aboutsummaryrefslogtreecommitdiff
path: root/gdb/ada-exp.y
blob: 0126db5f2bee5c781488c697b4d9b1c66e2c0354 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
/* YACC parser for Ada expressions, for GDB.
   Copyright (C) 1986-2024 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

/* Parse an Ada expression from text in a string,
   and return the result as a  struct expression  pointer.
   That structure contains arithmetic operations in reverse polish,
   with constants represented by operations that are followed by special data.
   See expression.h for the details of the format.
   What is important here is that it can be built up sequentially
   during the process of parsing; the lower levels of the tree always
   come first in the result.

   malloc's and realloc's in this file are transformed to
   xmalloc and xrealloc respectively by the same sed command in the
   makefile that remaps any other malloc/realloc inserted by the parser
   generator.  Doing this with #defines and trying to control the interaction
   with include files (<malloc.h> and <stdlib.h> for example) just became
   too messy, particularly when such includes can be inserted at random
   times by the parser generator.  */

%{

#include <ctype.h>
#include <unordered_map>
#include "expression.h"
#include "value.h"
#include "parser-defs.h"
#include "language.h"
#include "ada-lang.h"
#include "frame.h"
#include "block.h"
#include "ada-exp.h"

#define parse_type(ps) builtin_type (ps->gdbarch ())

/* Remap normal yacc parser interface names (yyparse, yylex, yyerror,
   etc).  */
#define GDB_YY_REMAP_PREFIX ada_
#include "yy-remap.h"

struct name_info {
  struct symbol *sym;
  struct minimal_symbol *msym;
  const struct block *block;
  struct stoken stoken;
};

/* The state of the parser, used internally when we are parsing the
   expression.  */

static struct parser_state *pstate = NULL;

using namespace expr;

/* A convenience typedef.  */
typedef std::unique_ptr<ada_assign_operation> ada_assign_up;

/* Data that must be held for the duration of a parse.  */

struct ada_parse_state
{
  explicit ada_parse_state (const char *expr)
    : m_original_expr (expr)
  {
  }

  std::string find_completion_bounds ();

  const gdb_mpz *push_integer (gdb_mpz &&val)
  {
    auto &result = m_int_storage.emplace_back (new gdb_mpz (std::move (val)));
    return result.get ();
  }

  /* The components being constructed during this parse.  */
  std::vector<ada_component_up> components;

  /* The associations being constructed during this parse.  */
  std::vector<ada_association_up> associations;

  /* The stack of currently active assignment expressions.  This is used
     to implement '@', the target name symbol.  */
  std::vector<ada_assign_up> assignments;

  /* Track currently active iterated assignment names.  */
  std::unordered_map<std::string, std::vector<ada_index_var_operation *>>
       iterated_associations;

  auto_obstack temp_space;

  /* Depth of parentheses, used by the lexer.  */
  int paren_depth = 0;

  /* When completing, we'll return a special character at the end of the
     input, to signal the completion position to the lexer.  This is
     done because flex does not have a generally useful way to detect
     EOF in a pattern.  This variable records whether the special
     character has been emitted.  */
  bool returned_complete = false;

private:

  /* We don't have a good way to manage non-POD data in Yacc, so store
     values here.  The storage here is only valid for the duration of
     the parse.  */
  std::vector<std::unique_ptr<gdb_mpz>> m_int_storage;

  /* The original expression string.  */
  const char *m_original_expr;
};

/* The current Ada parser object.  */

static ada_parse_state *ada_parser;

int yyparse (void);

static int yylex (void);

static void yyerror (const char *);

static void write_int (struct parser_state *, LONGEST, struct type *);

static void write_object_renaming (struct parser_state *,
				   const struct block *, const char *, int,
				   const char *, int);

static struct type* write_var_or_type (struct parser_state *,
				       const struct block *, struct stoken);
static struct type *write_var_or_type_completion (struct parser_state *,
						  const struct block *,
						  struct stoken);

static void write_name_assoc (struct parser_state *, struct stoken);

static const struct block *block_lookup (const struct block *, const char *);

static void write_ambiguous_var (struct parser_state *,
				 const struct block *, const char *, int);

static struct type *type_for_char (struct parser_state *, ULONGEST);

static struct type *type_system_address (struct parser_state *);

/* Handle Ada type resolution for OP.  DEPROCEDURE_P and CONTEXT_TYPE
   are passed to the resolve method, if called.  */
static operation_up
resolve (operation_up &&op, bool deprocedure_p, struct type *context_type)
{
  operation_up result = std::move (op);
  ada_resolvable *res = dynamic_cast<ada_resolvable *> (result.get ());
  if (res != nullptr)
    return res->replace (std::move (result),
			 pstate->expout.get (),
			 deprocedure_p,
			 pstate->parse_completion,
			 pstate->block_tracker,
			 context_type);
  return result;
}

/* Like parser_state::pop, but handles Ada type resolution.
   DEPROCEDURE_P and CONTEXT_TYPE are passed to the resolve method, if
   called.  */
static operation_up
ada_pop (bool deprocedure_p = true, struct type *context_type = nullptr)
{
  /* Of course it's ok to call parser_state::pop here... */
  return resolve (pstate->pop (), deprocedure_p, context_type);
}

/* Like parser_state::wrap, but use ada_pop to pop the value.  */
template<typename T>
void
ada_wrap ()
{
  operation_up arg = ada_pop ();
  pstate->push_new<T> (std::move (arg));
}

/* Create and push an address-of operation, as appropriate for Ada.
   If TYPE is not NULL, the resulting operation will be wrapped in a
   cast to TYPE.  */
static void
ada_addrof (struct type *type = nullptr)
{
  operation_up arg = ada_pop (false);
  operation_up addr = make_operation<unop_addr_operation> (std::move (arg));
  operation_up wrapped
    = make_operation<ada_wrapped_operation> (std::move (addr));
  if (type != nullptr)
    wrapped = make_operation<unop_cast_operation> (std::move (wrapped), type);
  pstate->push (std::move (wrapped));
}

/* Handle operator overloading.  Either returns a function all
   operation wrapping the arguments, or it returns null, leaving the
   caller to construct the appropriate operation.  If RHS is null, a
   unary operator is assumed.  */
static operation_up
maybe_overload (enum exp_opcode op, operation_up &lhs, operation_up &rhs)
{
  struct value *args[2];

  int nargs = 1;
  args[0] = lhs->evaluate (nullptr, pstate->expout.get (),
			   EVAL_AVOID_SIDE_EFFECTS);
  if (rhs == nullptr)
    args[1] = nullptr;
  else
    {
      args[1] = rhs->evaluate (nullptr, pstate->expout.get (),
			       EVAL_AVOID_SIDE_EFFECTS);
      ++nargs;
    }

  block_symbol fn = ada_find_operator_symbol (op, pstate->parse_completion,
					      nargs, args);
  if (fn.symbol == nullptr)
    return {};

  if (symbol_read_needs_frame (fn.symbol))
    pstate->block_tracker->update (fn.block, INNERMOST_BLOCK_FOR_SYMBOLS);
  operation_up callee = make_operation<ada_var_value_operation> (fn);

  std::vector<operation_up> argvec;
  argvec.push_back (std::move (lhs));
  if (rhs != nullptr)
    argvec.push_back (std::move (rhs));
  return make_operation<ada_funcall_operation> (std::move (callee),
						std::move (argvec));
}

/* Like parser_state::wrap, but use ada_pop to pop the value, and
   handle unary overloading.  */
template<typename T>
void
ada_wrap_overload (enum exp_opcode op)
{
  operation_up arg = ada_pop ();
  operation_up empty;

  operation_up call = maybe_overload (op, arg, empty);
  if (call == nullptr)
    call = make_operation<T> (std::move (arg));
  pstate->push (std::move (call));
}

