1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
|
;; Linux BPF CPU description -*- Scheme -*-
;; Copyright (C) 2019 Free Software Foundation, Inc.
;;
;; Contributed by Oracle Inc.
;;
;; This file is part of the GNU Binutils and of GDB.
;;
;; This program is free software; you can redistribute it and/or
;; modify it under the terms of the GNU General Public License as
;; published by the Free Software Foundation; either version 3 of the
;; License, or (at your option) any later version.
;;
;; This program is distributed in the hope that it will be useful, but
;; WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;; General Public License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with this program; if not, write to the Free Software
;; Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
;; 02110-1301, USA.
;; This file contains a CGEN CPU description for the Linux kernel eBPF
;; instruction set. eBPF is documented in the linux kernel source
;; tree. See linux/Documentation/networking/filter.txt, and also the
;; sources in the networking subsystem, notably
;; linux/net/core/filter.c.
(include "simplify.inc")
(define-arch
(name bpf)
(comment "Linux kernel BPF")
(insn-lsb0? #t)
;; XXX explain the default-alignment setting is for the simulator.
;; It is confusing that the simulator follows the emulated memory
;; access conventions for fetching instructions by pieces...
(default-alignment unaligned)
(machs bpf xbpf)
(isas ebpfle ebpfbe xbpfle xbpfbe))
;;;; The ISAs
;; Logically, eBPF comforms a single instruction set featuring two
;; kind of instructions: 64-bit instructions and 128-bit instructions.
;;
;; The 64-bit instructions have the form:
;;
;; code:8 regs:8 offset:16 imm:32
;;
;; Whereas the 128-bit instructions (at the moment there is only one
;; of such instructions, lddw) have the form:
;;
;; code:8 regs:8 offset:16 imm:32 unused:32 imm:32
;;
;; In both formats `regs' is itself composed by two fields:
;;
;; dst:4 src:4
;;
;; The ISA is supposed to be orthogonal to endianness: the endianness
;; of the instruction fields follow the endianness of the host running
;; the eBPF program, and that's all. However, this is not entirely
;; true. The definition of an eBPF code in the Linux kernel is:
;;
;; struct bpf_insn {
;; __u8 code; /* opcode */
;; __u8 dst_reg:4; /* dest register */
;; __u8 src_reg:4; /* source register */
;; __s16 off; /* signed offset */
;; __s32 imm; /* signed immediate constant */
;; };
;;
;; Since the ordering of fields in C bitmaps is defined by the
;; implementation, the impact of endianness in the encoding of eBPF
;; instructions is effectively defined by GCC. In particular, GCC
;; places dst_reg before src_reg in little-endian code, and the other
;; way around in big-endian code.
;;
;; So, in reality, eBPF comprises two instruction sets: one for
;; little-endian with instructions like:
;;
;; code:8 src:4 dst:4 offset:16 imm:32 [unused:32 imm:32]
;;
;; and another for big-endian with instructions like:
;;
;; code:8 dst:4 src:4 offset:16 imm:32 [unused:32 imm:32]
;;
;; where `offset' and the immediate fields are encoded in
;; little-endian and big-endian byte-order, respectively.
(define-pmacro (define-bpf-isa x-endian)
(define-isa
(name (.sym ebpf x-endian))
(comment "The eBPF instruction set")
;; Default length to record in ifields. This is used in
;; calculations involving bit numbers.
(default-insn-word-bitsize 64)
;; Length of an unknown instruction. Used by disassembly and by the
;; simulator's invalid insn handler.
(default-insn-bitsize 64)
;; Number of bits of insn that can be initially fetched. This is
;; the size of the smallest insn.
