1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
|
/* DWARF 2 Expression Evaluator.
Copyright (C) 2001-2023 Free Software Foundation, Inc.
Contributed by Daniel Berlin (dan@dberlin.org)
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "block.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "value.h"
#include "gdbcore.h"
#include "dwarf2.h"
#include "dwarf2/expr.h"
#include "dwarf2/loc.h"
#include "dwarf2/read.h"
#include "frame.h"
#include "gdbsupport/underlying.h"
#include "gdbarch.h"
#include "objfiles.h"
/* This holds gdbarch-specific types used by the DWARF expression
evaluator. See comments in execute_stack_op. */
struct dwarf_gdbarch_types
{
struct type *dw_types[3] {};
};
/* Cookie for gdbarch data. */
static const registry<gdbarch>::key<dwarf_gdbarch_types> dwarf_arch_cookie;
/* Ensure that a FRAME is defined, throw an exception otherwise. */
static void
ensure_have_frame (frame_info_ptr frame, const char *op_name)
{
if (frame == nullptr)
throw_error (GENERIC_ERROR,
_("%s evaluation requires a frame."), op_name);
}
/* Ensure that a PER_CU is defined and throw an exception otherwise. */
static void
ensure_have_per_cu (dwarf2_per_cu_data *per_cu, const char* op_name)
{
if (per_cu == nullptr)
throw_error (GENERIC_ERROR,
_("%s evaluation requires a compilation unit."), op_name);
}
/* Return the number of bytes overlapping a contiguous chunk of N_BITS
bits whose first bit is located at bit offset START. */
static size_t
bits_to_bytes (ULONGEST start, ULONGEST n_bits)
{
return (start % HOST_CHAR_BIT + n_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
}
/* See expr.h. */
CORE_ADDR
read_addr_from_reg (frame_info_ptr frame, int reg)
{
struct gdbarch *gdbarch = get_frame_arch (frame);
int regnum = dwarf_reg_to_regnum_or_error (gdbarch, reg);
return address_from_register (regnum, frame);
}
struct piece_closure
{
/* Reference count. */
int refc = 0;
/* The objfile from which this closure's expression came. */
dwarf2_per_objfile *per_objfile = nullptr;
/* The CU from which this closure's expression came. */
dwarf2_per_cu_data *per_cu = nullptr;
/* The pieces describing this variable. */
std::vector<dwarf_expr_piece> pieces;
/* Frame ID of frame to which a register value is relative, used
only by DWARF_VALUE_REGISTER. */
struct frame_id frame_id;
};
/* Allocate a closure for a value formed from separately-described
PIECES. */
static piece_closure *
allocate_piece_closure (dwarf2_per_cu_data *per_cu,
dwarf2_per_objfile *per_objfile,
std::vector<dwarf_expr_piece> &&pieces,
frame_info_ptr frame)
{
piece_closure *c = new piece_closure;
c->refc = 1;
/* We must capture this here due to sharing of DWARF state. */
c->per_objfile = per_objfile;
c->per_cu = per_cu;
c->pieces = std::move (pieces);
if (frame == nullptr)
c->frame_id = null_frame_id;
else
c->frame_id = get_frame_id (frame);
for (dwarf_expr_piece &piece : c->pieces)
if (piece.location == DWARF_VALUE_STACK)
piece.v.value->incref ();
return c;
}
/* Read or write a pieced value V. If FROM != NULL, operate in "write
mode": copy FROM into the pieces comprising V. If FROM == NULL,
operate in "read mode": fetch the contents of the (lazy) value V by
composing it from its pieces. If CHECK_OPTIMIZED is true, then no
reading or writing is done; instead the return value of this
function is true if any piece is optimized out. When
CHECK_OPTIMIZED is true, FROM must be nullptr. */
static bool
rw_pieced_value (value *v, value *from, bool check_optimized)
{
int i;
LONGEST offset = 0, max_offset;
gdb_byte *v_contents;
const gdb_byte *from_contents;
piece_closure *c
= (piece_closure *) v->computed_closure ();
gdb::byte_vector buffer;
bool bits_big_endian = type_byte_order (v->type ()) == BFD_ENDIAN_BIG;
gdb_assert (!check_optimized || from == nullptr);
if (from != nullptr)
{
from_contents = from->contents ().data ();
v_contents = nullptr;
}
else
{
if (check_optimized)
v_contents = nullptr;
else
v_contents = v->contents_raw ().data ();
from_contents = nullptr;
}
ULONGEST bits_to_skip = 8 * v->offset ();
if (v->bitsize ())
{
bits_to_skip += (8 * v->parent ()->offset ()
+ v->bitpos ());
if (from != nullptr
&& (type_byte_order (from->type ())
== BFD_ENDIAN_BIG))
{
/* Use the least significant bits of FROM. */
max_offset = 8 * from->type ()->length ();
offset = max_offset - v->bitsize ();
}
else
max_offset = v->bitsize ();
}
else
max_offset = 8 * v->type ()->length ();
/* Advance to the first non-skipped piece. */
for (i = 0; i < c->pieces.size () && bits_to_skip >= c->pieces[i].size; i++)
bits_to_skip -= c->pieces[i].size;
for (; i < c->pieces.size () && offset < max_offset; i++)
{
dwarf_expr_piece *p = &c->pieces[i];
size_t this_size_bits, this_size;
this_size_bits = p->size - bits_to_skip;
if (this_size_bits > max_offset - offset)
this_size_bits = max_offset - offset;
switch (p->location)
{
case DWARF_VALUE_REGISTER:
{
frame_info_ptr frame = frame_find_by_id (c->frame_id);
gdbarch *arch = get_frame_arch (frame);
int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
ULONGEST reg_bits = 8 * register_size (arch, gdb_regnum);
int optim, unavail;
if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
&& p->offset + p->size < reg_bits)
{
/* Big-endian, and we want less than full size. */
bits_to_skip += reg_bits - (p->offset + p->size);
}
else
bits_to_skip += p->offset;
this_size = bits_to_bytes (bits_to_skip, this_size_bits);
buffer.resize (this_size);
if (from == nullptr)
{
/* Read mode. */
if (!get_frame_register_bytes (frame, gdb_regnum,
bits_to_skip / 8,
buffer, &optim, &unavail))
{
if (optim)
{
if (check_optimized)
return true;
v->mark_bits_optimized_out (offset,
this_size_bits);
}
if (unavail && !check_optimized)
v->mark_bits_unavailable (offset,
this_size_bits);
break;
}
if (!check_optimized)
copy_bitwise (v_contents, offset,
buffer.data (), bits_to_skip % 8,
this_size_bits, bits_big_endian);
}
else
{
/* Write mode. */
if (bits_to_skip % 8 != 0 || this_size_bits % 8 != 0)
{
/* Data is copied non-byte-aligned into the register.