/* A variant of parser_state::wrap2 that uses ada_pop to pop both
   operands, and then pushes a new Ada-wrapped operation of the
   template type T.  */
template<typename T>
void
ada_un_wrap2 (enum exp_opcode op)
{
  operation_up rhs = ada_pop ();
  operation_up lhs = ada_pop ();

  operation_up wrapped = maybe_overload (op, lhs, rhs);
  if (wrapped == nullptr)
    {
      wrapped = make_operation<T> (std::move (lhs), std::move (rhs));
      wrapped = make_operation<ada_wrapped_operation> (std::move (wrapped));
    }
  pstate->push (std::move (wrapped));
}

/* A variant of parser_state::wrap2 that uses ada_pop to pop both
   operands.  Unlike ada_un_wrap2, ada_wrapped_operation is not
   used.  */
template<typename T>
void
ada_wrap2 (enum exp_opcode op)
{
  operation_up rhs = ada_pop ();
  operation_up lhs = ada_pop ();
  operation_up call = maybe_overload (op, lhs, rhs);
  if (call == nullptr)
    call = make_operation<T> (std::move (lhs), std::move (rhs));
  pstate->push (std::move (call));
}

/* A variant of parser_state::wrap2 that uses ada_pop to pop both
   operands.  OP is also passed to the constructor of the new binary
   operation.  */
template<typename T>
void
ada_wrap_op (enum exp_opcode op)
{
  operation_up rhs = ada_pop ();
  operation_up lhs = ada_pop ();
  operation_up call = maybe_overload (op, lhs, rhs);
  if (call == nullptr)
    call = make_operation<T> (op, std::move (lhs), std::move (rhs));
  pstate->push (std::move (call));
}

/* Pop three operands using ada_pop, then construct a new ternary
   operation of type T and push it.  */
template<typename T>
void
ada_wrap3 ()
{
  operation_up rhs = ada_pop ();
  operation_up mid = ada_pop ();
  operation_up lhs = ada_pop ();
  pstate->push_new<T> (std::move (lhs), std::move (mid), std::move (rhs));
}

/* Pop NARGS operands, then a callee operand, and use these to
   construct and push a new Ada function call operation.  */
static void
ada_funcall (int nargs)
{
  /* We use the ordinary pop here, because we're going to do
     resolution in a separate step, in order to handle array
     indices.  */
  std::vector<operation_up> args = pstate->pop_vector (nargs);
  /* Call parser_state::pop here, because we don't want to
     function-convert the callee slot of a call we're already
     constructing.  */
  operation_up callee = pstate->pop ();

  ada_var_value_operation *vvo
    = dynamic_cast<ada_var_value_operation *> (callee.get ());
  int array_arity = 0;
  struct type *callee_t = nullptr;
  if (vvo == nullptr
      || vvo->get_symbol ()->domain () != UNDEF_DOMAIN)
    {
      struct value *callee_v = callee->evaluate (nullptr,
						 pstate->expout.get (),
						 EVAL_AVOID_SIDE_EFFECTS);
      callee_t = ada_check_typedef (callee_v->type ());
      array_arity = ada_array_arity (callee_t);
    }

  for (int i = 0; i < nargs; ++i)
    {
      struct type *subtype = nullptr;
      if (i < array_arity)
	subtype = ada_index_type (callee_t, i + 1, "array type");
      args[i] = resolve (std::move (args[i]), true, subtype);
    }

  std::unique_ptr<ada_funcall_operation> funcall
    (new ada_funcall_operation (std::move (callee), std::move (args)));
  funcall->resolve (pstate->expout.get (), true, pstate->parse_completion,
		    pstate->block_tracker, nullptr);
  pstate->push (std::move (funcall));
}

/* Create a new ada_component_up of the indicated type and arguments,
   and push it on the global 'components' vector.  */
template<typename T, typename... Arg>
void
push_component (Arg... args)
{
  ada_parser->components.emplace_back (new T (std::forward<Arg> (args)...));
}

/* Examine the final element of the 'components' vector, and return it
   as a pointer to an ada_choices_component.  The caller is
   responsible for ensuring that the final element is in fact an
   ada_choices_component.  */
static ada_choices_component *
choice_component ()
{
  ada_component *last = ada_parser->components.back ().get ();
  return gdb::checked_static_cast<ada_choices_component *> (last);
}

/* Pop the most recent component from the global stack, and return
   it.  */
static ada_component_up
pop_component ()
{
  ada_component_up result = std::move (ada_parser->components.back ());
  ada_parser->components.pop_back ();
  return result;
}

/* Pop the N most recent components from the global stack, and return
   them in a vector.  */
static std::vector<ada_component_up>
pop_components (int n)
{
  std::vector<ada_component_up> result (n);
  for (int i = 1; i <= n; ++i)
    result[n - i] = pop_component ();
  return result;
}

/* Create a new ada_association_up of the indicated type and
   arguments, and push it on the global 'associations' vector.  */
template<typename T, typename... Arg>
void
push_association (Arg... args)
{
  ada_parser->associations.emplace_back (new T (std::forward<Arg> (args)...));
}

/* Pop the most recent association from the global stack, and return
   it.  */
static ada_association_up
pop_association ()
{
  ada_association_up result = std::move (ada_parser->associations.back ());
  ada_parser->associations.pop_back ();
  return result;
}

/* Pop the N most recent associations from the global stack, and
   return them in a vector.  */
static std::vector<ada_association_up>
pop_associations (int n)
{
  std::vector<ada_association_up> result (n);
  for (int i = 1; i <= n; ++i)
    result[n - i] = pop_association ();
  return result;
}

/* Expression completer for attributes.  */
struct ada_tick_completer : public expr_completion_base
{
  explicit ada_tick_completer (std::string &&name)
    : m_name (std::move (name))
  {
  }

  bool complete (struct expression *exp,
		 completion_tracker &tracker) override;

private:

  std::string m_name;
};

/* Make a new ada_tick_completer and wrap it in a unique pointer.  */
static std::unique_ptr<expr_completion_base>
make_tick_completer (struct stoken tok)
{
  return (std::unique_ptr<expr_completion_base>
	  (new ada_tick_completer (std::string (tok.ptr, tok.length))));
}

%}

%union
  {
    LONGEST lval;
    struct {
      const gdb_mpz *val;
      struct type *type;
    } typed_val;
    struct {
      LONGEST val;
      struct type *type;
    } typed_char;
    struct {
      gdb_byte val[16];
      struct type *type;
    } typed_val_float;
    struct type *tval;
    struct stoken sval;
    const struct block *bval;
    struct internalvar *ivar;
  }

%type <lval> positional_list component_groups component_associations
%type <lval> aggregate_component_list 
%type <tval> var_or_type type_prefix opt_type_prefix

%token <typed_val> INT NULL_PTR
%token <typed_char> CHARLIT
%token <typed_val_float> FLOAT
%token TRUEKEYWORD FALSEKEYWORD
%token WITH DELTA
%token COLONCOLON
%token <sval> STRING NAME DOT_ID TICK_COMPLETE DOT_COMPLETE NAME_COMPLETE
%type <bval> block
%type <lval> arglist tick_arglist

/* Special type cases, put in to allow the parser to distinguish different
   legal basetypes.  */
%token <sval> DOLLAR_VARIABLE

%nonassoc ASSIGN
%left _AND_ OR XOR THEN ELSE
%left '=' NOTEQUAL '<' '>' LEQ GEQ IN DOTDOT
%left '@'
%left '+' '-' '&'
%left UNARY
%left '*' '/' MOD REM
%right STARSTAR ABS NOT

/* Artificial token to give NAME => ... and NAME | priority over reducing 
   NAME to <primary> and to give <primary>' priority over reducing <primary>
   to <simple_exp>. */
%nonassoc VAR

%nonassoc ARROW '|'

