
	  ax_ext (expr, addr_size_bits);
	  ax_simple (expr, aop_swap);
	  ax_ext (expr, addr_size_bits);
	  /* Note no swap here: A <= B is !(B < A).  */
	  ax_simple (expr, aop_less_signed);
	  ax_simple (expr, aop_log_not);
	  break;

	case DW_OP_ge:
	  /* Sign extend the operands.  */
	  ax_ext (expr, addr_size_bits);
	  ax_simple (expr, aop_swap);
	  ax_ext (expr, addr_size_bits);
	  ax_simple (expr, aop_swap);
	  /* A >= B is !(A < B).  */
	  ax_simple (expr, aop_less_signed);
	  ax_simple (expr, aop_log_not);
	  break;

	case DW_OP_eq:
	  /* Sign extend the operands.  */
	  ax_ext (expr, addr_size_bits);
	  ax_simple (expr, aop_swap);
	  ax_ext (expr, addr_size_bits);
	  /* No need for a second swap here.  */
	  ax_simple (expr, aop_equal);
	  break;

	case DW_OP_lt:
	  /* Sign extend the operands.  */
	  ax_ext (expr, addr_size_bits);
	  ax_simple (expr, aop_swap);
	  ax_ext (expr, addr_size_bits);
	  ax_simple (expr, aop_swap);
	  ax_simple (expr, aop_less_signed);
	  break;

	case DW_OP_gt:
	  /* Sign extend the operands.  */
	  ax_ext (expr, addr_size_bits);
	  ax_simple (expr, aop_swap);
	  ax_ext (expr, addr_size_bits);
	  /* Note no swap here: A > B is B < A.  */
	  ax_simple (expr, aop_less_signed);
	  break;

	case DW_OP_ne:
	  /* Sign extend the operands.  */
	  ax_ext (expr, addr_size_bits);
	  ax_simple (expr, aop_swap);
	  ax_ext (expr, addr_size_bits);
	  /* No need for a swap here.  */
	  ax_simple (expr, aop_equal);
	  ax_simple (expr, aop_log_not);
	  break;

	case DW_OP_call_frame_cfa:
	  unimplemented (op);
	  break;

	case DW_OP_GNU_push_tls_address:
	  unimplemented (op);
	  break;

	case DW_OP_skip:
	  offset = extract_signed_integer (op_ptr, 2, byte_order);
	  op_ptr += 2;
	  i = ax_goto (expr, aop_goto);
	  VEC_safe_push (int, dw_labels, op_ptr + offset - base);
	  VEC_safe_push (int, patches, i);
	  break;

	case DW_OP_bra:
	  offset = extract_signed_integer (op_ptr, 2, byte_order);
	  op_ptr += 2;
	  /* Zero extend the operand.  */
	  ax_zero_ext (expr, addr_size_bits);
	  i = ax_goto (expr, aop_if_goto);
	  VEC_safe_push (int, dw_labels, op_ptr + offset - base);
	  VEC_safe_push (int, patches, i);
	  break;

	case DW_OP_nop:
	  break;

        case DW_OP_piece:
	case DW_OP_bit_piece:
	  {
	    ULONGEST size, offset;

	    if (op_ptr - 1 == previous_piece)
	      error (_("Cannot translate empty pieces to agent expressions"));
	    previous_piece = op_ptr - 1;

            op_ptr = read_uleb128 (op_ptr, op_end, &size);
	    if (op == DW_OP_piece)
	      {
		size *= 8;
		offset = 0;
	      }
	    else
	      op_ptr = read_uleb128 (op_ptr, op_end, &offset);

	    if (bits_collected + size > 8 * sizeof (LONGEST))
	      error (_("Expression pieces exceed word size"));

	    /* Access the bits.  */
	    switch (loc->kind)
	      {
	      case axs_lvalue_register:
		ax_reg (expr, loc->u.reg);
		break;

	      case axs_lvalue_memory:
		/* Offset the pointer, if needed.  */
		if (offset > 8)
		  {
		    ax_const_l (expr, offset / 8);
		    ax_simple (expr, aop_add);
		    offset %= 8;
		  }
		access_memory (arch, expr, size);
		break;
	      }

