aboutsummaryrefslogtreecommitdiff
path: root/gdb/riscv-tdep.c
AgeCommit message (Collapse)AuthorFilesLines
2019-04-17gdb/riscv: Allow breakpoints to be created at invalid addressesAndrew Burgess1-1/+9
Some testsuite cases (gdb.cp/nsalias.exp for example) construct dwarf2 debug info for fake functions to test that this debug info is handled correctly. We currently get an error trying to read from an invalid address while creating breakpoints for these fake functions. Other targets allow creating breakpoints on invalid addresses, and only error when GDB actually tries to insert the breakpoints. In order to make RISC-V behave in the same way as other targets, this commit makes the failure to read memory during breakpoint creation non-fatal, we then expect to see a failure when GDB tries to insert the breakpoint, just like other targets. Tested with a riscv64-linux native testsuite run. gdb/ChangeLog: * riscv-tdep.c (riscv_breakpoint_kind_from_pc): Hanndle case where code read might fail, assume 4-byte breakpoint in that case.
2019-04-11gdb/riscv: Remove riscv_type_alignment functionAndrew Burgess1-48/+12
Make use of the type_align function and remove riscv_type_alignment as it is no longer needed. I tested this against a number of RV32 and RV64 targets, and I also ran the tests with an assertion in place checking that the old riscv_type_alignment function gives the same answer as the common type_align function - it does, and all the tests still pass. gdb/ChangeLog: * riscv-tdep.c (riscv_type_align): New function. (riscv_type_alignment): Delete. (riscv_arg_location): Use 'type_align'. (riscv_gdbarch_init): Register riscv_type_align gdbarch function.
2019-04-11gdb/riscv: Handle empty C++ structs during argument passingAndrew Burgess1-43/+110
This commit resolves a large number of failures in the test script gdb.base/infcall-nested-structs.exp which were caused by GDB (for RISC-V) incorrectly handling empty C++ structures when preparing arguments for a dummy call, or collecting a return value. The issue is further complicated in that there was a bug in GCC, such that in some cases GCC would generate incorrect code when passing a small structure that contained empty sub-structures. This was fixed in GCC trunk on 5-March-2019, so in order to see the best results with this patch you'll need a recent version of GCC. Anything that used to work should continue to work after this patch, regardless of GCC version being used. The fix in this commit is that GDB now pays more attention to the offset of fields within a structure when preparing arguments as in C++ an empty structure has a non-zero size, this is an example: struct s1 { struct s2 { } empty; int f; }; We previously assumed that 'f' was at offset 0 inside type 's1', however this is not the case in C++ as 's2' has size 1, and with alignment 'f' is likely at some even bigger offset inside 's1'. gdb/ChangeLog: * riscv-tdep.c (riscv_call_arg_complex_float): Fix offset of first component to 0. (riscv_struct_info::riscv_struct_info): Initialise m_offsets member. (riscv_struct_info::analyse): New implementation using new analyse_inner member function. (riscv_struct_info::field_offset): New member function. (riscv_struct_info::m_offsets): New member variable. (riscv_struct_info::analyse_inner): New private member function, takes the old implementation of riscv_struct_info::analyse but extended to track field offsets. (riscv_call_arg_struct): Update the struct folding special cases to handle cases where empty C++ structs, which are non-zero length, are found. (riscv_arg_location): Initialise the length of each location, a non-zero length now indicates the location is in use. (riscv_push_dummy_call): Allow for the first location having a non-zero offset when setting up arguments. (riscv_return_value): Likewise, but for return values.