Need some bits from original register value. */
get_frame_register_bytes (frame, gdb_regnum,
bits_to_skip / 8,
buffer, &optim, &unavail);
if (optim)
throw_error (OPTIMIZED_OUT_ERROR,
_("Can't do read-modify-write to "
"update bitfield; containing word "
"has been optimized out"));
if (unavail)
throw_error (NOT_AVAILABLE_ERROR,
_("Can't do read-modify-write to "
"update bitfield; containing word "
"is unavailable"));
}
copy_bitwise (buffer.data (), bits_to_skip % 8,
from_contents, offset,
this_size_bits, bits_big_endian);
put_frame_register_bytes (frame, gdb_regnum,
bits_to_skip / 8,
buffer);
}
}
break;
case DWARF_VALUE_MEMORY:
{
if (check_optimized)
break;
bits_to_skip += p->offset;
CORE_ADDR start_addr = p->v.mem.addr + bits_to_skip / 8;
if (bits_to_skip % 8 == 0 && this_size_bits % 8 == 0
&& offset % 8 == 0)
{
/* Everything is byte-aligned; no buffer needed. */
if (from != nullptr)
write_memory_with_notification (start_addr,
(from_contents
+ offset / 8),
this_size_bits / 8);
else
read_value_memory (v, offset,
p->v.mem.in_stack_memory,
p->v.mem.addr + bits_to_skip / 8,
v_contents + offset / 8,
this_size_bits / 8);
break;
}
this_size = bits_to_bytes (bits_to_skip, this_size_bits);
buffer.resize (this_size);
if (from == nullptr)
{
/* Read mode. */
read_value_memory (v, offset,
p->v.mem.in_stack_memory,
p->v.mem.addr + bits_to_skip / 8,
buffer.data (), this_size);
copy_bitwise (v_contents, offset,
buffer.data (), bits_to_skip % 8,
this_size_bits, bits_big_endian);
}
else
{
/* Write mode. */
if (bits_to_skip % 8 != 0 || this_size_bits % 8 != 0)
{
if (this_size <= 8)
{
/* Perform a single read for small sizes. */
read_memory (start_addr, buffer.data (),
this_size);
}
else
{
/* Only the first and last bytes can possibly have
any bits reused. */
read_memory (start_addr, buffer.data (), 1);
read_memory (start_addr + this_size - 1,
&buffer[this_size - 1], 1);
}
}
copy_bitwise (buffer.data (), bits_to_skip % 8,
from_contents, offset,
this_size_bits, bits_big_endian);
write_memory_with_notification (start_addr,
buffer.data (),
this_size);
}
}
break;
case DWARF_VALUE_STACK:
{
if (check_optimized)
break;
if (from != nullptr)
{
v->mark_bits_optimized_out (offset, this_size_bits);
break;
}
gdbarch *objfile_gdbarch = c->per_objfile->objfile->arch ();
ULONGEST stack_value_size_bits
= 8 * p->v.value->type ()->length ();
/* Use zeroes if piece reaches beyond stack value. */
if (p->offset + p->size > stack_value_size_bits)
break;
/* Piece is anchored at least significant bit end. */
if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
bits_to_skip += stack_value_size_bits - p->offset - p->size;
else
bits_to_skip += p->offset;
copy_bitwise (v_contents, offset,
p->v.value->contents_all ().data (),
bits_to_skip,
this_size_bits, bits_big_endian);
}
break;
case DWARF_VALUE_LITERAL:
{
if (check_optimized)
break;
if (from != nullptr)
{
v->mark_bits_optimized_out (offset, this_size_bits);
break;
}
ULONGEST literal_size_bits = 8 * p->v.literal.length;
size_t n = this_size_bits;
/* Cut off at the end of the implicit value. */
bits_to_skip += p->offset;
if (bits_to_skip >= literal_size_bits)
break;
if (n > literal_size_bits - bits_to_skip)
n = literal_size_bits - bits_to_skip;
copy_bitwise (v_contents, offset,
p->v.literal.data, bits_to_skip,
n, bits_big_endian);
}
break;
case DWARF_VALUE_IMPLICIT_POINTER:
if (from != nullptr)
{
v->mark_bits_optimized_out (offset, this_size_bits);
break;
}
/* These bits show up as zeros -- but do not cause the value to
be considered optimized-out. */
break;
case DWARF_VALUE_OPTIMIZED_OUT:
if (check_optimized)
return true;
v->mark_bits_optimized_out (offset, this_size_bits);
break;
default:
internal_error (_("invalid location type"));
}
offset += this_size_bits;
bits_to_skip = 0;
}
if (offset < max_offset)
{
if (check_optimized)
return true;
v->mark_bits_optimized_out (offset, max_offset - offset);
}
return false;
}
static void
read_pieced_value (value *v)
{
rw_pieced_value (v, nullptr, false);
}
static void
write_pieced_value (value *to, value *from)
{
rw_pieced_value (to, from, false);
}
static bool
is_optimized_out_pieced_value (value *v)
{
return rw_pieced_value (v, nullptr, true);
}
/* An implementation of an lval_funcs method to see whether a value is
a synthetic pointer. */
static bool
check_pieced_synthetic_pointer (const value *value, LONGEST bit_offset,
int bit_length)
{
piece_closure *c = (piece_closure *) value->computed_closure ();
int i;
bit_offset += 8 * value->offset ();
if (value->bitsize ())
bit_offset += value->bitpos ();
for (i = 0; i < c->pieces.size () && bit_length > 0; i++)
{
dwarf_expr_piece *p = &c->pieces[i];
size_t this_size_bits = p->size;
if (bit_offset > 0)
{
if (bit_offset >= this_size_bits)
{
bit_offset -= this_size_bits;
continue;
}
bit_length -= this_size_bits - bit_offset;
bit_offset = 0;
}
else
bit_length -= this_size_bits;
if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
return false;
}
return bit_length == 0;
}
/* An implementation of an lval_funcs method to indirect through a
pointer. This handles the synthetic pointer case when needed. */
static value *
indirect_pieced_value (value *value)
{
piece_closure *c
= (piece_closure *) value->computed_closure ();
int i;
dwarf_expr_piece *piece = NULL;
struct type *type = check_typedef (value->type ());
if (type->code () != TYPE_CODE_PTR)
return NULL;
int bit_length = 8 * type->length ();
LONGEST bit_offset = 8 * value->offset ();
if (value->bitsize ())
bit_offset += value->bitpos ();
for (i = 0; i < c->pieces.size () && bit_length > 0; i++)
{
dwarf_expr_piece *p = &c->pieces[i];
size_t this_size_bits = p->size;
if (bit_offset > 0)
{
if (bit_offset >= this_size_bits)
{
bit_offset -= this_size_bits;
continue;
}
bit_length -= this_size_bits - bit_offset;
bit_offset = 0;
}
else
bit_length -= this_size_bits;
if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
return NULL;
if (bit_length != 0)
error (_("Invalid use of DW_OP_implicit_pointer"));
piece = p;
break;
}
gdb_assert (piece != NULL && c->per_cu != nullptr);
frame_info_ptr frame = get_selected_frame (_("No frame selected."));
/* This is an offset requested by GDB, such as value subscripts.
However, due to how synthetic pointers are implemented, this is
always presented to us as a pointer type. This means we have to
sign-extend it manually as appropriate. Use raw
extract_signed_integer directly rather than value_as_address and
sign extend afterwards on architectures that would need it
(mostly everywhere except MIPS, which has signed addresses) as
the later would go through gdbarch_pointer_to_address and thus
return a CORE_ADDR with high bits set on architectures that
encode address spaces and other things in CORE_ADDR. */
bfd_endian byte_order = gdbarch_byte_order (get_frame_arch (frame));
LONGEST byte_offset
= extract_signed_integer (value->contents (), byte_order);
byte_offset += piece->v.ptr.offset;
return indirect_synthetic_pointer (piece->v.ptr.die_sect_off,
byte_offset, c->per_cu,
c->per_objfile, frame, type);
}
/* Implementation of the coerce_ref method of lval_funcs for synthetic C++
references. */
static value *
coerce_pieced_ref (const value *value)
{
struct type *type = check_typedef (value->type ());
if (value->bits_synthetic_pointer (value->embedded_offset (),
TARGET_CHAR_BIT * type->length ()))
{
const piece_closure *closure
= (piece_closure *) value->computed_closure ();
frame_info_ptr frame
