aboutsummaryrefslogtreecommitdiff
path: root/gdb/doublest.c
blob: 2e0bdda884aa0295428eddbec60bf2767bf89e0b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
/* Floating point routines for GDB, the GNU debugger.

   Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
   1997, 1998, 1999, 2000, 2001, 2003, 2004, 2005, 2007, 2008, 2009
   Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

/* Support for converting target fp numbers into host DOUBLEST format.  */

/* XXX - This code should really be in libiberty/floatformat.c,
   however configuration issues with libiberty made this very
   difficult to do in the available time.  */

#include "defs.h"
#include "doublest.h"
#include "floatformat.h"
#include "gdb_assert.h"
#include "gdb_string.h"
#include "gdbtypes.h"
#include <math.h>		/* ldexp */

/* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
   going to bother with trying to muck around with whether it is defined in
   a system header, what we do if not, etc.  */
#define FLOATFORMAT_CHAR_BIT 8

/* The number of bytes that the largest floating-point type that we
   can convert to doublest will need.  */
#define FLOATFORMAT_LARGEST_BYTES 16

/* Extract a field which starts at START and is LEN bytes long.  DATA and
   TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER.  */
static unsigned long
get_field (const bfd_byte *data, enum floatformat_byteorders order,
	   unsigned int total_len, unsigned int start, unsigned int len)
{
  unsigned long result;
  unsigned int cur_byte;
  int cur_bitshift;

  /* Caller must byte-swap words before calling this routine.  */
  gdb_assert (order == floatformat_little || order == floatformat_big);

  /* Start at the least significant part of the field.  */
  if (order == floatformat_little)
    {
      /* We start counting from the other end (i.e, from the high bytes
	 rather than the low bytes).  As such, we need to be concerned
	 with what happens if bit 0 doesn't start on a byte boundary. 
	 I.e, we need to properly handle the case where total_len is
	 not evenly divisible by 8.  So we compute ``excess'' which
	 represents the number of bits from the end of our starting
	 byte needed to get to bit 0. */
      int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
      cur_byte = (total_len / FLOATFORMAT_CHAR_BIT) 
                 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
      cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT) 
                     - FLOATFORMAT_CHAR_BIT;
    }
  else
    {
      cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
      cur_bitshift =
	((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
    }
  if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
    result = *(data + cur_byte) >> (-cur_bitshift);
  else
    result = 0;
  cur_bitshift += FLOATFORMAT_CHAR_BIT;
  if (order == floatformat_little)
    ++cur_byte;
  else
    --cur_byte;

  /* Move towards the most significant part of the field.  */
  while (cur_bitshift < len)
    {
      result |= (unsigned long)*(data + cur_byte) << cur_bitshift;
      cur_bitshift += FLOATFORMAT_CHAR_BIT;
      switch (order)
	{
	case floatformat_little:
	  ++cur_byte;
	  break;
	case floatformat_big:
	  --cur_byte;
	  break;
	}
    }
  if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT)
    /* Mask out bits which are not part of the field */
    result &= ((1UL << len) - 1);
  return result;
}

/* Normalize the byte order of FROM into TO.  If no normalization is
   needed then FMT->byteorder is returned and TO is not changed;
   otherwise the format of the normalized form in TO is returned.  */

static enum floatformat_byteorders
floatformat_normalize_byteorder (const struct floatformat *fmt,
				 const void *from, void *to)
{
  const unsigned char *swapin;
  unsigned char *swapout;
  int words;
  
  if (fmt->byteorder == floatformat_little
      || fmt->byteorder == floatformat_big)
    return fmt->byteorder;

  words = fmt->totalsize / FLOATFORMAT_CHAR_BIT;
  words >>= 2;

  swapout = (unsigned char *)to;
  swapin = (const unsigned char *)from;

  if (fmt->byteorder == floatformat_vax)
    {
      while (words-- > 0)
	{
	  *swapout++ = swapin[1];
	  *swapout++ = swapin[0];
	  *swapout++ = swapin[3];
	  *swapout++ = swapin[2];
	  swapin += 4;
	}
      /* This may look weird, since VAX is little-endian, but it is
	 easier to translate to big-endian than to little-endian.  */
      return floatformat_big;
    }
  else
    {
      gdb_assert (fmt->byteorder == floatformat_littlebyte_bigword);

      while (words-- > 0)
	{
	  *swapout++ = swapin[3];
	  *swapout++ = swapin[2];
	  *swapout++ = swapin[1];
	  *swapout++ = swapin[0];
	  swapin += 4;
	}
      return floatformat_big;
    }
}
  