2019-04-08Rename gdb exception typesTom Tromey1-2/+2
This renames the gdb exception types. The old types were only needed due to the macros in common-exception.h that are now gone. The intermediate layer of gdb_exception_RETURN_MASK_ALL did not seem needed, so this patch removes it entirely. gdb/ChangeLog 2019-04-08 Tom Tromey <tom@tromey.com> * common/common-exceptions.h (gdb_exception_RETURN_MASK_ALL): Remove. (gdb_exception_error): Rename from gdb_exception_RETURN_MASK_ERROR. (gdb_exception_quit): Rename from gdb_exception_RETURN_MASK_QUIT. (gdb_quit_bad_alloc): Update. * aarch64-tdep.c: Update. * ada-lang.c: Update. * ada-typeprint.c: Update. * ada-valprint.c: Update. * amd64-tdep.c: Update. * arch-utils.c: Update. * break-catch-throw.c: Update. * breakpoint.c: Update. * btrace.c: Update. * c-varobj.c: Update. * cli/cli-cmds.c: Update. * cli/cli-interp.c: Update. * cli/cli-script.c: Update. * common/common-exceptions.c: Update. * common/new-op.c: Update. * common/selftest.c: Update. * compile/compile-c-symbols.c: Update. * compile/compile-cplus-symbols.c: Update. * compile/compile-object-load.c: Update. * compile/compile-object-run.c: Update. * completer.c: Update. * corelow.c: Update. * cp-abi.c: Update. * cp-support.c: Update. * cp-valprint.c: Update. * darwin-nat.c: Update. * disasm-selftests.c: Update. * dtrace-probe.c: Update. * dwarf-index-cache.c: Update. * dwarf-index-write.c: Update. * dwarf2-frame-tailcall.c: Update. * dwarf2-frame.c: Update. * dwarf2loc.c: Update. * dwarf2read.c: Update. * eval.c: Update. * event-loop.c: Update. * event-top.c: Update. * exec.c: Update. * f-valprint.c: Update. * fbsd-tdep.c: Update. * frame-unwind.c: Update. * frame.c: Update. * gdbtypes.c: Update. * gnu-v3-abi.c: Update. * guile/guile-internal.h: Update. * guile/scm-block.c: Update. * guile/scm-breakpoint.c: Update. * guile/scm-cmd.c: Update. * guile/scm-disasm.c: Update. * guile/scm-frame.c: Update. * guile/scm-lazy-string.c: Update. * guile/scm-math.c: Update. * guile/scm-param.c: Update. * guile/scm-ports.c: Update. * guile/scm-pretty-print.c: Update. * guile/scm-symbol.c: Update. * guile/scm-symtab.c: Update. * guile/scm-type.c: Update. * guile/scm-value.c: Update. * i386-linux-tdep.c: Update. * i386-tdep.c: Update. * inf-loop.c: Update. * infcall.c: Update. * infcmd.c: Update. * infrun.c: Update. * jit.c: Update. * language.c: Update. * linespec.c: Update. * linux-fork.c: Update. * linux-nat.c: Update. * linux-tdep.c: Update. * linux-thread-db.c: Update. * main.c: Update. * mi/mi-cmd-break.c: Update. * mi/mi-cmd-stack.c: Update. * mi/mi-interp.c: Update. * mi/mi-main.c: Update. * objc-lang.c: Update. * p-valprint.c: Update. * parse.c: Update. * ppc-linux-tdep.c: Update. * printcmd.c: Update. * python/py-arch.c: Update. * python/py-breakpoint.c: Update. * python/py-cmd.c: Update. * python/py-finishbreakpoint.c: Update. * python/py-frame.c: Update. * python/py-framefilter.c: Update. * python/py-gdb-readline.c: Update. * python/py-inferior.c: Update. * python/py-infthread.c: Update. * python/py-lazy-string.c: Update. * python/py-linetable.c: Update. * python/py-objfile.c: Update. * python/py-param.c: Update. * python/py-prettyprint.c: Update. * python/py-progspace.c: Update. * python/py-record-btrace.c: Update. * python/py-record.c: Update. * python/py-symbol.c: Update. * python/py-type.c: Update. * python/py-unwind.c: Update. * python/py-utils.c: Update. * python/py-value.c: Update. * python/python.c: Update. * record-btrace.c: Update. * record-full.c: Update. * remote-fileio.c: Update. * remote.c: Update. * riscv-tdep.c: Update. * rs6000-aix-tdep.c: Update. * rs6000-tdep.c: Update. * rust-exp.y: Update. * rust-lang.c: Update. * s390-tdep.c: Update. * selftest-arch.c: Update. * solib-dsbt.c: Update. * solib-frv.c: Update. * solib-spu.c: Update. * solib-svr4.c: Update. * solib.c: Update. * sparc64-linux-tdep.c: Update. * stack.c: Update. * symfile-mem.c: Update. * symmisc.c: Update. * target.c: Update. * thread.c: Update. * top.c: Update. * tracefile-tfile.c: Update. * tui/tui.c: Update. * typeprint.c: Update. * unittests/cli-utils-selftests.c: Update. * unittests/parse-connection-spec-selftests.c: Update. * valops.c: Update. * valprint.c: Update. * value.c: Update. * varobj.c: Update. * windows-nat.c: Update. * x86-linux-nat.c: Update. * xml-support.c: Update. gdb/gdbserver/ChangeLog 2019-04-08 Tom Tromey <tom@tromey.com> * gdbreplay.c: Update. * linux-low.c: Update. * server.c: Update.