= get_selected_frame (_("No frame selected."));
/* gdb represents synthetic pointers as pieced values with a single
piece. */
gdb_assert (closure != NULL);
gdb_assert (closure->pieces.size () == 1);
return indirect_synthetic_pointer
(closure->pieces[0].v.ptr.die_sect_off,
closure->pieces[0].v.ptr.offset,
closure->per_cu, closure->per_objfile, frame, type);
}
else
{
/* Else: not a synthetic reference; do nothing. */
return NULL;
}
}
static void *
copy_pieced_value_closure (const value *v)
{
piece_closure *c = (piece_closure *) v->computed_closure ();
++c->refc;
return c;
}
static void
free_pieced_value_closure (value *v)
{
piece_closure *c = (piece_closure *) v->computed_closure ();
--c->refc;
if (c->refc == 0)
{
for (dwarf_expr_piece &p : c->pieces)
if (p.location == DWARF_VALUE_STACK)
p.v.value->decref ();
delete c;
}
}
/* Functions for accessing a variable described by DW_OP_piece. */
static const struct lval_funcs pieced_value_funcs = {
read_pieced_value,
write_pieced_value,
is_optimized_out_pieced_value,
indirect_pieced_value,
coerce_pieced_ref,
check_pieced_synthetic_pointer,
copy_pieced_value_closure,
free_pieced_value_closure
};
/* Given context CTX, section offset SECT_OFF, and compilation unit
data PER_CU, execute the "variable value" operation on the DIE
found at SECT_OFF. */
static value *
sect_variable_value (sect_offset sect_off,
dwarf2_per_cu_data *per_cu,
dwarf2_per_objfile *per_objfile)
{
const char *var_name = nullptr;
struct type *die_type
= dwarf2_fetch_die_type_sect_off (sect_off, per_cu, per_objfile,
&var_name);
if (die_type == NULL)
error (_("Bad DW_OP_GNU_variable_value DIE."));
/* Note: Things still work when the following test is removed. This
test and error is here to conform to the proposed specification. */
if (die_type->code () != TYPE_CODE_INT
&& die_type->code () != TYPE_CODE_ENUM
&& die_type->code () != TYPE_CODE_RANGE
&& die_type->code () != TYPE_CODE_PTR)
error (_("Type of DW_OP_GNU_variable_value DIE must be an integer or pointer."));
if (var_name != nullptr)
{
value *result = compute_var_value (var_name);
if (result != nullptr)
return result;
}
struct type *type = lookup_pointer_type (die_type);
frame_info_ptr frame = get_selected_frame (_("No frame selected."));
return indirect_synthetic_pointer (sect_off, 0, per_cu, per_objfile, frame,
type, true);
}
/* Return the type used for DWARF operations where the type is
unspecified in the DWARF spec. Only certain sizes are
supported. */
struct type *
dwarf_expr_context::address_type () const
{
gdbarch *arch = this->m_per_objfile->objfile->arch ();
dwarf_gdbarch_types *types = dwarf_arch_cookie.get (arch);
if (types == nullptr)
types = dwarf_arch_cookie.emplace (arch);
int ndx;
if (this->m_addr_size == 2)
ndx = 0;
else if (this->m_addr_size == 4)
ndx = 1;
else if (this->m_addr_size == 8)
ndx = 2;
else
error (_("Unsupported address size in DWARF expressions: %d bits"),
8 * this->m_addr_size);
if (types->dw_types[ndx] == NULL)
{
type_allocator alloc (arch);
types->dw_types[ndx]
= init_integer_type (alloc, 8 * this->m_addr_size,
0, "<signed DWARF address type>");
}
return types->dw_types[ndx];
}
/* Create a new context for the expression evaluator. */
dwarf_expr_context::dwarf_expr_context (dwarf2_per_objfile *per_objfile,
int addr_size)
: m_addr_size (addr_size),
m_per_objfile (per_objfile)
{
}
/* Push VALUE onto the stack. */
void
dwarf_expr_context::push (struct value *value, bool in_stack_memory)
{
this->m_stack.emplace_back (value, in_stack_memory);
}
/* Push VALUE onto the stack. */
void
dwarf_expr_context::push_address (CORE_ADDR value, bool in_stack_memory)
{
push (value_from_ulongest (address_type (), value), in_stack_memory);
}
/* Pop the top item off of the stack. */
void
dwarf_expr_context::pop ()
{
if (this->m_stack.empty ())
error (_("dwarf expression stack underflow"));
this->m_stack.pop_back ();
}
/* Retrieve the N'th item on the stack. */
struct value *
dwarf_expr_context::fetch (int n)
{
if (this->m_stack.size () <= n)
error (_("Asked for position %d of stack, "
"stack only has %zu elements on it."),
n, this->m_stack.size ());
return this->m_stack[this->m_stack.size () - (1 + n)].value;
}
/* See expr.h. */
void
dwarf_expr_context::get_frame_base (const gdb_byte **start,
size_t * length)
{
ensure_have_frame (this->m_frame, "DW_OP_fbreg");
const block *bl = get_frame_block (this->m_frame, NULL);
if (bl == NULL)
error (_("frame address is not available."));
/* Use block_linkage_function, which returns a real (not inlined)
function, instead of get_frame_function, which may return an
inlined function. */
symbol *framefunc = bl->linkage_function ();
/* If we found a frame-relative symbol then it was certainly within
some function associated with a frame. If we can't find the frame,
something has gone wrong. */
gdb_assert (framefunc != NULL);
func_get_frame_base_dwarf_block (framefunc,
get_frame_address_in_block (this->m_frame),
start, length);
}
/* See expr.h. */
struct type *
dwarf_expr_context::get_base_type (cu_offset die_cu_off)
{
if (this->m_per_cu == nullptr)
return builtin_type (this->m_per_objfile->objfile->arch ())->builtin_int;
struct type *result = dwarf2_get_die_type (die_cu_off, this->m_per_cu,
this->m_per_objfile);
if (result == nullptr)
error (_("Could not find type for operation"));
return result;
}
/* See expr.h. */
void
dwarf_expr_context::dwarf_call (cu_offset die_cu_off)
{
ensure_have_per_cu (this->m_per_cu, "DW_OP_call");
frame_info_ptr frame = this->m_frame;
auto get_pc_from_frame = [frame] ()
{
ensure_have_frame (frame, "DW_OP_call");
return get_frame_address_in_block (frame);
};
dwarf2_locexpr_baton block
= dwarf2_fetch_die_loc_cu_off (die_cu_off, this->m_per_cu,
this->m_per_objfile, get_pc_from_frame);
/* DW_OP_call_ref is currently not supported. */
gdb_assert (block.per_cu == this->m_per_cu);
this->eval (block.data, block.size);
}
/* See expr.h. */
void
dwarf_expr_context::read_mem (gdb_byte *buf, CORE_ADDR addr,
size_t length)
{
if (length == 0)
return;
/* Prefer the passed-in memory, if it exists. */
if (this->m_addr_info != nullptr)
{
CORE_ADDR offset = addr - this->m_addr_info->addr;
if (offset < this->m_addr_info->valaddr.size ()
&& offset + length <= this->m_addr_info->valaddr.size ())
{
memcpy (buf, this->m_addr_info->valaddr.data (), length);
return;
}
}
read_memory (addr, buf, length);
}
/* See expr.h. */
void
dwarf_expr_context::push_dwarf_reg_entry_value (call_site_parameter_kind kind,
call_site_parameter_u kind_u,
int deref_size)
{
ensure_have_per_cu (this->m_per_cu, "DW_OP_entry_value");
ensure_have_frame (this->m_frame, "DW_OP_entry_value");
dwarf2_per_cu_data *caller_per_cu;
dwarf2_per_objfile *caller_per_objfile;
frame_info_ptr caller_frame = get_prev_frame (this->m_frame);
call_site_parameter *parameter
= dwarf_expr_reg_to_entry_parameter (this->m_frame, kind, kind_u,
&caller_per_cu,
&caller_per_objfile);
const gdb_byte *data_src
= deref_size == -1 ? parameter->value : parameter->data_value;
size_t size
= deref_size == -1 ? parameter->value_size : parameter->data_value_size;
/* DEREF_SIZE size is not verified here. */
if (data_src == nullptr)
throw_error (NO_ENTRY_VALUE_ERROR,
_("Cannot resolve DW_AT_call_data_value"));
/* We are about to evaluate an expression in the context of the caller
of the current frame. This evaluation context may be different from
the current (callee's) context), so temporarily set the caller's context.