(base-insn-bitsize 64)))
(define-bpf-isa le)
(define-bpf-isa be)
(define-pmacro (define-xbpf-isa x-endian)
(define-isa
(name (.sym xbpf x-endian))
(comment "The xBPF instruction set")
(default-insn-word-bitsize 64)
(default-insn-bitsize 64)
(base-insn-bitsize 64)))
(define-xbpf-isa le)
(define-xbpf-isa be)
(define-pmacro all-isas () (ISA ebpfle,ebpfbe,xbpfle,xbpfbe))
(define-pmacro xbpf-isas () (ISA xbpfle,xbpfbe))
(define-pmacro (endian-isas x-endian)
((ISA (.sym ebpf x-endian) (.sym xbpf x-endian))))
;;;; Hardware Hierarchy
;;
;; bpf architecture
;; |
;; bpfbf cpu-family
;; / \
;; bpf xbpf machine
;; | |
;; bpf-def xbpf-def model
(define-cpu
(name bpfbf)
(comment "Linux kernel eBPF virtual CPU")
(insn-endian big)
(word-bitsize 64))
(define-mach
(name bpf)
(comment "Linux eBPF")
(cpu bpfbf)
(isas ebpfle ebpfbe))
(define-model
(name bpf-def)
(comment "Linux eBPF default model")
(mach bpf)
(unit u-exec "execution unit" ()
1 ; issue
1 ; done
() ; state
() ; inputs
() ; outputs
() ; profile action (default)
))
(define-mach
(name xbpf)
(comment "Experimental BPF")
(cpu bpfbf)
(isas ebpfle ebpfbe xbpfle xbpfbe))
(define-model
(name xbpf-def)
(comment "xBPF default model")
(mach xbpf)
(unit u-exec "execution unit" ()
1 ; issue
1 ; done
() ; state
() ; inputs
() ; outputs
() ; profile action (default)
))
;;;; Hardware Elements
;; eBPF programs can access 10 general-purpose registers which are
;; 64-bit.
(define-hardware
(name h-gpr)
(comment "General Purpose Registers")
(attrs all-isas (MACH bpf xbpf))
(type register DI (16))
(indices keyword "%"
;; XXX the frame pointer fp is read-only, so it should
;; go in a different hardware.
(;; ABI names. Take priority when disassembling.
(r0 0) (r1 1) (r2 2) (r3 3) (r4 4) (r5 5) (r6 6)
(r7 7) (r8 8) (r9 9) (fp 10)
;; Additional names recognized when assembling.
(r0 0) (r6 6) (r10 10))))
;; The program counter. CGEN requires it, even if it is not visible
;; to eBPF programs.
(define-hardware
(name h-pc)
(comment "program counter")
(attrs PC PROFILE all-isas)
(type pc UDI)
(get () (raw-reg h-pc))
(set (newval) (set (raw-reg h-pc) newval)))
;; A 64-bit h-sint to be used by the imm64 operand below. XXX this
;; shouldn't be needed, as h-sint is supposed to be able to hold
;; 64-bit values. However, in practice CGEN limits h-sint to 32 bits
;; in 32-bit hosts. To be fixed in CGEN.
(dnh h-sint64 "signed 64-bit integer" (all-isas) (immediate DI)
() () ())
;;;; The Instruction Sets
;;; Fields and Opcodes
;; Convenience macro to shorten the definition of the fields below.
(define-pmacro (dwf x-name x-comment x-attrs
x-word-offset x-word-length x-start x-length
x-mode)
"Define a field including its containing word."
(define-ifield
(name x-name)
(comment x-comment)
(.splice attrs (.unsplice x-attrs))
(word-offset x-word-offset)
(word-length x-word-length)
(start x-start)
(length x-length)
(mode x-mode)))
;; For arithmetic and jump instructions the 8-bit code field is
;; subdivided in:
;;
;; op-code:4 op-src:1 op-class:3
(dwf f-op-code "eBPF opcode code" (all-isas) 0 8 7 4 UINT)
(dwf f-op-src "eBPF opcode source" (all-isas) 0 8 3 1 UINT)
(dwf f-op-class "eBPF opcode instruction class" (all-isas) 0 8 2 3 UINT)
(define-normal-insn-enum insn-op-code-alu "eBPF instruction codes"
(all-isas) OP_CODE_ f-op-code
(;; Codes for OP_CLASS_ALU and OP_CLASS_ALU64
(ADD #x0) (SUB #x1) (MUL #x2) (DIV #x3) (OR #x4) (AND #x5)
(LSH #x6) (RSH #x7) (NEG #x8) (MOD #x9) (XOR #xa) (MOV #xb)
(ARSH #xc) (END #xd)
;; Codes for OP_CLASS_JMP
(JA #x0) (JEQ #x1) (JGT #x2) (JGE #x3) (JSET #x4)
(JNE #x5) (JSGT #x6) (JSGE #x7) (CALL #x8) (EXIT #x9)
(JLT #xa) (JLE #xb) (JSLT #xc) (JSLE #xd)))
(define-normal-insn-enum insn-op-src "eBPF instruction source"
(all-isas) OP_SRC_ f-op-src
;; X => use `src' as source operand.
