1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
|
/* ELF linking support for BFD.
Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
Free Software Foundation, Inc.
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#include "bfd.h"
#include "sysdep.h"
#include "bfdlink.h"
#include "libbfd.h"
#define ARCH_SIZE 0
#include "elf-bfd.h"
static bfd_boolean elf_link_read_relocs_from_section
PARAMS ((bfd *, Elf_Internal_Shdr *, PTR, Elf_Internal_Rela *));
bfd_boolean
_bfd_elf_create_got_section (abfd, info)
bfd *abfd;
struct bfd_link_info *info;
{
flagword flags;
asection *s;
struct elf_link_hash_entry *h;
struct bfd_link_hash_entry *bh;
struct elf_backend_data *bed = get_elf_backend_data (abfd);
int ptralign;
/* This function may be called more than once. */
s = bfd_get_section_by_name (abfd, ".got");
if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
return TRUE;
switch (bed->s->arch_size)
{
case 32:
ptralign = 2;
break;
case 64:
ptralign = 3;
break;
default:
bfd_set_error (bfd_error_bad_value);
return FALSE;
}
flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
| SEC_LINKER_CREATED);
s = bfd_make_section (abfd, ".got");
if (s == NULL
|| !bfd_set_section_flags (abfd, s, flags)
|| !bfd_set_section_alignment (abfd, s, ptralign))
return FALSE;
if (bed->want_got_plt)
{
s = bfd_make_section (abfd, ".got.plt");
if (s == NULL
|| !bfd_set_section_flags (abfd, s, flags)
|| !bfd_set_section_alignment (abfd, s, ptralign))
return FALSE;
}
if (bed->want_got_sym)
{
/* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
(or .got.plt) section. We don't do this in the linker script
because we don't want to define the symbol if we are not creating
a global offset table. */
bh = NULL;
if (!(_bfd_generic_link_add_one_symbol
(info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
bed->got_symbol_offset, (const char *) NULL, FALSE,
bed->collect, &bh)))
return FALSE;
h = (struct elf_link_hash_entry *) bh;
h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
h->type = STT_OBJECT;
if (info->shared
&& ! _bfd_elf_link_record_dynamic_symbol (info, h))
return FALSE;
elf_hash_table (info)->hgot = h;
}
/* The first bit of the global offset table is the header. */
s->_raw_size += bed->got_header_size + bed->got_symbol_offset;
return TRUE;
}
/* Create some sections which will be filled in with dynamic linking
information. ABFD is an input file which requires dynamic sections
to be created. The dynamic sections take up virtual memory space
when the final executable is run, so we need to create them before
addresses are assigned to the output sections. We work out the
actual contents and size of these sections later. */
bfd_boolean
_bfd_elf_link_create_dynamic_sections (abfd, info)
bfd *abfd;
struct bfd_link_info *info;
{
flagword flags;
register asection *s;
struct elf_link_hash_entry *h;
struct bfd_link_hash_entry *bh;
struct elf_backend_data *bed;
if (! is_elf_hash_table (info))
return FALSE;
if (elf_hash_table (info)->dynamic_sections_created)
return TRUE;
/* Make sure that all dynamic sections use the same input BFD. */
if (elf_hash_table (info)->dynobj == NULL)
elf_hash_table (info)->dynobj = abfd;
else
abfd = elf_hash_table (info)->dynobj;
/* Note that we set the SEC_IN_MEMORY flag for all of these
sections. */
flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
| SEC_IN_MEMORY | SEC_LINKER_CREATED);
/* A dynamically linked executable has a .interp section, but a
shared library does not. */
if (! info->shared)
{
s = bfd_make_section (abfd, ".interp");
if (s == NULL
|| ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
return FALSE;
}
if (! info->traditional_format
&& info->hash->creator->flavour == bfd_target_elf_flavour)
{
s = bfd_make_section (abfd, ".eh_frame_hdr");
if (s == NULL
|| ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
|| ! bfd_set_section_alignment (abfd, s, 2))
return FALSE;
elf_hash_table (info)->eh_info.hdr_sec = s;
}
bed = get_elf_backend_data (abfd);
/* Create sections to hold version informations. These are removed
if they are not needed. */
s = bfd_make_section (abfd, ".gnu.version_d");
if (s == NULL
|| ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
|| ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
return FALSE;
s = bfd_make_section (abfd, ".gnu.version");
if (s == NULL
|| ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
|| ! bfd_set_section_alignment (abfd, s, 1))
return FALSE;
s = bfd_make_section (abfd, ".gnu.version_r");
if (s == NULL
|| ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
|| ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
return FALSE;
s = bfd_make_section (abfd, ".dynsym");
if (s == NULL
|| ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
|| ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
return FALSE;
s = bfd_make_section (abfd, ".dynstr");
if (s == NULL
|| ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
return FALSE;
/* Create a strtab to hold the dynamic symbol names. */
if (elf_hash_table (info)->dynstr == NULL)
{
elf_hash_table (info)->dynstr = _bfd_elf_strtab_init ();
if (elf_hash_table (info)->dynstr == NULL)
return FALSE;
}
s = bfd_make_section (abfd, ".dynamic");
if (s == NULL
|| ! bfd_set_section_flags (abfd, s, flags)
|| ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
return FALSE;
/* The special symbol _DYNAMIC is always set to the start of the
.dynamic section. This call occurs before we have processed the
symbols for any dynamic object, so we don't have to worry about
overriding a dynamic definition. We could set _DYNAMIC in a
linker script, but we only want to define it if we are, in fact,
creating a .dynamic section. We don't want to define it if there
is no .dynamic section, since on some ELF platforms the start up
code examines it to decide how to initialize the process. */
bh = NULL;
if (! (_bfd_generic_link_add_one_symbol
(info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
(const char *) 0, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
return FALSE;
h = (struct elf_link_hash_entry *) bh;
h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
h->type = STT_OBJECT;
if (info->shared
&& ! _bfd_elf_link_record_dynamic_symbol (info, h))
return FALSE;
s = bfd_make_section (abfd, ".hash");
if (s == NULL
|| ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
|| ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
return FALSE;
elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
/* Let the backend create the rest of the sections. This lets the
backend set the right flags. The backend will normally create
the .got and .plt sections. */
if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
return FALSE;
elf_hash_table (info)->dynamic_sections_created = TRUE;
return TRUE;
}
/* Create dynamic sections when linking against a dynamic object. */
bfd_boolean
_bfd_elf_create_dynamic_sections (abfd, info)
bfd *abfd;
struct bfd_link_info *info;
{
flagword flags, pltflags;
asection *s;
struct elf_backend_data *bed = get_elf_backend_data (abfd);
/* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
.rel[a].bss sections. */
flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
| SEC_LINKER_CREATED);
pltflags = flags;
pltflags |= SEC_CODE;
if (bed->plt_not_loaded)
pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
if (bed->plt_readonly)
pltflags |= SEC_READONLY;
s = bfd_make_section (abfd, ".plt");
if (s == NULL
|| ! bfd_set_section_flags (abfd, s, pltflags)
|| ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
return FALSE;
if (bed->want_plt_sym)
{
/* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
.plt section. */
struct elf_link_hash_entry *h;
struct bfd_link_hash_entry *bh = NULL;
if (! (_bfd_generic_link_add_one_symbol
(info, abfd, "_PROCEDURE_LINKAGE_TABLE_", BSF_GLOBAL, s,
(bfd_vma) 0, (const char *) NULL, FALSE,
get_elf_backend_data (abfd)->collect, &bh)))
return FALSE;
h = (struct elf_link_hash_entry *) bh;
h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
h->type = STT_OBJECT;
if (info->shared
&& ! _bfd_elf_link_record_dynamic_symbol (info, h))
return FALSE;
}
s = bfd_make_section (abfd,
bed->default_use_rela_p ? ".rela.plt" : ".rel.plt");
if (s == NULL
|| ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
|| ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
return FALSE;
if (! _bfd_elf_create_got_section (abfd, info))
return FALSE;
if (bed->want_dynbss)
{
/* The .dynbss section is a place to put symbols which are defined
by dynamic objects, are referenced by regular objects, and are
not functions. We must allocate space for them in the process
image and use a R_*_COPY reloc to tell the dynamic linker to
initialize them at run time. The linker script puts the .dynbss
section into the .bss section of the final image. */
s = bfd_make_section (abfd, ".dynbss");
if (s == NULL
|| ! bfd_set_section_flags (abfd, s, SEC_ALLOC))
return FALSE;
/* The .rel[a].bss section holds copy relocs. This section is not
normally needed. We need to create it here, though, so that the
linker will map it to an output section. We can't just create it
only if we need it, because we will not know whether we need it
until we have seen all the input files, and the first time the
main linker code calls BFD after examining all the input files
(size_dynamic_sections) the input sections have already been
mapped to the output sections. If the section turns out not to
be needed, we can discard it later. We will never need this
section when generating a shared object, since they do not use
copy relocs. */
if (! info->shared)
{
s = bfd_make_section (abfd,
(bed->default_use_rela_p
? ".rela.bss" : ".rel.bss"));
if (s == NULL
|| ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
|| ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
return FALSE;
}
}
return TRUE;
}
/* Record a new dynamic symbol. We record the dynamic symbols as we
read the input files, since we need to have a list of all of them
before we can determine the final sizes of the output sections.
