Age | Commit message (Collapse) | Author | Files | Lines |
|
This commit is the result of running the gdb/copyright.py script,
which automated the update of the copyright year range for all
source files managed by the GDB project to be updated to include
year 2023.
|
|
This changes GDB to use frame_info_ptr instead of frame_info *
The substitution was done with multiple sequential `sed` commands:
sed 's/^struct frame_info;/class frame_info_ptr;/'
sed 's/struct frame_info \*/frame_info_ptr /g' - which left some
issues in a few files, that were manually fixed.
sed 's/\<frame_info \*/frame_info_ptr /g'
sed 's/frame_info_ptr $/frame_info_ptr/g' - used to remove whitespace
problems.
The changed files were then manually checked and some 'sed' changes
undone, some constructors and some gets were added, according to what
made sense, and what Tromey originally did
Co-Authored-By: Bruno Larsen <blarsen@redhat.com>
Approved-by: Tom Tomey <tom@tromey.com>
|
|
First, some background on the RISC-V registers fflags, frm, and fcsr.
These three registers all relate to the floating-point status and
control mechanism on RISC-V. The fcsr is the floatint-point control
status register, and consists of two parts, the flags (bits 0 to 4)
and the rounding-mode (bits 5 to 7).
The fcsr register is just one of many control/status registers (or
CSRs) available on RISC-V. The fflags and frm registers are also
CSRs. These CSRs are aliases for the relevant parts of the fcsr
register. So fflags is an alias for bits 0 to 4 of fcsr, and frm is
an alias for bits 5 to 7 of fcsr.
This means that a user can change the floating-point rounding mode
either, by writing a complete new value into fcsr, or by writing just
the rounding mode into frm.
How this impacts on GDB is like this: a target description could,
legitimately include all three registers, fcsr, fflags, and frm. The
QEMU target currently does this, and this makes sense. The target is
emulating the complete system, and has all three CSRs available, so
why not tell GDB about this.
In contrast, the RISC-V native Linux target only has access to the
fcsr. This is because the ptrace data structure that the kernel uses
for reading and writing floating point state only contains a copy of
the fcsr, after all, this one field really contains both the fflags
and frm fields, so why carry around duplicate data.
So, we might expect that the target description for the RISC-V native
Linux GDB would only contain the fcsr register. Unfortunately, this
is not the case. The RISC-V native Linux target uses GDB's builtin
target descriptions by calling riscv_lookup_target_description, this
will then add an fpu feature from gdb/features/riscv, either
32bit-fpu.xml or 64bit-fpu.xml. The problem, is that these features
include an entry for fcsr, fflags, and frm. This means that GDB
expects the target to handle reading and writing these registers. And
the RISC-V native Linux target currently doesn't.
In riscv_linux_nat_target::store_registers and
riscv_linux_nat_target::fetch_registers only the fcsr register is
handled, this means that, for RISC-V native Linux, the fflags and frm
registers always show up as <unavailable> - they are present in the
target description, but the target doesn't know how to access the
registers.
A final complication relating to these floating pointer CSRs is which
target description feature the registers appear in.
These registers are CSRs, so it would seem sensible that these
registers should appear in the CSR target description feature.
However, when I first added RISC-V target description support, I was
using a RISC-V simulator that didn't support any CSRs other than the
floating point related ones. This simulator bundled all the float
related CSRs into the fpu target feature. This didn't feel completely
unreasonable to me, and so I had GDB check for these registers in
either target feature.
In this commit I make some changes relating to how GDB handles the
three floating point CSR:
1. Remove fflags and frm from 32bit-fpu.xml and 64bit-fpu.xml. This
means that the default RISC-V target description (which RISC-V native
FreeBSD), and the target descriptions created for RISC-V native Linux,
will not include these registers. There's nothing stopping some other
target (e.g. QEMU) from continuing to include all three of these CSRs,
the code in riscv-tdep.c continues to check for all three of these
registers, and will handle them correctly if they are present.
2. If a target supplied fcsr, but does not supply fflags and/or frm,
then RISC-V GDB will now create two pseudo registers in order to
emulate the two missing CSRs. These new pseudo-registers do the
obvious thing of just reading and writing the fcsr register.
3. With the new pseudo-registers we can no longer make use of the GDB
register numbers RISCV_CSR_FFLAGS_REGNUM and RISCV_CSR_FRM_REGNUM.
These will be the numbers used if the target supplies the registers in
its target description, but, if GDB falls back to using
pseudo-registers, then new, unique numbers will be used. To handle
this I've added riscv_gdbarch_tdep::fflags_regnum and
riscv_gdbarch_tdep::frm_regnum, I've then updated the RISC-V code to
compare against these fields.
When adding the pseudo-register support, it is important that the
pseudo-register numbers are calculated after the call to
tdesc_use_registers. This is because we don't know the total number
of physical registers until after this call, and the psuedo-register
numbers must follow on from the real (target supplied) registers.
I've updated some tests to include more testing of the fflags and frm
registers, as well as adding a new test.
|
|
After the commit:
commit 08106042d9f5fdff60c129bf33190639f1a98b2a
Date: Thu May 19 13:20:17 2022 +0100
gdb: move the type cast into gdbarch_tdep
GDB would no longer build using g++ 4.8. The issue appears to be some
confusion caused by GDB having 'struct gdbarch_tdep', but also a
templated function called 'gdbarch_tdep'. Prior to the above commit
the gdbarch_tdep function was not templated, and this compiled just
fine. Note that the above commit compiles just fine with later
versions of g++, so this issue was clearly fixed at some point, though
I've not tried to track down exactly when.
In this commit I propose to fix the g++ 4.8 build problem by renaming
'struct gdbarch_tdep' to 'struct gdbarch_tdep_base'. This rename
better represents that the struct is only ever used as a base class,
and removes the overloading of the name, which allows GDB to build
with g++ 4.8.
I've also updated the comment on 'struct gdbarch_tdep_base' to fix a
typo, and the comment on the 'gdbarch_tdep' function, to mention that
in maintainer mode a run-time type check is performed.
|
|
This commit brings all the changes made by running gdb/copyright.py
as per GDB's Start of New Year Procedure.
For the avoidance of doubt, all changes in this commits were
performed by the script.
|
|
I would like to be able to use non-trivial types in gdbarch_tdep types.
This is not possible at the moment (in theory), because of the one
definition rule.
To allow it, rename all gdbarch_tdep types to <arch>_gdbarch_tdep, and
make them inherit from a gdbarch_tdep base class. The inheritance is
necessary to be able to pass pointers to all these <arch>_gdbarch_tdep
objects to gdbarch_alloc, which takes a pointer to gdbarch_tdep.