	    /* For a bits-big-endian target, shift up what we already
	       have.  For a bits-little-endian target, shift up the
	       new data.  Note that there is a potential bug here if
	       the DWARF expression leaves multiple values on the
	       stack.  */
	    if (bits_collected > 0)
	      {
		if (bits_big_endian)
		  {
		    ax_simple (expr, aop_swap);
		    ax_const_l (expr, size);
		    ax_simple (expr, aop_lsh);
		    /* We don't need a second swap here, because
		       aop_bit_or is symmetric.  */
		  }
		else
		  {
		    ax_const_l (expr, size);
		    ax_simple (expr, aop_lsh);
		  }
		ax_simple (expr, aop_bit_or);
	      }

	    bits_collected += size;
	    loc->kind = axs_rvalue;
	  }
	  break;

	case DW_OP_GNU_uninit:
	  unimplemented (op);

	case DW_OP_call2:
	case DW_OP_call4:
	  {
	    struct dwarf2_locexpr_baton block;
	    int size = (op == DW_OP_call2 ? 2 : 4);

	    uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
	    op_ptr += size;

	    block = dwarf2_fetch_die_location_block (uoffset, per_cu);

	    /* DW_OP_call_ref is currently not supported.  */
	    gdb_assert (block.per_cu == per_cu);

	    compile_dwarf_to_ax (expr, loc, arch, addr_size,
				 block.data, block.data + block.size,
				 per_cu);
	  }
	  break;

	case DW_OP_call_ref:
	  unimplemented (op);

	default:
	  error (_("Unhandled dwarf expression opcode 0x%x"), op);
	}
    }

  /* Patch all the branches we emitted.  */
  for (i = 0; i < VEC_length (int, patches); ++i)
    {
      int targ = offsets[VEC_index (int, dw_labels, i)];
      if (targ == -1)
	internal_error (__FILE__, __LINE__, _("invalid label"));
      ax_label (expr, VEC_index (int, patches, i), targ);
    }

  do_cleanups (cleanups);
}


/* Return the value of SYMBOL in FRAME using the DWARF-2 expression
   evaluator to calculate the location.  */
static struct value *
locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
{
  struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
  struct value *val;

  val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
				  dlbaton->size, dlbaton->per_cu);

  return val;
}

/* Return non-zero iff we need a frame to evaluate SYMBOL.  */
static int
locexpr_read_needs_frame (struct symbol *symbol)
{
  struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);

  return dwarf2_loc_desc_needs_frame (dlbaton->data, dlbaton->size,
				      dlbaton->per_cu);
}

/* Return true if DATA points to the end of a piece.  END is one past
   the last byte in the expression.  */

static int
piece_end_p (const gdb_byte *data, const gdb_byte *end)
{
  return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
}

/* Nicely describe a single piece of a location, returning an updated
   position in the bytecode sequence.  This function cannot recognize
   all locations; if a location is not recognized, it simply returns
   DATA.  */

static const gdb_byte *
locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
				 CORE_ADDR addr, struct objfile *objfile,
				 const gdb_byte *data, const gdb_byte *end,
				 unsigned int addr_size)
{
  struct gdbarch *gdbarch = get_objfile_arch (objfile);
  int regno;

  if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
    {
      regno = gdbarch_dwarf2_reg_to_regnum (gdbarch, data[0] - DW_OP_reg0);
      fprintf_filtered (stream, _("a variable in $%s"),
			gdbarch_register_name (gdbarch, regno));
      data += 1;
    }
  else if (data[0] == DW_OP_regx)
    {
      ULONGEST reg;

      data = read_uleb128 (data + 1, end, &reg);
      regno = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
      fprintf_filtered (stream, _("a variable in $%s"),
			gdbarch_register_name (gdbarch, regno));
    }
  else if (data[0] == DW_OP_fbreg)
    {
      struct block *b;
      struct symbol *framefunc;
      int frame_reg = 0;
      LONGEST frame_offset;
      const gdb_byte *base_data, *new_data;
      size_t base_size;
      LONGEST base_offset = 0;

      new_data = read_sleb128 (data + 1, end, &frame_offset);
      if (!piece_end_p (new_data, end))
	return data;
      data = new_data;

      b = block_for_pc (addr);

      if (!b)
	error (_("No block found for address for symbol \"%s\"."),
	       SYMBOL_PRINT_NAME (symbol));

      framefunc = block_linkage_function (b);

      if (!framefunc)
	error (_("No function found for block for symbol \"%s\"."),
	       SYMBOL_PRINT_NAME (symbol));

      dwarf_expr_frame_base_1 (framefunc, addr, &base_data, &base_size);

      if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
	{
	  const gdb_byte *buf_end;
	  