;; K => use `imm32' as source operand.
((K #b0) (X #b1)))
(define-normal-insn-enum insn-op-class "eBPF instruction class"
(all-isas) OP_CLASS_ f-op-class
((LD #b000) (LDX #b001) (ST #b010) (STX #b011)
(ALU #b100) (JMP #b101) (JMP32 #b110) (ALU64 #b111)))
;; For load/store instructions, the 8-bit code field is subdivided in:
;;
;; op-mode:3 op-size:2 op-class:3
(dwf f-op-mode "eBPF opcode mode" (all-isas) 0 8 7 3 UINT)
(dwf f-op-size "eBPF opcode size" (all-isas) 0 8 4 2 UINT)
(define-normal-insn-enum insn-op-mode "eBPF load/store instruction modes"
(all-isas) OP_MODE_ f-op-mode
((IMM #b000) (ABS #b001) (IND #b010) (MEM #b011)
;; #b100 and #b101 are used in classic BPF only, reserved in eBPF.
(XADD #b110)))
(define-normal-insn-enum insn-op-size "eBPF load/store instruction sizes"
(all-isas) OP_SIZE_ f-op-size
((W #b00) ;; Word: 4 byte
(H #b01) ;; Half-word: 2 byte
(B #b10) ;; Byte: 1 byte
(DW #b11))) ;; Double-word: 8 byte
;; The fields for the source and destination registers are a bit
;; tricky. Due to the bizarre nibble swap between little-endian and
;; big-endian ISAs we need to keep different variants of the fields.
;;
;; Note that f-regs is used in the format spec of instructions that do
;; NOT use registers, where endianness is irrelevant i.e. f-regs is a
;; constant 0 opcode.
(dwf f-dstle "eBPF dst register field" ((ISA ebpfle xbpfle)) 8 8 3 4 UINT)
(dwf f-srcle "eBPF source register field" ((ISA ebpfle xbpfle)) 8 8 7 4 UINT)
(dwf f-dstbe "eBPF dst register field" ((ISA ebpfbe xbpfbe)) 8 8 7 4 UINT)
(dwf f-srcbe "eBPF source register field" ((ISA ebpfbe xbpfbe)) 8 8 3 4 UINT)
(dwf f-regs "eBPF registers field" (all-isas) 8 8 7 8 UINT)
;; Finally, the fields for the immediates.
;;
;; The 16-bit offsets and 32-bit immediates do not present any special
;; difficulty: we put them in their own instruction word so the
;; byte-endianness will be properly applied.
(dwf f-offset16 "eBPF offset field" (all-isas) 16 16 15 16 HI)
(dwf f-imm32 "eBPF 32-bit immediate field" (all-isas) 32 32 31 32 INT)
;; For the disjoint 64-bit signed immediate, however, we need to use a
;; multi-ifield.
(dwf f-imm64-a "eBPF 64-bit immediate a" (all-isas) 32 32 31 32 UINT)
(dwf f-imm64-b "eBPF 64-bit immediate b" (all-isas) 64 32 31 32 UINT)
(dwf f-imm64-c "eBPF 64-bit immediate c" (all-isas) 96 32 31 32 UINT)
(define-multi-ifield
(name f-imm64)
(comment "eBPF 64-bit immediate field")
(attrs all-isas)
(mode DI)
(subfields f-imm64-a f-imm64-b f-imm64-c)
(insert (sequence ()
(set (ifield f-imm64-b) (const 0))
(set (ifield f-imm64-c) (srl (ifield f-imm64) (const 32)))
(set (ifield f-imm64-a) (and (ifield f-imm64) (const #xffffffff)))))
(extract (sequence ()
(set (ifield f-imm64)
(or (sll UDI (zext UDI (ifield f-imm64-c)) (const 32))
(zext UDI (ifield f-imm64-a)))))))
;;; Operands
;; A couple of source and destination register operands are defined
;; for each ISA: ebpfle and ebpfbe.
(dno dstle "destination register" ((ISA ebpfle xbpfle)) h-gpr f-dstle)
(dno srcle "source register" ((ISA ebpfle xbpfle)) h-gpr f-srcle)
(dno dstbe "destination register" ((ISA ebpfbe xbpfbe)) h-gpr f-dstbe)
(dno srcbe "source register" ((ISA ebpfbe xbpfbe)) h-gpr f-srcbe)
;; Jump instructions have a 16-bit PC-relative address.