It is possible for the caller to be from a different objfile from the
callee if the call is made through a function pointer. */
scoped_restore save_frame = make_scoped_restore (&this->m_frame,
caller_frame);
scoped_restore save_per_cu = make_scoped_restore (&this->m_per_cu,
caller_per_cu);
scoped_restore save_addr_info = make_scoped_restore (&this->m_addr_info,
nullptr);
scoped_restore save_per_objfile = make_scoped_restore (&this->m_per_objfile,
caller_per_objfile);
scoped_restore save_addr_size = make_scoped_restore (&this->m_addr_size);
this->m_addr_size = this->m_per_cu->addr_size ();
this->eval (data_src, size);
}
/* See expr.h. */
value *
dwarf_expr_context::fetch_result (struct type *type, struct type *subobj_type,
LONGEST subobj_offset, bool as_lval)
{
value *retval = nullptr;
gdbarch *arch = this->m_per_objfile->objfile->arch ();
if (type == nullptr)
type = address_type ();
if (subobj_type == nullptr)
subobj_type = type;
/* Ensure that, if TYPE or SUBOBJ_TYPE are typedefs, their length is filled
in instead of being zero. */
check_typedef (type);
check_typedef (subobj_type);
if (this->m_pieces.size () > 0)
{
ULONGEST bit_size = 0;
for (dwarf_expr_piece &piece : this->m_pieces)
bit_size += piece.size;
/* Complain if the expression is larger than the size of the
outer type. */
if (bit_size > 8 * type->length ())
invalid_synthetic_pointer ();
piece_closure *c
= allocate_piece_closure (this->m_per_cu, this->m_per_objfile,
std::move (this->m_pieces), this->m_frame);
retval = value::allocate_computed (subobj_type,
&pieced_value_funcs, c);
retval->set_offset (subobj_offset);
}
else
{
/* If AS_LVAL is false, means that the implicit conversion
from a location description to value is expected. */
if (!as_lval)
this->m_location = DWARF_VALUE_STACK;
switch (this->m_location)
{
case DWARF_VALUE_REGISTER:
{
gdbarch *f_arch = get_frame_arch (this->m_frame);
int dwarf_regnum
= longest_to_int (value_as_long (this->fetch (0)));
int gdb_regnum = dwarf_reg_to_regnum_or_error (f_arch,
dwarf_regnum);
if (subobj_offset != 0)
error (_("cannot use offset on synthetic pointer to register"));
gdb_assert (this->m_frame != NULL);
retval = value_from_register (subobj_type, gdb_regnum,
this->m_frame);
if (retval->optimized_out ())
{
/* This means the register has undefined value / was
not saved. As we're computing the location of some
variable etc. in the program, not a value for
inspecting a register ($pc, $sp, etc.), return a
generic optimized out value instead, so that we show
<optimized out> instead of <not saved>. */
value *tmp = value::allocate (subobj_type);
retval->contents_copy (tmp, 0, 0,
subobj_type->length ());
retval = tmp;
}
}
break;
case DWARF_VALUE_MEMORY:
{
struct type *ptr_type;
CORE_ADDR address = this->fetch_address (0);
bool in_stack_memory = this->fetch_in_stack_memory (0);
/* DW_OP_deref_size (and possibly other operations too) may
create a pointer instead of an address. Ideally, the
pointer to address conversion would be performed as part
of those operations, but the type of the object to
which the address refers is not known at the time of
the operation. Therefore, we do the conversion here
since the type is readily available. */
switch (subobj_type->code ())
{
case TYPE_CODE_FUNC:
case TYPE_CODE_METHOD:
ptr_type = builtin_type (arch)->builtin_func_ptr;
break;
default:
ptr_type = builtin_type (arch)->builtin_data_ptr;
break;
}
address = value_as_address (value_from_pointer (ptr_type, address));
retval = value_at_lazy (subobj_type, address + subobj_offset,
m_frame);
if (in_stack_memory)
retval->set_stack (true);
}
break;
case DWARF_VALUE_STACK:
{
value *val = this->fetch (0);
size_t n = val->type ()->length ();
size_t len = subobj_type->length ();
size_t max = type->length ();
if (subobj_offset + len > max)
invalid_synthetic_pointer ();
retval = value::allocate (subobj_type);
/* The given offset is relative to the actual object. */
if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
subobj_offset += n - max;
copy (val->contents_all ().slice (subobj_offset, len),
retval->contents_raw ());
}
break;
case DWARF_VALUE_LITERAL:
{
size_t n = subobj_type->length ();
if (subobj_offset + n > this->m_len)
invalid_synthetic_pointer ();
retval = value::allocate (subobj_type);
bfd_byte *contents = retval->contents_raw ().data ();
memcpy (contents, this->m_data + subobj_offset, n);
}
break;
case DWARF_VALUE_OPTIMIZED_OUT:
retval = value::allocate_optimized_out (subobj_type);
break;
/* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
operation by execute_stack_op. */
case DWARF_VALUE_IMPLICIT_POINTER:
/* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
it can only be encountered when making a piece. */
default:
internal_error (_("invalid location type"));
}
}
retval->set_initialized (this->m_initialized);
return retval;
}
/* See expr.h. */
value *
dwarf_expr_context::evaluate (const gdb_byte *addr, size_t len, bool as_lval,
dwarf2_per_cu_data *per_cu, frame_info_ptr frame,
const struct property_addr_info *addr_info,
struct type *type, struct type *subobj_type,
LONGEST subobj_offset)
{
this->m_per_cu = per_cu;
this->m_frame = frame;
this->m_addr_info = addr_info;
eval (addr, len);
return fetch_result (type, subobj_type, subobj_offset, as_lval);
}
/* Require that TYPE be an integral type; throw an exception if not. */
static void
dwarf_require_integral (struct type *type)
{
if (type->code () != TYPE_CODE_INT
&& type->code () != TYPE_CODE_CHAR
&& type->code () != TYPE_CODE_BOOL)
error (_("integral type expected in DWARF expression"));
}
/* Return the unsigned form of TYPE. TYPE is necessarily an integral
type. */
static struct type *
get_unsigned_type (struct gdbarch *gdbarch, struct type *type)
{
switch (type->length ())
{
case 1:
return builtin_type (gdbarch)->builtin_uint8;
case 2:
return builtin_type (gdbarch)->builtin_uint16;
case 4:
return builtin_type (gdbarch)->builtin_uint32;
case 8:
return builtin_type (gdbarch)->builtin_uint64;
default:
error (_("no unsigned variant found for type, while evaluating "
"DWARF expression"));
}
}
/* Return the signed form of TYPE. TYPE is necessarily an integral
type. */
static struct type *
get_signed_type (struct gdbarch *gdbarch, struct type *type)
{
switch (type->length ())
{
case 1:
return builtin_type (gdbarch)->builtin_int8;
case 2:
return builtin_type (gdbarch)->builtin_int16;
case 4:
return builtin_type (gdbarch)->builtin_int32;
case 8:
return builtin_type (gdbarch)->builtin_int64;
default:
error (_("no signed variant found for type, while evaluating "
"DWARF expression"));
}
}
/* Retrieve the N'th item on the stack, converted to an address. */
CORE_ADDR
dwarf_expr_context::fetch_address (int n)
{
gdbarch *arch = this->m_per_objfile->objfile->arch ();
value *result_val = fetch (n);
bfd_endian byte_order = gdbarch_byte_order (arch);
ULONGEST result;
dwarf_require_integral (result_val->type ());
result = extract_unsigned_integer (result_val->contents (), byte_order);
/* For most architectures, calling extract_unsigned_integer() alone
is sufficient for extracting an address. However, some
architectures (e.g. MIPS) use signed addresses and using
extract_unsigned_integer() will not produce a correct
result. Make sure we invoke gdbarch_integer_to_address()
for those architectures which require it. */
if (gdbarch_integer_to_address_p (arch))
{
gdb_byte *buf = (gdb_byte *) alloca (this->m_addr_size);
type *int_type = get_unsigned_type (arch,
result_val->type ());
store_unsigned_integer (buf, this->m_addr_size, byte_order, result);
return gdbarch_integer_to_address (arch, int_type, buf);
}
return (CORE_ADDR) result;
}
/* Retrieve the in_stack_memory flag of the N'th item on the stack. */
bool
dwarf_expr_context::fetch_in_stack_memory (int n)
{
if (this->m_stack.size () <= n)
error (_("Asked for position %d of stack, "
"stack only has %zu elements on it."),
n, this->m_stack.size ());