2019-04-08Rewrite TRY/CATCHTom Tromey1-6/+4
This rewrites gdb's TRY/CATCH to plain C++ try/catch. The patch was largely written by script, though one change (to a comment in common-exceptions.h) was reverted by hand. gdb/ChangeLog 2019-04-08 Tom Tromey <tom@tromey.com> * xml-support.c: Use C++ exception handling. * x86-linux-nat.c: Use C++ exception handling. * windows-nat.c: Use C++ exception handling. * varobj.c: Use C++ exception handling. * value.c: Use C++ exception handling. * valprint.c: Use C++ exception handling. * valops.c: Use C++ exception handling. * unittests/parse-connection-spec-selftests.c: Use C++ exception handling. * unittests/cli-utils-selftests.c: Use C++ exception handling. * typeprint.c: Use C++ exception handling. * tui/tui.c: Use C++ exception handling. * tracefile-tfile.c: Use C++ exception handling. * top.c: Use C++ exception handling. * thread.c: Use C++ exception handling. * target.c: Use C++ exception handling. * symmisc.c: Use C++ exception handling. * symfile-mem.c: Use C++ exception handling. * stack.c: Use C++ exception handling. * sparc64-linux-tdep.c: Use C++ exception handling. * solib.c: Use C++ exception handling. * solib-svr4.c: Use C++ exception handling. * solib-spu.c: Use C++ exception handling. * solib-frv.c: Use C++ exception handling. * solib-dsbt.c: Use C++ exception handling. * selftest-arch.c: Use C++ exception handling. * s390-tdep.c: Use C++ exception handling. * rust-lang.c: Use C++ exception handling. * rust-exp.y: Use C++ exception handling. * rs6000-tdep.c: Use C++ exception handling. * rs6000-aix-tdep.c: Use C++ exception handling. * riscv-tdep.c: Use C++ exception handling. * remote.c: Use C++ exception handling. * remote-fileio.c: Use C++ exception handling. * record-full.c: Use C++ exception handling. * record-btrace.c: Use C++ exception handling. * python/python.c: Use C++ exception handling. * python/py-value.c: Use C++ exception handling. * python/py-utils.c: Use C++ exception handling. * python/py-unwind.c: Use C++ exception handling. * python/py-type.c: Use C++ exception handling. * python/py-symbol.c: Use C++ exception handling. * python/py-record.c: Use C++ exception handling. * python/py-record-btrace.c: Use C++ exception handling. * python/py-progspace.c: Use C++ exception handling. * python/py-prettyprint.c: Use C++ exception handling. * python/py-param.c: Use C++ exception handling. * python/py-objfile.c: Use C++ exception handling. * python/py-linetable.c: Use C++ exception handling. * python/py-lazy-string.c: Use C++ exception handling. * python/py-infthread.c: Use C++ exception handling. * python/py-inferior.c: Use C++ exception handling. * python/py-gdb-readline.c: Use C++ exception handling. * python/py-framefilter.c: Use C++ exception handling. * python/py-frame.c: Use C++ exception handling. * python/py-finishbreakpoint.c: Use C++ exception handling. * python/py-cmd.c: Use C++ exception handling. * python/py-breakpoint.c: Use C++ exception handling. * python/py-arch.c: Use C++ exception handling. * printcmd.c: Use C++ exception handling. * ppc-linux-tdep.c: Use C++ exception handling. * parse.c: Use C++ exception handling. * p-valprint.c: Use C++ exception handling. * objc-lang.c: Use C++ exception handling. * mi/mi-main.c: Use C++ exception handling. * mi/mi-interp.c: Use C++ exception handling. * mi/mi-cmd-stack.c: Use C++ exception handling. * mi/mi-cmd-break.c: Use C++ exception handling. * main.c: Use C++ exception handling. * linux-thread-db.c: Use C++ exception handling. * linux-tdep.c: Use C++ exception handling. * linux-nat.c: Use C++ exception handling. * linux-fork.c: Use C++ exception handling. * linespec.c: Use C++ exception handling. * language.c: Use C++ exception handling. * jit.c: Use C++ exception handling. * infrun.c: Use C++ exception handling. * infcmd.c: Use C++ exception handling. * infcall.c: Use C++ exception handling. * inf-loop.c: Use C++ exception handling. * i386-tdep.c: Use C++ exception handling. * i386-linux-tdep.c: Use C++ exception handling. * guile/scm-value.c: Use C++ exception handling. * guile/scm-type.c: Use C++ exception handling. * guile/scm-symtab.c: Use C++ exception handling. * guile/scm-symbol.c: Use C++ exception handling. * guile/scm-pretty-print.c: Use C++ exception handling. * guile/scm-ports.c: Use C++ exception handling. * guile/scm-param.c: Use C++ exception handling. * guile/scm-math.c: Use C++ exception handling. * guile/scm-lazy-string.c: Use C++ exception handling. * guile/scm-frame.c: Use C++ exception handling. * guile/scm-disasm.c: Use C++ exception handling. * guile/scm-cmd.c: Use C++ exception handling. * guile/scm-breakpoint.c: Use C++ exception handling. * guile/scm-block.c: Use C++ exception handling. * guile/guile-internal.h: Use C++ exception handling. * gnu-v3-abi.c: Use C++ exception handling. * gdbtypes.c: Use C++ exception handling. * frame.c: Use C++ exception handling. * frame-unwind.c: Use C++ exception handling. * fbsd-tdep.c: Use C++ exception handling. * f-valprint.c: Use C++ exception handling. * exec.c: Use C++ exception handling. * event-top.c: Use C++ exception handling. * event-loop.c: Use C++ exception handling. * eval.c: Use C++ exception handling. * dwarf2read.c: Use C++ exception handling. * dwarf2loc.c: Use C++ exception handling. * dwarf2-frame.c: Use C++ exception handling. * dwarf2-frame-tailcall.c: Use C++ exception handling. * dwarf-index-write.c: Use C++ exception handling. * dwarf-index-cache.c: Use C++ exception handling. * dtrace-probe.c: Use C++ exception handling. * disasm-selftests.c: Use C++ exception handling. * darwin-nat.c: Use C++ exception handling. * cp-valprint.c: Use C++ exception handling. * cp-support.c: Use C++ exception handling. * cp-abi.c: Use C++ exception handling. * corelow.c: Use C++ exception handling. * completer.c: Use C++ exception handling. * compile/compile-object-run.c: Use C++ exception handling. * compile/compile-object-load.c: Use C++ exception handling. * compile/compile-cplus-symbols.c: Use C++ exception handling. * compile/compile-c-symbols.c: Use C++ exception handling. * common/selftest.c: Use C++ exception handling. * common/new-op.c: Use C++ exception handling. * cli/cli-script.c: Use C++ exception handling. * cli/cli-interp.c: Use C++ exception handling. * cli/cli-cmds.c: Use C++ exception handling. * c-varobj.c: Use C++ exception handling. * btrace.c: Use C++ exception handling. * breakpoint.c: Use C++ exception handling. * break-catch-throw.c: Use C++ exception handling. * arch-utils.c: Use C++ exception handling. * amd64-tdep.c: Use C++ exception handling. * ada-valprint.c: Use C++ exception handling. * ada-typeprint.c: Use C++ exception handling. * ada-lang.c: Use C++ exception handling. * aarch64-tdep.c: Use C++ exception handling. gdb/gdbserver/ChangeLog 2019-04-08 Tom Tromey <tom@tromey.com> * server.c: Use C++ exception handling. * linux-low.c: Use C++ exception handling. * gdbreplay.c: Use C++ exception handling.