	  frame_reg = base_data[0] - DW_OP_breg0;
	  buf_end = read_sleb128 (base_data + 1,
				  base_data + base_size, &base_offset);
	  if (buf_end != base_data + base_size)
	    error (_("Unexpected opcode after DW_OP_breg%u for symbol \"%s\"."),
		   frame_reg, SYMBOL_PRINT_NAME (symbol));
	}
      else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
	{
	  /* The frame base is just the register, with no offset.  */
	  frame_reg = base_data[0] - DW_OP_reg0;
	  base_offset = 0;
	}
      else
	{
	  /* We don't know what to do with the frame base expression,
	     so we can't trace this variable; give up.  */
	  error (_("Cannot describe location of symbol \"%s\"; "
		   "DWARF 2 encoding not handled, "
		   "first opcode in base data is 0x%x."),
		 SYMBOL_PRINT_NAME (symbol), base_data[0]);
	}

      regno = gdbarch_dwarf2_reg_to_regnum (gdbarch, frame_reg);

      fprintf_filtered (stream, _("a variable at frame base reg $%s offset %s+%s"),
			gdbarch_register_name (gdbarch, regno),
			plongest (base_offset), plongest (frame_offset));
    }
  else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
	   && piece_end_p (data, end))
    {
      LONGEST offset;

      regno = gdbarch_dwarf2_reg_to_regnum (gdbarch, data[0] - DW_OP_breg0);

      data = read_sleb128 (data + 1, end, &offset);

      fprintf_filtered (stream,
			_("a variable at offset %s from base reg $%s"),
			plongest (offset),
			gdbarch_register_name (gdbarch, regno));
    }

  /* The location expression for a TLS variable looks like this (on a
     64-bit LE machine):

     DW_AT_location    : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
                        (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
     
     0x3 is the encoding for DW_OP_addr, which has an operand as long
     as the size of an address on the target machine (here is 8
     bytes).  0xe0 is the encoding for DW_OP_GNU_push_tls_address.
     The operand represents the offset at which the variable is within
     the thread local storage.  */

  else if (data + 1 + addr_size < end
	   && data[0] == DW_OP_addr
	   && data[1 + addr_size] == DW_OP_GNU_push_tls_address
	   && piece_end_p (data + 2 + addr_size, end))
    {
      ULONGEST offset;
      offset = extract_unsigned_integer (data + 1, addr_size,
					 gdbarch_byte_order (gdbarch));

      fprintf_filtered (stream, 
			_("a thread-local variable at offset 0x%s "
			  "in the thread-local storage for `%s'"),
			phex_nz (offset, addr_size), objfile->name);

      data += 1 + addr_size + 1;
    }
  else if (data[0] >= DW_OP_lit0
	   && data[0] <= DW_OP_lit31
	   && data + 1 < end
	   && data[1] == DW_OP_stack_value)
    {
      fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
      data += 2;
    }

  return data;
}

/* Disassemble an expression, stopping at the end of a piece or at the
   end of the expression.  Returns a pointer to the next unread byte
   in the input expression.  If ALL is nonzero, then this function
   will keep going until it reaches the end of the expression.  */

static const gdb_byte *
disassemble_dwarf_expression (struct ui_file *stream,
			      struct gdbarch *arch, unsigned int addr_size,
			      int offset_size,
			      const gdb_byte *data, const gdb_byte *end,
			      int all)
{
  const gdb_byte *start = data;

  fprintf_filtered (stream, _("a complex DWARF expression:\n"));

  while (data < end
	 && (all
	     || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
    {
      enum dwarf_location_atom op = *data++;
      ULONGEST ul;
      LONGEST l;
      const char *name;

      name = dwarf_stack_op_name (op, 0);

      if (!name)
	error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
	       op, (long) (data - start));
      fprintf_filtered (stream, "  % 4ld: %s", (long) (data - start), name);

      switch (op)
	{
	case DW_OP_addr:
	  ul = extract_unsigned_integer (data, addr_size,
					 gdbarch_byte_order (arch));
	  data += addr_size;
	  fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
	  break;