/* Convert from FMT to a DOUBLEST.
   FROM is the address of the extended float.
   Store the DOUBLEST in *TO.  */

static void
convert_floatformat_to_doublest (const struct floatformat *fmt,
				 const void *from,
				 DOUBLEST *to)
{
  unsigned char *ufrom = (unsigned char *) from;
  DOUBLEST dto;
  long exponent;
  unsigned long mant;
  unsigned int mant_bits, mant_off;
  int mant_bits_left;
  int special_exponent;		/* It's a NaN, denorm or zero */
  enum floatformat_byteorders order;
  unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
  enum float_kind kind;
  
  gdb_assert (fmt->totalsize
	      <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);

  /* For non-numbers, reuse libiberty's logic to find the correct
     format.  We do not lose any precision in this case by passing
     through a double.  */
  kind = floatformat_classify (fmt, from);
  if (kind == float_infinite || kind == float_nan)
    {
      double dto;
      floatformat_to_double (fmt, from, &dto);
      *to = (DOUBLEST) dto;
      return;
    }

  order = floatformat_normalize_byteorder (fmt, ufrom, newfrom);

  if (order != fmt->byteorder)
    ufrom = newfrom;

  if (fmt->split_half)
    {
      DOUBLEST dtop, dbot;
      floatformat_to_doublest (fmt->split_half, ufrom, &dtop);
      /* Preserve the sign of 0, which is the sign of the top
	 half.  */
      if (dtop == 0.0)
	{
	  *to = dtop;
	  return;
	}
      floatformat_to_doublest (fmt->split_half,
			     ufrom + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2,
			     &dbot);
      *to = dtop + dbot;
      return;
    }

  exponent = get_field (ufrom, order, fmt->totalsize, fmt->exp_start,
			fmt->exp_len);
  /* Note that if exponent indicates a NaN, we can't really do anything useful
     (not knowing if the host has NaN's, or how to build one).  So it will
     end up as an infinity or something close; that is OK.  */

  mant_bits_left = fmt->man_len;
  mant_off = fmt->man_start;
  dto = 0.0;

  special_exponent = exponent == 0 || exponent == fmt->exp_nan;

  /* Don't bias NaNs. Use minimum exponent for denorms. For simplicity,
     we don't check for zero as the exponent doesn't matter.  Note the cast
     to int; exp_bias is unsigned, so it's important to make sure the
     operation is done in signed arithmetic.  */
  if (!special_exponent)
    exponent -= fmt->exp_bias;
  else if (exponent == 0)
    exponent = 1 - fmt->exp_bias;

  /* Build the result algebraically.  Might go infinite, underflow, etc;
     who cares. */

/* If this format uses a hidden bit, explicitly add it in now.  Otherwise,
   increment the exponent by one to account for the integer bit.  */

  if (!special_exponent)
    {
      if (fmt->intbit == floatformat_intbit_no)
	dto = ldexp (1.0, exponent);
      else
	exponent++;
    }

  while (mant_bits_left > 0)
    {
      mant_bits = min (mant_bits_left, 32);

      mant = get_field (ufrom, order, fmt->totalsize, mant_off, mant_bits);

      dto += ldexp ((double) mant, exponent - mant_bits);
      exponent -= mant_bits;
      mant_off += mant_bits;
      mant_bits_left -= mant_bits;
    }

  /* Negate it if negative.  */
  if (get_field (ufrom, order, fmt->totalsize, fmt->sign_start, 1))
    dto = -dto;
  *to = dto;
}

static void put_field (unsigned char *, enum floatformat_byteorders,
		       unsigned int,
		       unsigned int, unsigned int, unsigned long);

/* Set a field which starts at START and is LEN bytes long.  DATA and
   TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER.  */
static void
put_field (unsigned char *data, enum floatformat_byteorders order,
	   unsigned int total_len, unsigned int start, unsigned int len,
	   unsigned long stuff_to_put)
{
  unsigned int cur_byte;
  int cur_bitshift;