These objects are never deleted through a base class pointer, so I
didn't include a virtual destructor. In the future, if gdbarch objects
deletable, I could imagine that the gdbarch_tdep objects could become
owned by the gdbarch objects, and then it would become useful to have a
virtual destructor (so that the gdbarch object can delete the owned
gdbarch_tdep object). But that's not necessary right now.
It turns out that RISC-V already has a gdbarch_tdep that is
non-default-constructible, so that provides a good motivation for this
change.
Most changes are fairly straightforward, mostly needing to add some
casts all over the place. There is however the xtensa architecture,
doing its own little weird thing to define its gdbarch_tdep. I did my
best to adapt it, but I can't test those changes.
Change-Id: Ic001903f91ddd106bd6ca09a79dabe8df2d69f3b
|
|
Currently, gdb cannot step outside of a signal handler on RISC-V
platforms. This causes multiple failures in gdb.base/sigstep.exp:
FAIL: gdb.base/sigstep.exp: continue to handler, nothing in handler, step from handler: leave handler (timeout)
FAIL: gdb.base/sigstep.exp: continue to handler, si+advance in handler, step from handler: leave handler (timeout)
FAIL: gdb.base/sigstep.exp: continue to handler, nothing in handler, next from handler: leave handler (timeout)
FAIL: gdb.base/sigstep.exp: continue to handler, si+advance in handler, next from handler: leave handler (timeout)
FAIL: gdb.base/sigstep.exp: stepi from handleri: leave signal trampoline
FAIL: gdb.base/sigstep.exp: nexti from handleri: leave signal trampoline
=== gdb Summary ===
# of expected passes 587
# of unexpected failures 6
This patch adds support for stepping outside of a signal handler on
riscv*-*-linux*.
Implementation is heavily inspired from mips_linux_syscall_next_pc and
surroundings as advised by Pedro Alves.
After this patch, all tests in gdb.base/sigstep.exp pass.
Build and tested on riscv64-linux-gnu.
|
|
This commit adds support to RISC-V GDB for vector registers in the
incoming target description.
The vector registers should be described in a feature called
"org.gnu.gdb.riscv.vector", and should contain the register v0 to
v31. There's no restriction on the size or type of these registers,
so the target description can set these up as it requires.
However, if the target feature is present then all of the registers
must be present, and they must all be the same size, these
requirements are, I believe, inline with the RISC-V vector extension.
The DWARF register numbers for the vector registers have been added,
and the code to map between GDB's internal numbering and the DWARF
numbering has been updated.
I have not yet added a feature/riscv/*.xml file for the vector
extension, the consequence of this is that we can't, right now, detect
vector registers on a native target, this patch is all about
supporting vectors on a remote target.
It is worth noting that I don't actually have access to a RISC-V
target with vectors, so the only testing that this patch has had has
been done using 'set tdesc filename ....' to load a target description
to which I have manually added the vector feature. This has shown
that the vector register feature can be successfully parsed, and that
the registers show up in the expected register groups.
Additionally, the RISC-V vector extension is currently at v0.10, which
is also the v1.0 draft release. However, this extension is not yet
finalised. It is possible (but unlikely I think) that the register
set could change between now and the final release of the vector
extension. If this were to happen then we would potentially end up
changing the requirements for the new org.gnu.gdb.riscv.vector
feature. I really don't think it is likely that the register set will
change this late in the process, and even if it did, changing the
feature requirements will not be a problem as far as I am
concerned (when the alternative is GDB just continues without this
feature for now).
gdb/ChangeLog:
* NEWS: Mention new target feature name.
* arch/riscv.c (riscv_create_target_description): GDB doesn't
currently create target descriptions containing vector registers.
* arch/riscv.h (struct riscv_gdbarch_features) <vlen>: New member
variable.
<operator==>: Also compare vlen.
<hash>: Also include vlen.
* riscv-tdep.c (riscv_feature_name_vector): New static global.
(struct riscv_vector_feature): New struct.
(riscv_vector_feature): New static global.
(riscv_register_reggroup_p): Ensure vector registers are part of
the 'all' group, and part of the 'vector' group.
(riscv_dwarf_reg_to_regnum): Handle vector registers.
(riscv_gdbarch_init): Check vector register feature.
* riscv-tdep.h: Add vector registers to GDB's internal register
numbers, and to the DWARF register numbers.
gdb/doc/ChangeLog:
* gdb.texinfo (RISC-V Features): Mention vector register feature.
|
|
A later commit will need the names of the RISC-V target description
features in files other than riscv-tdep.c. This commit just makes the
names global strings that can be accessed from other riscv-*.c files.
There should be no user visible changes after this commit.
gdb/ChangeLog:
* riscv-tdep.c (riscv_feature_name_csr): Define.
(riscv_feature_name_cpu): Define.
(riscv_feature_name_fpu): Define.
(riscv_feature_name_virtual): Define.
(riscv_xreg_feature): Use riscv_feature_name_cpu.
(riscv_freg_feature): Use riscv_feature_name_fpu.
(riscv_virtual_feature): Use riscv_feature_name_virtual.
(riscv_csr_feature): Use riscv_feature_name_csr.
* riscv-tdep.h (riscv_feature_name_csr): Declare.
|
|
The RISC-V x0 register is hard-coded to zero. As such neither Linux
or FreeBSD supply the value of the register x0 in their core dump
files.
For FreeBSD we take care of this by manually supplying the value of x0
in riscv_fbsd_supply_gregset, however we don't do this for Linux. As
a result after loading a core file on Linux we see this behaviour:
(gdb) p $x0
$1 = <unavailable>
In this commit I make riscv_fbsd_supply_gregset a common function that
can be shared between RISC-V for FreeBSD and Linux, this resolves the
above issue.
There is a similar problem for the two registers `fflags` and `frm`.
These two floating point related CSRs are a little weird. They are
separate CSRs in the RISC-V specification, but are actually sub-fields
of the `fcsr` CSR.
As a result neither Linux or FreeBSD supply the `fflags` or `frm`
registers as separate fields in their core dumps, and so, after
restoring a core dump these register are similarly unavailable.
In this commit I supply `fflags` and `frm` by first asking for the
value of `fcsr`, extracting the two fields, and using these to supply
the values for `fflags` and `frm`.
gdb/ChangeLog:
* riscv-fbsd-tdep.c (riscv_fbsd_supply_gregset): Delete.