return this->m_stack[this->m_stack.size () - (1 + n)].in_stack_memory;
}
/* Return true if the expression stack is empty. */
bool
dwarf_expr_context::stack_empty_p () const
{
return m_stack.empty ();
}
/* Add a new piece to the dwarf_expr_context's piece list. */
void
dwarf_expr_context::add_piece (ULONGEST size, ULONGEST offset)
{
this->m_pieces.emplace_back ();
dwarf_expr_piece &p = this->m_pieces.back ();
p.location = this->m_location;
p.size = size;
p.offset = offset;
if (p.location == DWARF_VALUE_LITERAL)
{
p.v.literal.data = this->m_data;
p.v.literal.length = this->m_len;
}
else if (stack_empty_p ())
{
p.location = DWARF_VALUE_OPTIMIZED_OUT;
/* Also reset the context's location, for our callers. This is
a somewhat strange approach, but this lets us avoid setting
the location to DWARF_VALUE_MEMORY in all the individual
cases in the evaluator. */
this->m_location = DWARF_VALUE_OPTIMIZED_OUT;
}
else if (p.location == DWARF_VALUE_MEMORY)
{
p.v.mem.addr = fetch_address (0);
p.v.mem.in_stack_memory = fetch_in_stack_memory (0);
}
else if (p.location == DWARF_VALUE_IMPLICIT_POINTER)
{
p.v.ptr.die_sect_off = (sect_offset) this->m_len;
p.v.ptr.offset = value_as_long (fetch (0));
}
else if (p.location == DWARF_VALUE_REGISTER)
p.v.regno = value_as_long (fetch (0));
else
{
p.v.value = fetch (0);
}
}
/* Evaluate the expression at ADDR (LEN bytes long). */
void
dwarf_expr_context::eval (const gdb_byte *addr, size_t len)
{
int old_recursion_depth = this->m_recursion_depth;
execute_stack_op (addr, addr + len);
/* RECURSION_DEPTH becomes invalid if an exception was thrown here. */
gdb_assert (this->m_recursion_depth == old_recursion_depth);
}
/* Helper to read a uleb128 value or throw an error. */
const gdb_byte *
safe_read_uleb128 (const gdb_byte *buf, const gdb_byte *buf_end,
uint64_t *r)
{
buf = gdb_read_uleb128 (buf, buf_end, r);
if (buf == NULL)
error (_("DWARF expression error: ran off end of buffer reading uleb128 value"));
return buf;
}
/* Helper to read a sleb128 value or throw an error. */
const gdb_byte *
safe_read_sleb128 (const gdb_byte *buf, const gdb_byte *buf_end,
int64_t *r)
{
buf = gdb_read_sleb128 (buf, buf_end, r);
if (buf == NULL)
error (_("DWARF expression error: ran off end of buffer reading sleb128 value"));
return buf;
}
const gdb_byte *
safe_skip_leb128 (const gdb_byte *buf, const gdb_byte *buf_end)
{
buf = gdb_skip_leb128 (buf, buf_end);
if (buf == NULL)
error (_("DWARF expression error: ran off end of buffer reading leb128 value"));
return buf;
}
/* Check that the current operator is either at the end of an
expression, or that it is followed by a composition operator or by
DW_OP_GNU_uninit (which should terminate the expression). */
void
dwarf_expr_require_composition (const gdb_byte *op_ptr, const gdb_byte *op_end,
const char *op_name)
{
if (op_ptr != op_end && *op_ptr != DW_OP_piece && *op_ptr != DW_OP_bit_piece
&& *op_ptr != DW_OP_GNU_uninit)
error (_("DWARF-2 expression error: `%s' operations must be "
"used either alone or in conjunction with DW_OP_piece "
"or DW_OP_bit_piece."),
op_name);
}
/* Return true iff the types T1 and T2 are "the same". This only does
checks that might reasonably be needed to compare DWARF base
types. */
static int
base_types_equal_p (struct type *t1, struct type *t2)
{
if (t1->code () != t2->code ())
return 0;
if (t1->is_unsigned () != t2->is_unsigned ())
return 0;
return t1->length () == t2->length ();
}
/* If <BUF..BUF_END] contains DW_FORM_block* with single DW_OP_reg* return the
DWARF register number. Otherwise return -1. */
int
dwarf_block_to_dwarf_reg (const gdb_byte *buf, const gdb_byte *buf_end)
{
uint64_t dwarf_reg;
if (buf_end <= buf)
return -1;
if (*buf >= DW_OP_reg0 && *buf <= DW_OP_reg31)
{
if (buf_end - buf != 1)
return -1;
return *buf - DW_OP_reg0;
}
if (*buf == DW_OP_regval_type || *buf == DW_OP_GNU_regval_type)
{
buf++;
buf = gdb_read_uleb128 (buf, buf_end, &dwarf_reg);
if (buf == NULL)
return -1;
buf = gdb_skip_leb128 (buf, buf_end);
if (buf == NULL)
return -1;
}
else if (*buf == DW_OP_regx)
{
buf++;
buf = gdb_read_uleb128 (buf, buf_end, &dwarf_reg);
if (buf == NULL)
return -1;
}
else
return -1;
if (buf != buf_end || (int) dwarf_reg != dwarf_reg)
return -1;
return dwarf_reg;
}
/* If <BUF..BUF_END] contains DW_FORM_block* with just DW_OP_breg*(0) and
DW_OP_deref* return the DWARF register number. Otherwise return -1.
DEREF_SIZE_RETURN contains -1 for DW_OP_deref; otherwise it contains the
size from DW_OP_deref_size. */
int
dwarf_block_to_dwarf_reg_deref (const gdb_byte *buf, const gdb_byte *buf_end,
CORE_ADDR *deref_size_return)
{
uint64_t dwarf_reg;
int64_t offset;
if (buf_end <= buf)
return -1;
if (*buf >= DW_OP_breg0 && *buf <= DW_OP_breg31)
{
dwarf_reg = *buf - DW_OP_breg0;
buf++;
if (buf >= buf_end)
return -1;
}
else if (*buf == DW_OP_bregx)
{
buf++;
buf = gdb_read_uleb128 (buf, buf_end, &dwarf_reg);
if (buf == NULL)
return -1;
if ((int) dwarf_reg != dwarf_reg)
return -1;
}
else
return -1;
buf = gdb_read_sleb128 (buf, buf_end, &offset);
if (buf == NULL)
return -1;
if (offset != 0)
return -1;
if (*buf == DW_OP_deref)
{
buf++;
*deref_size_return = -1;
}
else if (*buf == DW_OP_deref_size)
{
buf++;
if (buf >= buf_end)
return -1;
*deref_size_return = *buf++;
}
else
return -1;
if (buf != buf_end)
return -1;
return dwarf_reg;
}
/* If <BUF..BUF_END] contains DW_FORM_block* with single DW_OP_fbreg(X) fill
in FB_OFFSET_RETURN with the X offset and return 1. Otherwise return 0. */
int
dwarf_block_to_fb_offset (const gdb_byte *buf, const gdb_byte *buf_end,
CORE_ADDR *fb_offset_return)
{
int64_t fb_offset;
if (buf_end <= buf)
return 0;
if (*buf != DW_OP_fbreg)
return 0;
buf++;
buf = gdb_read_sleb128 (buf, buf_end, &fb_offset);
if (buf == NULL)
return 0;
*fb_offset_return = fb_offset;
if (buf != buf_end || fb_offset != (LONGEST) *fb_offset_return)
return 0;
return 1;
}
/* If <BUF..BUF_END] contains DW_FORM_block* with single DW_OP_bregSP(X) fill
in SP_OFFSET_RETURN with the X offset and return 1. Otherwise return 0.
The matched SP register number depends on GDBARCH. */
int
dwarf_block_to_sp_offset (struct gdbarch *gdbarch, const gdb_byte *buf,
const gdb_byte *buf_end, CORE_ADDR *sp_offset_return)
{
uint64_t dwarf_reg;
int64_t sp_offset;
if (buf_end <= buf)
return 0;
if (*buf >= DW_OP_breg0 && *buf <= DW_OP_breg31)
{
dwarf_reg = *buf - DW_OP_breg0;
buf++;
}
else
{
if (*buf != DW_OP_bregx)
return 0;
buf++;
buf = gdb_read_uleb128 (buf, buf_end, &dwarf_reg);
if (buf == NULL)
return 0;
}
if (dwarf_reg_to_regnum (gdbarch, dwarf_reg)
!= gdbarch_sp_regnum (gdbarch))
return 0;
buf = gdb_read_sleb128 (buf, buf_end, &sp_offset);
if (buf == NULL)
return 0;
*sp_offset_return = sp_offset;
if (buf != buf_end || sp_offset != (LONGEST) *sp_offset_return)
return 0;
return 1;
}
/* The engine for the expression evaluator. Using the context in this
object, evaluate the expression between OP_PTR and OP_END. */
void
dwarf_expr_context::execute_stack_op (const gdb_byte *op_ptr,
const gdb_byte *op_end)
{
gdbarch *arch = this->m_per_objfile->objfile->arch ();
bfd_endian byte_order = gdbarch_byte_order (arch);
/* Old-style "untyped" DWARF values need special treatment in a
couple of places, specifically DW_OP_mod and DW_OP_shr. We need
a special type for these values so we can distinguish them from
values that have an explicit type, because explicitly-typed
values do not need special treatment. This special type must be
different (in the `==' sense) from any base type coming from the
CU. */
type *address_type = this->address_type ();
this->m_location = DWARF_VALUE_MEMORY;
this->m_initialized = true; /* Default is initialized. */
if (this->m_recursion_depth > this->m_max_recursion_depth)
error (_("DWARF-2 expression error: Loop detected (%d)."),
this->m_recursion_depth);
this->m_recursion_depth++;
while (op_ptr < op_end)
{
dwarf_location_atom op = (dwarf_location_atom) *op_ptr++;
ULONGEST result;
/* Assume the value is not in stack memory.