Note that we may actually call this function even though we are not
going to output any dynamic symbols; in some cases we know that a
symbol should be in the dynamic symbol table, but only if there is
one. */
bfd_boolean
_bfd_elf_link_record_dynamic_symbol (info, h)
struct bfd_link_info *info;
struct elf_link_hash_entry *h;
{
if (h->dynindx == -1)
{
struct elf_strtab_hash *dynstr;
char *p, *alc;
const char *name;
bfd_boolean copy;
bfd_size_type indx;
/* XXX: The ABI draft says the linker must turn hidden and
internal symbols into STB_LOCAL symbols when producing the
DSO. However, if ld.so honors st_other in the dynamic table,
this would not be necessary. */
switch (ELF_ST_VISIBILITY (h->other))
{
case STV_INTERNAL:
case STV_HIDDEN:
if (h->root.type != bfd_link_hash_undefined
&& h->root.type != bfd_link_hash_undefweak)
{
h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
return TRUE;
}
default:
break;
}
h->dynindx = elf_hash_table (info)->dynsymcount;
++elf_hash_table (info)->dynsymcount;
dynstr = elf_hash_table (info)->dynstr;
if (dynstr == NULL)
{
/* Create a strtab to hold the dynamic symbol names. */
elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
if (dynstr == NULL)
return FALSE;
}
/* We don't put any version information in the dynamic string
table. */
name = h->root.root.string;
p = strchr (name, ELF_VER_CHR);
if (p == NULL)
{
alc = NULL;
copy = FALSE;
}
else
{
size_t len = p - name + 1;
alc = bfd_malloc ((bfd_size_type) len);
if (alc == NULL)
return FALSE;
memcpy (alc, name, len - 1);
alc[len - 1] = '\0';
name = alc;
copy = TRUE;
}
indx = _bfd_elf_strtab_add (dynstr, name, copy);
if (alc != NULL)
free (alc);
if (indx == (bfd_size_type) -1)
return FALSE;
h->dynstr_index = indx;
}
return TRUE;
}
/* Record an assignment to a symbol made by a linker script. We need
this in case some dynamic object refers to this symbol. */
bfd_boolean
bfd_elf_record_link_assignment (output_bfd, info, name, provide)
bfd *output_bfd ATTRIBUTE_UNUSED;
struct bfd_link_info *info;
const char *name;
bfd_boolean provide;
{
struct elf_link_hash_entry *h;
if (info->hash->creator->flavour != bfd_target_elf_flavour)
return TRUE;
h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, TRUE, FALSE);
if (h == NULL)
return FALSE;
if (h->root.type == bfd_link_hash_new)
h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF;
/* If this symbol is being provided by the linker script, and it is
currently defined by a dynamic object, but not by a regular
object, then mark it as undefined so that the generic linker will
force the correct value. */
if (provide
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
h->root.type = bfd_link_hash_undefined;
/* If this symbol is not being provided by the linker script, and it is
currently defined by a dynamic object, but not by a regular object,
then clear out any version information because the symbol will not be
associated with the dynamic object any more. */
if (!provide
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
h->verinfo.verdef = NULL;
h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
| ELF_LINK_HASH_REF_DYNAMIC)) != 0
|| info->shared)
&& h->dynindx == -1)
{
if (! _bfd_elf_link_record_dynamic_symbol (info, h))
return FALSE;
/* If this is a weak defined symbol, and we know a corresponding
real symbol from the same dynamic object, make sure the real
symbol is also made into a dynamic symbol. */
if (h->weakdef != NULL
&& h->weakdef->dynindx == -1)
{
if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
return FALSE;
}
}
return TRUE;
}
/* Record a new local dynamic symbol. Returns 0 on failure, 1 on
success, and 2 on a failure caused by attempting to record a symbol
in a discarded section, eg. a discarded link-once section symbol. */
int
elf_link_record_local_dynamic_symbol (info, input_bfd, input_indx)
struct bfd_link_info *info;
bfd *input_bfd;
long input_indx;
{
bfd_size_type amt;
struct elf_link_local_dynamic_entry *entry;
struct elf_link_hash_table *eht;
struct elf_strtab_hash *dynstr;
unsigned long dynstr_index;
char *name;
Elf_External_Sym_Shndx eshndx;
char esym[sizeof (Elf64_External_Sym)];
if (! is_elf_hash_table (info))
return 0;
/* See if the entry exists already. */
for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
return 1;
amt = sizeof (*entry);
entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
if (entry == NULL)
return 0;
/* Go find the symbol, so that we can find it's name. */
if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
(size_t) 1, (size_t) input_indx,
&entry->isym, esym, &eshndx))
{
bfd_release (input_bfd, entry);
return 0;
}
if (entry->isym.st_shndx != SHN_UNDEF
&& (entry->isym.st_shndx < SHN_LORESERVE
|| entry->isym.st_shndx > SHN_HIRESERVE))
{
asection *s;
s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
if (s == NULL || bfd_is_abs_section (s->output_section))
{
/* We can still bfd_release here as nothing has done another
bfd_alloc. We can't do this later in this function. */
bfd_release (input_bfd, entry);
return 2;
}
}
name = (bfd_elf_string_from_elf_section
(input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
entry->isym.st_name));
dynstr = elf_hash_table (info)->dynstr;
if (dynstr == NULL)
{
/* Create a strtab to hold the dynamic symbol names. */
elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
if (dynstr == NULL)
return 0;
}
dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
if (dynstr_index == (unsigned long) -1)
return 0;
entry->isym.st_name = dynstr_index;
eht = elf_hash_table (info);
entry->next = eht->dynlocal;
eht->dynlocal = entry;
entry->input_bfd = input_bfd;
entry->input_indx = input_indx;
eht->dynsymcount++;
/* Whatever binding the symbol had before, it's now local. */
entry->isym.st_info
= ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
/* The dynindx will be set at the end of size_dynamic_sections. */
return 1;
}
/* Return the dynindex of a local dynamic symbol. */
long
_bfd_elf_link_lookup_local_dynindx (info, input_bfd, input_indx)
struct bfd_link_info *info;
bfd *input_bfd;
long input_indx;
{
struct elf_link_local_dynamic_entry *e;
for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
if (e->input_bfd == input_bfd && e->input_indx == input_indx)
return e->dynindx;
return -1;
}
/* This function is used to renumber the dynamic symbols, if some of
them are removed because they are marked as local. This is called
via elf_link_hash_traverse. */
static bfd_boolean elf_link_renumber_hash_table_dynsyms
PARAMS ((struct elf_link_hash_entry *, PTR));
static bfd_boolean
elf_link_renumber_hash_table_dynsyms (h, data)
struct elf_link_hash_entry *h;
PTR data;
{
size_t *count = (size_t *) data;
if (h->root.type == bfd_link_hash_warning)
h = (struct elf_link_hash_entry *) h->root.u.i.link;
if (h->dynindx != -1)
h->dynindx = ++(*count);
return TRUE;
}
/* Assign dynsym indices. In a shared library we generate a section
symbol for each output section, which come first. Next come all of
the back-end allocated local dynamic syms, followed by the rest of
the global symbols. */
unsigned long
_bfd_elf_link_renumber_dynsyms (output_bfd, info)
bfd *output_bfd;
struct bfd_link_info *info;
{
unsigned long dynsymcount = 0;
if (info->shared)
{
asection *p;
for (p = output_bfd->sections; p ; p = p->next)
if ((p->flags & SEC_EXCLUDE) == 0)
elf_section_data (p)->dynindx = ++dynsymcount;
}
if (elf_hash_table (info)->dynlocal)
{
struct elf_link_local_dynamic_entry *p;
for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
p->dynindx = ++dynsymcount;
}
elf_link_hash_traverse (elf_hash_table (info),
elf_link_renumber_hash_table_dynsyms,
&dynsymcount);
/* There is an unused NULL entry at the head of the table which
we must account for in our count. Unless there weren't any
symbols, which means we'll have no table at all. */
if (dynsymcount != 0)
++dynsymcount;
return elf_hash_table (info)->dynsymcount = dynsymcount;
}
/* This function is called when we want to define a new symbol. It
handles the various cases which arise when we find a definition in
a dynamic object, or when there is already a definition in a
dynamic object. The new symbol is described by NAME, SYM, PSEC,
and PVALUE. We set SYM_HASH to the hash table entry. We set
OVERRIDE if the old symbol is overriding a new definition. We set
TYPE_CHANGE_OK if it is OK for the type to change. We set
SIZE_CHANGE_OK if it is OK for the size to change. By OK to
change, we mean that we shouldn't warn if the type or size does
change. DT_NEEDED indicates if it comes from a DT_NEEDED entry of
a shared object. */
bfd_boolean
_bfd_elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash, skip,
override, type_change_ok, size_change_ok, dt_needed)
bfd *abfd;
struct bfd_link_info *info;
const char *name;
Elf_Internal_Sym *sym;
asection **psec;
bfd_vma *pvalue;
struct elf_link_hash_entry **sym_hash;
bfd_boolean *skip;
bfd_boolean *override;
bfd_boolean *type_change_ok;
bfd_boolean *size_change_ok;
bfd_boolean dt_needed;
{
asection *sec;
struct elf_link_hash_entry *h;
struct elf_link_hash_entry *flip;
int bind;
bfd *oldbfd;
bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
bfd_boolean newweakdef, oldweakdef, newweakundef, oldweakundef;
*skip = FALSE;
*override = FALSE;
sec = *psec;
bind = ELF_ST_BIND (sym->st_info);
if (! bfd_is_und_section (sec))
h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
else
h = ((struct elf_link_hash_entry *)
bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
if (h == NULL)
return FALSE;
*sym_hash = h;
/* This code is for coping with dynamic objects, and is only useful
if we are doing an ELF link. */
if (info->hash->creator != abfd->xvec)
return TRUE;
/* For merging, we only care about real symbols. */
while (h->root.type == bfd_link_hash_indirect
|| h->root.type == bfd_link_hash_warning)
h = (struct elf_link_hash_entry *) h->root.u.i.link;
/* If we just created the symbol, mark it as being an ELF symbol.