(riscv_fbsd_gregset): Use riscv_supply_regset.
(riscv_fbsd_fpregset): Likewise.
* riscv-linux-tdep.c (riscv_linux_gregset): Likewise.
(riscv_linux_fregset): Likewise.
* riscv-tdep.c (riscv_supply_regset): Define new function.
* riscv-tdep.h (riscv_supply_regset): Declare new function.
|
|
This commits the result of running gdb/copyright.py as per our Start
of New Year procedure...
gdb/ChangeLog
Update copyright year range in copyright header of all GDB files.
|
|
This commit started as adding rv32e support to gdb. The rv32e
architecture is a cut-down rv32i, it only has 16 x-registers compared
to the usual 32, and an rv32e target should not have any floating
point registers.
In order to add this I needed to adjust the target description
validation checks that are performed from riscv_gdbarch_init, and I
finally got fed up with the current scheme of doing these checks and
rewrote this code.
Unfortunately the rv32e changes are currently mixed in with the
rewrite of the validation scheme. I could split these apart if anyone
is really interested in seeing these two ideas as separate patches.
The main idea behind this change is that where previously I tried to
have a purely data driven approach, a set of tables one for each
expected feature, and then a single generic function that would
validate a feature given a table, I have created a new class for each
feature. Each class has its own check member function which allows
the logic for how to check each feature to be different. I think the
new scheme is much easier to follow.
There are some other changes that I made to the validation code as
part of this commit.
I've relaxed some of the checks related to the floating point CSRs.
Previously the 3 CSRs fflags, frm, and fcsr all had to be present in
either the fpu feature or the csr feature. This requirement is now
relaxed, if the CSRs are not present then gdb will not reject the
target description. My thinking here is that there's no gdb
functionality that specifically requires these registers, and so, if a
target offers a description without these registers nothing else in
gdb should stop working.
And as part of the rv32e support targets now only have to provide the
first 16 x-registers and $pc. The second half of the x-registers (x16
-> x31) are now optional.
gdb/ChangeLog:
* arch/riscv.c: Include 'rv32e-xregs.c'.
(riscv_create_target_description): Update to handle rv32e.
* arch/riscv.h (struct riscv_gdbarch_features) <embedded>: New
member variable.
<operator==>: Update to account for new field.
<hash>: Likewise.
* features/Makefile (FEATURE_XMLFILES): Add riscv/rv32e-xregs.xml.
* features/riscv/rv32e-xregs.c: Generated.
* features/riscv/rv32e-xregs.xml: New file.
* riscv-tdep.c (riscv_debug_breakpoints): Move from later in the
file.
(riscv_debug_infcall): Likewise.
(riscv_debug_unwinder): Likewise.
(riscv_debug_gdbarch): Likewise.
(enum riscv_register_required_status): Delete.
(struct riscv_register_feature): Add constructor, delete default
constructor, copy, and assign constructors.
(struct riscv_register_feature::register_info) <required>: Delete.
<check>: Update comment and arguments.
(struct riscv_register_feature) <name>: Change to member function.
<prefer_first_name>: Delete.
<tdesc_feature>: New member function.
<registers>: Rename to...
<m_registers>: ...this.
<m_feature_name>: New member variable.
(riscv_register_feature::register_info::check): Update arguments.
(riscv_xreg_feature): Rewrite as class, create a single static
instance of the class.
(riscv_freg_feature): Likewise.
(riscv_virtual_feature): Likewise.
(riscv_csr_feature): Likewise.
(riscv_create_csr_aliases): Has become a member function inside
riscv_csr_feature class.
(riscv_abi_embedded): New function definition.
(riscv_register_name): Adjust to use new feature objects.
(struct riscv_call_info) <riscv_call_info>: Check for rv32e abi,
and adjust available argument registers.
(riscv_features_from_gdbarch_info): Check for EF_RISCV_RVE flag.
(riscv_check_tdesc_feature): Delete.
(riscv_tdesc_unknown_reg): Adjust to use new feature objects.
(riscv_gdbarch_init): Delete target description checking code, and
instead call to the new feature objects to perform the checks.
Reorder handling of no abi information case, allows small code
simplification.
(_initialize_riscv_tdep): Remove call, this is now done in the
riscv_csr_feature constructor.
* riscv-tdep.h (riscv_abi_embedded): Declare.
|
|
Extends riscv_dwarf_reg_to_regnum to add the ability to convert the
DWARF register numbers for CSRs into GDB's internal numbers.
gdb/ChangeLog:
* riscv-tdep.c (riscv_dwarf_reg_to_regnum): Decode DWARF CSR
numbers.
* riscv-tdep.h (RISCV_DWARF_FIRST_CSR, RISCV_DWARF_LAST_CSR): New
enum values.
|
|
Making use of the previous commit, record information about unknown
registers in the target description, and use this to resolve two
issues.
1. Some targets (QEMU) are reporting three register fflags, frm, and
fcsr, twice, once in the FPU feature, and once in the CSR feature.
GDB does create two registers with identical names, but this
is (sort of) fine, we only ever use the first one, and as both
registers access the same target state things basically work OK.
The only real problem is that the register names show up twice in
'info registers all' output.
In this commit we spot the duplicates of these registers and then
return NULL when asked for the name of these registers. This
causes GDB to hide these registers from the user, fixing this
problem.
2. Some targets (QEMU) advertise CSRs that GDB then can't read. The
problem is these targets also say these CSRs are part of the
save/restore register groups.
This means that before an inferior call GDB tries to save all of
these CSRs, and a failure to read one causes the inferior call to
be abandoned.
We already work around this issue to some degree, known CSRs are
removed from the save/restore groups, despite what the target might
say. However, any unknown CSRs are (currently) not removed in this
way.
After this commit we keep a log of the register numbers for all
unknown CSRs, then when asked about the register groups, we
override the group information for unknown CSRs, removing them from
the save and restore groups.
gdb/ChangeLog:
* riscv-tdep.c (riscv_register_name): Return NULL for duplicate
fflags, frm, and fcsr registers.
(riscv_register_reggroup_p): Remove unknown CSRs from save and
restore groups.
(riscv_tdesc_unknown_reg): New function.
(riscv_gdbarch_init): Pass riscv_tdesc_unknown_reg to
tdesc_use_registers.