%right TICK_ACCESS TICK_ADDRESS TICK_FIRST TICK_LAST TICK_LENGTH
%right TICK_MAX TICK_MIN TICK_MODULUS
%right TICK_POS TICK_RANGE TICK_SIZE TICK_TAG TICK_VAL
%right TICK_COMPLETE TICK_ENUM_REP TICK_ENUM_VAL
 /* The following are right-associative only so that reductions at this
    precedence have lower precedence than '.' and '('.  The syntax still
    forces a.b.c, e.g., to be LEFT-associated.  */
%right '.' '(' '[' DOT_ID DOT_COMPLETE

%token NEW OTHERS FOR


%%

start   :	exp1
	;

/* Expressions, including the sequencing operator.  */
exp1	:	exp
	|	exp1 ';' exp
			{ ada_wrap2<comma_operation> (BINOP_COMMA); }
	| 	primary ASSIGN
			{
			  ada_parser->assignments.emplace_back
			    (new ada_assign_operation (ada_pop (), nullptr));
			}
		exp   /* Extension for convenience */
			{
			  ada_assign_up assign
			    = std::move (ada_parser->assignments.back ());
			  ada_parser->assignments.pop_back ();
			  value *lhs_val = (assign->eval_for_resolution
					    (pstate->expout.get ()));

			  operation_up rhs = pstate->pop ();
			  rhs = resolve (std::move (rhs), true,
					 lhs_val->type ());

			  assign->set_rhs (std::move (rhs));
			  pstate->push (std::move (assign));
			}
	;

/* Expressions, not including the sequencing operator.  */

primary :	primary DOT_ID
			{
			  if (strcmp ($2.ptr, "all") == 0)
			    ada_wrap<ada_unop_ind_operation> ();
			  else
			    {
			      operation_up arg = ada_pop ();
			      pstate->push_new<ada_structop_operation>
				(std::move (arg), copy_name ($2));
			    }
			}
	;

primary :	primary DOT_COMPLETE
			{
			  /* This is done even for ".all", because
			     that might be a prefix.  */
			  operation_up arg = ada_pop ();
			  ada_structop_operation *str_op
			    = (new ada_structop_operation
			       (std::move (arg), copy_name ($2)));
			  str_op->set_prefix (ada_parser->find_completion_bounds ());
			  pstate->push (operation_up (str_op));
			  pstate->mark_struct_expression (str_op);
			}
	;

primary :	primary '(' arglist ')'
			{ ada_funcall ($3); }
	|	var_or_type '(' arglist ')'
			{
			  if ($1 != NULL)
			    {
			      if ($3 != 1)
				error (_("Invalid conversion"));
			      operation_up arg = ada_pop ();
			      pstate->push_new<unop_cast_operation>
				(std::move (arg), $1);
			    }
			  else
			    ada_funcall ($3);
			}
	;

primary :	var_or_type '\'' '(' exp ')'
			{
			  if ($1 == NULL)
			    error (_("Type required for qualification"));
			  operation_up arg = ada_pop (true,
						      check_typedef ($1));
			  pstate->push_new<ada_qual_operation>
			    (std::move (arg), $1);
			}
	;

primary :
		primary '(' simple_exp DOTDOT simple_exp ')'
			{ ada_wrap3<ada_ternop_slice_operation> (); }
	|	var_or_type '(' simple_exp DOTDOT simple_exp ')'
			{ if ($1 == NULL) 
			    ada_wrap3<ada_ternop_slice_operation> ();
			  else
			    error (_("Cannot slice a type"));
			}
	;

primary :	'(' exp1 ')'	{ }
	;

/* The following rule causes a conflict with the type conversion
       var_or_type (exp)
   To get around it, we give '(' higher priority and add bridge rules for 
       var_or_type (exp, exp, ...)
       var_or_type (exp .. exp)
   We also have the action for  var_or_type(exp) generate a function call
   when the first symbol does not denote a type. */

primary :	var_or_type	%prec VAR
			{ if ($1 != NULL)
			    pstate->push_new<type_operation> ($1);
			}
	;

primary :	DOLLAR_VARIABLE /* Various GDB extensions */
			{ pstate->push_dollar ($1); }
	;

primary :     	aggregate
			{
			  pstate->push_new<ada_aggregate_operation>
			    (pop_component ());
			}
	;        

primary :	'@'
			{
			  if (ada_parser->assignments.empty ())
			    error (_("the target name symbol ('@') may only "
				     "appear in an assignment context"));
			  ada_assign_operation *current
			    = ada_parser->assignments.back ().get ();
			  pstate->push_new<ada_target_operation> (current);
			}
	;

simple_exp : 	primary
	;

simple_exp :	'-' simple_exp    %prec UNARY
			{ ada_wrap_overload<ada_neg_operation> (UNOP_NEG); }
	;

simple_exp :	'+' simple_exp    %prec UNARY
			{
			  operation_up arg = ada_pop ();
			  operation_up empty;

			  /* If an overloaded operator was found, use
			     it.  Otherwise, unary + has no effect and
			     the argument can be pushed instead.  */
			  operation_up call = maybe_overload (UNOP_PLUS, arg,
							      empty);
			  if (call != nullptr)
			    arg = std::move (call);
			  pstate->push (std::move (arg));
			}
	;

simple_exp :	NOT simple_exp    %prec UNARY
			{
			  ada_wrap_overload<unary_logical_not_operation>
			    (UNOP_LOGICAL_NOT);
			}
	;

simple_exp :    ABS simple_exp	   %prec UNARY
			{ ada_wrap_overload<ada_abs_operation> (UNOP_ABS); }
	;

arglist	:		{ $$ = 0; }
	;

arglist	:	exp
			{ $$ = 1; }
	|	NAME ARROW exp
			{ $$ = 1; }
	|	arglist ',' exp
			{ $$ = $1 + 1; }
	|	arglist ',' NAME ARROW exp
			{ $$ = $1 + 1; }
	;

primary :	'{' var_or_type '}' primary  %prec '.'
		/* GDB extension */
			{ 
			  if ($2 == NULL)
			    error (_("Type required within braces in coercion"));
			  operation_up arg = ada_pop ();
			  pstate->push_new<unop_memval_operation>
			    (std::move (arg), $2);
			}
	;

/* Binary operators in order of decreasing precedence.  */

simple_exp 	: 	simple_exp STARSTAR simple_exp
			{ ada_wrap2<ada_binop_exp_operation> (BINOP_EXP); }
	;

simple_exp	:	simple_exp '*' simple_exp
			{ ada_wrap2<ada_binop_mul_operation> (BINOP_MUL); }
	;

simple_exp	:	simple_exp '/' simple_exp
			{ ada_wrap2<ada_binop_div_operation> (BINOP_DIV); }
	;

simple_exp	:	simple_exp REM simple_exp /* May need to be fixed to give correct Ada REM */
			{ ada_wrap2<ada_binop_rem_operation> (BINOP_REM); }
	;

simple_exp	:	simple_exp MOD simple_exp
			{ ada_wrap2<ada_binop_mod_operation> (BINOP_MOD); }
	;

simple_exp	:	simple_exp '@' simple_exp	/* GDB extension */
			{ ada_wrap2<repeat_operation> (BINOP_REPEAT); }
	;

simple_exp	:	simple_exp '+' simple_exp
			{ ada_wrap_op<ada_binop_addsub_operation> (BINOP_ADD); }
	;

simple_exp	:	simple_exp '&' simple_exp
			{ ada_wrap2<ada_concat_operation> (BINOP_CONCAT); }
	;

simple_exp	:	simple_exp '-' simple_exp
			{ ada_wrap_op<ada_binop_addsub_operation> (BINOP_SUB); }
	;

relation :	simple_exp
	;

relation :	simple_exp '=' simple_exp
			{ ada_wrap_op<ada_binop_equal_operation> (BINOP_EQUAL); }
	;

relation :	simple_exp NOTEQUAL simple_exp
			{ ada_wrap_op<ada_binop_equal_operation> (BINOP_NOTEQUAL); }
	;