	case DW_OP_const1u:
	  ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
	  data += 1;
	  fprintf_filtered (stream, " %s", pulongest (ul));
	  break;
	case DW_OP_const1s:
	  l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
	  data += 1;
	  fprintf_filtered (stream, " %s", plongest (l));
	  break;
	case DW_OP_const2u:
	  ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
	  data += 2;
	  fprintf_filtered (stream, " %s", pulongest (ul));
	  break;
	case DW_OP_const2s:
	  l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
	  data += 2;
	  fprintf_filtered (stream, " %s", plongest (l));
	  break;
	case DW_OP_const4u:
	  ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
	  data += 4;
	  fprintf_filtered (stream, " %s", pulongest (ul));
	  break;
	case DW_OP_const4s:
	  l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
	  data += 4;
	  fprintf_filtered (stream, " %s", plongest (l));
	  break;
	case DW_OP_const8u:
	  ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
	  data += 8;
	  fprintf_filtered (stream, " %s", pulongest (ul));
	  break;
	case DW_OP_const8s:
	  l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
	  data += 8;
	  fprintf_filtered (stream, " %s", plongest (l));
	  break;
	case DW_OP_constu:
	  data = read_uleb128 (data, end, &ul);
	  fprintf_filtered (stream, " %s", pulongest (ul));
	  break;
	case DW_OP_consts:
	  data = read_sleb128 (data, end, &l);
	  fprintf_filtered (stream, " %s", plongest (l));
	  break;

	case DW_OP_reg0:
	case DW_OP_reg1:
	case DW_OP_reg2:
	case DW_OP_reg3:
	case DW_OP_reg4:
	case DW_OP_reg5:
	case DW_OP_reg6:
	case DW_OP_reg7:
	case DW_OP_reg8:
	case DW_OP_reg9:
	case DW_OP_reg10:
	case DW_OP_reg11:
	case DW_OP_reg12:
	case DW_OP_reg13:
	case DW_OP_reg14:
	case DW_OP_reg15:
	case DW_OP_reg16:
	case DW_OP_reg17:
	case DW_OP_reg18:
	case DW_OP_reg19:
	case DW_OP_reg20:
	case DW_OP_reg21:
	case DW_OP_reg22:
	case DW_OP_reg23:
	case DW_OP_reg24:
	case DW_OP_reg25:
	case DW_OP_reg26:
	case DW_OP_reg27:
	case DW_OP_reg28:
	case DW_OP_reg29:
	case DW_OP_reg30:
	case DW_OP_reg31:
	  fprintf_filtered (stream, " [$%s]",
			    gdbarch_register_name (arch, op - DW_OP_reg0));
	  break;

	case DW_OP_regx:
	  data = read_uleb128 (data, end, &ul);
	  fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
			    gdbarch_register_name (arch, (int) ul));
	  break;

	case DW_OP_implicit_value:
	  data = read_uleb128 (data, end, &ul);
	  data += ul;
	  fprintf_filtered (stream, " %s", pulongest (ul));
	  break;

	case DW_OP_breg0:
	case DW_OP_breg1:
	case DW_OP_breg2:
	case DW_OP_breg3:
	case DW_OP_breg4:
	case DW_OP_breg5:
	case DW_OP_breg6:
	case DW_OP_breg7:
	case DW_OP_breg8:
	case DW_OP_breg9:
	case DW_OP_breg10:
	case DW_OP_breg11:
	case DW_OP_breg12:
	case DW_OP_breg13:
	case DW_OP_breg14:
	case DW_OP_breg15:
	case DW_OP_breg16:
	case DW_OP_breg17:
	case DW_OP_breg18:
	case DW_OP_breg19:
	case DW_OP_breg20:
	case DW_OP_breg21:
	case DW_OP_breg22:
	case DW_OP_breg23:
	case DW_OP_breg24:
	case DW_OP_breg25:
	case DW_OP_breg26:
	case DW_OP_breg27:
	case DW_OP_breg28:
	case DW_OP_breg29:
	case DW_OP_breg30:
	case DW_OP_breg31:
	  data = read_sleb128 (data, end, &ul);
	  fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
			    gdbarch_register_name (arch, op - DW_OP_breg0));
	  break;

	case DW_OP_bregx:
	  {
	    ULONGEST offset;

	    data = read_uleb128 (data, end, &ul);
	    data = read_sleb128 (data, end, &offset);
	    fprintf_filtered (stream, " register %s [$%s] offset %s",
			      pulongest (ul),
			      gdbarch_register_name (arch, (int) ul),
			      pulongest (offset));
	  }
	  break;

	case DW_OP_fbreg:
	  data = read_sleb128 (data, end, &ul);
	  fprintf_filtered (stream, " %s", pulongest (ul));
	  break;

	case DW_OP_xderef_size:
	case DW_OP_deref_size:
	case DW_OP_pick:
	  fprintf_filtered (stream, " %d", *data);
	  ++data;
	  break;