Other than that, there is nothing to do--there is no merge issue
with a newly defined symbol--so we just return. */
if (h->root.type == bfd_link_hash_new)
{
h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
return TRUE;
}
/* OLDBFD is a BFD associated with the existing symbol. */
switch (h->root.type)
{
default:
oldbfd = NULL;
break;
case bfd_link_hash_undefined:
case bfd_link_hash_undefweak:
oldbfd = h->root.u.undef.abfd;
break;
case bfd_link_hash_defined:
case bfd_link_hash_defweak:
oldbfd = h->root.u.def.section->owner;
break;
case bfd_link_hash_common:
oldbfd = h->root.u.c.p->section->owner;
break;
}
/* In cases involving weak versioned symbols, we may wind up trying
to merge a symbol with itself. Catch that here, to avoid the
confusion that results if we try to override a symbol with
itself. The additional tests catch cases like
_GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
dynamic object, which we do want to handle here. */
if (abfd == oldbfd
&& ((abfd->flags & DYNAMIC) == 0
|| (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0))
return TRUE;
/* NEWDYN and OLDDYN indicate whether the new or old symbol,
respectively, is from a dynamic object. */
if ((abfd->flags & DYNAMIC) != 0)
newdyn = TRUE;
else
newdyn = FALSE;
if (oldbfd != NULL)
olddyn = (oldbfd->flags & DYNAMIC) != 0;
else
{
asection *hsec;
/* This code handles the special SHN_MIPS_{TEXT,DATA} section
indices used by MIPS ELF. */
switch (h->root.type)
{
default:
hsec = NULL;
break;
case bfd_link_hash_defined:
case bfd_link_hash_defweak:
hsec = h->root.u.def.section;
break;
case bfd_link_hash_common:
hsec = h->root.u.c.p->section;
break;
}
if (hsec == NULL)
olddyn = FALSE;
else
olddyn = (hsec->symbol->flags & BSF_DYNAMIC) != 0;
}
/* NEWDEF and OLDDEF indicate whether the new or old symbol,
respectively, appear to be a definition rather than reference. */
if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
newdef = FALSE;
else
newdef = TRUE;
if (h->root.type == bfd_link_hash_undefined
|| h->root.type == bfd_link_hash_undefweak
|| h->root.type == bfd_link_hash_common)
olddef = FALSE;
else
olddef = TRUE;
/* We need to rememeber if a symbol has a definition in a dynamic
object or is weak in all dynamic objects. Internal and hidden
visibility will make it unavailable to dynamic objects. */
if (newdyn && (h->elf_link_hash_flags & ELF_LINK_DYNAMIC_DEF) == 0)
{
if (!bfd_is_und_section (sec))
h->elf_link_hash_flags |= ELF_LINK_DYNAMIC_DEF;
else
{
/* Check if this symbol is weak in all dynamic objects. If it
is the first time we see it in a dynamic object, we mark
if it is weak. Otherwise, we clear it. */
if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0)
{
if (bind == STB_WEAK)
h->elf_link_hash_flags |= ELF_LINK_DYNAMIC_WEAK;
}
else if (bind != STB_WEAK)
h->elf_link_hash_flags &= ~ELF_LINK_DYNAMIC_WEAK;
}
}
/* If the old symbol has non-default visibility, we ignore the new
definition from a dynamic object. */
if (newdyn
&& ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
&& !bfd_is_und_section (sec))
{
*skip = TRUE;
/* Make sure this symbol is dynamic. */
h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
/* A protected symbol has external availability. Make sure it is
recorded as dynamic.
FIXME: Should we check type and size for protected symbol? */
if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
return _bfd_elf_link_record_dynamic_symbol (info, h);
else
return TRUE;
}
else if (!newdyn
&& ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
{
/* If the new symbol with non-default visibility comes from a
relocatable file and the old definition comes from a dynamic
object, we remove the old definition. */
if ((*sym_hash)->root.type == bfd_link_hash_indirect)
h = *sym_hash;
h->root.type = bfd_link_hash_new;
h->root.u.undef.abfd = NULL;
if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
{
h->elf_link_hash_flags &= ~ELF_LINK_HASH_DEF_DYNAMIC;
h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_DYNAMIC
| ELF_LINK_DYNAMIC_DEF);
}
/* FIXME: Should we check type and size for protected symbol? */
h->size = 0;
h->type = 0;
return TRUE;
}
/* We need to treat weak definiton right, depending on if there is a
definition from a dynamic object. */
if (bind == STB_WEAK)
{
if (olddef)
{
newweakdef = TRUE;
newweakundef = FALSE;
}
else
{
newweakdef = FALSE;
newweakundef = TRUE;
}
}
else
newweakdef = newweakundef = FALSE;
/* If the new weak definition comes from a relocatable file and the
old symbol comes from a dynamic object, we treat the new one as
strong. */
if (newweakdef && !newdyn && olddyn)
newweakdef = FALSE;
if (h->root.type == bfd_link_hash_defweak)
{
oldweakdef = TRUE;
oldweakundef = FALSE;
}
else if (h->root.type == bfd_link_hash_undefweak)
{
oldweakdef = FALSE;
oldweakundef = TRUE;
}
else
oldweakdef = oldweakundef = FALSE;
/* If the old weak definition comes from a relocatable file and the
new symbol comes from a dynamic object, we treat the old one as
strong. */
if (oldweakdef && !olddyn && newdyn)
oldweakdef = FALSE;
/* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
symbol, respectively, appears to be a common symbol in a dynamic
object. If a symbol appears in an uninitialized section, and is
not weak, and is not a function, then it may be a common symbol
which was resolved when the dynamic object was created. We want
to treat such symbols specially, because they raise special
considerations when setting the symbol size: if the symbol
appears as a common symbol in a regular object, and the size in
the regular object is larger, we must make sure that we use the
larger size. This problematic case can always be avoided in C,
but it must be handled correctly when using Fortran shared
libraries.
Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
likewise for OLDDYNCOMMON and OLDDEF.
Note that this test is just a heuristic, and that it is quite
possible to have an uninitialized symbol in a shared object which
is really a definition, rather than a common symbol. This could
lead to some minor confusion when the symbol really is a common
symbol in some regular object. However, I think it will be
harmless. */
if (newdyn
&& newdef
&& (sec->flags & SEC_ALLOC) != 0
&& (sec->flags & SEC_LOAD) == 0
&& sym->st_size > 0
&& !newweakdef
&& !newweakundef
&& ELF_ST_TYPE (sym->st_info) != STT_FUNC)
newdyncommon = TRUE;
else
newdyncommon = FALSE;
if (olddyn
&& olddef
&& h->root.type == bfd_link_hash_defined
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
&& (h->root.u.def.section->flags & SEC_ALLOC) != 0
&& (h->root.u.def.section->flags & SEC_LOAD) == 0
&& h->size > 0
&& h->type != STT_FUNC)
olddyncommon = TRUE;
else
olddyncommon = FALSE;
/* It's OK to change the type if either the existing symbol or the
new symbol is weak unless it comes from a DT_NEEDED entry of
a shared object, in which case, the DT_NEEDED entry may not be
required at the run time. */
if ((! dt_needed && oldweakdef)
|| oldweakundef
|| newweakdef
|| newweakundef)
*type_change_ok = TRUE;
/* It's OK to change the size if either the existing symbol or the
new symbol is weak, or if the old symbol is undefined. */
if (*type_change_ok
|| h->root.type == bfd_link_hash_undefined)
*size_change_ok = TRUE;
/* If both the old and the new symbols look like common symbols in a
dynamic object, set the size of the symbol to the larger of the
two. */
if (olddyncommon
&& newdyncommon
&& sym->st_size != h->size)
{
/* Since we think we have two common symbols, issue a multiple
common warning if desired. Note that we only warn if the
size is different. If the size is the same, we simply let
the old symbol override the new one as normally happens with
symbols defined in dynamic objects. */
if (! ((*info->callbacks->multiple_common)
(info, h->root.root.string, oldbfd, bfd_link_hash_common,
h->size, abfd, bfd_link_hash_common, sym->st_size)))
return FALSE;
if (sym->st_size > h->size)
h->size = sym->st_size;
*size_change_ok = TRUE;
}
/* If we are looking at a dynamic object, and we have found a
definition, we need to see if the symbol was already defined by
some other object. If so, we want to use the existing
definition, and we do not want to report a multiple symbol
definition error; we do this by clobbering *PSEC to be
bfd_und_section_ptr.