relation :	simple_exp LEQ simple_exp
			{ ada_un_wrap2<leq_operation> (BINOP_LEQ); }
	;

relation :	simple_exp IN simple_exp DOTDOT simple_exp
			{ ada_wrap3<ada_ternop_range_operation> (); }
	|       simple_exp IN primary TICK_RANGE tick_arglist
			{
			  operation_up rhs = ada_pop ();
			  operation_up lhs = ada_pop ();
			  pstate->push_new<ada_binop_in_bounds_operation>
			    (std::move (lhs), std::move (rhs), $5);
			}
 	|	simple_exp IN var_or_type	%prec TICK_ACCESS
			{ 
			  if ($3 == NULL)
			    error (_("Right operand of 'in' must be type"));
			  operation_up arg = ada_pop ();
			  pstate->push_new<ada_unop_range_operation>
			    (std::move (arg), $3);
			}
	|	simple_exp NOT IN simple_exp DOTDOT simple_exp
			{ ada_wrap3<ada_ternop_range_operation> ();
			  ada_wrap<unary_logical_not_operation> (); }
	|       simple_exp NOT IN primary TICK_RANGE tick_arglist
			{
			  operation_up rhs = ada_pop ();
			  operation_up lhs = ada_pop ();
			  pstate->push_new<ada_binop_in_bounds_operation>
			    (std::move (lhs), std::move (rhs), $6);
			  ada_wrap<unary_logical_not_operation> ();
			}
 	|	simple_exp NOT IN var_or_type	%prec TICK_ACCESS
			{ 
			  if ($4 == NULL)
			    error (_("Right operand of 'in' must be type"));
			  operation_up arg = ada_pop ();
			  pstate->push_new<ada_unop_range_operation>
			    (std::move (arg), $4);
			  ada_wrap<unary_logical_not_operation> ();
			}
	;

relation :	simple_exp GEQ simple_exp
			{ ada_un_wrap2<geq_operation> (BINOP_GEQ); }
	;

relation :	simple_exp '<' simple_exp
			{ ada_un_wrap2<less_operation> (BINOP_LESS); }
	;

relation :	simple_exp '>' simple_exp
			{ ada_un_wrap2<gtr_operation> (BINOP_GTR); }
	;

exp	:	relation
	|	and_exp
	|	and_then_exp
	|	or_exp
	|	or_else_exp
	|	xor_exp
	;

and_exp :
		relation _AND_ relation 
			{ ada_wrap2<bitwise_and_operation>
			    (BINOP_BITWISE_AND); }
	|	and_exp _AND_ relation
			{ ada_wrap2<bitwise_and_operation>
			    (BINOP_BITWISE_AND); }
	;

and_then_exp :
	       relation _AND_ THEN relation
			{ ada_wrap2<logical_and_operation>
			    (BINOP_LOGICAL_AND); }
	|	and_then_exp _AND_ THEN relation
			{ ada_wrap2<logical_and_operation>
			    (BINOP_LOGICAL_AND); }
	;

or_exp :
		relation OR relation 
			{ ada_wrap2<bitwise_ior_operation>
			    (BINOP_BITWISE_IOR); }
	|	or_exp OR relation
			{ ada_wrap2<bitwise_ior_operation>
			    (BINOP_BITWISE_IOR); }
	;

or_else_exp :
	       relation OR ELSE relation
			{ ada_wrap2<logical_or_operation> (BINOP_LOGICAL_OR); }
	|      or_else_exp OR ELSE relation
			{ ada_wrap2<logical_or_operation> (BINOP_LOGICAL_OR); }
	;

xor_exp :       relation XOR relation
			{ ada_wrap2<bitwise_xor_operation>
			    (BINOP_BITWISE_XOR); }
	|	xor_exp XOR relation
			{ ada_wrap2<bitwise_xor_operation>
			    (BINOP_BITWISE_XOR); }
	;

/* Primaries can denote types (OP_TYPE).  In cases such as 
   primary TICK_ADDRESS, where a type would be invalid, it will be
   caught when evaluate_subexp in ada-lang.c tries to evaluate the
   primary, expecting a value.  Precedence rules resolve the ambiguity
   in NAME TICK_ACCESS in favor of shifting to form a var_or_type.  A
   construct such as aType'access'access will again cause an error when
   aType'access evaluates to a type that evaluate_subexp attempts to 
   evaluate. */
primary :	primary TICK_ACCESS
			{ ada_addrof (); }
	|	primary TICK_ADDRESS
			{ ada_addrof (type_system_address (pstate)); }
	|	primary TICK_COMPLETE
			{
			  pstate->mark_completion (make_tick_completer ($2));
			}
	|	primary TICK_FIRST tick_arglist
			{
			  operation_up arg = ada_pop ();
			  pstate->push_new<ada_unop_atr_operation>
			    (std::move (arg), OP_ATR_FIRST, $3);
			}
	|	primary TICK_LAST tick_arglist
			{
			  operation_up arg = ada_pop ();
			  pstate->push_new<ada_unop_atr_operation>
			    (std::move (arg), OP_ATR_LAST, $3);
			}
	| 	primary TICK_LENGTH tick_arglist
			{
			  operation_up arg = ada_pop ();
			  pstate->push_new<ada_unop_atr_operation>
			    (std::move (arg), OP_ATR_LENGTH, $3);
			}
	|       primary TICK_SIZE
			{ ada_wrap<ada_atr_size_operation> (); }
	|	primary TICK_TAG
			{ ada_wrap<ada_atr_tag_operation> (); }
	|       opt_type_prefix TICK_MIN '(' exp ',' exp ')'
			{ ada_wrap2<ada_binop_min_operation> (BINOP_MIN); }
	|       opt_type_prefix TICK_MAX '(' exp ',' exp ')'
			{ ada_wrap2<ada_binop_max_operation> (BINOP_MAX); }
	| 	opt_type_prefix TICK_POS '(' exp ')'
			{ ada_wrap<ada_pos_operation> (); }
	|	type_prefix TICK_VAL '(' exp ')'
			{
			  operation_up arg = ada_pop ();
			  pstate->push_new<ada_atr_val_operation>
			    ($1, std::move (arg));
			}
	|	type_prefix TICK_ENUM_REP '(' exp ')'
			{
			  operation_up arg = ada_pop (true, $1);
			  pstate->push_new<ada_atr_enum_rep_operation>
			    ($1, std::move (arg));
			}
	|	type_prefix TICK_ENUM_VAL '(' exp ')'
			{
			  operation_up arg = ada_pop (true, $1);
			  pstate->push_new<ada_atr_enum_val_operation>
			    ($1, std::move (arg));
			}
	|	type_prefix TICK_MODULUS
			{
			  struct type *type_arg = check_typedef ($1);
			  if (!ada_is_modular_type (type_arg))
			    error (_("'modulus must be applied to modular type"));
			  write_int (pstate, ada_modulus (type_arg),
				     type_arg->target_type ());
			}
	;

tick_arglist :			%prec '('
			{ $$ = 1; }
	| 	'(' INT ')'
			{ $$ = $2.val->as_integer<LONGEST> (); }
	;

type_prefix :
		var_or_type
			{ 
			  if ($1 == NULL)
			    error (_("Prefix must be type"));
			  $$ = $1;
			}
	;

opt_type_prefix :
		type_prefix
			{ $$ = $1; }
	| 	/* EMPTY */
			{ $$ = parse_type (pstate)->builtin_void; }
	;


primary	:	INT
			{
			  pstate->push_new<long_const_operation> ($1.type, *$1.val);
			  ada_wrap<ada_wrapped_operation> ();
			}
	;

primary	:	CHARLIT
			{
			  pstate->push_new<ada_char_operation> ($1.type, $1.val);
			}
	;

primary	:	FLOAT
			{
			  float_data data;
			  std::copy (std::begin ($1.val), std::end ($1.val),
				     std::begin (data));
			  pstate->push_new<float_const_operation>
			    ($1.type, data);
			  ada_wrap<ada_wrapped_operation> ();
			}
	;