* riscv-tdep.h (struct gdbarch_tdep): Add
unknown_csrs_first_regnum, unknown_csrs_count,
duplicate_fflags_regnum, duplicate_frm_regnum, and
duplicate_fcsr_regnum fields.
gdb/testsuite/ChangeLog:
* gdb.arch/riscv-tdesc-regs.exp: Extend test case.
|
|
extensions and CSR
1. Remove the -mriscv-isa-version and --with-riscv-isa-version options.
We can still use -march to choose the version for each extensions, so there is
no need to add these.
2. Change the arguments of options from [1p9|1p9p1|...] to [1.9|1.9.1|...].
Unlike the architecture string has specified by spec, ther is no need to do
the same thing for options.
3. Spilt the patches to reduce the burdens of review.
[PATCH 3/7] RISC-V: Support new GAS options and configure options to set ISA versions
to
[PATCH v2 3/9] RISC-V: Support GAS option -misa-spec to set ISA versions
[PATCH v2 4/9] RISC-V: Support configure options to set ISA versions by default.
[PATCH 4/7] RISC-V: Support version checking for CSR according to privilege version.
to
[PATCH v2 5/9] RISC-V: Support version checking for CSR according to privilege spec version.
[PATCH v2 6/9] RISC-V: Support configure option to choose the privilege spec version.
4. Use enum class rather than string to compare the choosen ISA spec in opcodes/riscv-opc.c.
The behavior is same as comparing the choosen privilege spec.
include * opcode/riscv.h: Include "bfd.h" to support bfd_boolean.
(enum riscv_isa_spec_class): New enum class. All supported ISA spec
belong to one of the class
(struct riscv_ext_version): New structure holds version information
for the specific ISA.
* opcode/riscv-opc.h (DECLARE_CSR): There are two version information,
define_version and abort_version. The define_version means which
privilege spec is started to define the CSR, and the abort_version
means which privilege spec is started to abort the CSR. If the CSR is
valid for the newest spec, then the abort_version should be
PRIV_SPEC_CLASS_DRAFT.
(DECLARE_CSR_ALIAS): Same as DECLARE_CSR, but only for the obselete CSR.
* opcode/riscv.h (enum riscv_priv_spec_class): New enum class. Define
the current supported privilege spec versions.
(struct riscv_csr_extra): Add new fields to store more information
about the CSR. We use these information to find the suitable CSR
address when user choosing a specific privilege spec.
binutils * dwarf.c: Updated since DECLARE_CSR is changed.
opcodes * riscv-opc.c (riscv_ext_version_table): The table used to store
all information about the supported spec and the corresponding ISA
versions. Currently, only Zicsr is supported to verify the
correctness of Z sub extension settings. Others will be supported
in the future patches.
(struct isa_spec_t, isa_specs): List for all supported ISA spec
classes and the corresponding strings.
(riscv_get_isa_spec_class): New function. Get the corresponding ISA
spec class by giving a ISA spec string.
* riscv-opc.c (struct priv_spec_t): New structure.
(struct priv_spec_t priv_specs): List for all supported privilege spec
classes and the corresponding strings.
(riscv_get_priv_spec_class): New function. Get the corresponding
privilege spec class by giving a spec string.
(riscv_get_priv_spec_name): New function. Get the corresponding
privilege spec string by giving a CSR version class.
* riscv-dis.c: Updated since DECLARE_CSR is changed.
* riscv-dis.c: Add new disassembler option -Mpriv-spec to dump the CSR
according to the chosen version. Build a hash table riscv_csr_hash to
store the valid CSR for the chosen pirv verison. Dump the direct
CSR address rather than it's name if it is invalid.
(parse_riscv_dis_option_without_args): New function. Parse the options
without arguments.
(parse_riscv_dis_option): Call parse_riscv_dis_option_without_args to
parse the options without arguments first, and then handle the options
with arguments. Add the new option -Mpriv-spec, which has argument.
* riscv-dis.c (print_riscv_disassembler_options): Add description
about the new OBJDUMP option.
ld * testsuite/ld-riscv-elf/attr-merge-arch-01.d: Updated
priv attributes according to the -mpriv-spec option.
* testsuite/ld-riscv-elf/attr-merge-arch-02.d: Likewise.
* testsuite/ld-riscv-elf/attr-merge-arch-03.d: Likewise.
* testsuite/ld-riscv-elf/attr-merge-priv-spec-a.s: Likewise.
* testsuite/ld-riscv-elf/attr-merge-priv-spec-b.s: Likewise.
* testsuite/ld-riscv-elf/attr-merge-priv-spec.d: Likewise.
* testsuite/ld-riscv-elf/attr-merge-stack-align.d: Likewise.
* testsuite/ld-riscv-elf/attr-merge-strict-align-01.d: Likewise.
* testsuite/ld-riscv-elf/attr-merge-strict-align-02.d: Likewise.
* testsuite/ld-riscv-elf/attr-merge-strict-align-03.d: Likewise.
* testsuite/ld-riscv-elf/attr-merge-strict-align-04.d: Likewise.
* testsuite/ld-riscv-elf/attr-merge-strict-align-05.d: Likewise.
bfd * elfxx-riscv.h (riscv_parse_subset_t): Add new callback function
get_default_version. It is used to find the default version for
the specific extension.
* elfxx-riscv.c (riscv_parsing_subset_version): Remove the parameters
default_major_version and default_minor_version. Add new bfd_boolean
parameter *use_default_version. Set it to TRUE if we need to call
the callback rps->get_default_version to find the default version.
(riscv_parse_std_ext): Call rps->get_default_version if we fail to find
the default version in riscv_parsing_subset_version, and then call
riscv_add_subset to add the subset into subset list.
(riscv_parse_prefixed_ext): Likewise.
(riscv_std_z_ext_strtab): Support Zicsr extensions.
* elfnn-riscv.c (riscv_merge_std_ext): Use strcasecmp to compare the
strings rather than characters.
riscv_merge_arch_attr_info): The callback function get_default_version
is only needed for assembler, so set it to NULL int the linker.
* elfxx-riscv.c (riscv_estimate_digit): Remove the static.
* elfxx-riscv.h: Updated.
gas * testsuite/gas/riscv/priv-reg-fail-read-only-01.s: Updated.
* config/tc-riscv.c (default_arch_with_ext, default_isa_spec):
Static variables which are used to set the ISA extensions. You can
use -march (or ELF build attributes) and -misa-spec to set them,
respectively.
(ext_version_hash): The hash table used to handle the extensions
with versions.
(init_ext_version_hash): Initialize the ext_version_hash according
to riscv_ext_version_table.
(riscv_get_default_ext_version): The callback function of
riscv_parse_subset_t. According to the choosed ISA spec,
get the default version for the specific extension.
(riscv_set_arch): Set the callback function.