  /* Caller must byte-swap words before calling this routine.  */
  gdb_assert (order == floatformat_little || order == floatformat_big);

  /* Start at the least significant part of the field.  */
  if (order == floatformat_little)
    {
      int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
      cur_byte = (total_len / FLOATFORMAT_CHAR_BIT) 
                 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
      cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT) 
                     - FLOATFORMAT_CHAR_BIT;
    }
  else
    {
      cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
      cur_bitshift =
	((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
    }
  if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
    {
      *(data + cur_byte) &=
	~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1)
	  << (-cur_bitshift));
      *(data + cur_byte) |=
	(stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
    }
  cur_bitshift += FLOATFORMAT_CHAR_BIT;
  if (order == floatformat_little)
    ++cur_byte;
  else
    --cur_byte;

  /* Move towards the most significant part of the field.  */
  while (cur_bitshift < len)
    {
      if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
	{
	  /* This is the last byte.  */
	  *(data + cur_byte) &=
	    ~((1 << (len - cur_bitshift)) - 1);
	  *(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
	}
      else
	*(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
			      & ((1 << FLOATFORMAT_CHAR_BIT) - 1));
      cur_bitshift += FLOATFORMAT_CHAR_BIT;
      if (order == floatformat_little)
	++cur_byte;
      else
	--cur_byte;
    }
}

#ifdef HAVE_LONG_DOUBLE
/* Return the fractional part of VALUE, and put the exponent of VALUE in *EPTR.
   The range of the returned value is >= 0.5 and < 1.0.  This is equivalent to
   frexp, but operates on the long double data type.  */

static long double ldfrexp (long double value, int *eptr);

static long double
ldfrexp (long double value, int *eptr)
{
  long double tmp;
  int exp;

  /* Unfortunately, there are no portable functions for extracting the exponent
     of a long double, so we have to do it iteratively by multiplying or dividing
     by two until the fraction is between 0.5 and 1.0.  */

  if (value < 0.0l)
    value = -value;

  tmp = 1.0l;
  exp = 0;

  if (value >= tmp)		/* Value >= 1.0 */
    while (value >= tmp)
      {
	tmp *= 2.0l;
	exp++;
      }
  else if (value != 0.0l)	/* Value < 1.0  and > 0.0 */
    {
      while (value < tmp)
	{
	  tmp /= 2.0l;
	  exp--;
	}
      tmp *= 2.0l;
      exp++;
    }

  *eptr = exp;
  return value / tmp;
}
#endif /* HAVE_LONG_DOUBLE */


/* The converse: convert the DOUBLEST *FROM to an extended float and
   store where TO points.  Neither FROM nor TO have any alignment
   restrictions.  */

static void
convert_doublest_to_floatformat (CONST struct floatformat *fmt,
				 const DOUBLEST *from, void *to)
{
  DOUBLEST dfrom;
  int exponent;
  DOUBLEST mant;
  unsigned int mant_bits, mant_off;
  int mant_bits_left;
  unsigned char *uto = (unsigned char *) to;
  enum floatformat_byteorders order = fmt->byteorder;
  unsigned char newto[FLOATFORMAT_LARGEST_BYTES];

  if (order != floatformat_little)
    order = floatformat_big;

  if (order != fmt->byteorder)
    uto = newto;

  memcpy (&dfrom, from, sizeof (dfrom));
  memset (uto, 0, (fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1) 
                    / FLOATFORMAT_CHAR_BIT);

  if (fmt->split_half)
    {
      /* Use static volatile to ensure that any excess precision is
	 removed via storing in memory, and so the top half really is
	 the result of converting to double.  */
      static volatile double dtop, dbot;
      DOUBLEST dtopnv, dbotnv;
      dtop = (double) dfrom;
      /* If the rounded top half is Inf, the bottom must be 0 not NaN
	 or Inf.  */
      if (dtop + dtop == dtop && dtop != 0.0)
	dbot = 0.0;
      else
	dbot = (double) (dfrom - (DOUBLEST) dtop);
      dtopnv = dtop;
      dbotnv = dbot;
      floatformat_from_doublest (fmt->split_half, &dtopnv, uto);
      floatformat_from_doublest (fmt->split_half, &dbotnv,
			       (uto
				+ fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2));
      return;
    }