primary	:	NULL_PTR
			{
			  struct type *null_ptr_type
			    = lookup_pointer_type (parse_type (pstate)->builtin_int0);
			  write_int (pstate, 0, null_ptr_type);
			}
	;

primary	:	STRING
			{ 
			  pstate->push_new<ada_string_operation>
			    (copy_name ($1));
			}
	;

primary :	TRUEKEYWORD
			{
			  write_int (pstate, 1,
				     parse_type (pstate)->builtin_bool);
			}
	|	FALSEKEYWORD
			{
			  write_int (pstate, 0,
				     parse_type (pstate)->builtin_bool);
			}
	;

primary	: 	NEW NAME
			{ error (_("NEW not implemented.")); }
	;

var_or_type:	NAME   	    %prec VAR
				{ $$ = write_var_or_type (pstate, NULL, $1); }
	|	NAME_COMPLETE %prec VAR
				{
				  $$ = write_var_or_type_completion (pstate,
								     NULL,
								     $1);
				}
	|	block NAME  %prec VAR
				{ $$ = write_var_or_type (pstate, $1, $2); }
	|	block NAME_COMPLETE  %prec VAR
				{
				  $$ = write_var_or_type_completion (pstate,
								     $1,
								     $2);
				}
	|       NAME TICK_ACCESS 
			{ 
			  $$ = write_var_or_type (pstate, NULL, $1);
			  if ($$ == NULL)
			    ada_addrof ();
			  else
			    $$ = lookup_pointer_type ($$);
			}
	|	block NAME TICK_ACCESS
			{ 
			  $$ = write_var_or_type (pstate, $1, $2);
			  if ($$ == NULL)
			    ada_addrof ();
			  else
			    $$ = lookup_pointer_type ($$);
			}
	;

/* GDB extension */
block   :       NAME COLONCOLON
			{ $$ = block_lookup (NULL, $1.ptr); }
	|	block NAME COLONCOLON
			{ $$ = block_lookup ($1, $2.ptr); }
	;

aggregate :
		'(' exp WITH DELTA aggregate_component_list ')'
			{
			  std::vector<ada_component_up> components
			    = pop_components ($5);
			  operation_up base = ada_pop ();

			  push_component<ada_aggregate_component>
			    (std::move (base), std::move (components));
			}
	|	'(' aggregate_component_list ')'
			{
			  std::vector<ada_component_up> components
			    = pop_components ($2);

			  push_component<ada_aggregate_component>
			    (std::move (components));
			}
	;

aggregate_component_list :
		component_groups	 { $$ = $1; }
	|	positional_list exp
			{
			  push_component<ada_positional_component>
			    ($1, ada_pop ());
			  $$ = $1 + 1;
			}
	|	positional_list component_groups
					 { $$ = $1 + $2; }
	;

positional_list :
		exp ','
			{
			  push_component<ada_positional_component>
			    (0, ada_pop ());
			  $$ = 1;
			} 
	|	positional_list exp ','
			{
			  push_component<ada_positional_component>
			    ($1, ada_pop ());
			  $$ = $1 + 1; 
			}
	;

component_groups:
		others			 { $$ = 1; }
	|	component_group		 { $$ = 1; }
	|	component_group ',' component_groups
					 { $$ = $3 + 1; }
	;

others 	:	OTHERS ARROW exp
			{
			  push_component<ada_others_component> (ada_pop ());
			}
	;

component_group :
		component_associations
			{
			  ada_choices_component *choices = choice_component ();
			  choices->set_associations (pop_associations ($1));
			}
	|	FOR NAME IN
			{
			  std::string name = copy_name ($2);

			  auto iter = ada_parser->iterated_associations.find (name);
			  if (iter != ada_parser->iterated_associations.end ())
			    error (_("Nested use of index parameter '%s'"),
				   name.c_str ());

			  ada_parser->iterated_associations[name] = {};
			}
		component_associations
			{
			  std::string name = copy_name ($2);

			  ada_choices_component *choices = choice_component ();
			  choices->set_associations (pop_associations ($5));

			  auto iter = ada_parser->iterated_associations.find (name);
			  gdb_assert (iter != ada_parser->iterated_associations.end ());
			  for (ada_index_var_operation *var : iter->second)
			    var->set_choices (choices);

			  ada_parser->iterated_associations.erase (name);

			  choices->set_name (std::move (name));
			}
	;

/* We use this somewhat obscure definition in order to handle NAME => and
   NAME | differently from exp => and exp |.  ARROW and '|' have a precedence
   above that of the reduction of NAME to var_or_type.  By delaying 
   decisions until after the => or '|', we convert the ambiguity to a 
   resolved shift/reduce conflict. */
component_associations :
		NAME ARROW exp
			{
			  push_component<ada_choices_component> (ada_pop ());
			  write_name_assoc (pstate, $1);
			  $$ = 1;
			}
	|	simple_exp ARROW exp
			{
			  push_component<ada_choices_component> (ada_pop ());
			  push_association<ada_name_association> (ada_pop ());
			  $$ = 1;
			}
	|	simple_exp DOTDOT simple_exp ARROW exp
			{
			  push_component<ada_choices_component> (ada_pop ());
			  operation_up rhs = ada_pop ();
			  operation_up lhs = ada_pop ();
			  push_association<ada_discrete_range_association>
			    (std::move (lhs), std::move (rhs));
			  $$ = 1;
			}
	|	NAME '|' component_associations
			{
			  write_name_assoc (pstate, $1);
			  $$ = $3 + 1;
			}
	|	simple_exp '|' component_associations
			{
			  push_association<ada_name_association> (ada_pop ());
			  $$ = $3 + 1;
			}
	|	simple_exp DOTDOT simple_exp '|' component_associations

			{
			  operation_up rhs = ada_pop ();
			  operation_up lhs = ada_pop ();
			  push_association<ada_discrete_range_association>
			    (std::move (lhs), std::move (rhs));
			  $$ = $5 + 1;
			}
	;

/* Some extensions borrowed from C, for the benefit of those who find they
   can't get used to Ada notation in GDB.  */

primary	:	'*' primary		%prec '.'
			{ ada_wrap<ada_unop_ind_operation> (); }
	|	'&' primary		%prec '.'
			{ ada_addrof (); }
	|	primary '[' exp ']'
			{
			  ada_wrap2<subscript_operation> (BINOP_SUBSCRIPT);
			  ada_wrap<ada_wrapped_operation> ();
			}
	;

%%

/* yylex defined in ada-lex.c: Reads one token, getting characters */
/* through lexptr.  */

/* Remap normal flex interface names (yylex) as well as gratuitiously */
/* global symbol names, so we can have multiple flex-generated parsers */
/* in gdb.  */

/* (See note above on previous definitions for YACC.) */

#define yy_create_buffer ada_yy_create_buffer
#define yy_delete_buffer ada_yy_delete_buffer
#define yy_init_buffer ada_yy_init_buffer
#define yy_load_buffer_state ada_yy_load_buffer_state
#define yy_switch_to_buffer ada_yy_switch_to_buffer
#define yyrestart ada_yyrestart
#define yytext ada_yytext