(enum options, struct option md_longopts): Add new option -misa-spec.
(md_parse_option): Do not call riscv_set_arch for -march. We will
call it later in riscv_after_parse_args. Call riscv_get_isa_spec_class
to set default_isa_spec class.
(riscv_after_parse_args): Call init_ext_version_hash to initialize the
ext_version_hash, and then call riscv_set_arch to set the architecture
with versions according to default_arch_with_ext.
* testsuite/gas/riscv/attribute-02.d: Set 0p0 as default version for
x extensions.
* testsuite/gas/riscv/attribute-03.d: Likewise.
* testsuite/gas/riscv/attribute-09.d: New testcase. For i-ext, we
already set it's version to 2p1 by march, so no need to use the default
2p2 version. For m-ext, we do not set the version by -march and ELF arch
attribute, so set the default 2p0 to it. For zicsr, it is not defined in
ISA spec 2p2, so set 0p0 to it.
* testsuite/gas/riscv/attribute-10.d: New testcase. The version of
zicsr is 2p0 according to ISA spec 20191213.
* config/tc-riscv.c (DEFAULT_RISCV_ARCH_WITH_EXT)
(DEFAULT_RISCV_ISA_SPEC): Default configure option settings.
You can set them by configure options --with-arch and
--with-isa-spec, respectively.
(riscv_set_default_isa_spec): New function used to set the
default ISA spec.
(md_parse_option): Call riscv_set_default_isa_spec rather than
call riscv_get_isa_spec_class directly.
(riscv_after_parse_args): If the -isa-spec is not set, then we
set the default ISA spec according to DEFAULT_RISCV_ISA_SPEC by
calling riscv_set_default_isa_spec.
* testsuite/gas/riscv/attribute-01.d: Add -misa-spec=2.2, since
the --with-isa-spec may be set to different ISA spec.
* testsuite/gas/riscv/attribute-02.d: Likewise.
* testsuite/gas/riscv/attribute-03.d: Likewise.
* testsuite/gas/riscv/attribute-04.d: Likewise.
* testsuite/gas/riscv/attribute-05.d: Likewise.
* testsuite/gas/riscv/attribute-06.d: Likewise.
* testsuite/gas/riscv/attribute-07.d: Likewise.
* configure.ac: Add configure options, --with-arch and
--with-isa-spec.
* configure: Regenerated.
* config.in: Regenerated.
* config/tc-riscv.c (default_priv_spec): Static variable which is
used to check if the CSR is valid for the chosen privilege spec. You
can use -mpriv-spec to set it.
(enum reg_class): We now get the CSR address from csr_extra_hash rather
than reg_names_hash. Therefore, move RCLASS_CSR behind RCLASS_MAX.
(riscv_init_csr_hashes): Only need to initialize one hash table
csr_extra_hash.
(riscv_csr_class_check): Change the return type to void. Don't check
the ISA dependency if -mcsr-check isn't set.
(riscv_csr_version_check): New function. Check and find the CSR address
from csr_extra_hash, according to default_priv_spec. Report warning
for the invalid CSR if -mcsr-check is set.
(reg_csr_lookup_internal): Updated.
(reg_lookup_internal): Likewise.
(md_begin): Updated since DECLARE_CSR and DECLARE_CSR_ALIAS are changed.
(enum options, struct option md_longopts): Add new GAS option -mpriv-spec.
(md_parse_option): Call riscv_set_default_priv_version to set
default_priv_spec.
(riscv_after_parse_args): If -mpriv-spec isn't set, then set the default
privilege spec to the newest one.
(enum riscv_csr_class, struct riscv_csr_extra): Move them to
include/opcode/riscv.h.
* testsuite/gas/riscv/priv-reg-fail-fext.d: This test case just want
to check the ISA dependency for CSR, so fix the spec version by adding
-mpriv-spec=1.11.
* testsuite/gas/riscv/priv-reg-fail-fext.l: Likewise. There are some
version warnings for the test case.
* gas/testsuite/gas/riscv/priv-reg-fail-read-only-01.d: Likewise.
* gas/testsuite/gas/riscv/priv-reg-fail-read-only-01.l: Likewise.
* gas/testsuite/gas/riscv/priv-reg-fail-read-only-02.d: Likewise.
* gas/testsuite/gas/riscv/priv-reg-fail-rv32-only.d: Likewise.
* gas/testsuite/gas/riscv/priv-reg-fail-rv32-only.l: Likewise.
* gas/testsuite/gas/riscv/priv-reg-fail-version-1p9.d: New test case.
Check whether the CSR is valid when privilege version 1.9 is choosed.
* gas/testsuite/gas/riscv/priv-reg-fail-version-1p9.l: Likewise.
* gas/testsuite/gas/riscv/priv-reg-fail-version-1p9p1.d: New test case.
Check whether the CSR is valid when privilege version 1.9.1 is choosed.
* gas/testsuite/gas/riscv/priv-reg-fail-version-1p9p1.l: Likewise.
* gas/testsuite/gas/riscv/priv-reg-fail-version-1p10.d: New test case.
Check whether the CSR is valid when privilege version 1.10 is choosed.
* gas/testsuite/gas/riscv/priv-reg-fail-version-1p10.l: Likewise.
* gas/testsuite/gas/riscv/priv-reg-fail-version-1p11.d: New test case.
Check whether the CSR is valid when privilege version 1.11 is choosed.
* gas/testsuite/gas/riscv/priv-reg-fail-version-1p11.l: Likewise.
* config/tc-riscv.c (DEFAULT_RISCV_ISA_SPEC): Default configure option
setting. You can set it by configure option --with-priv-spec.
(riscv_set_default_priv_spec): New function used to set the default
privilege spec.
(md_parse_option): Call riscv_set_default_priv_spec rather than
call riscv_get_priv_spec_class directly.
(riscv_after_parse_args): If -mpriv-spec isn't set, then we set the
default privilege spec according to DEFAULT_RISCV_PRIV_SPEC by
calling riscv_set_default_priv_spec.
* testsuite/gas/riscv/csr-dw-regnums.d: Add -mpriv-spec=1.11, since
the --with-priv-spec may be set to different privilege spec.
* testsuite/gas/riscv/priv-reg.d: Likewise.
* configure.ac: Add configure option --with-priv-spec.
* configure: Regenerated.
* config.in: Regenerated.
* config/tc-riscv.c (explicit_attr): Rename explicit_arch_attr to
explicit_attr. Set it to TRUE if any ELF attribute is found.