  if (dfrom == 0)
    return;			/* Result is zero */
  if (dfrom != dfrom)		/* Result is NaN */
    {
      /* From is NaN */
      put_field (uto, order, fmt->totalsize, fmt->exp_start,
		 fmt->exp_len, fmt->exp_nan);
      /* Be sure it's not infinity, but NaN value is irrel */
      put_field (uto, order, fmt->totalsize, fmt->man_start,
		 32, 1);
      goto finalize_byteorder;
    }

  /* If negative, set the sign bit.  */
  if (dfrom < 0)
    {
      put_field (uto, order, fmt->totalsize, fmt->sign_start, 1, 1);
      dfrom = -dfrom;
    }

  if (dfrom + dfrom == dfrom && dfrom != 0.0)	/* Result is Infinity */
    {
      /* Infinity exponent is same as NaN's.  */
      put_field (uto, order, fmt->totalsize, fmt->exp_start,
		 fmt->exp_len, fmt->exp_nan);
      /* Infinity mantissa is all zeroes.  */
      put_field (uto, order, fmt->totalsize, fmt->man_start,
		 fmt->man_len, 0);
      goto finalize_byteorder;
    }

#ifdef HAVE_LONG_DOUBLE
  mant = ldfrexp (dfrom, &exponent);
#else
  mant = frexp (dfrom, &exponent);
#endif

  put_field (uto, order, fmt->totalsize, fmt->exp_start, fmt->exp_len,
	     exponent + fmt->exp_bias - 1);

  mant_bits_left = fmt->man_len;
  mant_off = fmt->man_start;
  while (mant_bits_left > 0)
    {
      unsigned long mant_long;
      mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;

      mant *= 4294967296.0;
      mant_long = ((unsigned long) mant) & 0xffffffffL;
      mant -= mant_long;

      /* If the integer bit is implicit, then we need to discard it.
         If we are discarding a zero, we should be (but are not) creating
         a denormalized number which means adjusting the exponent
         (I think).  */
      if (mant_bits_left == fmt->man_len
	  && fmt->intbit == floatformat_intbit_no)
	{
	  mant_long <<= 1;
	  mant_long &= 0xffffffffL;
          /* If we are processing the top 32 mantissa bits of a doublest
             so as to convert to a float value with implied integer bit,
             we will only be putting 31 of those 32 bits into the
             final value due to the discarding of the top bit.  In the 
             case of a small float value where the number of mantissa 
             bits is less than 32, discarding the top bit does not alter
             the number of bits we will be adding to the result.  */
          if (mant_bits == 32)
            mant_bits -= 1;
	}

      if (mant_bits < 32)
	{
	  /* The bits we want are in the most significant MANT_BITS bits of
	     mant_long.  Move them to the least significant.  */
	  mant_long >>= 32 - mant_bits;
	}

      put_field (uto, order, fmt->totalsize,
		 mant_off, mant_bits, mant_long);
      mant_off += mant_bits;
      mant_bits_left -= mant_bits;
    }

 finalize_byteorder:
  /* Do we need to byte-swap the words in the result?  */
  if (order != fmt->byteorder)
    floatformat_normalize_byteorder (fmt, newto, to);
}

/* Check if VAL (which is assumed to be a floating point number whose
   format is described by FMT) is negative.  */

int
floatformat_is_negative (const struct floatformat *fmt,
			 const bfd_byte *uval)
{
  enum floatformat_byteorders order;
  unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
  
  gdb_assert (fmt != NULL);
  gdb_assert (fmt->totalsize
	      <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);

  order = floatformat_normalize_byteorder (fmt, uval, newfrom);

  if (order != fmt->byteorder)
    uval = newfrom;

  return get_field (uval, order, fmt->totalsize, fmt->sign_start, 1);
}

/* Check if VAL is "not a number" (NaN) for FMT.  */

enum float_kind
floatformat_classify (const struct floatformat *fmt,
		      const bfd_byte *uval)
{
  long exponent;
  unsigned long mant;
  unsigned int mant_bits, mant_off;
  int mant_bits_left;
  enum floatformat_byteorders order;
  unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
  int mant_zero;
  