/* The following kludge was found necessary to prevent conflicts between */
/* defs.h and non-standard stdlib.h files.  */
#define qsort __qsort__dummy
#include "ada-lex.c"

int
ada_parse (struct parser_state *par_state)
{
  /* Setting up the parser state.  */
  scoped_restore pstate_restore = make_scoped_restore (&pstate, par_state);
  gdb_assert (par_state != NULL);

  ada_parse_state parser (par_state->lexptr);
  scoped_restore parser_restore = make_scoped_restore (&ada_parser, &parser);

  scoped_restore restore_yydebug = make_scoped_restore (&yydebug,
							par_state->debug);

  lexer_init (yyin);		/* (Re-)initialize lexer.  */

  int result = yyparse ();
  if (!result)
    {
      struct type *context_type = nullptr;
      if (par_state->void_context_p)
	context_type = parse_type (par_state)->builtin_void;
      pstate->set_operation (ada_pop (true, context_type));
    }
  return result;
}

static void
yyerror (const char *msg)
{
  pstate->parse_error (msg);
}

/* Emit expression to access an instance of SYM, in block BLOCK (if
   non-NULL).  */

static void
write_var_from_sym (struct parser_state *par_state, block_symbol sym)
{
  if (symbol_read_needs_frame (sym.symbol))
    par_state->block_tracker->update (sym.block, INNERMOST_BLOCK_FOR_SYMBOLS);

  par_state->push_new<ada_var_value_operation> (sym);
}

/* Write integer or boolean constant ARG of type TYPE.  */

static void
write_int (struct parser_state *par_state, LONGEST arg, struct type *type)
{
  pstate->push_new<long_const_operation> (type, arg);
  ada_wrap<ada_wrapped_operation> ();
}

/* Emit expression corresponding to the renamed object named 
   designated by RENAMED_ENTITY[0 .. RENAMED_ENTITY_LEN-1] in the
   context of ORIG_LEFT_CONTEXT, to which is applied the operations
   encoded by RENAMING_EXPR.  MAX_DEPTH is the maximum number of
   cascaded renamings to allow.  If ORIG_LEFT_CONTEXT is null, it
   defaults to the currently selected block. ORIG_SYMBOL is the 
   symbol that originally encoded the renaming.  It is needed only
   because its prefix also qualifies any index variables used to index
   or slice an array.  It should not be necessary once we go to the
   new encoding entirely (FIXME pnh 7/20/2007).  */

static void
write_object_renaming (struct parser_state *par_state,
		       const struct block *orig_left_context,
		       const char *renamed_entity, int renamed_entity_len,
		       const char *renaming_expr, int max_depth)
{
  char *name;
  enum { SIMPLE_INDEX, LOWER_BOUND, UPPER_BOUND } slice_state;

  if (max_depth <= 0)
    error (_("Could not find renamed symbol"));

  if (orig_left_context == NULL)
    orig_left_context = get_selected_block (NULL);

  name = obstack_strndup (&ada_parser->temp_space, renamed_entity,
			  renamed_entity_len);
  block_symbol sym_info = ada_lookup_encoded_symbol (name, orig_left_context,
						     SEARCH_VFT);
  if (sym_info.symbol == NULL)
    error (_("Could not find renamed variable: %s"), ada_decode (name).c_str ());
  else if (sym_info.symbol->aclass () == LOC_TYPEDEF)
    /* We have a renaming of an old-style renaming symbol.  Don't
       trust the block information.  */
    sym_info.block = orig_left_context;

  {
    const char *inner_renamed_entity;
    int inner_renamed_entity_len;
    const char *inner_renaming_expr;

    switch (ada_parse_renaming (sym_info.symbol, &inner_renamed_entity,
				&inner_renamed_entity_len,
				&inner_renaming_expr))
      {
      case ADA_NOT_RENAMING:
	write_var_from_sym (par_state, sym_info);
	break;
      case ADA_OBJECT_RENAMING:
	write_object_renaming (par_state, sym_info.block,
			       inner_renamed_entity, inner_renamed_entity_len,
			       inner_renaming_expr, max_depth - 1);
	break;
      default:
	goto BadEncoding;
      }
  }

  slice_state = SIMPLE_INDEX;
  while (*renaming_expr == 'X')
    {
      renaming_expr += 1;

      switch (*renaming_expr) {
      case 'A':
	renaming_expr += 1;
	ada_wrap<ada_unop_ind_operation> ();
	break;
      case 'L':
	slice_state = LOWER_BOUND;
	[[fallthrough]];
      case 'S':
	renaming_expr += 1;
	if (isdigit (*renaming_expr))
	  {
	    char *next;
	    long val = strtol (renaming_expr, &next, 10);
	    if (next == renaming_expr)
	      goto BadEncoding;
	    renaming_expr = next;
	    write_int (par_state, val, parse_type (par_state)->builtin_int);
	  }
	else
	  {
	    const char *end;
	    char *index_name;

	    end = strchr (renaming_expr, 'X');
	    if (end == NULL)
	      end = renaming_expr + strlen (renaming_expr);

	    index_name = obstack_strndup (&ada_parser->temp_space,
					  renaming_expr,
					  end - renaming_expr);
	    renaming_expr = end;

	    block_symbol index_sym_info
	      = ada_lookup_encoded_symbol (index_name, orig_left_context,
					   SEARCH_VFT);
	    if (index_sym_info.symbol == NULL)
	      error (_("Could not find %s"), index_name);
	    else if (index_sym_info.symbol->aclass () == LOC_TYPEDEF)
	      /* Index is an old-style renaming symbol.  */
	      index_sym_info.block = orig_left_context;
	    write_var_from_sym (par_state, index_sym_info);
	  }
	if (slice_state == SIMPLE_INDEX)
	  ada_funcall (1);
	else if (slice_state == LOWER_BOUND)
	  slice_state = UPPER_BOUND;
	else if (slice_state == UPPER_BOUND)
	  {
	    ada_wrap3<ada_ternop_slice_operation> ();
	    slice_state = SIMPLE_INDEX;
	  }
	break;

      case 'R':
	{
	  const char *end;

	  renaming_expr += 1;

	  if (slice_state != SIMPLE_INDEX)
	    goto BadEncoding;
	  end = strchr (renaming_expr, 'X');
	  if (end == NULL)
	    end = renaming_expr + strlen (renaming_expr);

	  operation_up arg = ada_pop ();
	  pstate->push_new<ada_structop_operation>
	    (std::move (arg), std::string (renaming_expr,
					   end - renaming_expr));
	  renaming_expr = end;
	  break;
	}

      default:
	goto BadEncoding;
      }
    }
  if (slice_state == SIMPLE_INDEX)
    return;

 BadEncoding:
  error (_("Internal error in encoding of renaming declaration"));
}

static const struct block*
block_lookup (const struct block *context, const char *raw_name)
{
  const char *name;
  struct symtab *symtab;
  const struct block *result = NULL;

  std::string name_storage;
  if (raw_name[0] == '\'')
    {
      raw_name += 1;
      name = raw_name;
    }
  else
    {
      name_storage = ada_encode (raw_name);
      name = name_storage.c_str ();
    }

  std::vector<struct block_symbol> syms
    = ada_lookup_symbol_list (name, context, SEARCH_FUNCTION_DOMAIN);

  if (context == NULL
      && (syms.empty () || syms[0].symbol->aclass () != LOC_BLOCK))
    symtab = lookup_symtab (name);
  else
    symtab = NULL;

  if (symtab != NULL)
    result = symtab->compunit ()->blockvector ()->static_block ();
  else if (syms.empty () || syms[0].symbol->aclass () != LOC_BLOCK)
    {
      if (context == NULL)
	error (_("No file or function \"%s\"."), raw_name);
      else
	error (_("No function \"%s\" in specified context."), raw_name);
    }
  else
    {
      if (syms.size () > 1)
	warning (_("Function name \"%s\" ambiguous here"), raw_name);
      result = syms[0].symbol->value_block ();
    }

  return result;
}

static struct symbol*
select_possible_type_sym (const std::vector<struct block_symbol> &syms)
{
  int i;
  int preferred_index;
  struct type *preferred_type;
	  