(riscv_set_default_priv_spec): Try to set the default_priv_spec if
the priv attributes are set.
(md_assemble): Set the default_priv_spec according to the priv
attributes when we start to assemble instruction.
(riscv_write_out_attrs): Rename riscv_write_out_arch_attr to
riscv_write_out_attrs. Update the arch and priv attributes. If we
don't set the corresponding ELF attributes, then try to output the
default ones.
(riscv_set_public_attributes): If any ELF attribute or -march-attr
options is set (explicit_attr is TRUE), then call riscv_write_out_attrs
to update the arch and priv attributes.
(s_riscv_attribute): Make sure all arch and priv attributes are set
before any instruction.
* testsuite/gas/riscv/attribute-01.d: Update the priv attributes if any
ELF attribute or -march-attr is set. If the priv attributes are not
set, then try to update them by the default setting (-mpriv-spec or
--with-priv-spec).
* testsuite/gas/riscv/attribute-02.d: Likewise.
* testsuite/gas/riscv/attribute-03.d: Likewise.
* testsuite/gas/riscv/attribute-04.d: Likewise.
* testsuite/gas/riscv/attribute-06.d: Likewise.
* testsuite/gas/riscv/attribute-07.d: Likewise.
* testsuite/gas/riscv/attribute-08.d: Likewise.
* testsuite/gas/riscv/attribute-09.d: Likewise.
* testsuite/gas/riscv/attribute-10.d: Likewise.
* testsuite/gas/riscv/attribute-unknown.d: Likewise.
* testsuite/gas/riscv/attribute-05.d: Likewise. Also, the priv spec
set by priv attributes must be supported.
* testsuite/gas/riscv/attribute-05.s: Likewise.
* testsuite/gas/riscv/priv-reg-fail-version-1p9.d: Likewise. Updated
priv attributes according to the -mpriv-spec option.
* testsuite/gas/riscv/priv-reg-fail-version-1p9p1.d: Likewise.
* testsuite/gas/riscv/priv-reg-fail-version-1p10.d: Likewise.
* testsuite/gas/riscv/priv-reg-fail-version-1p11.d: Likewise.
* testsuite/gas/riscv/priv-reg.d: Removed.
* testsuite/gas/riscv/priv-reg-version-1p9.d: New test case. Dump the
CSR according to the priv spec 1.9.
* testsuite/gas/riscv/priv-reg-version-1p9p1.d: New test case. Dump the
CSR according to the priv spec 1.9.1.
* testsuite/gas/riscv/priv-reg-version-1p10.d: New test case. Dump the
CSR according to the priv spec 1.10.
* testsuite/gas/riscv/priv-reg-version-1p11.d: New test case. Dump the
CSR according to the priv spec 1.11.
* config/tc-riscv.c (md_show_usage): Add descriptions about
the new GAS options.
* doc/c-riscv.texi: Likewise.
|
|
According to the riscv privilege spec, some CSR are only valid when rv32 or
the specific extension is set. We extend the DECLARE_CSR and DECLARE_CSR_ALIAS
to record more informaton we need, and then check whether the CSR is valid
according to these information. We report warning message when the CSR is
invalid, so we have a choice between error and warning by --fatal-warnings
option. Also, a --no-warn/-W option is used to turn the warnings off, if
people don't want the warnings.
gas/
* config/tc-riscv.c (enum riscv_csr_class): New enum. Used to decide
whether or not this CSR is legal in the current ISA string.
(struct riscv_csr_extra): New structure to hold all extra information
of CSR.
(riscv_init_csr_hash): New function. According to the DECLARE_CSR and
DECLARE_CSR_ALIAS, insert CSR extra information into csr_extra_hash.
Call hash_reg_name to insert CSR address into reg_names_hash.
(md_begin): Call riscv_init_csr_hashes for each DECLARE_CSR.
(reg_csr_lookup_internal, riscv_csr_class_check): New functions.
Decide whether the CSR is valid according to the csr_extra_hash.
(init_opcode_hash): Update 'if (hash_error != NULL)' as hash_error is
not a boolean. This is same as riscv_init_csr_hash, so keep the
consistent usage.
* testsuite/gas/riscv/csr-dw-regnums.d: Add -march=rv32if option.
* testsuite/gas/riscv/priv-reg.d: Add f-ext by -march option.
* testsuite/gas/riscv/priv-reg-fail-fext.d: New testcase. The source
file is `priv-reg.s`, and the ISA is rv32i without f-ext, so the
f-ext CSR are not allowed.
* testsuite/gas/riscv/priv-reg-fail-fext.l: Likewise.
* testsuite/gas/riscv/priv-reg-fail-rv32-only.d: New testcase. The
source file is `priv-reg.s`, and the ISA is rv64if, so the
rv32-only CSR are not allowed.
* testsuite/gas/riscv/priv-reg-fail-rv32-only.l: Likewise.
include/
* opcode/riscv-opc.h: Extend DECLARE_CSR and DECLARE_CSR_ALIAS to
record riscv_csr_class.
opcodes/
* riscv-dis.c (print_insn_args): Updated since the DECLARE_CSR is changed.
gdb/
* riscv-tdep.c: Updated since the DECLARE_CSR is changed.
* riscv-tdep.h: Likewise.
* features/riscv/rebuild-csr-xml.sh: Generate the 64bit-csr.xml without
rv32-only CSR.
* features/riscv/64bit-csr.xml: Regernated.
binutils/
* dwarf.c: Updated since the DECLARE_CSR is changed.
|
|
gdb/ChangeLog:
Update copyright year range in all GDB files.
|
|
The goal of this commit is to allow RV64 binaries compiled for the 'F'
extension to run on a target that supports both the 'F' and 'D'
extensions.
The 'D' extension depends on the 'F' extension and chapter 9 of the
RISC-V ISA manual implies that running a program compiled for 'F' on
a 'D' target should be fine.
To support this the gdbarch now holds two feature sets, one represents
the features that are present on the target, and one represents the
features requested in the ELF flags.
The existing error checks are relaxed slightly to allow binaries
compiled for 32-bit 'F' extension to run on targets with the 64-bit
'D' extension.
A new set of functions called riscv_abi_{xlen,flen} are added to
compliment the existing riscv_isa_{xlen,flen}, and some callers to the
isa functions now call the abi functions when that is appropriate.