We treat a common symbol as a definition if the symbol in the
shared library is a function, since common symbols always
represent variables; this can cause confusion in principle, but
any such confusion would seem to indicate an erroneous program or
shared library. We also permit a common symbol in a regular
object to override a weak symbol in a shared object.
We prefer a non-weak definition in a shared library to a weak
definition in the executable unless it comes from a DT_NEEDED
entry of a shared object, in which case, the DT_NEEDED entry
may not be required at the run time. */
if (newdyn
&& newdef
&& (olddef
|| (h->root.type == bfd_link_hash_common
&& (newweakdef
|| newweakundef
|| ELF_ST_TYPE (sym->st_info) == STT_FUNC)))
&& (!oldweakdef
|| dt_needed
|| newweakdef
|| newweakundef))
{
*override = TRUE;
newdef = FALSE;
newdyncommon = FALSE;
*psec = sec = bfd_und_section_ptr;
*size_change_ok = TRUE;
/* If we get here when the old symbol is a common symbol, then
we are explicitly letting it override a weak symbol or
function in a dynamic object, and we don't want to warn about
a type change. If the old symbol is a defined symbol, a type
change warning may still be appropriate. */
if (h->root.type == bfd_link_hash_common)
*type_change_ok = TRUE;
}
/* Handle the special case of an old common symbol merging with a
new symbol which looks like a common symbol in a shared object.
We change *PSEC and *PVALUE to make the new symbol look like a
common symbol, and let _bfd_generic_link_add_one_symbol will do
the right thing. */
if (newdyncommon
&& h->root.type == bfd_link_hash_common)
{
*override = TRUE;
newdef = FALSE;
newdyncommon = FALSE;
*pvalue = sym->st_size;
*psec = sec = bfd_com_section_ptr;
*size_change_ok = TRUE;
}
/* If the old symbol is from a dynamic object, and the new symbol is
a definition which is not from a dynamic object, then the new
symbol overrides the old symbol. Symbols from regular files
always take precedence over symbols from dynamic objects, even if
they are defined after the dynamic object in the link.
As above, we again permit a common symbol in a regular object to
override a definition in a shared object if the shared object
symbol is a function or is weak.
As above, we permit a non-weak definition in a shared object to
override a weak definition in a regular object. */
flip = NULL;
if (! newdyn
&& (newdef
|| (bfd_is_com_section (sec)
&& (oldweakdef || h->type == STT_FUNC)))
&& olddyn
&& olddef
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
&& ((!newweakdef && !newweakundef) || oldweakdef))
{
/* Change the hash table entry to undefined, and let
_bfd_generic_link_add_one_symbol do the right thing with the
new definition. */
h->root.type = bfd_link_hash_undefined;
h->root.u.undef.abfd = h->root.u.def.section->owner;
*size_change_ok = TRUE;
olddef = FALSE;
olddyncommon = FALSE;
/* We again permit a type change when a common symbol may be
overriding a function. */
if (bfd_is_com_section (sec))
*type_change_ok = TRUE;
if ((*sym_hash)->root.type == bfd_link_hash_indirect)
flip = *sym_hash;
else
/* This union may have been set to be non-NULL when this symbol
was seen in a dynamic object. We must force the union to be
NULL, so that it is correct for a regular symbol. */
h->verinfo.vertree = NULL;
}
/* Handle the special case of a new common symbol merging with an
old symbol that looks like it might be a common symbol defined in
a shared object. Note that we have already handled the case in
which a new common symbol should simply override the definition
in the shared library. */
if (! newdyn
&& bfd_is_com_section (sec)
&& olddyncommon)
{
/* It would be best if we could set the hash table entry to a
common symbol, but we don't know what to use for the section
or the alignment. */
if (! ((*info->callbacks->multiple_common)
(info, h->root.root.string, oldbfd, bfd_link_hash_common,
h->size, abfd, bfd_link_hash_common, sym->st_size)))
return FALSE;
/* If the predumed common symbol in the dynamic object is
larger, pretend that the new symbol has its size. */
if (h->size > *pvalue)
*pvalue = h->size;
/* FIXME: We no longer know the alignment required by the symbol
in the dynamic object, so we just wind up using the one from
the regular object. */
olddef = FALSE;
olddyncommon = FALSE;
h->root.type = bfd_link_hash_undefined;
h->root.u.undef.abfd = h->root.u.def.section->owner;
*size_change_ok = TRUE;
*type_change_ok = TRUE;
if ((*sym_hash)->root.type == bfd_link_hash_indirect)
flip = *sym_hash;
else
h->verinfo.vertree = NULL;
}
if (flip != NULL)
{
/* Handle the case where we had a versioned symbol in a dynamic
library and now find a definition in a normal object. In this
case, we make the versioned symbol point to the normal one. */
struct elf_backend_data *bed = get_elf_backend_data (abfd);
flip->root.type = h->root.type;
h->root.type = bfd_link_hash_indirect;
h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
(*bed->elf_backend_copy_indirect_symbol) (bed, flip, h);
flip->root.u.undef.abfd = h->root.u.undef.abfd;
if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
{
h->elf_link_hash_flags &= ~ELF_LINK_HASH_DEF_DYNAMIC;
flip->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
}
}
/* Handle the special case of a weak definition in a regular object
followed by a non-weak definition in a shared object. In this
case, we prefer the definition in the shared object unless it
comes from a DT_NEEDED entry of a shared object, in which case,
the DT_NEEDED entry may not be required at the run time. */
if (olddef
&& ! dt_needed
&& oldweakdef
&& newdef
&& newdyn
&& !newweakdef
&& !newweakundef)
{
/* To make this work we have to frob the flags so that the rest
of the code does not think we are using the regular
definition. */
if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
else if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
h->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
h->elf_link_hash_flags &= ~ (ELF_LINK_HASH_DEF_REGULAR
| ELF_LINK_HASH_DEF_DYNAMIC);
/* If H is the target of an indirection, we want the caller to
use H rather than the indirect symbol. Otherwise if we are
defining a new indirect symbol we will wind up attaching it
to the entry we are overriding. */
*sym_hash = h;
}
/* Handle the special case of a non-weak definition in a shared
object followed by a weak definition in a regular object. In
this case we prefer the definition in the shared object. To make
this work we have to tell the caller to not treat the new symbol
as a definition. */
if (olddef
&& olddyn
&& !oldweakdef
&& newdef
&& ! newdyn
&& (newweakdef || newweakundef))
*override = TRUE;
return TRUE;
}
/* This function is called to create an indirect symbol from the
default for the symbol with the default version if needed. The
symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
set DYNSYM if the new indirect symbol is dynamic. DT_NEEDED
indicates if it comes from a DT_NEEDED entry of a shared object. */
bfd_boolean
_bfd_elf_add_default_symbol (abfd, info, h, name, sym, psec, value,
dynsym, override, dt_needed)
bfd *abfd;
struct bfd_link_info *info;
struct elf_link_hash_entry *h;
const char *name;
Elf_Internal_Sym *sym;
asection **psec;
bfd_vma *value;
bfd_boolean *dynsym;
bfd_boolean override;
bfd_boolean dt_needed;
{
bfd_boolean type_change_ok;
bfd_boolean size_change_ok;
bfd_boolean skip;
char *shortname;
struct elf_link_hash_entry *hi;
struct bfd_link_hash_entry *bh;
struct elf_backend_data *bed;
bfd_boolean collect;
bfd_boolean dynamic;
char *p;
size_t len, shortlen;
asection *sec;
/* If this symbol has a version, and it is the default version, we
create an indirect symbol from the default name to the fully
decorated name. This will cause external references which do not
specify a version to be bound to this version of the symbol. */
p = strchr (name, ELF_VER_CHR);
if (p == NULL || p[1] != ELF_VER_CHR)
return TRUE;
if (override)
{
/* We are overridden by an old defition. We need to check if we
need to create the indirect symbol from the default name. */
hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
FALSE, FALSE);
BFD_ASSERT (hi != NULL);
if (hi == h)
return TRUE;
while (hi->root.type == bfd_link_hash_indirect
|| hi->root.type == bfd_link_hash_warning)
{
hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
if (hi == h)
return TRUE;
}
}
bed = get_elf_backend_data (abfd);
collect = bed->collect;
dynamic = (abfd->flags & DYNAMIC) != 0;
shortlen = p - name;
shortname = bfd_hash_allocate (&info->hash->table, shortlen + 1);
if (shortname == NULL)
return FALSE;
memcpy (shortname, name, shortlen);
shortname[shortlen] = '\0';
/* We are going to create a new symbol. Merge it with any existing
symbol with this name. For the purposes of the merge, act as
though we were defining the symbol we just defined, although we
actually going to define an indirect symbol. */
type_change_ok = FALSE;
size_change_ok = FALSE;
sec = *psec;
if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
&hi, &skip, &override, &type_change_ok,
&size_change_ok, dt_needed))
return FALSE;
if (skip)
goto nondefault;
if (! override)
{
bh = &hi->root;
if (! (_bfd_generic_link_add_one_symbol
(info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
(bfd_vma) 0, name, FALSE, collect, &bh)))
return FALSE;
hi = (struct elf_link_hash_entry *) bh;
}
else
{
/* In this case the symbol named SHORTNAME is overriding the
indirect symbol we want to add. We were planning on making
SHORTNAME an indirect symbol referring to NAME. SHORTNAME
is the name without a version. NAME is the fully versioned
name, and it is the default version.