  preferred_index = -1; preferred_type = NULL;
  for (i = 0; i < syms.size (); i += 1)
    switch (syms[i].symbol->aclass ())
      {
      case LOC_TYPEDEF:
	if (ada_prefer_type (syms[i].symbol->type (), preferred_type))
	  {
	    preferred_index = i;
	    preferred_type = syms[i].symbol->type ();
	  }
	break;
      case LOC_REGISTER:
      case LOC_ARG:
      case LOC_REF_ARG:
      case LOC_REGPARM_ADDR:
      case LOC_LOCAL:
      case LOC_COMPUTED:
	return NULL;
      default:
	break;
      }
  if (preferred_type == NULL)
    return NULL;
  return syms[preferred_index].symbol;
}

static struct type*
find_primitive_type (struct parser_state *par_state, const char *name)
{
  struct type *type;
  type = language_lookup_primitive_type (par_state->language (),
					 par_state->gdbarch (),
					 name);
  if (type == NULL && strcmp ("system__address", name) == 0)
    type = type_system_address (par_state);

  if (type != NULL)
    {
      /* Check to see if we have a regular definition of this
	 type that just didn't happen to have been read yet.  */
      struct symbol *sym;
      char *expanded_name = 
	(char *) alloca (strlen (name) + sizeof ("standard__"));
      strcpy (expanded_name, "standard__");
      strcat (expanded_name, name);
      sym = ada_lookup_symbol (expanded_name, NULL, SEARCH_TYPE_DOMAIN).symbol;
      if (sym != NULL && sym->aclass () == LOC_TYPEDEF)
	type = sym->type ();
    }

  return type;
}

static int
chop_selector (const char *name, int end)
{
  int i;
  for (i = end - 1; i > 0; i -= 1)
    if (name[i] == '.' || (name[i] == '_' && name[i+1] == '_'))
      return i;
  return -1;
}

/* If NAME is a string beginning with a separator (either '__', or
   '.'), chop this separator and return the result; else, return
   NAME.  */

static const char *
chop_separator (const char *name)
{
  if (*name == '.')
   return name + 1;

  if (name[0] == '_' && name[1] == '_')
    return name + 2;

  return name;
}

/* Given that SELS is a string of the form (<sep><identifier>)*, where
   <sep> is '__' or '.', write the indicated sequence of
   STRUCTOP_STRUCT expression operators.  Returns a pointer to the
   last operation that was pushed.  */
static ada_structop_operation *
write_selectors (struct parser_state *par_state, const char *sels)
{
  ada_structop_operation *result = nullptr;
  while (*sels != '\0')
    {
      const char *p = chop_separator (sels);
      sels = p;
      while (*sels != '\0' && *sels != '.' 
	     && (sels[0] != '_' || sels[1] != '_'))
	sels += 1;
      operation_up arg = ada_pop ();
      result = new ada_structop_operation (std::move (arg),
					   std::string (p, sels - p));
      pstate->push (operation_up (result));
    }
  return result;
}

/* Write a variable access (OP_VAR_VALUE) to ambiguous encoded name
   NAME[0..LEN-1], in block context BLOCK, to be resolved later.  Writes
   a temporary symbol that is valid until the next call to ada_parse.
   */
static void
write_ambiguous_var (struct parser_state *par_state,
		     const struct block *block, const char *name, int len)
{
  struct symbol *sym = new (&ada_parser->temp_space) symbol ();

  sym->set_domain (UNDEF_DOMAIN);
  sym->set_linkage_name (obstack_strndup (&ada_parser->temp_space, name, len));
  sym->set_language (language_ada, nullptr);

  block_symbol bsym { sym, block };
  par_state->push_new<ada_var_value_operation> (bsym);
}

/* A convenient wrapper around ada_get_field_index that takes
   a non NUL-terminated FIELD_NAME0 and a FIELD_NAME_LEN instead
   of a NUL-terminated field name.  */

static int
ada_nget_field_index (const struct type *type, const char *field_name0,
		      int field_name_len, int maybe_missing)
{
  char *field_name = (char *) alloca ((field_name_len + 1) * sizeof (char));

  strncpy (field_name, field_name0, field_name_len);
  field_name[field_name_len] = '\0';
  return ada_get_field_index (type, field_name, maybe_missing);
}

/* If encoded_field_name is the name of a field inside symbol SYM,
   then return the type of that field.  Otherwise, return NULL.

   This function is actually recursive, so if ENCODED_FIELD_NAME
   doesn't match one of the fields of our symbol, then try to see
   if ENCODED_FIELD_NAME could not be a succession of field names
   (in other words, the user entered an expression of the form
   TYPE_NAME.FIELD1.FIELD2.FIELD3), in which case we evaluate
   each field name sequentially to obtain the desired field type.
   In case of failure, we return NULL.  */

static struct type *
get_symbol_field_type (struct symbol *sym, const char *encoded_field_name)
{
  const char *field_name = encoded_field_name;
  const char *subfield_name;
  struct type *type = sym->type ();
  int fieldno;

  if (type == NULL || field_name == NULL)
    return NULL;
  type = check_typedef (type);

  while (field_name[0] != '\0')
    {
      field_name = chop_separator (field_name);

      fieldno = ada_get_field_index (type, field_name, 1);
      if (fieldno >= 0)
	return type->field (fieldno).type ();

      subfield_name = field_name;
      while (*subfield_name != '\0' && *subfield_name != '.' 
	     && (subfield_name[0] != '_' || subfield_name[1] != '_'))
	subfield_name += 1;

      if (subfield_name[0] == '\0')
	return NULL;

      fieldno = ada_nget_field_index (type, field_name,
				      subfield_name - field_name, 1);
      if (fieldno < 0)
	return NULL;

      type = type->field (fieldno).type ();
      field_name = subfield_name;
    }

  return NULL;
}

/* Look up NAME0 (an unencoded identifier or dotted name) in BLOCK (or 
   expression_block_context if NULL).  If it denotes a type, return
   that type.  Otherwise, write expression code to evaluate it as an
   object and return NULL. In this second case, NAME0 will, in general,
   have the form <name>(.<selector_name>)*, where <name> is an object
   or renaming encoded in the debugging data.  Calls error if no
   prefix <name> matches a name in the debugging data (i.e., matches
   either a complete name or, as a wild-card match, the final 
   identifier).  */

static struct type*
write_var_or_type (struct parser_state *par_state,
		   const struct block *block, struct stoken name0)
{
  int depth;
  char *encoded_name;
  int name_len;

  std::string name_storage = ada_encode (name0.ptr);

  if (block == nullptr)
    {
      auto iter = ada_parser->iterated_associations.find (name_storage);
      if (iter != ada_parser->iterated_associations.end ())
	{
	  auto op = std::make_unique<ada_index_var_operation> ();
	  iter->second.push_back (op.get ());
	  par_state->push (std::move (op));
	  return nullptr;
	}

      block = par_state->expression_context_block;
    }

  name_len = name_storage.size ();
  encoded_name = obstack_strndup (&ada_parser->temp_space,
				  name_storage.c_str (),
				  name_len);
  for (depth = 0; depth < MAX_RENAMING_CHAIN_LENGTH; depth += 1)
    {
      int tail_index;
      
      tail_index = name_len;
      while (tail_index > 0)
	{
	  struct symbol *type_sym;
	  struct symbol *renaming_sym;
	  const char* renaming;
	  int renaming_len;
	  const char* renaming_expr;
	  int terminator = encoded_name[tail_index];

	  encoded_name[tail_index] = '\0';
	  /* In order to avoid double-encoding, we want to only pass
	     the decoded form to lookup functions.  */
	  std::string decoded_name = ada_decode (encoded_name);
	  encoded_name[tail_index] = terminator;

	  std::vector<struct block_symbol> syms
	    = ada_lookup_symbol_list (decoded_name.c_str (), block,
				      SEARCH_VFT);

	  type_sym = select_possible_type_sym (syms);

	  if (type_sym != NULL)
	    renaming_sym = type_sym;
	  else if (syms.size () == 1)
	    renaming_sym = syms[0].symbol;
	  else 
	    renaming_sym = NULL;

	  switch (ada_parse_renaming (renaming_sym, &renaming,
				      &renaming_len, &renaming_expr))
	    {
	    case ADA_NOT_RENAMING:
	      break;
	    case ADA_PACKAGE_RENAMING:
	    case ADA_EXCEPTION_RENAMING:
	    case ADA_SUBPROGRAM_RENAMING:
	      {
		int alloc_len = renaming_len + name_len - tail_index + 1;
		char *new_name
		  = (char *) obstack_alloc (&ada_parser->temp_space,
					    alloc_len);
		strncpy (new_name, renaming, renaming_len);
		strcpy (new_name + renaming_len, encoded_name + tail_index);
		encoded_name = new_name;
		name_len = renaming_len + name_len - tail_index;
		goto TryAfterRenaming;
	      }	
	    case ADA_OBJECT_RENAMING:
	      write_object_renaming (par_state, block, renaming, renaming_len,
				     renaming_expr, MAX_RENAMING_CHAIN_LENGTH);
	      write_selectors (par_state, encoded_name + tail_index);
	      return NULL;
	    default:
	      internal_error (_("impossible value from ada_parse_renaming"));
	    }

	  if (type_sym != NULL)
	    {
	      struct type *field_type;
	      
	      if (tail_index == name_len)
		return type_sym->type ();