Code that knows otherwise sets this to true.
Some arithmetic on stack addresses can probably be assumed to still
be a stack address, but we skip this complication for now.
This is just an optimization, so it's always ok to punt
and leave this as false. */
bool in_stack_memory = false;
uint64_t uoffset, reg;
int64_t offset;
value *result_val = NULL;
/* The DWARF expression might have a bug causing an infinite
loop. In that case, quitting is the only way out. */
QUIT;
switch (op)
{
case DW_OP_lit0:
case DW_OP_lit1:
case DW_OP_lit2:
case DW_OP_lit3:
case DW_OP_lit4:
case DW_OP_lit5:
case DW_OP_lit6:
case DW_OP_lit7:
case DW_OP_lit8:
case DW_OP_lit9:
case DW_OP_lit10:
case DW_OP_lit11:
case DW_OP_lit12:
case DW_OP_lit13:
case DW_OP_lit14:
case DW_OP_lit15:
case DW_OP_lit16:
case DW_OP_lit17:
case DW_OP_lit18:
case DW_OP_lit19:
case DW_OP_lit20:
case DW_OP_lit21:
case DW_OP_lit22:
case DW_OP_lit23:
case DW_OP_lit24:
case DW_OP_lit25:
case DW_OP_lit26:
case DW_OP_lit27:
case DW_OP_lit28:
case DW_OP_lit29:
case DW_OP_lit30:
case DW_OP_lit31:
result = op - DW_OP_lit0;
result_val = value_from_ulongest (address_type, result);
break;
case DW_OP_addr:
result = extract_unsigned_integer (op_ptr,
this->m_addr_size, byte_order);
op_ptr += this->m_addr_size;
/* Some versions of GCC emit DW_OP_addr before
DW_OP_GNU_push_tls_address. In this case the value is an
index, not an address. We don't support things like
branching between the address and the TLS op. */
if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
result += this->m_per_objfile->objfile->text_section_offset ();
result_val = value_from_ulongest (address_type, result);
break;
case DW_OP_addrx:
case DW_OP_GNU_addr_index:
ensure_have_per_cu (this->m_per_cu, "DW_OP_addrx");
op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
result = (m_per_objfile->relocate
(dwarf2_read_addr_index (this->m_per_cu,
this->m_per_objfile,
uoffset)));
result_val = value_from_ulongest (address_type, result);
break;
case DW_OP_GNU_const_index:
ensure_have_per_cu (this->m_per_cu, "DW_OP_GNU_const_index");
op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
result = (ULONGEST) dwarf2_read_addr_index (this->m_per_cu,
this->m_per_objfile,
uoffset);
result_val = value_from_ulongest (address_type, result);
break;
case DW_OP_const1u:
result = extract_unsigned_integer (op_ptr, 1, byte_order);
result_val = value_from_ulongest (address_type, result);
op_ptr += 1;
break;
case DW_OP_const1s:
result = extract_signed_integer (op_ptr, 1, byte_order);
result_val = value_from_ulongest (address_type, result);
op_ptr += 1;
break;
case DW_OP_const2u:
result = extract_unsigned_integer (op_ptr, 2, byte_order);
result_val = value_from_ulongest (address_type, result);
op_ptr += 2;
break;
case DW_OP_const2s:
result = extract_signed_integer (op_ptr, 2, byte_order);
result_val = value_from_ulongest (address_type, result);
op_ptr += 2;
break;
case DW_OP_const4u:
result = extract_unsigned_integer (op_ptr, 4, byte_order);
result_val = value_from_ulongest (address_type, result);
op_ptr += 4;
break;
case DW_OP_const4s:
result = extract_signed_integer (op_ptr, 4, byte_order);
result_val = value_from_ulongest (address_type, result);
op_ptr += 4;
break;
case DW_OP_const8u:
result = extract_unsigned_integer (op_ptr, 8, byte_order);
result_val = value_from_ulongest (address_type, result);
op_ptr += 8;
break;
case DW_OP_const8s:
result = extract_signed_integer (op_ptr, 8, byte_order);
result_val = value_from_ulongest (address_type, result);
op_ptr += 8;
break;
case DW_OP_constu:
op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
result = uoffset;
result_val = value_from_ulongest (address_type, result);
break;
case DW_OP_consts:
op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
result = offset;
result_val = value_from_ulongest (address_type, result);
break;
/* The DW_OP_reg operations are required to occur alone in
location expressions. */
case DW_OP_reg0:
case DW_OP_reg1:
case DW_OP_reg2:
case DW_OP_reg3:
case DW_OP_reg4:
case DW_OP_reg5:
case DW_OP_reg6:
case DW_OP_reg7:
case DW_OP_reg8:
case DW_OP_reg9:
case DW_OP_reg10:
case DW_OP_reg11:
case DW_OP_reg12:
case DW_OP_reg13:
case DW_OP_reg14:
case DW_OP_reg15:
case DW_OP_reg16:
case DW_OP_reg17:
case DW_OP_reg18:
case DW_OP_reg19:
case DW_OP_reg20:
case DW_OP_reg21:
case DW_OP_reg22:
case DW_OP_reg23:
case DW_OP_reg24:
case DW_OP_reg25:
case DW_OP_reg26:
case DW_OP_reg27:
case DW_OP_reg28:
case DW_OP_reg29:
case DW_OP_reg30:
case DW_OP_reg31:
dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_reg");
result = op - DW_OP_reg0;
result_val = value_from_ulongest (address_type, result);
this->m_location = DWARF_VALUE_REGISTER;
break;
case DW_OP_regx:
op_ptr = safe_read_uleb128 (op_ptr, op_end, ®);
dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
result = reg;
result_val = value_from_ulongest (address_type, result);
this->m_location = DWARF_VALUE_REGISTER;
break;
case DW_OP_implicit_value:
{
uint64_t len;
op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
if (op_ptr + len > op_end)
error (_("DW_OP_implicit_value: too few bytes available."));
this->m_len = len;
this->m_data = op_ptr;
this->m_location = DWARF_VALUE_LITERAL;
op_ptr += len;
dwarf_expr_require_composition (op_ptr, op_end,
"DW_OP_implicit_value");
}
goto no_push;
case DW_OP_stack_value:
this->m_location = DWARF_VALUE_STACK;
dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
goto no_push;
case DW_OP_implicit_pointer:
case DW_OP_GNU_implicit_pointer:
{
int64_t len;
ensure_have_per_cu (this->m_per_cu, "DW_OP_implicit_pointer");
int ref_addr_size = this->m_per_cu->ref_addr_size ();
/* The referred-to DIE of sect_offset kind. */
this->m_len = extract_unsigned_integer (op_ptr, ref_addr_size,
byte_order);
op_ptr += ref_addr_size;
/* The byte offset into the data. */
op_ptr = safe_read_sleb128 (op_ptr, op_end, &len);
result = (ULONGEST) len;
result_val = value_from_ulongest (address_type, result);
this->m_location = DWARF_VALUE_IMPLICIT_POINTER;
dwarf_expr_require_composition (op_ptr, op_end,
"DW_OP_implicit_pointer");
}
break;
case DW_OP_breg0:
case DW_OP_breg1:
case DW_OP_breg2:
case DW_OP_breg3:
case DW_OP_breg4:
case DW_OP_breg5:
case DW_OP_breg6:
case DW_OP_breg7:
case DW_OP_breg8:
case DW_OP_breg9:
case DW_OP_breg10:
case DW_OP_breg11:
case DW_OP_breg12:
case DW_OP_breg13:
case DW_OP_breg14:
case DW_OP_breg15:
case DW_OP_breg16:
case DW_OP_breg17:
case DW_OP_breg18:
case DW_OP_breg19:
case DW_OP_breg20:
case DW_OP_breg21:
case DW_OP_breg22:
case DW_OP_breg23:
case DW_OP_breg24:
case DW_OP_breg25:
case DW_OP_breg26:
case DW_OP_breg27:
case DW_OP_breg28:
case DW_OP_breg29:
case DW_OP_breg30:
case DW_OP_breg31:
{
op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
ensure_have_frame (this->m_frame, "DW_OP_breg");
result = read_addr_from_reg (this->m_frame, op - DW_OP_breg0);
result += offset;
result_val = value_from_ulongest (address_type, result);
}
break;
case DW_OP_bregx:
{
op_ptr = safe_read_uleb128 (op_ptr, op_end, ®);
op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
ensure_have_frame (this->m_frame, "DW_OP_bregx");
result = read_addr_from_reg (this->m_frame, reg);
result += offset;
result_val = value_from_ulongest (address_type, result);