2019-04-08Make exceptions use std::string and be self-managingTom Tromey1-1/+1
This changes the exception's "message" member to be a shared_ptr wrapping a std::string. This allows removing the stack of exception messages, because now exceptions will self-destruct when needed. This also adds a noexcept copy constructor and operator= to gdb_exception, plus a "what" method. gdb/ChangeLog 2019-04-08 Tom Tromey <tom@tromey.com> * xml-support.c (gdb_xml_parser::parse): Update. * x86-linux-nat.c (x86_linux_nat_target::enable_btrace): Update. * value.c (show_convenience): Update. * unittests/cli-utils-selftests.c (test_number_or_range_parser) (test_parse_flags_qcs): Update. * thread.c (thr_try_catch_cmd): Update. * target.c (target_translate_tls_address): Update. * stack.c (print_frame_arg, read_frame_local, read_frame_arg) (info_frame_command_core, frame_apply_command_count): Update. * rust-exp.y (rust_lex_exception_test): Update. * riscv-tdep.c (riscv_print_one_register_info): Update. * remote.c (remote_target::enable_btrace): Update. * record-btrace.c (record_btrace_enable_warn): Update. * python/py-utils.c (gdbpy_convert_exception): Update. * printcmd.c (do_one_display, print_variable_and_value): Update. * mi/mi-main.c (mi_print_exception): Update. * mi/mi-interp.c (mi_cmd_interpreter_exec): Use SCOPE_EXIT. * mi/mi-cmd-stack.c (list_arg_or_local): Update. * linux-nat.c (linux_nat_target::attach): Update. * linux-fork.c (class scoped_switch_fork_info): Update. * infrun.c (displaced_step_prepare): Update. * infcall.c (call_function_by_hand_dummy): Update. * guile/scm-exception.c (gdbscm_scm_from_gdb_exception): Update. * gnu-v3-abi.c (print_one_vtable): Update. * frame.c (get_prev_frame_always): Update. * f-valprint.c (info_common_command_for_block): Update. * exec.c (try_open_exec_file): Update. * exceptions.c (print_exception, exception_print) (exception_fprintf, exception_print_same): Update. * dwarf2-frame.c (dwarf2_build_frame_info): Update. * dwarf-index-cache.c (index_cache::store) (index_cache::lookup_gdb_index): Update. * darwin-nat.c (maybe_cache_shell): Update. * cp-valprint.c (cp_print_value_fields): Update. * compile/compile-cplus-symbols.c (gcc_cplus_convert_symbol) (gcc_cplus_symbol_address): Update. * compile/compile-c-symbols.c (gcc_convert_symbol) (gcc_symbol_address, generate_c_for_for_one_variable): Update. * common/selftest.c: Update. * common/common-exceptions.h (struct gdb_exception) <message>: Now a std::string. (exception_try_scope_entry, exception_try_scope_exit): Don't declare. (struct exception_try_scope): Remove. (TRY): Don't use exception_try_scope. (struct gdb_exception): Add constructor, operator=. <what>: New method. (struct gdb_exception_RETURN_MASK_ALL) (struct gdb_exception_RETURN_MASK_ERROR) (struct gdb_exception_RETURN_MASK_QUIT): Add constructor. (struct gdb_quit_bad_alloc): Update. * common/common-exceptions.c (exception_none): Change initializer. (struct catcher) <state, exception>: Initialize inline. <prev>: Remove member. (current_catcher): Remove. (catchers): New global. (exceptions_state_mc_init): Simplify. (catcher_pop): Remove. (exceptions_state_mc, exceptions_state_mc_catch): Update. (try_scope_depth, exception_try_scope_entry) (exception_try_scope_exit): Remove. (throw_exception_sjlj): Update. (exception_messages, exception_messages_size): Remove. (throw_it): Simplify. (gdb_exception_sliced_copy): Remove. (throw_exception_cxx): Update. * cli/cli-script.c (script_from_file): Update. * breakpoint.c (insert_bp_location, update_breakpoint_locations): Update. * ada-valprint.c (ada_val_print): Update. * ada-lang.c (ada_to_fixed_type_1, ada_exception_name_addr) (create_excep_cond_exprs): Update. gdb/gdbserver/ChangeLog 2019-04-08 Tom Tromey <tom@tromey.com> * server.c (handle_btrace_general_set, handle_qxfer_btrace) (handle_qxfer_btrace_conf, detach_or_kill_for_exit_cleanup) (captured_main, main): Update. * gdbreplay.c (main): Update.