	case DW_OP_plus_uconst:
	  data = read_uleb128 (data, end, &ul);
	  fprintf_filtered (stream, " %s", pulongest (ul));
	  break;

	case DW_OP_skip:
	  l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
	  data += 2;
	  fprintf_filtered (stream, " to %ld",
			    (long) (data + l - start));
	  break;

	case DW_OP_bra:
	  l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
	  data += 2;
	  fprintf_filtered (stream, " %ld",
			    (long) (data + l - start));
	  break;

	case DW_OP_call2:
	  ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
	  data += 2;
	  fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
	  break;

	case DW_OP_call4:
	  ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
	  data += 4;
	  fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
	  break;

	case DW_OP_call_ref:
	  ul = extract_unsigned_integer (data, offset_size,
					 gdbarch_byte_order (arch));
	  data += offset_size;
	  fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
	  break;

        case DW_OP_piece:
	  data = read_uleb128 (data, end, &ul);
	  fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
	  break;

	case DW_OP_bit_piece:
	  {
	    ULONGEST offset;

	    data = read_uleb128 (data, end, &ul);
	    data = read_uleb128 (data, end, &offset);
	    fprintf_filtered (stream, " size %s offset %s (bits)",
			      pulongest (ul), pulongest (offset));
	  }
	  break;
	}

      fprintf_filtered (stream, "\n");
    }

  return data;
}

/* Describe a single location, which may in turn consist of multiple
   pieces.  */

static void
locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
			     struct ui_file *stream,
			     const gdb_byte *data, int size,
			     struct objfile *objfile, unsigned int addr_size,
			     int offset_size)
{
  const gdb_byte *end = data + size;
  int first_piece = 1, bad = 0;

  while (data < end)
    {
      const gdb_byte *here = data;
      int disassemble = 1;

      if (first_piece)
	first_piece = 0;
      else
	fprintf_filtered (stream, _(", and "));

      if (!dwarf2_always_disassemble)
	{
	  data = locexpr_describe_location_piece (symbol, stream, addr, objfile,
						  data, end, addr_size);
	  /* If we printed anything, or if we have an empty piece,
	     then don't disassemble.  */
	  if (data != here
	      || data[0] == DW_OP_piece
	      || data[0] == DW_OP_bit_piece)
	    disassemble = 0;
	}
      if (disassemble)
	data = disassemble_dwarf_expression (stream, get_objfile_arch (objfile),
					     addr_size, offset_size, data, end,
					     dwarf2_always_disassemble);

      if (data < end)
	{
	  int empty = data == here;
	      
	  if (disassemble)
	    fprintf_filtered (stream, "   ");
	  if (data[0] == DW_OP_piece)
	    {
	      ULONGEST bytes;

	      data = read_uleb128 (data + 1, end, &bytes);

	      if (empty)
		fprintf_filtered (stream, _("an empty %s-byte piece"),
				  pulongest (bytes));
	      else
		fprintf_filtered (stream, _(" [%s-byte piece]"),
				  pulongest (bytes));
	    }
	  else if (data[0] == DW_OP_bit_piece)
	    {
	      ULONGEST bits, offset;

	      data = read_uleb128 (data + 1, end, &bits);
	      data = read_uleb128 (data, end, &offset);

	      if (empty)
		fprintf_filtered (stream,
				  _("an empty %s-bit piece"),
				  pulongest (bits));
	      else
		fprintf_filtered (stream,
				  _(" [%s-bit piece, offset %s bits]"),
				  pulongest (bits), pulongest (offset));
	    }
	  else
	    {
	      bad = 1;
	      break;
	    }
	}
    }

  if (bad || data > end)
    error (_("Corrupted DWARF2 expression for \"%s\"."),
	   SYMBOL_PRINT_NAME (symbol));
}

/* Print a natural-language description of SYMBOL to STREAM.  This
   version is for a symbol with a single location.  */

static void
locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
			   struct ui_file *stream)
{
  struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
  struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
  unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
  int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);

  locexpr_describe_location_1 (symbol, addr, stream, dlbaton->data, dlbaton->size,
			       objfile, addr_size, offset_size);
}

/* Describe the location of SYMBOL as an agent value in VALUE, generating
   any necessary bytecode in AX.  */

static void
locexpr_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
			    struct agent_expr *ax, struct axs_value *value)
{
  struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
  unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);

  compile_dwarf_to_ax (ax, value, gdbarch, addr_size,
		       dlbaton->data, dlbaton->data + dlbaton->size,
		       dlbaton->per_cu);
}