In riscv_call_arg_struct two asserts are removed, these asserts no
longer make sense. The asserts were both like this:
gdb_assert (TYPE_LENGTH (ainfo->type)
<= (cinfo->flen + cinfo->xlen));
And were made in two cases, when passing structures like these:
struct {
integer field1;
float field2;
};
or,
struct {
float field1;
integer field2;
};
When running on an RV64 target which only has 32-bit float then the
integer field could be 64-bits, while if the float field is 32-bits
the overall size of the structure can be 128-bits (with 32-bits of
padding). In this case the assertion would fail, however, the code
isn't incorrect, so its safe to just remove the assertion.
This was tested by running on an RV64IMFDC target using a compiler
configured for RV64IMFC, and comparing the results with those obtained
when using a compiler configured for RV64IMFDC. The only regressions
I see (now) are in gdb.base/store.exp and are related too different
code generation choices GCC makes between the two targets.
Finally, this commit does not make any attempt to support running
binaries compiled for RV32 on an RV64 target, though nothing in here
should prevent that being supported in the future.
gdb/ChangeLog:
* arch/riscv.h (struct riscv_gdbarch_features) <hw_float_abi>:
Delete.
<operator==>: Update with for removed field.
<hash>: Likewise.
* riscv-tdep.h (struct gdbarch_tdep) <features>: Renamed to...
<isa_features>: ...this.
<abi_features>: New field.
(riscv_isa_flen): Update comment.
(riscv_abi_xlen): New declaration.
(riscv_abi_flen): New declaration.
* riscv-tdep.c (riscv_isa_xlen): Update to get answer from
isa_features.
(riscv_abi_xlen): New function.
(riscv_isa_flen): Update to get answer from isa_features.
(riscv_abi_flen): New function.
(riscv_has_fp_abi): Update to get answer from abi_features.
(riscv_call_info::riscv_call_info): Use abi xlen and flen, not isa
xlen and flen.
(riscv_call_info) <xlen, flen>: Update comment.
(riscv_call_arg_struct): Remove invalid assertions
(riscv_features_from_gdbarch_info): Update now hw_float_abi field
is removed.
(riscv_gdbarch_init): Gather isa features and abi features
separately, ensure both match on the gdbarch when reusing an old
gdbarch. Relax an error check to allow 32-bit abi float to run on
a target with 64-bit float hardware.
|
|
This commit applies all changes made after running the gdb/copyright.py
script.
Note that one file was flagged by the script, due to an invalid
copyright header
(gdb/unittests/basic_string_view/element_access/char/empty.cc).
As the file was copied from GCC's libstdc++-v3 testsuite, this commit
leaves this file untouched for the time being; a patch to fix the header
was sent to gcc-patches first.
gdb/ChangeLog:
Update copyright year range in all GDB files.
|
|
Provide a mapping between GDB's register numbers and DWARF's register
numbers. This resolves some failures that I was seeing on
gdb.base/store.exp when running on an rv64imfdc target.
gdb/ChangeLog:
* riscv-tdep.c (riscv_dwarf_reg_to_regnum): New function.
(riscv_gdbarch_init): Register new function with gdbarch.
* riscv-tdep.h: New enum to define RISC-V DWARF register numbers.
|
|
This commit adds target description support for riscv.
I've used the split feature approach for specifying the architectural
features, and the CSR feature is auto-generated from the riscv-opc.h
header file.
If the target doesn't provide a suitable target description then GDB
will build one by looking at the bfd headers.
This commit does not implement target description creation for the
Linux or FreeBSD native targets, both of these will need to add
read_description methods into their respective target classes, which
probe the target features, and then call
riscv_create_target_description to build a suitable target
description. Until this is done Linux and FreeBSD will get the same
default target description based on the bfd that bare-metal targets
get.
I've only added feature descriptions for 32 and 64 bit registers, 128
bit registers (for RISC-V) are not supported in the reset of GDB yet.
This commit removes the special reading of the MISA register in order
to establish the target features, this was only used for figuring out
the f-register size, and even that wasn't done consistently. We now
rely on the target to tell us what size of registers it has (or look
in the BFD as a last resort). The result of this is that we should
now support RV64 targets with 32-bit float, though I have not
extensively tested this combination yet.
* Makefile.in (ALL_TARGET_OBS): Add arch/riscv.o.
(HFILES_NO_SRCDIR): Add arch/riscv.h.
* arch/riscv.c: New file.
* arch/riscv.h: New file.
* configure.tgt: Add cpu_obs list of riscv, move riscv-tdep.o into
this list, and add arch/riscv.o.
* features/Makefile: Add riscv features.
* features/riscv/32bit-cpu.c: New file.
* features/riscv/32bit-cpu.xml: New file.
* features/riscv/32bit-csr.c: New file.
* features/riscv/32bit-csr.xml: New file.
* features/riscv/32bit-fpu.c: New file.
* features/riscv/32bit-fpu.xml: New file.
* features/riscv/64bit-cpu.c: New file.
* features/riscv/64bit-cpu.xml: New file.
* features/riscv/64bit-csr.c: New file.
* features/riscv/64bit-csr.xml: New file.
* features/riscv/64bit-fpu.c: New file.
* features/riscv/64bit-fpu.xml: New file.
* features/riscv/rebuild-csr-xml.sh: New file.
* riscv-tdep.c: Add 'arch/riscv.h' include.
(riscv_gdb_reg_names): Delete.
(csr_reggroup): New global.
(struct riscv_register_alias): Delete.
(struct riscv_register_feature): New structure.
(riscv_register_aliases): Delete.
(riscv_xreg_feature): New global.
(riscv_freg_feature): New global.
(riscv_virtual_feature): New global.
(riscv_csr_feature): New global.
(riscv_create_csr_aliases): New function.
(riscv_read_misa_reg): Delete.
(riscv_has_feature): Delete.
(riscv_isa_xlen): Simplify, just return cached xlen.
(riscv_isa_flen): Simplify, just return cached flen.
(riscv_has_fp_abi): Update for changes in struct gdbarch_tdep.
(riscv_register_name): Update to make use of tdesc_register_name.
Look up xreg and freg names in the new globals riscv_xreg_feature
and riscv_freg_feature. Don't supply csr aliases here.
(riscv_fpreg_q_type): Delete.
(riscv_register_type): Use tdesc_register_type in almost all
cases, override the returned type in a few specific cases only.
(riscv_print_one_register_info): Handle errors reading registers.
(riscv_register_reggroup_p): Use tdesc_register_in_reggroup_p for
registers that are otherwise unknown to GDB. Also check the
csr_reggroup.
(riscv_print_registers_info): Remove assert about upper register
number, and use gdbarch_register_reggroup_p instead of
short-cutting.
(riscv_find_default_target_description): New function.