	      /* We have some extraneous characters after the type name.
		 If this is an expression "TYPE_NAME.FIELD0.[...].FIELDN",
		 then try to get the type of FIELDN.  */
	      field_type
		= get_symbol_field_type (type_sym, encoded_name + tail_index);
	      if (field_type != NULL)
		return field_type;
	      else 
		error (_("Invalid attempt to select from type: \"%s\"."),
		       name0.ptr);
	    }
	  else if (tail_index == name_len && syms.empty ())
	    {
	      struct type *type = find_primitive_type (par_state,
						       encoded_name);

	      if (type != NULL)
		return type;
	    }

	  if (syms.size () == 1)
	    {
	      write_var_from_sym (par_state, syms[0]);
	      write_selectors (par_state, encoded_name + tail_index);
	      return NULL;
	    }
	  else if (syms.empty ())
	    {
	      struct objfile *objfile = nullptr;
	      if (block != nullptr)
		objfile = block->objfile ();

	      struct bound_minimal_symbol msym
		= ada_lookup_simple_minsym (decoded_name.c_str (), objfile);
	      if (msym.minsym != NULL)
		{
		  par_state->push_new<ada_var_msym_value_operation> (msym);
		  /* Maybe cause error here rather than later? FIXME? */
		  write_selectors (par_state, encoded_name + tail_index);
		  return NULL;
		}

	      if (tail_index == name_len
		  && strncmp (encoded_name, "standard__", 
			      sizeof ("standard__") - 1) == 0)
		error (_("No definition of \"%s\" found."), name0.ptr);

	      tail_index = chop_selector (encoded_name, tail_index);
	    } 
	  else
	    {
	      write_ambiguous_var (par_state, block, encoded_name,
				   tail_index);
	      write_selectors (par_state, encoded_name + tail_index);
	      return NULL;
	    }
	}

      if (!have_full_symbols () && !have_partial_symbols () && block == NULL)
	error (_("No symbol table is loaded.  Use the \"file\" command."));
      if (block == par_state->expression_context_block)
	error (_("No definition of \"%s\" in current context."), name0.ptr);
      else
	error (_("No definition of \"%s\" in specified context."), name0.ptr);
      
    TryAfterRenaming: ;
    }

  error (_("Could not find renamed symbol \"%s\""), name0.ptr);

}

/* Because ada_completer_word_break_characters does not contain '.' --
   and it cannot easily be added, this breaks other completions -- we
   have to recreate the completion word-splitting here, so that we can
   provide a prefix that is then used when completing field names.
   Without this, an attempt like "complete print abc.d" will give a
   result like "print def" rather than "print abc.def".  */

std::string
ada_parse_state::find_completion_bounds ()
{
  const char *end = pstate->lexptr;
  /* First the end of the prefix.  Here we stop at the token start or
     at '.' or space.  */
  for (; end > m_original_expr && end[-1] != '.' && !isspace (end[-1]); --end)
    {
      /* Nothing.  */
    }
  /* Now find the start of the prefix.  */
  const char *ptr = end;
  /* Here we allow '.'.  */
  for (;
       ptr > m_original_expr && (ptr[-1] == '.'
				 || ptr[-1] == '_'
				 || (ptr[-1] >= 'a' && ptr[-1] <= 'z')
				 || (ptr[-1] >= 'A' && ptr[-1] <= 'Z')
				 || (ptr[-1] & 0xff) >= 0x80);
       --ptr)
    {
      /* Nothing.  */
    }
  /* ... except, skip leading spaces.  */
  ptr = skip_spaces (ptr);

  return std::string (ptr, end);
}

/* A wrapper for write_var_or_type that is used specifically when
   completion is requested for the last of a sequence of
   identifiers.  */

static struct type *
write_var_or_type_completion (struct parser_state *par_state,
			      const struct block *block, struct stoken name0)
{
  int tail_index = chop_selector (name0.ptr, name0.length);
  /* If there's no separator, just defer to ordinary symbol
     completion.  */
  if (tail_index == -1)
    return write_var_or_type (par_state, block, name0);

  std::string copy (name0.ptr, tail_index);
  struct type *type = write_var_or_type (par_state, block,
					 { copy.c_str (),
					   (int) copy.length () });
  /* For completion purposes, it's enough that we return a type
     here.  */
  if (type != nullptr)
    return type;

  ada_structop_operation *op = write_selectors (par_state,
						name0.ptr + tail_index);
  op->set_prefix (ada_parser->find_completion_bounds ());
  par_state->mark_struct_expression (op);
  return nullptr;
}

/* Write a left side of a component association (e.g., NAME in NAME =>
   exp).  If NAME has the form of a selected component, write it as an
   ordinary expression.  If it is a simple variable that unambiguously
   corresponds to exactly one symbol that does not denote a type or an
   object renaming, also write it normally as an OP_VAR_VALUE.
   Otherwise, write it as an OP_NAME.

   Unfortunately, we don't know at this point whether NAME is supposed
   to denote a record component name or the value of an array index.
   Therefore, it is not appropriate to disambiguate an ambiguous name
   as we normally would, nor to replace a renaming with its referent.
   As a result, in the (one hopes) rare case that one writes an
   aggregate such as (R => 42) where R renames an object or is an
   ambiguous name, one must write instead ((R) => 42). */
   
static void
write_name_assoc (struct parser_state *par_state, struct stoken name)
{
  if (strchr (name.ptr, '.') == NULL)
    {
      std::vector<struct block_symbol> syms
	= ada_lookup_symbol_list (name.ptr,
				  par_state->expression_context_block,
				  SEARCH_VFT);

      if (syms.size () != 1 || syms[0].symbol->aclass () == LOC_TYPEDEF)
	pstate->push_new<ada_string_operation> (copy_name (name));
      else
	write_var_from_sym (par_state, syms[0]);
    }
  else
    if (write_var_or_type (par_state, NULL, name) != NULL)
      error (_("Invalid use of type."));

  push_association<ada_name_association> (ada_pop ());
}

static struct type *
type_for_char (struct parser_state *par_state, ULONGEST value)
{
  if (value <= 0xff)
    return language_string_char_type (par_state->language (),
				      par_state->gdbarch ());
  else if (value <= 0xffff)
    return language_lookup_primitive_type (par_state->language (),
					   par_state->gdbarch (),
					   "wide_character");
  return language_lookup_primitive_type (par_state->language (),
					 par_state->gdbarch (),
					 "wide_wide_character");
}

static struct type *
type_system_address (struct parser_state *par_state)
{
  struct type *type 
    = language_lookup_primitive_type (par_state->language (),
				      par_state->gdbarch (),
				      "system__address");
  return  type != NULL ? type : parse_type (par_state)->builtin_data_ptr;
}