;; CALL instructions have a 32-bit PC-relative address.
(dno disp16 "16-bit PC-relative address" (all-isas PCREL-ADDR) h-sint
f-offset16)
(dno disp32 "32-bit PC-relative address" (all-isas PCREL-ADDR) h-sint
f-imm32)
;; Immediate operands in eBPF are signed, and we want the disassembler
;; to print negative values in a sane way. Therefore we use the macro
;; below to register a printer, which is itself defined as a C
;; function in bpf.opc.
;; define-normal-signed-immediate-operand
(define-pmacro (dnsio x-name x-comment x-attrs x-type x-index)
(define-operand
(name x-name)
(comment x-comment)
(.splice attrs (.unsplice x-attrs))
(type x-type)
(index x-index)
(handlers (print "immediate"))))
(dnsio imm32 "32-bit immediate" (all-isas) h-sint f-imm32)
(dnsio offset16 "16-bit offset" (all-isas) h-sint f-offset16)
;; The 64-bit immediate cannot use the default
;; cgen_parse_signed_integer, because it assumes operands are at much
;; 32-bit wide. Use our own.
(define-operand
(name imm64)
(comment "64-bit immediate")
(attrs all-isas)
(type h-sint64)
(index f-imm64)
(handlers (parse "imm64") (print "immediate")))
;; The endle/endbe instructions take an operand to specify the word
;; width in endianness conversions. We use both a parser and printer,
;; which are defined as C functions in bpf.opc.
(define-operand
(name endsize)
(comment "endianness size immediate: 16, 32 or 64")
(attrs all-isas)
(type h-uint)
(index f-imm32)
(handlers (parse "endsize") (print "endsize")))
;;; ALU instructions
;; For each opcode in insn-op-code-alu representing and integer
;; arithmetic instruction (ADD, SUB, etc) we define a bunch of
;; instruction variants:
;;
;; ADD[32]{i,r}le for the little-endian ISA
;; ADD[32]{i,r}be for the big-endian ISA
;;
;; The `i' variants perform `dst OP imm32 -> dst' operations.
;; The `r' variants perform `dst OP src -> dst' operations.
;;
;; The variants with 32 in their name are of ALU class. Otherwise
;; they are ALU64 class.
(define-pmacro (define-alu-insn-un x-basename x-suffix x-op-class x-op-code
x-endian x-mode x-semop)
(dni (.sym x-basename x-suffix x-endian)
(.str x-basename x-suffix)
(endian-isas x-endian)
(.str x-basename x-suffix " $dst" x-endian)
(+ (f-imm32 0) (f-offset16 0) ((.sym f-src x-endian) 0) (.sym dst x-endian)
x-op-class OP_SRC_K x-op-code)
(set x-mode (.sym dst x-endian) (x-semop x-mode (.sym dst x-endian)))
()))
(define-pmacro (define-alu-insn-bin x-basename x-suffix x-op-class x-op-code
x-endian x-mode x-semop)
(begin
;; dst = dst OP immediate
(dni (.sym x-basename x-suffix "i" x-endian)
(.str x-basename x-suffix " immediate")
(endian-isas x-endian)
(.str x-basename x-suffix " $dst" x-endian ",$imm32")
(+ imm32 (f-offset16 0) ((.sym f-src x-endian) 0) (.sym dst x-endian)
x-op-class OP_SRC_K x-op-code)
(set x-mode (.sym dst x-endian) (x-semop x-mode (.sym dst x-endian) imm32))
())
;; dst = dst OP src
(dni (.sym x-basename x-suffix "r" x-endian)