  gdb_assert (fmt != NULL);
  gdb_assert (fmt->totalsize
	      <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);

  order = floatformat_normalize_byteorder (fmt, uval, newfrom);

  if (order != fmt->byteorder)
    uval = newfrom;

  exponent = get_field (uval, order, fmt->totalsize, fmt->exp_start,
			fmt->exp_len);

  mant_bits_left = fmt->man_len;
  mant_off = fmt->man_start;

  mant_zero = 1;
  while (mant_bits_left > 0)
    {
      mant_bits = min (mant_bits_left, 32);

      mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits);

      /* If there is an explicit integer bit, mask it off.  */
      if (mant_off == fmt->man_start
	  && fmt->intbit == floatformat_intbit_yes)
	mant &= ~(1 << (mant_bits - 1));

      if (mant)
	{
	  mant_zero = 0;
	  break;
	}

      mant_off += mant_bits;
      mant_bits_left -= mant_bits;
    }

  /* If exp_nan is not set, assume that inf, NaN, and subnormals are not
     supported.  */
  if (! fmt->exp_nan)
    {
      if (mant_zero)
	return float_zero;
      else
	return float_normal;
    }

  if (exponent == 0 && !mant_zero)
    return float_subnormal;

  if (exponent == fmt->exp_nan)
    {
      if (mant_zero)
	return float_infinite;
      else
	return float_nan;
    }

  if (mant_zero)
    return float_zero;

  return float_normal;
}

/* Convert the mantissa of VAL (which is assumed to be a floating
   point number whose format is described by FMT) into a hexadecimal
   and store it in a static string.  Return a pointer to that string.  */

const char *
floatformat_mantissa (const struct floatformat *fmt,
		      const bfd_byte *val)
{
  unsigned char *uval = (unsigned char *) val;
  unsigned long mant;
  unsigned int mant_bits, mant_off;
  int mant_bits_left;
  static char res[50];
  char buf[9];
  int len;
  enum floatformat_byteorders order;
  unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
  
  gdb_assert (fmt != NULL);
  gdb_assert (fmt->totalsize
	      <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);

  order = floatformat_normalize_byteorder (fmt, uval, newfrom);

  if (order != fmt->byteorder)
    uval = newfrom;

  if (! fmt->exp_nan)
    return 0;

  /* Make sure we have enough room to store the mantissa.  */
  gdb_assert (sizeof res > ((fmt->man_len + 7) / 8) * 2);

  mant_off = fmt->man_start;
  mant_bits_left = fmt->man_len;
  mant_bits = (mant_bits_left % 32) > 0 ? mant_bits_left % 32 : 32;

  mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits);

  len = xsnprintf (res, sizeof res, "%lx", mant);

  mant_off += mant_bits;
  mant_bits_left -= mant_bits;

  while (mant_bits_left > 0)
    {
      mant = get_field (uval, order, fmt->totalsize, mant_off, 32);

      xsnprintf (buf, sizeof buf, "%08lx", mant);
      gdb_assert (len + strlen (buf) <= sizeof res);
      strcat (res, buf);

      mant_off += 32;
      mant_bits_left -= 32;
    }

  return res;
}


/* Convert TO/FROM target to the hosts DOUBLEST floating-point format.

   If the host and target formats agree, we just copy the raw data
   into the appropriate type of variable and return, letting the host
   increase precision as necessary.  Otherwise, we call the conversion
   routine and let it do the dirty work.  */

static const struct floatformat *host_float_format = GDB_HOST_FLOAT_FORMAT;
static const struct floatformat *host_double_format = GDB_HOST_DOUBLE_FORMAT;
static const struct floatformat *host_long_double_format = GDB_HOST_LONG_DOUBLE_FORMAT;

void
floatformat_to_doublest (const struct floatformat *fmt,
			 const void *in, DOUBLEST *out)
{
  gdb_assert (fmt != NULL);
  if (fmt == host_float_format)
    {
      float val;
      memcpy (&val, in, sizeof (val));
      *out = val;
    }
  else if (fmt == host_double_format)
    {
      double val;
      memcpy (&val, in, sizeof (val));
      *out = val;
    }
  else if (fmt == host_long_double_format)
    {
      long double val;
      memcpy (&val, in, sizeof (val));
      *out = val;
    }
  else
    convert_floatformat_to_doublest (fmt, in, out);
}