Overriding means that we already saw a definition for the
symbol SHORTNAME in a regular object, and it is overriding
the symbol defined in the dynamic object.
When this happens, we actually want to change NAME, the
symbol we just added, to refer to SHORTNAME. This will cause
references to NAME in the shared object to become references
to SHORTNAME in the regular object. This is what we expect
when we override a function in a shared object: that the
references in the shared object will be mapped to the
definition in the regular object. */
while (hi->root.type == bfd_link_hash_indirect
|| hi->root.type == bfd_link_hash_warning)
hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
h->root.type = bfd_link_hash_indirect;
h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
{
h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
if (hi->elf_link_hash_flags
& (ELF_LINK_HASH_REF_REGULAR
| ELF_LINK_HASH_DEF_REGULAR))
{
if (! _bfd_elf_link_record_dynamic_symbol (info, hi))
return FALSE;
}
}
/* Now set HI to H, so that the following code will set the
other fields correctly. */
hi = h;
}
/* If there is a duplicate definition somewhere, then HI may not
point to an indirect symbol. We will have reported an error to
the user in that case. */
if (hi->root.type == bfd_link_hash_indirect)
{
struct elf_link_hash_entry *ht;
/* If the symbol became indirect, then we assume that we have
not seen a definition before. */
BFD_ASSERT ((hi->elf_link_hash_flags
& (ELF_LINK_HASH_DEF_DYNAMIC
| ELF_LINK_HASH_DEF_REGULAR)) == 0);
ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
(*bed->elf_backend_copy_indirect_symbol) (bed, ht, hi);
/* See if the new flags lead us to realize that the symbol must
be dynamic. */
if (! *dynsym)
{
if (! dynamic)
{
if (info->shared
|| ((hi->elf_link_hash_flags
& ELF_LINK_HASH_REF_DYNAMIC) != 0))
*dynsym = TRUE;
}
else
{
if ((hi->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR) != 0)
*dynsym = TRUE;
}
}
}
/* We also need to define an indirection from the nondefault version
of the symbol. */
nondefault:
len = strlen (name);
shortname = bfd_hash_allocate (&info->hash->table, len);
if (shortname == NULL)
return FALSE;
memcpy (shortname, name, shortlen);
memcpy (shortname + shortlen, p + 1, len - shortlen);
/* Once again, merge with any existing symbol. */
type_change_ok = FALSE;
size_change_ok = FALSE;
sec = *psec;
if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
&hi, &skip, &override, &type_change_ok,
&size_change_ok, dt_needed))
return FALSE;
if (skip)
return TRUE;
if (override)
{
/* Here SHORTNAME is a versioned name, so we don't expect to see
the type of override we do in the case above unless it is
overridden by a versioned definiton. */
if (hi->root.type != bfd_link_hash_defined
&& hi->root.type != bfd_link_hash_defweak)
(*_bfd_error_handler)
(_("%s: warning: unexpected redefinition of indirect versioned symbol `%s'"),
bfd_archive_filename (abfd), shortname);
}
else
{
bh = &hi->root;
if (! (_bfd_generic_link_add_one_symbol
(info, abfd, shortname, BSF_INDIRECT,
bfd_ind_section_ptr, (bfd_vma) 0, name, FALSE, collect, &bh)))
return FALSE;
hi = (struct elf_link_hash_entry *) bh;
/* If there is a duplicate definition somewhere, then HI may not
point to an indirect symbol. We will have reported an error
to the user in that case. */
if (hi->root.type == bfd_link_hash_indirect)
{
/* If the symbol became indirect, then we assume that we have
not seen a definition before. */
BFD_ASSERT ((hi->elf_link_hash_flags
& (ELF_LINK_HASH_DEF_DYNAMIC
| ELF_LINK_HASH_DEF_REGULAR)) == 0);
(*bed->elf_backend_copy_indirect_symbol) (bed, h, hi);
/* See if the new flags lead us to realize that the symbol
must be dynamic. */
if (! *dynsym)
{
if (! dynamic)
{
if (info->shared
|| ((hi->elf_link_hash_flags
& ELF_LINK_HASH_REF_DYNAMIC) != 0))
*dynsym = TRUE;
}
else
{
if ((hi->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR) != 0)
*dynsym = TRUE;
}
}
}
}
return TRUE;
}
/* This routine is used to export all defined symbols into the dynamic
symbol table. It is called via elf_link_hash_traverse. */
bfd_boolean
_bfd_elf_export_symbol (h, data)
struct elf_link_hash_entry *h;
PTR data;
{
struct elf_info_failed *eif = (struct elf_info_failed *) data;
/* Ignore indirect symbols. These are added by the versioning code. */
if (h->root.type == bfd_link_hash_indirect)
return TRUE;
if (h->root.type == bfd_link_hash_warning)
h = (struct elf_link_hash_entry *) h->root.u.i.link;
if (h->dynindx == -1
&& (h->elf_link_hash_flags
& (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
{
struct bfd_elf_version_tree *t;
struct bfd_elf_version_expr *d;
for (t = eif->verdefs; t != NULL; t = t->next)
{
if (t->globals != NULL)
{
for (d = t->globals; d != NULL; d = d->next)
{
if ((*d->match) (d, h->root.root.string))
goto doit;
}
}
if (t->locals != NULL)
{
for (d = t->locals ; d != NULL; d = d->next)
{
if ((*d->match) (d, h->root.root.string))
return TRUE;
}
}
}
if (!eif->verdefs)
{
doit:
if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
{
eif->failed = TRUE;
return FALSE;
}
}
}
return TRUE;
}
/* Look through the symbols which are defined in other shared
libraries and referenced here. Update the list of version
dependencies. This will be put into the .gnu.version_r section.