(.str x-basename x-suffix " register")
(endian-isas x-endian)
(.str x-basename x-suffix " $dst" x-endian ",$src" x-endian)
(+ (f-imm32 0) (f-offset16 0) (.sym src x-endian) (.sym dst x-endian)
x-op-class OP_SRC_X x-op-code)
(set x-mode (.sym dst x-endian)
(x-semop x-mode (.sym dst x-endian) (.sym src x-endian)))
())))
(define-pmacro (define-alu-insn-mov x-basename x-suffix x-op-class x-op-code
x-endian x-mode)
(begin
(dni (.sym mov x-suffix "i" x-endian)
(.str mov x-suffix " immediate")
(endian-isas x-endian)
(.str x-basename x-suffix " $dst" x-endian ",$imm32")
(+ imm32 (f-offset16 0) ((.sym f-src x-endian) 0) (.sym dst x-endian)
x-op-class OP_SRC_K x-op-code)
(set x-mode (.sym dst x-endian) imm32)
())
(dni (.sym mov x-suffix "r" x-endian)
(.str mov x-suffix " register")
(endian-isas x-endian)
(.str x-basename x-suffix " $dst" x-endian ",$src" x-endian)
(+ (f-imm32 0) (f-offset16 0) (.sym src x-endian) (.sym dst x-endian)
x-op-class OP_SRC_X x-op-code)
(set x-mode (.sym dst x-endian) (.sym src x-endian))
())))
;; Unary ALU instructions (neg)
(define-pmacro (daiu x-basename x-op-code x-endian x-semop)
(begin
(define-alu-insn-un x-basename "" OP_CLASS_ALU64 x-op-code x-endian DI x-semop)
(define-alu-insn-un x-basename "32" OP_CLASS_ALU x-op-code x-endian USI x-semop)))
;; Binary ALU instructions (all the others)
;; For ALU32: DST = (u32) DST OP (u32) SRC is correct semantics
(define-pmacro (daib x-basename x-op-code x-endian x-semop)
(begin
(define-alu-insn-bin x-basename "" OP_CLASS_ALU64 x-op-code x-endian DI x-semop)
(define-alu-insn-bin x-basename "32" OP_CLASS_ALU x-op-code x-endian USI x-semop)))
;; Move ALU instructions (mov)
(define-pmacro (daim x-basename x-op-code x-endian)
(begin
(define-alu-insn-mov x-basename "" OP_CLASS_ALU64 x-op-code x-endian DI)
(define-alu-insn-mov x-basename "32" OP_CLASS_ALU x-op-code x-endian USI)))
(define-pmacro (define-alu-instructions x-endian)
(begin
(daib add OP_CODE_ADD x-endian add)
(daib sub OP_CODE_SUB x-endian sub)
(daib mul OP_CODE_MUL x-endian mul)
(daib div OP_CODE_DIV x-endian udiv)
(daib or OP_CODE_OR x-endian or)
(daib and OP_CODE_AND x-endian and)
(daib lsh OP_CODE_LSH x-endian sll)
(daib rsh OP_CODE_RSH x-endian srl)
(daib mod OP_CODE_MOD x-endian umod)
(daib xor OP_CODE_XOR x-endian xor)
(daib arsh OP_CODE_ARSH x-endian sra)
(daiu neg OP_CODE_NEG x-endian neg)
(daim mov OP_CODE_MOV x-endian)))
(define-alu-instructions le)
(define-alu-instructions be)
;;; Endianness conversion instructions
;; The endianness conversion instructions come in several variants:
;;
;; END{le,be}le for the little-endian ISA
;; END{le,be}be for the big-endian ISA
;;
;; Please do not be confused by the repeated `be' and `le' here. Each
;; ISA has both endle and endbe instructions. It is the disposition
;; of the source and destination register fields that change between
;; ISAs, not the semantics of the instructions themselves (see section
;; "The ISAs" above in this very file.)