}
break;
case DW_OP_fbreg:
{
const gdb_byte *datastart;
size_t datalen;
op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
/* Rather than create a whole new context, we simply
backup the current stack locally and install a new empty stack,
then reset it afterwards, effectively erasing whatever the
recursive call put there. */
std::vector<dwarf_stack_value> saved_stack = std::move (this->m_stack);
this->m_stack.clear ();
/* FIXME: cagney/2003-03-26: This code should be using
get_frame_base_address(), and then implement a dwarf2
specific this_base method. */
this->get_frame_base (&datastart, &datalen);
eval (datastart, datalen);
if (this->m_location == DWARF_VALUE_MEMORY)
result = fetch_address (0);
else if (this->m_location == DWARF_VALUE_REGISTER)
result
= read_addr_from_reg (this->m_frame, value_as_long (fetch (0)));
else
error (_("Not implemented: computing frame "
"base using explicit value operator"));
result = result + offset;
result_val = value_from_ulongest (address_type, result);
in_stack_memory = true;
/* Restore the content of the original stack. */
this->m_stack = std::move (saved_stack);
this->m_location = DWARF_VALUE_MEMORY;
}
break;
case DW_OP_dup:
result_val = fetch (0);
in_stack_memory = fetch_in_stack_memory (0);
break;
case DW_OP_drop:
pop ();
goto no_push;
case DW_OP_pick:
offset = *op_ptr++;
result_val = fetch (offset);
in_stack_memory = fetch_in_stack_memory (offset);
break;
case DW_OP_swap:
{
if (this->m_stack.size () < 2)
error (_("Not enough elements for "
"DW_OP_swap. Need 2, have %zu."),
this->m_stack.size ());
dwarf_stack_value &t1 = this->m_stack[this->m_stack.size () - 1];
dwarf_stack_value &t2 = this->m_stack[this->m_stack.size () - 2];
std::swap (t1, t2);
goto no_push;
}
case DW_OP_over:
result_val = fetch (1);
in_stack_memory = fetch_in_stack_memory (1);
break;
case DW_OP_rot:
{
if (this->m_stack.size () < 3)
error (_("Not enough elements for "
"DW_OP_rot. Need 3, have %zu."),
this->m_stack.size ());
dwarf_stack_value temp = this->m_stack[this->m_stack.size () - 1];
this->m_stack[this->m_stack.size () - 1]
= this->m_stack[this->m_stack.size () - 2];
this->m_stack[this->m_stack.size () - 2]
= this->m_stack[this->m_stack.size () - 3];
this->m_stack[this->m_stack.size () - 3] = temp;
goto no_push;
}
case DW_OP_deref:
case DW_OP_deref_size:
case DW_OP_deref_type:
case DW_OP_GNU_deref_type:
{
int addr_size = (op == DW_OP_deref ? this->m_addr_size : *op_ptr++);
gdb_byte *buf = (gdb_byte *) alloca (addr_size);
CORE_ADDR addr = fetch_address (0);
struct type *type;
pop ();
if (op == DW_OP_deref_type || op == DW_OP_GNU_deref_type)
{
op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
cu_offset type_die_cu_off = (cu_offset) uoffset;
type = get_base_type (type_die_cu_off);
}
else
type = address_type;
this->read_mem (buf, addr, addr_size);
/* If the size of the object read from memory is different
from the type length, we need to zero-extend it. */
if (type->length () != addr_size)
{
ULONGEST datum =
extract_unsigned_integer (buf, addr_size, byte_order);
buf = (gdb_byte *) alloca (type->length ());
store_unsigned_integer (buf, type->length (),
byte_order, datum);
}
result_val = value_from_contents_and_address (type, buf, addr);
break;
}
case DW_OP_abs:
case DW_OP_neg:
case DW_OP_not:
case DW_OP_plus_uconst:
{
/* Unary operations. */
result_val = fetch (0);
pop ();
switch (op)
{
case DW_OP_abs:
if (value_less (result_val,
value::zero (result_val->type (), not_lval)))
result_val = value_neg (result_val);
break;
case DW_OP_neg:
result_val = value_neg (result_val);
break;
case DW_OP_not:
dwarf_require_integral (result_val->type ());
result_val = value_complement (result_val);
break;
case DW_OP_plus_uconst:
dwarf_require_integral (result_val->type ());
result = value_as_long (result_val);
op_ptr = safe_read_uleb128 (op_ptr, op_end, ®);
result += reg;
result_val = value_from_ulongest (address_type, result);
break;
}
}
break;
case DW_OP_and:
case DW_OP_div:
case DW_OP_minus:
case DW_OP_mod:
case DW_OP_mul:
case DW_OP_or:
case DW_OP_plus:
case DW_OP_shl:
case DW_OP_shr:
case DW_OP_shra:
case DW_OP_xor:
case DW_OP_le:
case DW_OP_ge:
case DW_OP_eq:
case DW_OP_lt:
case DW_OP_gt:
case DW_OP_ne:
{
/* Binary operations. */
struct value *first, *second;
second = fetch (0);
pop ();
first = fetch (0);
pop ();
if (! base_types_equal_p (first->type (), second->type ()))
error (_("Incompatible types on DWARF stack"));
switch (op)
{
case DW_OP_and:
dwarf_require_integral (first->type ());
dwarf_require_integral (second->type ());
result_val = value_binop (first, second, BINOP_BITWISE_AND);
break;
case DW_OP_div:
result_val = value_binop (first, second, BINOP_DIV);
break;
case DW_OP_minus:
result_val = value_binop (first, second, BINOP_SUB);
break;
case DW_OP_mod:
{
int cast_back = 0;
struct type *orig_type = first->type ();
/* We have to special-case "old-style" untyped values
-- these must have mod computed using unsigned
math. */
if (orig_type == address_type)
{
struct type *utype = get_unsigned_type (arch, orig_type);
cast_back = 1;
first = value_cast (utype, first);
second = value_cast (utype, second);
}
/* Note that value_binop doesn't handle float or
decimal float here. This seems unimportant. */
result_val = value_binop (first, second, BINOP_MOD);
if (cast_back)
result_val = value_cast (orig_type, result_val);
}
break;
case DW_OP_mul:
result_val = value_binop (first, second, BINOP_MUL);
break;
case DW_OP_or:
dwarf_require_integral (first->type ());
dwarf_require_integral (second->type ());
result_val = value_binop (first, second, BINOP_BITWISE_IOR);
break;
case DW_OP_plus:
result_val = value_binop (first, second, BINOP_ADD);
break;
case DW_OP_shl:
dwarf_require_integral (first->type ());
dwarf_require_integral (second->type ());
result_val = value_binop (first, second, BINOP_LSH);
break;
case DW_OP_shr:
dwarf_require_integral (first->type ());
dwarf_require_integral (second->type ());
if (!first->type ()->is_unsigned ())
{
struct type *utype
= get_unsigned_type (arch, first->type ());
first = value_cast (utype, first);
}
result_val = value_binop (first, second, BINOP_RSH);
/* Make sure we wind up with the same type we started
with. */
if (result_val->type () != second->type ())
result_val = value_cast (second->type (), result_val);
break;
case DW_OP_shra:
dwarf_require_integral (first->type ());
dwarf_require_integral (second->type ());
if (first->type ()->is_unsigned ())
{
struct type *stype
= get_signed_type (arch, first->type ());
first = value_cast (stype, first);
}
result_val = value_binop (first, second, BINOP_RSH);
/* Make sure we wind up with the same type we started
with. */
if (result_val->type () != second->type ())
result_val = value_cast (second->type (), result_val);
break;
case DW_OP_xor:
dwarf_require_integral (first->type ());
dwarf_require_integral (second->type ());
result_val = value_binop (first, second, BINOP_BITWISE_XOR);
break;
case DW_OP_le:
/* A <= B is !(B < A). */
result = ! value_less (second, first);
result_val = value_from_ulongest (address_type, result);
break;
case DW_OP_ge:
/* A >= B is !(A < B). */
result = ! value_less (first, second);
result_val = value_from_ulongest (address_type, result);
break;