This function is called via elf_link_hash_traverse. */
bfd_boolean
_bfd_elf_link_find_version_dependencies (h, data)
struct elf_link_hash_entry *h;
PTR data;
{
struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
Elf_Internal_Verneed *t;
Elf_Internal_Vernaux *a;
bfd_size_type amt;
if (h->root.type == bfd_link_hash_warning)
h = (struct elf_link_hash_entry *) h->root.u.i.link;
/* We only care about symbols defined in shared objects with version
information. */
if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
|| (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
|| h->dynindx == -1
|| h->verinfo.verdef == NULL)
return TRUE;
/* See if we already know about this version. */
for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
{
if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
continue;
for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
return TRUE;
break;
}
/* This is a new version. Add it to tree we are building. */
if (t == NULL)
{
amt = sizeof *t;
t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, amt);
if (t == NULL)
{
rinfo->failed = TRUE;
return FALSE;
}
t->vn_bfd = h->verinfo.verdef->vd_bfd;
t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
elf_tdata (rinfo->output_bfd)->verref = t;
}
amt = sizeof *a;
a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, amt);
/* Note that we are copying a string pointer here, and testing it
above. If bfd_elf_string_from_elf_section is ever changed to
discard the string data when low in memory, this will have to be
fixed. */
a->vna_nodename = h->verinfo.verdef->vd_nodename;
a->vna_flags = h->verinfo.verdef->vd_flags;
a->vna_nextptr = t->vn_auxptr;
h->verinfo.verdef->vd_exp_refno = rinfo->vers;
++rinfo->vers;
a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
t->vn_auxptr = a;
return TRUE;
}
/* Figure out appropriate versions for all the symbols. We may not
have the version number script until we have read all of the input
files, so until that point we don't know which symbols should be
local. This function is called via elf_link_hash_traverse. */
bfd_boolean
_bfd_elf_link_assign_sym_version (h, data)
struct elf_link_hash_entry *h;
PTR data;
{
struct elf_assign_sym_version_info *sinfo;
struct bfd_link_info *info;
struct elf_backend_data *bed;
struct elf_info_failed eif;
char *p;
bfd_size_type amt;
sinfo = (struct elf_assign_sym_version_info *) data;
info = sinfo->info;
if (h->root.type == bfd_link_hash_warning)
h = (struct elf_link_hash_entry *) h->root.u.i.link;
/* Fix the symbol flags. */
eif.failed = FALSE;
eif.info = info;
if (! _bfd_elf_fix_symbol_flags (h, &eif))
{
if (eif.failed)
sinfo->failed = TRUE;
return FALSE;
}
/* We only need version numbers for symbols defined in regular
objects. */
if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
return TRUE;
bed = get_elf_backend_data (sinfo->output_bfd);
p = strchr (h->root.root.string, ELF_VER_CHR);
if (p != NULL && h->verinfo.vertree == NULL)
{
struct bfd_elf_version_tree *t;
bfd_boolean hidden;
hidden = TRUE;
/* There are two consecutive ELF_VER_CHR characters if this is
not a hidden symbol. */
++p;
if (*p == ELF_VER_CHR)
{
hidden = FALSE;
++p;
}
/* If there is no version string, we can just return out. */
if (*p == '\0')
{
if (hidden)
h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
return TRUE;
}
/* Look for the version. If we find it, it is no longer weak. */
for (t = sinfo->verdefs; t != NULL; t = t->next)
{
if (strcmp (t->name, p) == 0)
{
size_t len;
char *alc;
struct bfd_elf_version_expr *d;
len = p - h->root.root.string;
alc = bfd_malloc ((bfd_size_type) len);
if (alc == NULL)
return FALSE;
memcpy (alc, h->root.root.string, len - 1);
alc[len - 1] = '\0';
if (alc[len - 2] == ELF_VER_CHR)
alc[len - 2] = '\0';
h->verinfo.vertree = t;
t->used = TRUE;
d = NULL;
if (t->globals != NULL)
{
for (d = t->globals; d != NULL; d = d->next)
if ((*d->match) (d, alc))
break;
}
/* See if there is anything to force this symbol to
local scope. */
if (d == NULL && t->locals != NULL)
{
for (d = t->locals; d != NULL; d = d->next)
{
if ((*d->match) (d, alc))
{
if (h->dynindx != -1
&& info->shared
&& ! info->export_dynamic)
{
(*bed->elf_backend_hide_symbol) (info, h, TRUE);
}
break;
}
}
}
free (alc);
break;
}
}
/* If we are building an application, we need to create a
version node for this version. */
if (t == NULL && ! info->shared)
{
struct bfd_elf_version_tree **pp;
int version_index;
/* If we aren't going to export this symbol, we don't need
to worry about it. */
if (h->dynindx == -1)
return TRUE;
amt = sizeof *t;
t = ((struct bfd_elf_version_tree *)
bfd_alloc (sinfo->output_bfd, amt));
if (t == NULL)
{
sinfo->failed = TRUE;
return FALSE;
}
t->next = NULL;
t->name = p;
t->globals = NULL;
t->locals = NULL;
t->deps = NULL;
t->name_indx = (unsigned int) -1;
t->used = TRUE;
version_index = 1;
/* Don't count anonymous version tag. */
if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
version_index = 0;
for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
++version_index;
t->vernum = version_index;
*pp = t;
h->verinfo.vertree = t;
}
else if (t == NULL)
{
/* We could not find the version for a symbol when
generating a shared archive. Return an error. */
(*_bfd_error_handler)
(_("%s: undefined versioned symbol name %s"),
bfd_get_filename (sinfo->output_bfd), h->root.root.string);
bfd_set_error (bfd_error_bad_value);
sinfo->failed = TRUE;
return FALSE;
}
if (hidden)
h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
}
/* If we don't have a version for this symbol, see if we can find
something. */
if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
{
struct bfd_elf_version_tree *t;
struct bfd_elf_version_tree *local_ver;
struct bfd_elf_version_expr *d;
/* See if can find what version this symbol is in. If the
symbol is supposed to be local, then don't actually register
it. */
local_ver = NULL;
for (t = sinfo->verdefs; t != NULL; t = t->next)
{
if (t->globals != NULL)
{
bfd_boolean matched;
matched = FALSE;
for (d = t->globals; d != NULL; d = d->next)
{
if ((*d->match) (d, h->root.root.string))
{
if (d->symver)
matched = TRUE;
else
{
/* There is a version without definition. Make
the symbol the default definition for this
version. */
h->verinfo.vertree = t;
local_ver = NULL;
d->script = 1;
break;
}
}
}
if (d != NULL)
break;
else if (matched)
/* There is no undefined version for this symbol. Hide the
default one. */
(*bed->elf_backend_hide_symbol) (info, h, TRUE);
}
if (t->locals != NULL)
{
for (d = t->locals; d != NULL; d = d->next)
{
/* If the match is "*", keep looking for a more
explicit, perhaps even global, match. */
if (d->pattern[0] == '*' && d->pattern[1] == '\0')
local_ver = t;
else if ((*d->match) (d, h->root.root.string))
{
local_ver = t;
break;
}
}
if (d != NULL)
break;
}
}
if (local_ver != NULL)
{
h->verinfo.vertree = local_ver;
if (h->dynindx != -1
&& info->shared
&& ! info->export_dynamic)
{
(*bed->elf_backend_hide_symbol) (info, h, TRUE);
}
}
}
return TRUE;
}
/* Create a special linker section, or return a pointer to a linker
section already created */
elf_linker_section_t *
_bfd_elf_create_linker_section (abfd, info, which, defaults)
bfd *abfd;
struct bfd_link_info *info;
enum elf_linker_section_enum which;
elf_linker_section_t *defaults;
{
bfd *dynobj = elf_hash_table (info)->dynobj;
elf_linker_section_t *lsect;
/* Record the first bfd section that needs the special section */
if (!dynobj)
dynobj = elf_hash_table (info)->dynobj = abfd;
/* If this is the first time, create the section */
lsect = elf_linker_section (dynobj, which);
if (!lsect)
{
asection *s;
bfd_size_type amt = sizeof (elf_linker_section_t);
lsect = (elf_linker_section_t *) bfd_alloc (dynobj, amt);
*lsect = *defaults;
elf_linker_section (dynobj, which) = lsect;
lsect->which = which;
lsect->hole_written_p = FALSE;
/* See if the sections already exist */
lsect->section = s = bfd_get_section_by_name (dynobj, lsect->name);
if (!s || (s->flags & defaults->flags) != defaults->flags)
{
lsect->section = s = bfd_make_section_anyway (dynobj, lsect->name);
if (s == NULL)
return (elf_linker_section_t *)0;
bfd_set_section_flags (dynobj, s, defaults->flags);
bfd_set_section_alignment (dynobj, s, lsect->alignment);
}
else if (bfd_get_section_alignment (dynobj, s) < lsect->alignment)
bfd_set_section_alignment (dynobj, s, lsect->alignment);
s->_raw_size = align_power (s->_raw_size, lsect->alignment);
/* Is there a hole we have to provide? If so check whether the
segment is too big already */
if (lsect->hole_size)
{
lsect->hole_offset = s->_raw_size;
s->_raw_size += lsect->hole_size;
if (lsect->hole_offset > lsect->max_hole_offset)
{
(*_bfd_error_handler)
(_("%s: Section %s is too large to add hole of %ld bytes"),
bfd_get_filename (abfd),
lsect->name,
(long) lsect->hole_size);
bfd_set_error (bfd_error_bad_value);
return (elf_linker_section_t *)0;
}
}
#ifdef DEBUG
fprintf (stderr, "Creating section %s, current size = %ld\n",
lsect->name, (long)s->_raw_size);
#endif
if (lsect->sym_name)
{
struct elf_link_hash_entry *h;
struct bfd_link_hash_entry *bh;
#ifdef DEBUG
fprintf (stderr, "Adding %s to section %s\n",
lsect->sym_name,
lsect->name);
#endif
bh = bfd_link_hash_lookup (info->hash, lsect->sym_name,
FALSE, FALSE, FALSE);
if ((bh == NULL || bh->type == bfd_link_hash_undefined)
&& !(_bfd_generic_link_add_one_symbol
(info, abfd, lsect->sym_name, BSF_GLOBAL, s,
(lsect->hole_size
? s->_raw_size - lsect->hole_size + lsect->sym_offset
: lsect->sym_offset),
(const char *) NULL, FALSE,
get_elf_backend_data (abfd)->collect, &bh)))
return (elf_linker_section_t *) 0;
h = (struct elf_link_hash_entry *) bh;
if ((defaults->which != LINKER_SECTION_SDATA)
&& (defaults->which != LINKER_SECTION_SDATA2))
h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_DYNAMIC;
h->type = STT_OBJECT;
lsect->sym_hash = h;
if (info->shared
&& ! _bfd_elf_link_record_dynamic_symbol (info, h))
return (elf_linker_section_t *) 0;
}
}
#if 0
/* This does not make sense. The sections which may exist in the
object file have nothing to do with the sections we want to
create. */
/* Find the related sections if they have been created */
if (lsect->bss_name && !lsect->bss_section)
lsect->bss_section = bfd_get_section_by_name (dynobj, lsect->bss_name);
if (lsect->rel_name && !lsect->rel_section)
lsect->rel_section = bfd_get_section_by_name (dynobj, lsect->rel_name);
#endif
return lsect;
}
/* Find a linker generated pointer with a given addend and type. */
elf_linker_section_pointers_t *
_bfd_elf_find_pointer_linker_section (linker_pointers, addend, which)
elf_linker_section_pointers_t *linker_pointers;
bfd_vma addend;
elf_linker_section_enum_t which;
{
for ( ; linker_pointers != NULL; linker_pointers = linker_pointers->next)
{
if (which == linker_pointers->which && addend == linker_pointers->addend)
return linker_pointers;
}
return (elf_linker_section_pointers_t *)0;
}
/* Make the .rela section corresponding to the generated linker section. */
bfd_boolean
_bfd_elf_make_linker_section_rela (dynobj, lsect, alignment)
bfd *dynobj;
elf_linker_section_t *lsect;
int alignment;
{
if (lsect->rel_section)
return TRUE;
lsect->rel_section = bfd_get_section_by_name (dynobj, lsect->rel_name);
if (lsect->rel_section == NULL)
{
lsect->rel_section = bfd_make_section (dynobj, lsect->rel_name);
if (lsect->rel_section == NULL
|| ! bfd_set_section_flags (dynobj,
lsect->rel_section,
(SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
| SEC_LINKER_CREATED
| SEC_READONLY))
|| ! bfd_set_section_alignment (dynobj, lsect->rel_section, alignment))
return FALSE;
}
return TRUE;
}
/* Read and swap the relocs from the section indicated by SHDR. This
may be either a REL or a RELA section. The relocations are
translated into RELA relocations and stored in INTERNAL_RELOCS,
which should have already been allocated to contain enough space.