(define-pmacro (define-endian-insn x-suffix x-op-src x-endian)
(dni (.sym "end" x-suffix x-endian)
(.str "end" x-suffix " register")
(endian-isas x-endian)
(.str "end" x-suffix " $dst" x-endian ",$endsize")
(+ (f-offset16 0) ((.sym f-src x-endian) 0) (.sym dst x-endian) endsize
OP_CLASS_ALU x-op-src OP_CODE_END)
(set (.sym dst x-endian)
(c-call DI (.str "bpfbf_end" x-suffix) (.sym dst x-endian) endsize))
()))
(define-endian-insn "le" OP_SRC_K le)
(define-endian-insn "be" OP_SRC_X le)
(define-endian-insn "le" OP_SRC_K be)
(define-endian-insn "be" OP_SRC_X be)
;;; Load/Store instructions
;; The lddw instruction takes a 64-bit immediate as an operand. Since
;; this instruction also takes a `dst' operand, we need to define a
;; variant for each ISA:
;;
;; LDDWle for the little-endian ISA
;; LDDWbe for the big-endian ISA
(define-pmacro (define-lddw x-endian)
(dni (.sym lddw x-endian)
(.str "lddw" x-endian)
(endian-isas x-endian)
(.str "lddw $dst" x-endian ",$imm64")
(+ imm64 (f-offset16 0) ((.sym f-src x-endian) 0)
(.sym dst x-endian)
OP_CLASS_LD OP_SIZE_DW OP_MODE_IMM)
(set DI (.sym dst x-endian) imm64)
()))
(define-lddw le)
(define-lddw be)
;; The absolute load instructions are non-generic loads designed to be
;; used in socket filters. They come in several variants:
;;
;; LDABS{w,h,b,dw}
(define-pmacro (dlabs x-suffix x-size x-smode)
(dni (.sym "ldabs" x-suffix)
(.str "ldabs" x-suffix)
(all-isas)
(.str "ldabs" x-suffix " $imm32")
(+ imm32 (f-offset16 0) (f-regs 0)
OP_CLASS_LD OP_MODE_ABS (.sym OP_SIZE_ x-size))
(set x-smode
(reg x-smode h-gpr 0)
(mem x-smode
(add DI
(mem DI
(add DI
(reg DI h-gpr 6) ;; Pointer to struct sk_buff
(c-call "bpfbf_skb_data_offset")))
imm32)))
;; XXX this clobbers R1-R5
()))
(dlabs "w" W SI)
(dlabs "h" H HI)
(dlabs "b" B QI)
(dlabs "dw" DW DI)
;; The indirect load instructions are non-generic loads designed to be
;; used in socket filters. They come in several variants:
;;
;; LDIND{w,h,b,dw}le for the little-endian ISA
;; LDIND[w,h,b,dw}be for the big-endian ISA
(define-pmacro (dlind x-suffix x-size x-endian x-smode)
(dni (.sym "ldind" x-suffix x-endian)
(.str "ldind" x-suffix)
(endian-isas x-endian)
(.str "ldind" x-suffix " $src" x-endian ",$imm32")
(+ imm32 (f-offset16 0) ((.sym f-dst x-endian) 0) (.sym src x-endian)
OP_CLASS_LD OP_MODE_IND (.sym OP_SIZE_ x-size))
(set x-smode
(reg x-smode h-gpr 0)
(mem x-smode
(add DI
(mem DI
(add DI
(reg DI h-gpr 6) ;; Pointer to struct sk_buff
(c-call "bpfbf_skb_data_offset")))
(add DI
(.sym src x-endian)
imm32))))
;; XXX this clobbers R1-R5
()))
(define-pmacro (define-ldind x-endian)
(begin
(dlind "w" W x-endian SI)
(dlind "h" H x-endian HI)
(dlind "b" B x-endian QI)
(dlind "dw" DW x-endian DI)))
(define-ldind le)
(define-ldind be)
;; Generic load and store instructions are provided for several word
;; sizes. They come in several variants:
;;
;; LDX{b,h,w,dw}le, STX{b,h,w,dw}le for the little-endian ISA
;;
;; LDX{b,h,w,dw}be, STX{b,h,w,dw}be for the big-endian ISA
;;
;; Loads operate on [$SRC+-OFFSET] -> $DST
;; Stores operate on $SRC -> [$DST+-OFFSET]
(define-pmacro (dxli x-basename x-suffix x-size x-endian x-mode)
(dni (.sym x-basename x-suffix x-endian)
(.str x-basename x-suffix)
(endian-isas x-endian)
(.str x-basename x-suffix " $dst" x-endian ",[$src" x-endian "+$offset16]")
(+ (f-imm32 0) offset16 (.sym src x-endian) (.sym dst x-endian)
OP_CLASS_LDX (.sym OP_SIZE_ x-size) OP_MODE_MEM)
(set x-mode
(.sym dst x-endian)
(mem x-mode (add DI (.sym src x-endian) offset16)))
()))
(define-pmacro (dxsi x-basename x-suffix x-size x-endian x-mode)
(dni (.sym x-basename x-suffix x-endian)
(.str x-basename x-suffix)