void
floatformat_from_doublest (const struct floatformat *fmt,
			   const DOUBLEST *in, void *out)
{
  gdb_assert (fmt != NULL);
  if (fmt == host_float_format)
    {
      float val = *in;
      memcpy (out, &val, sizeof (val));
    }
  else if (fmt == host_double_format)
    {
      double val = *in;
      memcpy (out, &val, sizeof (val));
    }
  else if (fmt == host_long_double_format)
    {
      long double val = *in;
      memcpy (out, &val, sizeof (val));
    }
  else
    convert_doublest_to_floatformat (fmt, in, out);
}


/* Return a floating-point format for a floating-point variable of
   length LEN.  If no suitable floating-point format is found, an
   error is thrown.

   We need this functionality since information about the
   floating-point format of a type is not always available to GDB; the
   debug information typically only tells us the size of a
   floating-point type.

   FIXME: kettenis/2001-10-28: In many places, particularly in
   target-dependent code, the format of floating-point types is known,
   but not passed on by GDB.  This should be fixed.  */

static const struct floatformat *
floatformat_from_length (struct gdbarch *gdbarch, int len)
{
  const struct floatformat *format;
  if (len * TARGET_CHAR_BIT == gdbarch_float_bit (gdbarch))
    format = gdbarch_float_format (gdbarch)
	       [gdbarch_byte_order (gdbarch)];
  else if (len * TARGET_CHAR_BIT == gdbarch_double_bit (gdbarch))
    format = gdbarch_double_format (gdbarch)
	       [gdbarch_byte_order (gdbarch)];
  else if (len * TARGET_CHAR_BIT == gdbarch_long_double_bit (gdbarch))
    format = gdbarch_long_double_format (gdbarch)
	       [gdbarch_byte_order (gdbarch)];
  /* On i386 the 'long double' type takes 96 bits,
     while the real number of used bits is only 80,
     both in processor and in memory.  
     The code below accepts the real bit size.  */ 
  else if ((gdbarch_long_double_format (gdbarch) != NULL)
	   && (len * TARGET_CHAR_BIT ==
               gdbarch_long_double_format (gdbarch)[0]->totalsize))
    format = gdbarch_long_double_format (gdbarch)
	       [gdbarch_byte_order (gdbarch)];
  else
    format = NULL;
  if (format == NULL)
    error (_("Unrecognized %d-bit floating-point type."),
	   len * TARGET_CHAR_BIT);
  return format;
}

const struct floatformat *
floatformat_from_type (const struct type *type)
{
  struct gdbarch *gdbarch = get_type_arch (type);
  gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
  if (TYPE_FLOATFORMAT (type) != NULL)
    return TYPE_FLOATFORMAT (type)[gdbarch_byte_order (gdbarch)];
  else
    return floatformat_from_length (gdbarch, TYPE_LENGTH (type));
}

/* Extract a floating-point number of type TYPE from a target-order
   byte-stream at ADDR.  Returns the value as type DOUBLEST.  */

DOUBLEST
extract_typed_floating (const void *addr, const struct type *type)
{
  const struct floatformat *fmt = floatformat_from_type (type);
  DOUBLEST retval;

  floatformat_to_doublest (fmt, addr, &retval);
  return retval;
}

/* Store VAL as a floating-point number of type TYPE to a target-order
   byte-stream at ADDR.  */

void
store_typed_floating (void *addr, const struct type *type, DOUBLEST val)
{
  const struct floatformat *fmt = floatformat_from_type (type);

  /* FIXME: kettenis/2001-10-28: It is debatable whether we should
     zero out any remaining bytes in the target buffer when TYPE is
     longer than the actual underlying floating-point format.  Perhaps
     we should store a fixed bitpattern in those remaining bytes,
     instead of zero, or perhaps we shouldn't touch those remaining
     bytes at all.