(riscv_check_tdesc_feature): New function.
(riscv_add_reggroups): New function.
(riscv_setup_register_aliases): New function.
(riscv_init_reggroups): New function.
(_initialize_riscv_tdep): Add calls to setup CSR aliases, and
setup register groups. Register new riscv debug variable.
* riscv-tdep.h: Add 'arch/riscv.h' include.
(struct gdbarch_tdep): Remove abi union, and add
riscv_gdbarch_features field. Remove cached quad floating point
type, and provide initialisation for double type field.
* target-descriptions.c (maint_print_c_tdesc_cmd): Add riscv to
the list of targets using the feature based target descriptions.
* NEWS: Mention target description support.
gdb/doc/ChangeLog:
* gdb.texinfo (Standard Target Features): Add RISC-V Features
sub-section.
|
|
Make riscv_isa_flen available to the linux native code, and clean up duplicate
comments.
gdb/
* riscv-tdep.c (riscv_isa_xlen): Refer to riscv-tdep.h comment.
(riscv_isa_flen): Likewise. Drop static.
* riscv-tdep.h (riscv_isa_xlen): Move riscv-tdep.c comment to here.
(riscv_isa_flen): Likewise.
|
|
A 64-bit FP register can hold either a single or double float value, so
print it as both types by using a union type for FP registers. Likewise
for 128-bit regs which can also hold long double.
gdb/
* riscv-tdep.c (riscv_fpreg_d_type, riscv_fpreg_q_type): New.
(riscv_register_type): Use them.
(riscv_print_one_register_info): Handle union of floats same as float.
* riscv-tdep.h (struct gdbarch_tdep): Add riscv_fpreg_d_type and
riscv_fpreg_q_type fields.
|
|
Collects information during the prologue scan and uses this to unwind
registers when no DWARF information is available.
This patch has been tested by disabling the DWARF stack unwinders, and
running the complete GDB testsuite against a range of RISC-V targets.
The results are comparable to running with the DWARF unwinders in
place.
gdb/ChangeLog:
* riscv-tdep.c: Add 'prologue-value.h' include.
(struct riscv_unwind_cache): New struct.
(riscv_debug_unwinder): New global.
(riscv_scan_prologue): Update arguments, capture register details
from prologue scan.
(riscv_skip_prologue): Reformat arguments line, move end of
prologue calculation into riscv_scan_prologue.
(riscv_frame_cache): Update return type, create
riscv_unwind_cache, scan the prologue, and fill in remaining cache
details.
(riscv_frame_this_id): Use frame id computed in riscv_frame_cache.
(riscv_frame_prev_register): Use the trad_frame within the
riscv_unwind_cache.
(_initialize_riscv_tdep): Add 'set/show debug riscv unwinder'
flag.
|
|
This fixes some minor formatting issues in riscv-tdep.h, including one
pointed out by ARI.
ChangeLog
2018-08-09 Tom Tromey <tom@tromey.com>
* riscv-tdep.h: Minor formatting fixes.
|
|
This adds software single step support that is needed by the linux native port.
This is modeled after equivalent code in the MIPS port.
This also fixes a few bugs in the compressed instruction decode support. Some
instructions are RV32/RV64 specific, and this wasn't being checked. Also, a
few instructions were accidentally using the non-compressed is_* function.
This has been tested on a HiFive Unleashed running Fedora, by putting a
breakpoint on start, typing stepi, and then holding down the return key until
it finishes, and observing that I see everything I expect to see along the way.
There is a problem in _dl_addr where I get into an infinite loop, but it seems
to be some synchronization code that doesn't agree with single step, so I have
to find the end of the loop, put a breakpoint there, continue, and then single
step again until the end.
gdb/
* riscv-tdep.c (enum opcode): Add jump, branch, lr, and sc opcodes.
(decode_register_index_short): New.
(decode_j_type_insn, decode_cj_type_insn): New.
(decode_b_type_insn, decode_cb_type_insn): New.
(riscv_insn::decode): Add support for jumps, branches, lr, and sc. New
local xlen. Check xlen when decoding ambiguous compressed insns. In
compressed decode, use is_c_lui_insn instead of is_lui_insn, and
is_c_sw_insn instead of is_sw_insn.
(riscv_next_pc, riscv_next_pc_atomic_sequence): New.
(riscv_software_single_step): New.
* riscv-tdep.h (riscv_software_single_step): Declare.
|
|
This allows the function to be used from riscv OS files, which also need to
depend on XLEN size.
gdb/
* riscv-tdep.c (riscv_isa_xlen): Drop static.
* riscv-tdep.h (riscv_isa_xlen): Add extern declaration.
|
|
gdb/
* riscv-tdep.h (DECLARE_CSR): Use RISCV_FIRST_CSR_REGNUM instead of
RISCV_LAST_FP_REGNUM + 1.
(RSICV_CSR_LEGACY_MISA_REGNUM): Add RISCV_FIRST_CSR_REGNUM.
|
|
The GDB coding standard states these lines should never have been
added.
gdb/ChangeLog:
* riscv-tdep.c: Remove 'Contributed by ...' lines from header
comment.
* riscv-tdep.h: Likewise.
|
|
This commit introduces basic support for baremetal RiscV as a GDB
target. This target is currently only tested against the RiscV software
simulator, which is not included as part of this commit. The target has
been tested against the following RiscV variants: rv32im, rv32imc,
rv32imf, rv32imfc, rv64im, rv64imc, rv64imfd, rv64imfdc.
Across these variants we pass on average 34858 tests, and fail 272
tests, which is ~0.8%.
The RiscV has a feature of its ABI where structures with a single
floating point field, a single complex float field, or one float and
one integer field are treated differently for argument passing. The
new test gdb.base/infcall-nested-structs.exp is added to cover this
feature. As passing these structures should work on all targets then
I've made the test as a generic one, even though, for most targets,
there's probably nothing special about any of these cases.
gdb/ChangeLog:
* Makefile.in (ALL_TARGET_OBS): Add riscv-tdep.o
(HFILES_NO_SRCDIR): Add riscv-tdep.h.
(ALLDEPFILES): Add riscv-tdep.c
* configure.tgt: Add riscv support.
* riscv-tdep.c: New file.
* riscv-tdep.h: New file.
* NEWS: Mention new target.
* MAINTAINERS: Add entry for riscv.
gdb/testsuite/ChangeLog:
* gdb.base/infcall-nested-structs.exp: New file.
* gdb.base/infcall-nested-structs.c: New file.
* gdb.base/float.exp: Add riscv support.
|