2019-03-29Allow really large fortran array bounds: TYPE_LENGTH to ULONGESTKeith Seitz1-1/+1
This series is revisit of Siddhesh Poyarekar's patch from back in 2012. The last status on the patch is in the following gdb-patches thread: https://sourceware.org/ml/gdb-patches/2012-08/msg00562.html It appears that Tom approved the patch, but Jan had some issues with a compiler error that made the test fail on -m32 test runs. He wrote up a hand-tweaked .S file to deal with it. Siddesh said he would update tests. Then nothing. Siddesh and Jan have both moved on since. The patch originally required a large precursor patch to work. I have whittled this down to/rewritten the bare minimum, and this first patch is the result, changing the type of TYPE_LENGTH to ULONGEST from unsigned int. The majority of the changes involve changing printf format strings to use %s and pulongest instead of %d. gdb/ChangeLog: * ada-lang.c (ada_template_to_fixed_record_type_1): Use %s/pulongest for TYPE_LENGTH instead of %d in format strings. * ada-typerint.c (ada_print_type): Likewise. * amd64-windows-tdep.c (amd64_windows_store_arg_in_reg): Likewise. * compile/compile-c-support.c (generate_register_struct): Likewise. * gdbtypes.c (recursive_dump_type): Likewise. * gdbtypes.h (struct type) <length>: Change type to ULONGEST. * m2-typeprint.c (m2_array): Use %s/pulongest for TYPE_LENGTH instead of %d in format strings. * riscv-tdep.c (riscv_type_alignment): Cast second argument to std::min to ULONGEST. * symmisc.c (print_symbol): Use %s/pulongest for TYPE_LENGTH instead of %d in format strings. * tracepoint.c (info_scope_command): Likewise. * typeprint.c (print_offset_data::update) (print_offset_data::finish): Likewise. * xtensa-tdep.c (xtensa_store_return_value) (xtensa_push_dummy_call): Likewise.
2019-02-27gdb/riscv: Use default gdbarch methods where possibleAndrew Burgess1-30/+0
Make use of the default gdbarch methods for gdbarch_dummy_id, gdbarch_unwind_pc, and gdbarch_unwind_sp where possible. This change has been tested with no regressions. gdb/ChangeLog: * gdb/riscv-tdep.c (riscv_dummy_id): Delete. (riscv_unwind_pc): Delete. (riscv_unwind_sp): Delete. (riscv_gdbarch_init): Don't register deleted functions with gdbarch.
2019-02-13(riscv/ada) fix error when calling functions with range argumentKONRAD Frederic1-0/+1
Using the gdb.ada/call_pn.exp testcase, and running it by hand on riscv64-elf, we get the following error: (gdb) call pn(55) Could not compute alignment of type The problem occurs because the parameter's type is a TYPE_CODE_RANGE, and that type code is not handled by riscv_type_alignment. So this patch fixes the issue by handling TYPE_CODE_RANGE the same way we handle other integral types. gdb/ChangeLog: * riscv-rdep.c (riscv_type_alignment): Handle TYPE_CODE_RANGE. Tested on riscv64-elf using AdaCore's testsuite.