(endian-isas x-endian)
(.str x-basename x-suffix " [$dst" x-endian "+$offset16],$src" x-endian)
(+ (f-imm32 0) offset16 (.sym src x-endian) (.sym dst x-endian)
OP_CLASS_STX (.sym OP_SIZE_ x-size) OP_MODE_MEM)
(set x-mode
(mem x-mode (add DI (.sym dst x-endian) offset16))
(.sym src x-endian)) ;; XXX address is section-relative
()))
(define-pmacro (define-ldstx-insns x-endian)
(begin
(dxli "ldx" "w" W x-endian SI)
(dxli "ldx" "h" H x-endian HI)
(dxli "ldx" "b" B x-endian QI)
(dxli "ldx" "dw" DW x-endian DI)
(dxsi "stx" "w" W x-endian SI)
(dxsi "stx" "h" H x-endian HI)
(dxsi "stx" "b" B x-endian QI)
(dxsi "stx" "dw" DW x-endian DI)))
(define-ldstx-insns le)
(define-ldstx-insns be)
;; Generic store instructions of the form IMM32 -> [$DST+OFFSET] are
;; provided in several variants:
;;
;; ST{b,h,w,dw}le for the little-endian ISA
;; ST{b,h,w,dw}be for the big-endian ISA
(define-pmacro (dsti x-suffix x-size x-endian x-mode)
(dni (.sym "st" x-suffix x-endian)
(.str "st" x-suffix)
(endian-isas x-endian)
(.str "st" x-suffix " [$dst" x-endian "+$offset16],$imm32")
(+ imm32 offset16 ((.sym f-src x-endian) 0) (.sym dst x-endian)
OP_CLASS_ST (.sym OP_SIZE_ x-size) OP_MODE_MEM)
(set x-mode
(mem x-mode (add DI (.sym dst x-endian) offset16))
imm32) ;; XXX address is section-relative
()))
(define-pmacro (define-st-insns x-endian)
(begin
(dsti "b" B x-endian QI)
(dsti "h" H x-endian HI)
(dsti "w" W x-endian SI)
(dsti "dw" DW x-endian DI)))
(define-st-insns le)
(define-st-insns be)
;;; Jump instructions
;; Compare-and-jump instructions, on the other hand, make use of
;; registers. Therefore, we need to define several variants in both
;; ISAs:
;;
;; J{eq,gt,ge,lt,le,set,ne,sgt,sge,slt,sle}[32]{i,r}le for the
;; little-endian ISA.
;; J{eq,gt,ge,lt,le,set,ne.sgt,sge,slt,sle}[32]{i,r}be for the
;; big-endian ISA.
(define-pmacro (define-cond-jump-insn x-cond x-suffix x-op-class x-op-code x-endian x-mode x-semop)
(begin
(dni (.sym j x-cond x-suffix i x-endian)
(.str j x-cond x-suffix " i")
(endian-isas x-endian)
(.str "j" x-cond x-suffix " $dst" x-endian ",$imm32,$disp16")
(+ imm32 disp16 ((.sym f-src x-endian) 0) (.sym dst x-endian)
x-op-class OP_SRC_K (.sym OP_CODE_ x-op-code))
(if VOID (x-semop x-mode (.sym dst x-endian) imm32)
(set DI
(reg DI h-pc) (add DI (reg DI h-pc)
(mul DI (add HI disp16 1) 8))))
())
(dni (.sym j x-cond x-suffix r x-endian)
(.str j x-cond x-suffix " r")
(endian-isas x-endian)
(.str "j" x-cond x-suffix " $dst" x-endian ",$src" x-endian ",$disp16")
(+ (f-imm32 0) disp16 (.sym src x-endian) (.sym dst x-endian)
x-op-class OP_SRC_X (.sym OP_CODE_ x-op-code))
(if VOID (x-semop x-mode (.sym dst x-endian) (.sym src x-endian))
(set DI
(reg DI h-pc) (add DI (reg DI h-pc)
(mul DI (add HI disp16 1) 8))))
())))
(define-pmacro (dcji x-cond x-op-code x-endian x-semop)
(begin
(define-cond-jump-insn x-cond "" OP_CLASS_JMP x-op-code x-endian DI x-semop)
(define-cond-jump-insn x-cond "32" OP_CLASS_JMP32 x-op-code x-endian SI x-semop )))
(define-pmacro (define-condjump-insns x-endian)
(begin
(dcji "eq" JEQ x-endian eq)
(dcji "gt" JGT x-endian gtu)
(dcji "ge" JGE x-endian geu)
(dcji "lt" JLT x-endian ltu)
(dcji "le" JLE x-endian leu)
(dcji "set" JSET x-endian and)
(dcji "ne" JNE x-endian ne)
(dcji "sgt" JSGT x-endian gt)
(dcji "sge" JSGE x-endian ge)
(dcji "slt" JSLT x-endian lt)
(dcji "sle" JSLE x-endian le)))
(define-condjump-insns le)
(define-condjump-insns be)
;; The `call' instruction doesn't make use of registers, but the
;; semantic routine should have access to the src register in order to
;; properly interpret the meaning of disp32. Therefore we need one
;; version per ISA.