The EXTERNAL_RELOCS are a buffer where the external form of the
relocations should be stored.
Returns FALSE if something goes wrong. */
static bfd_boolean
elf_link_read_relocs_from_section (abfd, shdr, external_relocs,
internal_relocs)
bfd *abfd;
Elf_Internal_Shdr *shdr;
PTR external_relocs;
Elf_Internal_Rela *internal_relocs;
{
struct elf_backend_data *bed;
void (*swap_in) PARAMS ((bfd *, const bfd_byte *, Elf_Internal_Rela *));
const bfd_byte *erela;
const bfd_byte *erelaend;
Elf_Internal_Rela *irela;
/* If there aren't any relocations, that's OK. */
if (!shdr)
return TRUE;
/* Position ourselves at the start of the section. */
if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
return FALSE;
/* Read the relocations. */
if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
return FALSE;
bed = get_elf_backend_data (abfd);
/* Convert the external relocations to the internal format. */
if (shdr->sh_entsize == bed->s->sizeof_rel)
swap_in = bed->s->swap_reloc_in;
else if (shdr->sh_entsize == bed->s->sizeof_rela)
swap_in = bed->s->swap_reloca_in;
else
{
bfd_set_error (bfd_error_wrong_format);
return FALSE;
}
erela = external_relocs;
erelaend = erela + NUM_SHDR_ENTRIES (shdr) * shdr->sh_entsize;
irela = internal_relocs;
while (erela < erelaend)
{
(*swap_in) (abfd, erela, irela);
irela += bed->s->int_rels_per_ext_rel;
erela += shdr->sh_entsize;
}
return TRUE;
}
/* Read and swap the relocs for a section O. They may have been
cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
not NULL, they are used as buffers to read into. They are known to
be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
the return value is allocated using either malloc or bfd_alloc,
according to the KEEP_MEMORY argument. If O has two relocation
sections (both REL and RELA relocations), then the REL_HDR
relocations will appear first in INTERNAL_RELOCS, followed by the
REL_HDR2 relocations. */
Elf_Internal_Rela *
_bfd_elf_link_read_relocs (abfd, o, external_relocs, internal_relocs,
keep_memory)
bfd *abfd;
asection *o;
PTR external_relocs;
Elf_Internal_Rela *internal_relocs;
bfd_boolean keep_memory;
{
Elf_Internal_Shdr *rel_hdr;
PTR alloc1 = NULL;
Elf_Internal_Rela *alloc2 = NULL;
struct elf_backend_data *bed = get_elf_backend_data (abfd);
if (elf_section_data (o)->relocs != NULL)
return elf_section_data (o)->relocs;
if (o->reloc_count == 0)
return NULL;
rel_hdr = &elf_section_data (o)->rel_hdr;
if (internal_relocs == NULL)
{
bfd_size_type size;
size = o->reloc_count;
size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
if (keep_memory)
internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
else
internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
if (internal_relocs == NULL)
goto error_return;
}
if (external_relocs == NULL)
{
bfd_size_type size = rel_hdr->sh_size;
if (elf_section_data (o)->rel_hdr2)
size += elf_section_data (o)->rel_hdr2->sh_size;
alloc1 = (PTR) bfd_malloc (size);
if (alloc1 == NULL)
goto error_return;
external_relocs = alloc1;
}
if (!elf_link_read_relocs_from_section (abfd, rel_hdr,
external_relocs,
internal_relocs))
goto error_return;
if (!elf_link_read_relocs_from_section
(abfd,
elf_section_data (o)->rel_hdr2,
((bfd_byte *) external_relocs) + rel_hdr->sh_size,
internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
* bed->s->int_rels_per_ext_rel)))
goto error_return;
/* Cache the results for next time, if we can. */
if (keep_memory)
elf_section_data (o)->relocs = internal_relocs;
if (alloc1 != NULL)
free (alloc1);
/* Don't free alloc2, since if it was allocated we are passing it
back (under the name of internal_relocs). */
return internal_relocs;
error_return:
if (alloc1 != NULL)
free (alloc1);
if (alloc2 != NULL)
free (alloc2);
return NULL;
}
/* Compute the size of, and allocate space for, REL_HDR which is the
section header for a section containing relocations for O. */
bfd_boolean
_bfd_elf_link_size_reloc_section (abfd, rel_hdr, o)
bfd *abfd;
Elf_Internal_Shdr *rel_hdr;
asection *o;
{
bfd_size_type reloc_count;
bfd_size_type num_rel_hashes;
/* Figure out how many relocations there will be. */
if (rel_hdr == &elf_section_data (o)->rel_hdr)
reloc_count = elf_section_data (o)->rel_count;
else
reloc_count = elf_section_data (o)->rel_count2;
num_rel_hashes = o->reloc_count;
if (num_rel_hashes < reloc_count)
num_rel_hashes = reloc_count;
/* That allows us to calculate the size of the section. */
rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
/* The contents field must last into write_object_contents, so we
allocate it with bfd_alloc rather than malloc. Also since we
cannot be sure that the contents will actually be filled in,
we zero the allocated space. */
rel_hdr->contents = (PTR) bfd_zalloc (abfd, rel_hdr->sh_size);
if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
return FALSE;
/* We only allocate one set of hash entries, so we only do it the
first time we are called. */
if (elf_section_data (o)->rel_hashes == NULL
&& num_rel_hashes)
{
struct elf_link_hash_entry **p;
p = ((struct elf_link_hash_entry **)
bfd_zmalloc (num_rel_hashes
* sizeof (struct elf_link_hash_entry *)));
if (p == NULL)
return FALSE;
elf_section_data (o)->rel_hashes = p;
}
return TRUE;
}
/* Copy the relocations indicated by the INTERNAL_RELOCS (which
originated from the section given by INPUT_REL_HDR) to the
OUTPUT_BFD. */
bfd_boolean
_bfd_elf_link_output_relocs (output_bfd, input_section, input_rel_hdr,
internal_relocs)
bfd *output_bfd;
asection *input_section;
Elf_Internal_Shdr *input_rel_hdr;
Elf_Internal_Rela *internal_relocs;
{
Elf_Internal_Rela *irela;
Elf_Internal_Rela *irelaend;
bfd_byte *erel;
Elf_Internal_Shdr *output_rel_hdr;
asection *output_section;
unsigned int *rel_countp = NULL;
struct elf_backend_data *bed;
void (*swap_out) PARAMS ((bfd *, const Elf_Internal_Rela *, bfd_byte *));
output_section = input_section->output_section;
output_rel_hdr = NULL;
if (elf_section_data (output_section)->rel_hdr.sh_entsize
== input_rel_hdr->sh_entsize)
{
output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
rel_countp = &elf_section_data (output_section)->rel_count;
}
else if (elf_section_data (output_section)->rel_hdr2
&& (elf_section_data (output_section)->rel_hdr2->sh_entsize
== input_rel_hdr->sh_entsize))
{
output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
rel_countp = &elf_section_data (output_section)->rel_count2;
}
else
{
(*_bfd_error_handler)
(_("%s: relocation size mismatch in %s section %s"),
bfd_get_filename (output_bfd),
bfd_archive_filename (input_section->owner),
input_section->name);
bfd_set_error (bfd_error_wrong_object_format);
return FALSE;
}
bed = get_elf_backend_data (output_bfd);
if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
swap_out = bed->s->swap_reloc_out;
else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
swap_out = bed->s->swap_reloca_out;
else
abort ();
erel = output_rel_hdr->contents;
erel += *rel_countp * input_rel_hdr->sh_entsize;
irela = internal_relocs;
irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
* bed->s->int_rels_per_ext_rel);
while (irela < irelaend)
{
(*swap_out) (output_bfd, irela, erel);
irela += bed->s->int_rels_per_ext_rel;
erel += input_rel_hdr->sh_entsize;
}
/* Bump the counter, so that we know where to add the next set of
relocations. */
*rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
return TRUE;
}
/* Fix up the flags for a symbol. This handles various cases which
can only be fixed after all the input files are seen. This is
currently called by both adjust_dynamic_symbol and
assign_sym_version, which is unnecessary but perhaps more robust in
the face of future changes. */
bfd_boolean
_bfd_elf_fix_symbol_flags (h, eif)
struct elf_link_hash_entry *h;
struct elf_info_failed *eif;
{
/* If this symbol was mentioned in a non-ELF file, try to set
DEF_REGULAR and REF_REGULAR correctly. This is the only way to
permit a non-ELF file to correctly refer to a symbol defined in
an ELF dynamic object. */
if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
{
while (h->root.type == bfd_link_hash_indirect)
h = (struct elf_link_hash_entry *) h->root.u.i.link;
if (h->root.type != bfd_link_hash_defined
&& h->root.type != bfd_link_hash_defweak)
h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
| ELF_LINK_HASH_REF_REGULAR_NONWEAK);
else
{
if (h->root.u.def.section->owner != NULL
&& (bfd_get_flavour (h->root.u.def.section->owner)
== bfd_target_elf_flavour))
h->elf_link_hash_flags |= (ELF_LINK_HASH_REF_REGULAR
| ELF_LINK_HASH_REF_REGULAR_NONWEAK);
else
h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
}
if (h->dynindx == -1
&& ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
|| (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
{
if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
{
eif->failed = TRUE;
return FALSE;
}
}
}
else
{
/* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
was first seen in a non-ELF file. Fortunately, if the symbol
was first seen in an ELF file, we're probably OK unless the
symbol was defined in a non-ELF file. Catch that case here.