case DW_OP_eq:
result = value_equal (first, second);
result_val = value_from_ulongest (address_type, result);
break;
case DW_OP_lt:
result = value_less (first, second);
result_val = value_from_ulongest (address_type, result);
break;
case DW_OP_gt:
/* A > B is B < A. */
result = value_less (second, first);
result_val = value_from_ulongest (address_type, result);
break;
case DW_OP_ne:
result = ! value_equal (first, second);
result_val = value_from_ulongest (address_type, result);
break;
default:
internal_error (_("Can't be reached."));
}
}
break;
case DW_OP_call_frame_cfa:
ensure_have_frame (this->m_frame, "DW_OP_call_frame_cfa");
result = dwarf2_frame_cfa (this->m_frame);
result_val = value_from_ulongest (address_type, result);
in_stack_memory = true;
break;
case DW_OP_GNU_push_tls_address:
case DW_OP_form_tls_address:
/* Variable is at a constant offset in the thread-local
storage block into the objfile for the current thread and
the dynamic linker module containing this expression. Here
we return returns the offset from that base. The top of the
stack has the offset from the beginning of the thread
control block at which the variable is located. Nothing
should follow this operator, so the top of stack would be
returned. */
result = value_as_long (fetch (0));
pop ();
result = target_translate_tls_address (this->m_per_objfile->objfile,
result);
result_val = value_from_ulongest (address_type, result);
break;
case DW_OP_skip:
offset = extract_signed_integer (op_ptr, 2, byte_order);
op_ptr += 2;
op_ptr += offset;
goto no_push;
case DW_OP_bra:
{
struct value *val;
offset = extract_signed_integer (op_ptr, 2, byte_order);
op_ptr += 2;
val = fetch (0);
dwarf_require_integral (val->type ());
if (value_as_long (val) != 0)
op_ptr += offset;
pop ();
}
goto no_push;
case DW_OP_nop:
goto no_push;
case DW_OP_piece:
{
uint64_t size;
/* Record the piece. */
op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
add_piece (8 * size, 0);
/* Pop off the address/regnum, and reset the location
type. */
if (this->m_location != DWARF_VALUE_LITERAL
&& this->m_location != DWARF_VALUE_OPTIMIZED_OUT)
pop ();
this->m_location = DWARF_VALUE_MEMORY;
}
goto no_push;
case DW_OP_bit_piece:
{
uint64_t size, uleb_offset;
/* Record the piece. */
op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
op_ptr = safe_read_uleb128 (op_ptr, op_end, &uleb_offset);
add_piece (size, uleb_offset);
/* Pop off the address/regnum, and reset the location
type. */
if (this->m_location != DWARF_VALUE_LITERAL
&& this->m_location != DWARF_VALUE_OPTIMIZED_OUT)
pop ();
this->m_location = DWARF_VALUE_MEMORY;
}
goto no_push;
case DW_OP_GNU_uninit:
dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_GNU_uninit");
this->m_initialized = false;
goto no_push;
case DW_OP_call2:
{
cu_offset cu_off
= (cu_offset) extract_unsigned_integer (op_ptr, 2, byte_order);
op_ptr += 2;
this->dwarf_call (cu_off);
}
goto no_push;
case DW_OP_call4:
{
cu_offset cu_off
= (cu_offset) extract_unsigned_integer (op_ptr, 4, byte_order);
op_ptr += 4;
this->dwarf_call (cu_off);
}
goto no_push;
case DW_OP_GNU_variable_value:
{
ensure_have_per_cu (this->m_per_cu, "DW_OP_GNU_variable_value");
int ref_addr_size = this->m_per_cu->ref_addr_size ();
sect_offset sect_off
= (sect_offset) extract_unsigned_integer (op_ptr,
ref_addr_size,
byte_order);
op_ptr += ref_addr_size;
result_val = sect_variable_value (sect_off, this->m_per_cu,
this->m_per_objfile);
result_val = value_cast (address_type, result_val);
}
break;
case DW_OP_entry_value:
case DW_OP_GNU_entry_value:
{
uint64_t len;
CORE_ADDR deref_size;
union call_site_parameter_u kind_u;
op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
if (op_ptr + len > op_end)
error (_("DW_OP_entry_value: too few bytes available."));
kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (op_ptr, op_ptr + len);
if (kind_u.dwarf_reg != -1)
{
op_ptr += len;
this->push_dwarf_reg_entry_value (CALL_SITE_PARAMETER_DWARF_REG,
kind_u,
-1 /* deref_size */);
goto no_push;
}
kind_u.dwarf_reg = dwarf_block_to_dwarf_reg_deref (op_ptr,
op_ptr + len,
&deref_size);
if (kind_u.dwarf_reg != -1)
{
if (deref_size == -1)
deref_size = this->m_addr_size;
op_ptr += len;
this->push_dwarf_reg_entry_value (CALL_SITE_PARAMETER_DWARF_REG,
kind_u, deref_size);
goto no_push;
}
error (_("DWARF-2 expression error: DW_OP_entry_value is "
"supported only for single DW_OP_reg* "
"or for DW_OP_breg*(0)+DW_OP_deref*"));
}
case DW_OP_GNU_parameter_ref:
{
union call_site_parameter_u kind_u;
kind_u.param_cu_off
= (cu_offset) extract_unsigned_integer (op_ptr, 4, byte_order);
op_ptr += 4;
this->push_dwarf_reg_entry_value (CALL_SITE_PARAMETER_PARAM_OFFSET,
kind_u,
-1 /* deref_size */);
}
goto no_push;
case DW_OP_const_type:
case DW_OP_GNU_const_type:
{
int n;
const gdb_byte *data;
struct type *type;
op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
cu_offset type_die_cu_off = (cu_offset) uoffset;
n = *op_ptr++;
data = op_ptr;
op_ptr += n;
type = get_base_type (type_die_cu_off);
if (type->length () != n)
error (_("DW_OP_const_type has different sizes for type and data"));
result_val = value_from_contents (type, data);
}
break;
case DW_OP_regval_type:
case DW_OP_GNU_regval_type:
{
op_ptr = safe_read_uleb128 (op_ptr, op_end, ®);
op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
cu_offset type_die_cu_off = (cu_offset) uoffset;
ensure_have_frame (this->m_frame, "DW_OP_regval_type");
struct type *type = get_base_type (type_die_cu_off);
int regnum
= dwarf_reg_to_regnum_or_error (get_frame_arch (this->m_frame),
reg);
result_val = value_from_register (type, regnum, this->m_frame);
}
break;
case DW_OP_convert:
case DW_OP_GNU_convert:
case DW_OP_reinterpret:
case DW_OP_GNU_reinterpret:
{
struct type *type;
op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
cu_offset type_die_cu_off = (cu_offset) uoffset;
if (to_underlying (type_die_cu_off) == 0)
type = address_type;
else
type = get_base_type (type_die_cu_off);
result_val = fetch (0);
pop ();
if (op == DW_OP_convert || op == DW_OP_GNU_convert)
result_val = value_cast (type, result_val);
else if (type == result_val->type ())
{
/* Nothing. */
}
else if (type->length ()
!= result_val->type ()->length ())
error (_("DW_OP_reinterpret has wrong size"));
else
result_val
= value_from_contents (type,
result_val->contents_all ().data ());
}
break;
case DW_OP_push_object_address:
/* Return the address of the object we are currently observing. */
if (this->m_addr_info == nullptr
|| (this->m_addr_info->valaddr.data () == nullptr
&& this->m_addr_info->addr == 0))
error (_("Location address is not set."));
result_val
= value_from_ulongest (address_type, this->m_addr_info->addr);
break;
default:
error (_("Unhandled dwarf expression opcode 0x%x"), op);
}
/* Most things push a result value. */
gdb_assert (result_val != NULL);
push (result_val, in_stack_memory);
no_push:
;
}
/* To simplify our main caller, if the result is an implicit
pointer, then make a pieced value. This is ok because we can't
have implicit pointers in contexts where pieces are invalid. */
if (this->m_location == DWARF_VALUE_IMPLICIT_POINTER)
add_piece (8 * this->m_addr_size, 0);
this->m_recursion_depth--;
gdb_assert (this->m_recursion_depth >= 0);
}
|