/* The set of location functions used with the DWARF-2 expression
   evaluator.  */
const struct symbol_computed_ops dwarf2_locexpr_funcs = {
  locexpr_read_variable,
  locexpr_read_needs_frame,
  locexpr_describe_location,
  locexpr_tracepoint_var_ref
};


/* Wrapper functions for location lists.  These generally find
   the appropriate location expression and call something above.  */

/* Return the value of SYMBOL in FRAME using the DWARF-2 expression
   evaluator to calculate the location.  */
static struct value *
loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
{
  struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
  struct value *val;
  const gdb_byte *data;
  size_t size;

  data = find_location_expression (dlbaton, &size,
				   frame ? get_frame_address_in_block (frame)
				   : 0);
  if (data == NULL)
    {
      val = allocate_value (SYMBOL_TYPE (symbol));
      VALUE_LVAL (val) = not_lval;
      set_value_optimized_out (val, 1);
    }
  else
    val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
				    dlbaton->per_cu);

  return val;
}

/* Return non-zero iff we need a frame to evaluate SYMBOL.  */
static int
loclist_read_needs_frame (struct symbol *symbol)
{
  /* If there's a location list, then assume we need to have a frame
     to choose the appropriate location expression.  With tracking of
     global variables this is not necessarily true, but such tracking
     is disabled in GCC at the moment until we figure out how to
     represent it.  */

  return 1;
}

/* Print a natural-language description of SYMBOL to STREAM.  This
   version applies when there is a list of different locations, each
   with a specified address range.  */

static void
loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
			   struct ui_file *stream)
{
  struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
  CORE_ADDR low, high;
  const gdb_byte *loc_ptr, *buf_end;
  int length, first = 1;
  struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
  struct gdbarch *gdbarch = get_objfile_arch (objfile);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
  int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
  int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
  CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
  /* Adjust base_address for relocatable objects.  */
  CORE_ADDR base_offset = ANOFFSET (objfile->section_offsets,
				    SECT_OFF_TEXT (objfile));
  CORE_ADDR base_address = dlbaton->base_address + base_offset;

  loc_ptr = dlbaton->data;
  buf_end = dlbaton->data + dlbaton->size;

  fprintf_filtered (stream, _("multi-location:\n"));

  /* Iterate through locations until we run out.  */
  while (1)
    {
      if (buf_end - loc_ptr < 2 * addr_size)
	error (_("Corrupted DWARF expression for symbol \"%s\"."),
	       SYMBOL_PRINT_NAME (symbol));

      if (signed_addr_p)
	low = extract_signed_integer (loc_ptr, addr_size, byte_order);
      else
	low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
      loc_ptr += addr_size;

      if (signed_addr_p)
	high = extract_signed_integer (loc_ptr, addr_size, byte_order);
      else
	high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
      loc_ptr += addr_size;

      /* A base-address-selection entry.  */
      if ((low & base_mask) == base_mask)
	{
	  base_address = high + base_offset;
	  fprintf_filtered (stream, _("  Base address %s"),
			    paddress (gdbarch, base_address));
	  continue;
	}

      /* An end-of-list entry.  */
      if (low == 0 && high == 0)
	break;

      /* Otherwise, a location expression entry.  */
      low += base_address;
      high += base_address;

      length = extract_unsigned_integer (loc_ptr, 2, byte_order);
      loc_ptr += 2;

      /* (It would improve readability to print only the minimum
	 necessary digits of the second number of the range.)  */
      fprintf_filtered (stream, _("  Range %s-%s: "),
			paddress (gdbarch, low), paddress (gdbarch, high));

      /* Now describe this particular location.  */
      locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
				   objfile, addr_size, offset_size);

      fprintf_filtered (stream, "\n");

      loc_ptr += length;
    }
}

/* Describe the location of SYMBOL as an agent value in VALUE, generating
   any necessary bytecode in AX.  */
static void
loclist_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
			    struct agent_expr *ax, struct axs_value *value)
{
  struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
  const gdb_byte *data;
  size_t size;
  unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);

  data = find_location_expression (dlbaton, &size, ax->scope);

  compile_dwarf_to_ax (ax, value, gdbarch, addr_size, data, data + size,
		       dlbaton->per_cu);
}

/* The set of location functions used with the DWARF-2 expression
   evaluator and location lists.  */
const struct symbol_computed_ops dwarf2_loclist_funcs = {
  loclist_read_variable,
  loclist_read_needs_frame,
  loclist_describe_location,
  loclist_tracepoint_var_ref
};