FIXME: We're still in trouble if the symbol was first seen in
a dynamic object, and then later in a non-ELF regular object. */
if ((h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak)
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
&& (h->root.u.def.section->owner != NULL
? (bfd_get_flavour (h->root.u.def.section->owner)
!= bfd_target_elf_flavour)
: (bfd_is_abs_section (h->root.u.def.section)
&& (h->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC) == 0)))
h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
}
/* If this is a final link, and the symbol was defined as a common
symbol in a regular object file, and there was no definition in
any dynamic object, then the linker will have allocated space for
the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
flag will not have been set. */
if (h->root.type == bfd_link_hash_defined
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
&& (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
&& (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
/* If -Bsymbolic was used (which means to bind references to global
symbols to the definition within the shared object), and this
symbol was defined in a regular object, then it actually doesn't
need a PLT entry. Likewise, if the symbol has non-default
visibility. If the symbol has hidden or internal visibility, we
will force it local. */
if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
&& eif->info->shared
&& is_elf_hash_table (eif->info)
&& (eif->info->symbolic
|| ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
&& (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
{
struct elf_backend_data *bed;
bfd_boolean force_local;
bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
|| ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
(*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
}
/* If a weak undefined symbol has non-default visibility, we also
hide it from the dynamic linker. */
if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
&& h->root.type == bfd_link_hash_undefweak)
{
struct elf_backend_data *bed;
bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
(*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
}
/* If this is a weak defined symbol in a dynamic object, and we know
the real definition in the dynamic object, copy interesting flags
over to the real definition. */
if (h->weakdef != NULL)
{
struct elf_link_hash_entry *weakdef;
weakdef = h->weakdef;
if (h->root.type == bfd_link_hash_indirect)
h = (struct elf_link_hash_entry *) h->root.u.i.link;
BFD_ASSERT (h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak);
BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
|| weakdef->root.type == bfd_link_hash_defweak);
BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
/* If the real definition is defined by a regular object file,
don't do anything special. See the longer description in
_bfd_elf_adjust_dynamic_symbol, below. */
if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
h->weakdef = NULL;
else
{
struct elf_backend_data *bed;
bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
(*bed->elf_backend_copy_indirect_symbol) (bed, weakdef, h);
}
}
return TRUE;
}
/* Make the backend pick a good value for a dynamic symbol. This is
called via elf_link_hash_traverse, and also calls itself
recursively. */
bfd_boolean
_bfd_elf_adjust_dynamic_symbol (h, data)
struct elf_link_hash_entry *h;
PTR data;
{
struct elf_info_failed *eif = (struct elf_info_failed *) data;
bfd *dynobj;
struct elf_backend_data *bed;
if (! is_elf_hash_table (eif->info))
return FALSE;
if (h->root.type == bfd_link_hash_warning)
{
h->plt = elf_hash_table (eif->info)->init_offset;
h->got = elf_hash_table (eif->info)->init_offset;
/* When warning symbols are created, they **replace** the "real"
entry in the hash table, thus we never get to see the real
symbol in a hash traversal. So look at it now. */
h = (struct elf_link_hash_entry *) h->root.u.i.link;
}
/* Ignore indirect symbols. These are added by the versioning code. */
if (h->root.type == bfd_link_hash_indirect)
return TRUE;
/* Fix the symbol flags. */
if (! _bfd_elf_fix_symbol_flags (h, eif))
return FALSE;
/* If this symbol does not require a PLT entry, and it is not
defined by a dynamic object, or is not referenced by a regular
object, ignore it. We do have to handle a weak defined symbol,
even if no regular object refers to it, if we decided to add it
to the dynamic symbol table. FIXME: Do we normally need to worry
about symbols which are defined by one dynamic object and
referenced by another one? */
if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
&& ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
|| (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
|| ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
&& (h->weakdef == NULL || h->weakdef->dynindx == -1))))
{
h->plt = elf_hash_table (eif->info)->init_offset;
return TRUE;
}
/* If we've already adjusted this symbol, don't do it again. This
can happen via a recursive call. */
if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
return TRUE;
/* Don't look at this symbol again. Note that we must set this
after checking the above conditions, because we may look at a
symbol once, decide not to do anything, and then get called
recursively later after REF_REGULAR is set below. */
h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
/* If this is a weak definition, and we know a real definition, and
the real symbol is not itself defined by a regular object file,
then get a good value for the real definition. We handle the
real symbol first, for the convenience of the backend routine.
Note that there is a confusing case here. If the real definition
is defined by a regular object file, we don't get the real symbol
from the dynamic object, but we do get the weak symbol. If the
processor backend uses a COPY reloc, then if some routine in the
dynamic object changes the real symbol, we will not see that
change in the corresponding weak symbol. This is the way other
ELF linkers work as well, and seems to be a result of the shared
library model.
I will clarify this issue. Most SVR4 shared libraries define the
variable _timezone and define timezone as a weak synonym. The
tzset call changes _timezone. If you write
extern int timezone;
int _timezone = 5;
int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
you might expect that, since timezone is a synonym for _timezone,
the same number will print both times. However, if the processor
backend uses a COPY reloc, then actually timezone will be copied
into your process image, and, since you define _timezone
yourself, _timezone will not. Thus timezone and _timezone will
wind up at different memory locations. The tzset call will set
_timezone, leaving timezone unchanged. */
if (h->weakdef != NULL)
{
/* If we get to this point, we know there is an implicit
reference by a regular object file via the weak symbol H.
FIXME: Is this really true? What if the traversal finds
H->WEAKDEF before it finds H? */
h->weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
if (! _bfd_elf_adjust_dynamic_symbol (h->weakdef, (PTR) eif))
return FALSE;
}
/* If a symbol has no type and no size and does not require a PLT
entry, then we are probably about to do the wrong thing here: we
are probably going to create a COPY reloc for an empty object.
This case can arise when a shared object is built with assembly
code, and the assembly code fails to set the symbol type. */
if (h->size == 0
&& h->type == STT_NOTYPE
&& (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
(*_bfd_error_handler)
(_("warning: type and size of dynamic symbol `%s' are not defined"),
h->root.root.string);
dynobj = elf_hash_table (eif->info)->dynobj;
bed = get_elf_backend_data (dynobj);
if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
{
eif->failed = TRUE;
return FALSE;
}
return TRUE;
}
/* Adjust all external symbols pointing into SEC_MERGE sections
to reflect the object merging within the sections. */
bfd_boolean
_bfd_elf_link_sec_merge_syms (h, data)
struct elf_link_hash_entry *h;
PTR data;
{
asection *sec;
if (h->root.type == bfd_link_hash_warning)
h = (struct elf_link_hash_entry *) h->root.u.i.link;
if ((h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak)
&& ((sec = h->root.u.def.section)->flags & SEC_MERGE)
&& sec->sec_info_type == ELF_INFO_TYPE_MERGE)
{
bfd *output_bfd = (bfd *) data;
h->root.u.def.value =
_bfd_merged_section_offset (output_bfd,
&h->root.u.def.section,
elf_section_data (sec)->sec_info,
h->root.u.def.value, (bfd_vma) 0);
}
return TRUE;
}
|