     NOTE: cagney/2001-10-28: With the way things currently work, it
     isn't a good idea to leave the end bits undefined.  This is
     because GDB writes out the entire sizeof(<floating>) bits of the
     floating-point type even though the value might only be stored
     in, and the target processor may only refer to, the first N <
     TYPE_LENGTH (type) bits.  If the end of the buffer wasn't
     initialized, GDB would write undefined data to the target.  An
     errant program, refering to that undefined data, would then
     become non-deterministic.

     See also the function convert_typed_floating below.  */
  memset (addr, 0, TYPE_LENGTH (type));

  floatformat_from_doublest (fmt, &val, addr);
}

/* Convert a floating-point number of type FROM_TYPE from a
   target-order byte-stream at FROM to a floating-point number of type
   TO_TYPE, and store it to a target-order byte-stream at TO.  */

void
convert_typed_floating (const void *from, const struct type *from_type,
                        void *to, const struct type *to_type)
{
  const struct floatformat *from_fmt = floatformat_from_type (from_type);
  const struct floatformat *to_fmt = floatformat_from_type (to_type);

  if (from_fmt == NULL || to_fmt == NULL)
    {
      /* If we don't know the floating-point format of FROM_TYPE or
         TO_TYPE, there's not much we can do.  We might make the
         assumption that if the length of FROM_TYPE and TO_TYPE match,
         their floating-point format would match too, but that
         assumption might be wrong on targets that support
         floating-point types that only differ in endianness for
         example.  So we warn instead, and zero out the target buffer.  */
      warning (_("Can't convert floating-point number to desired type."));
      memset (to, 0, TYPE_LENGTH (to_type));
    }
  else if (from_fmt == to_fmt)
    {
      /* We're in business.  The floating-point format of FROM_TYPE
         and TO_TYPE match.  However, even though the floating-point
         format matches, the length of the type might still be
         different.  Make sure we don't overrun any buffers.  See
         comment in store_typed_floating for a discussion about
         zeroing out remaining bytes in the target buffer.  */
      memset (to, 0, TYPE_LENGTH (to_type));
      memcpy (to, from, min (TYPE_LENGTH (from_type), TYPE_LENGTH (to_type)));
    }
  else
    {
      /* The floating-point types don't match.  The best we can do
         (apart from simulating the target FPU) is converting to the
         widest floating-point type supported by the host, and then
         again to the desired type.  */
      DOUBLEST d;

      floatformat_to_doublest (from_fmt, from, &d);
      floatformat_from_doublest (to_fmt, &d, to);
    }
}

const struct floatformat *floatformat_ieee_single[BFD_ENDIAN_UNKNOWN];
const struct floatformat *floatformat_ieee_double[BFD_ENDIAN_UNKNOWN];
const struct floatformat *floatformat_ieee_quad[BFD_ENDIAN_UNKNOWN];
const struct floatformat *floatformat_arm_ext[BFD_ENDIAN_UNKNOWN];
const struct floatformat *floatformat_ia64_spill[BFD_ENDIAN_UNKNOWN];

extern void _initialize_doublest (void);

extern void
_initialize_doublest (void)
{
  floatformat_ieee_single[BFD_ENDIAN_LITTLE] = &floatformat_ieee_single_little;
  floatformat_ieee_single[BFD_ENDIAN_BIG] = &floatformat_ieee_single_big;
  floatformat_ieee_double[BFD_ENDIAN_LITTLE] = &floatformat_ieee_double_little;
  floatformat_ieee_double[BFD_ENDIAN_BIG] = &floatformat_ieee_double_big;
  floatformat_arm_ext[BFD_ENDIAN_LITTLE] = &floatformat_arm_ext_littlebyte_bigword;
  floatformat_arm_ext[BFD_ENDIAN_BIG] = &floatformat_arm_ext_big;
  floatformat_ia64_spill[BFD_ENDIAN_LITTLE] = &floatformat_ia64_spill_little;
  floatformat_ia64_spill[BFD_ENDIAN_BIG] = &floatformat_ia64_spill_big;
  floatformat_ieee_quad[BFD_ENDIAN_LITTLE] = &floatformat_ia64_quad_little;
  floatformat_ieee_quad[BFD_ENDIAN_BIG] = &floatformat_ia64_quad_big;
}