(define-pmacro (define-call-insn x-endian)
(dni (.sym call x-endian)
"call"
(endian-isas x-endian)
"call $disp32"
(+ disp32 (f-offset16 0) (f-regs 0)
OP_CLASS_JMP OP_SRC_K OP_CODE_CALL)
(c-call VOID
"bpfbf_call" disp32 (ifield (.sym f-src x-endian)))
()))
(define-call-insn le)
(define-call-insn be)
(define-pmacro (define-callr-insn x-endian)
(dni (.sym callr x-endian)
"callr"
((ISA (.sym xbpf x-endian)))
(.str "call $dst" x-endian)
(+ (f-imm32 0) (f-offset16 0) ((.sym f-src x-endian) 0) (.sym dst x-endian)
OP_CLASS_JMP OP_SRC_X OP_CODE_CALL)
(c-call VOID
"bpfbf_callr" (ifield (.sym f-dst x-endian)))
()))
(define-callr-insn le)
(define-callr-insn be)
;; The jump-always and `exit' instructions dont make use of either
;; source nor destination registers, so only one variant per
;; instruction is defined.
(dni ja "ja" (all-isas) "ja $disp16"
(+ (f-imm32 0) disp16 (f-regs 0)
OP_CLASS_JMP OP_SRC_K OP_CODE_JA)
(set DI (reg DI h-pc) (add DI (reg DI h-pc)
(mul DI (add HI disp16 1) 8)))
())
(dni "exit" "exit" (all-isas) "exit"
(+ (f-imm32 0) (f-offset16 0) (f-regs 0)
OP_CLASS_JMP (f-op-src 0) OP_CODE_EXIT)
(c-call VOID "bpfbf_exit")
())
;;; Atomic instructions
;; The atomic exchange-and-add instructions come in two flavors: one
;; for swapping 64-bit quantities and another for 32-bit quantities.
(define-pmacro (sem-exchange-and-add x-endian x-mode)
(sequence VOID ((x-mode tmp))
;; XXX acquire lock in simulator... as a hardware element?
(set x-mode tmp (mem x-mode (add DI (.sym dst x-endian) offset16)))
(set x-mode
(mem x-mode (add DI (.sym dst x-endian) offset16))
(add x-mode tmp (.sym src x-endian)))))
(define-pmacro (define-atomic-insns x-endian)
(begin
(dni (.str "xadddw" x-endian)
"xadddw"
(endian-isas x-endian)
(.str "xadddw [$dst" x-endian "+$offset16],$src" x-endian)
(+ (f-imm32 0) (.sym src x-endian) (.sym dst x-endian)
offset16 OP_MODE_XADD OP_SIZE_DW OP_CLASS_STX)
(sem-exchange-and-add x-endian DI)
())
(dni (.str "xaddw" x-endian)
"xaddw"
(endian-isas x-endian)
(.str "xaddw [$dst" x-endian "+$offset16],$src" x-endian)
(+ (f-imm32 0) (.sym src x-endian) (.sym dst x-endian)
offset16 OP_MODE_XADD OP_SIZE_W OP_CLASS_STX)
(sem-exchange-and-add x-endian SI)
())))
(define-atomic-insns le)
(define-atomic-insns be)
;;; Breakpoint instruction
;; The brkpt instruction is used by the BPF simulator and it doesn't
;; really belong to the eBPF instruction set.
(dni "brkpt" "brkpt" (all-isas) "brkpt"
(+ (f-imm32 0) (f-offset16 0) (f-regs 0)
OP_CLASS_ALU OP_SRC_X OP_CODE_NEG)
(c-call VOID "bpfbf_breakpoint")
())
|