2019-01-25Normalize includes to use common/Tom Tromey1-1/+1
This changes all includes to use the form "common/filename.h" rather than just "filename.h". This was written by a script. gdb/ChangeLog 2019-01-25 Tom Tromey <tom@tromey.com> * xtensa-linux-nat.c: Fix common/ includes. * xml-support.h: Fix common/ includes. * xml-support.c: Fix common/ includes. * x86-linux-nat.c: Fix common/ includes. * windows-nat.c: Fix common/ includes. * varobj.h: Fix common/ includes. * varobj.c: Fix common/ includes. * value.c: Fix common/ includes. * valops.c: Fix common/ includes. * utils.c: Fix common/ includes. * unittests/xml-utils-selftests.c: Fix common/ includes. * unittests/utils-selftests.c: Fix common/ includes. * unittests/unpack-selftests.c: Fix common/ includes. * unittests/tracepoint-selftests.c: Fix common/ includes. * unittests/style-selftests.c: Fix common/ includes. * unittests/string_view-selftests.c: Fix common/ includes. * unittests/scoped_restore-selftests.c: Fix common/ includes. * unittests/scoped_mmap-selftests.c: Fix common/ includes. * unittests/scoped_fd-selftests.c: Fix common/ includes. * unittests/rsp-low-selftests.c: Fix common/ includes. * unittests/parse-connection-spec-selftests.c: Fix common/ includes. * unittests/optional-selftests.c: Fix common/ includes. * unittests/offset-type-selftests.c: Fix common/ includes. * unittests/observable-selftests.c: Fix common/ includes. * unittests/mkdir-recursive-selftests.c: Fix common/ includes. * unittests/memrange-selftests.c: Fix common/ includes. * unittests/memory-map-selftests.c: Fix common/ includes. * unittests/lookup_name_info-selftests.c: Fix common/ includes. * unittests/function-view-selftests.c: Fix common/ includes. * unittests/environ-selftests.c: Fix common/ includes. * unittests/copy_bitwise-selftests.c: Fix common/ includes. * unittests/common-utils-selftests.c: Fix common/ includes. * unittests/cli-utils-selftests.c: Fix common/ includes. * unittests/array-view-selftests.c: Fix common/ includes. * ui-file.c: Fix common/ includes. * tui/tui-io.c: Fix common/ includes. * tracepoint.h: Fix common/ includes. * tracepoint.c: Fix common/ includes. * tracefile-tfile.c: Fix common/ includes. * top.h: Fix common/ includes. * top.c: Fix common/ includes. * thread.c: Fix common/ includes. * target/waitstatus.h: Fix common/ includes. * target/waitstatus.c: Fix common/ includes. * target.h: Fix common/ includes. * target.c: Fix common/ includes. * target-memory.c: Fix common/ includes. * target-descriptions.c: Fix common/ includes. * symtab.h: Fix common/ includes. * symfile.c: Fix common/ includes. * stap-probe.c: Fix common/ includes. * spu-linux-nat.c: Fix common/ includes. * sparc-nat.c: Fix common/ includes. * source.c: Fix common/ includes. * solib.c: Fix common/ includes. * solib-target.c: Fix common/ includes. * ser-unix.c: Fix common/ includes. * ser-tcp.c: Fix common/ includes. * ser-pipe.c: Fix common/ includes. * ser-base.c: Fix common/ includes. * selftest-arch.c: Fix common/ includes. * s12z-tdep.c: Fix common/ includes. * rust-exp.y: Fix common/ includes. * rs6000-aix-tdep.c: Fix common/ includes. * riscv-tdep.c: Fix common/ includes. * remote.c: Fix common/ includes. * remote-notif.h: Fix common/ includes. * remote-fileio.h: Fix common/ includes. * remote-fileio.c: Fix common/ includes. * regcache.h: Fix common/ includes. * regcache.c: Fix common/ includes. * record-btrace.c: Fix common/ includes. * python/python.c: Fix common/ includes. * python/py-type.c: Fix common/ includes. * python/py-inferior.c: Fix common/ includes. * progspace.h: Fix common/ includes. * producer.c: Fix common/ includes. * procfs.c: Fix common/ includes. * proc-api.c: Fix common/ includes. * printcmd.c: Fix common/ includes. * ppc-linux-nat.c: Fix common/ includes. * parser-defs.h: Fix common/ includes. * osdata.c: Fix common/ includes. * obsd-nat.c: Fix common/ includes. * nat/x86-linux.c: Fix common/ includes. * nat/x86-linux-dregs.c: Fix common/ includes. * nat/x86-dregs.h: Fix common/ includes. * nat/x86-dregs.c: Fix common/ includes. * nat/ppc-linux.c: Fix common/ includes. * nat/mips-linux-watch.h: Fix common/ includes. * nat/mips-linux-watch.c: Fix common/ includes. * nat/linux-waitpid.c: Fix common/ includes. * nat/linux-ptrace.h: Fix common/ includes. * nat/linux-ptrace.c: Fix common/ includes. * nat/linux-procfs.c: Fix common/ includes. * nat/linux-personality.c: Fix common/ includes. * nat/linux-osdata.c: Fix common/ includes. * nat/linux-namespaces.c: Fix common/ includes. * nat/linux-btrace.h: Fix common/ includes. * nat/linux-btrace.c: Fix common/ includes. * nat/fork-inferior.c: Fix common/ includes. * nat/amd64-linux-siginfo.c: Fix common/ includes. * nat/aarch64-sve-linux-ptrace.c: Fix common/ includes. * nat/aarch64-linux.c: Fix common/ includes. * nat/aarch64-linux-hw-point.h: Fix common/ includes. * nat/aarch64-linux-hw-point.c: Fix common/ includes. * namespace.h: Fix common/ includes. * mips-linux-tdep.c: Fix common/ includes. * minsyms.c: Fix common/ includes. * mi/mi-parse.h: Fix common/ includes. * mi/mi-main.c: Fix common/ includes. * mi/mi-cmd-env.c: Fix common/ includes. * memrange.h: Fix common/ includes. * memattr.c: Fix common/ includes. * maint.h: Fix common/ includes. * maint.c: Fix common/ includes. * main.c: Fix common/ includes. * machoread.c: Fix common/ includes. * location.c: Fix common/ includes. * linux-thread-db.c: Fix common/ includes. * linux-nat.c: Fix common/ includes. * linux-fork.c: Fix common/ includes. * inline-frame.c: Fix common/ includes. * infrun.c: Fix common/ includes. * inflow.c: Fix common/ includes. * inferior.h: Fix common/ includes. * inferior.c: Fix common/ includes. * infcmd.c: Fix common/ includes. * inf-ptrace.c: Fix common/ includes. * inf-child.c: Fix common/ includes. * ia64-linux-nat.c: Fix common/ includes. * i387-tdep.c: Fix common/ includes. * i386-tdep.c: Fix common/ includes. * i386-linux-tdep.c: Fix common/ includes. * i386-linux-nat.c: Fix common/ includes. * i386-go32-tdep.c: Fix common/ includes. * i386-fbsd-tdep.c: Fix common/ includes. * i386-fbsd-nat.c: Fix common/ includes. * guile/scm-type.c: Fix common/ includes. * guile/guile.c: Fix common/ includes. * go32-nat.c: Fix common/ includes. * gnu-nat.c: Fix common/ includes. * gdbthread.h: Fix common/ includes. * gdbarch-selftests.c: Fix common/ includes. * gdb_usleep.c: Fix common/ includes. * gdb_select.h: Fix common/ includes. * gdb_bfd.c: Fix common/ includes. * gcore.c: Fix common/ includes. * fork-child.c: Fix common/ includes. * findvar.c: Fix common/ includes. * fbsd-nat.c: Fix common/ includes. * event-top.c: Fix common/ includes. * event-loop.c: Fix common/ includes. * dwarf2read.c: Fix common/ includes. * dwarf2loc.c: Fix common/ includes. * dwarf2-frame.c: Fix common/ includes. * dwarf-index-cache.c: Fix common/ includes. * dtrace-probe.c: Fix common/ includes. * disasm-selftests.c: Fix common/ includes. * defs.h: Fix common/ includes. * csky-tdep.c: Fix common/ includes. * cp-valprint.c: Fix common/ includes. * cp-support.h: Fix common/ includes. * cp-support.c: Fix common/ includes. * corelow.c: Fix common/ includes. * completer.h: Fix common/ includes. * completer.c: Fix common/ includes. * compile/compile.c: Fix common/ includes. * compile/compile-loc2c.c: Fix common/ includes. * compile/compile-cplus-types.c: Fix common/ includes. * compile/compile-cplus-symbols.c: Fix common/ includes. * command.h: Fix common/ includes. * cli/cli-dump.c: Fix common/ includes. * cli/cli-cmds.c: Fix common/ includes. * charset.c: Fix common/ includes. * build-id.c: Fix common/ includes. * btrace.h: Fix common/ includes. * btrace.c: Fix common/ includes. * breakpoint.h: Fix common/ includes. * breakpoint.c: Fix common/ includes. * ax.h: (enum agent_op): Fix common/ includes. * ax-general.c (struct aop_map): Fix common/ includes. * ax-gdb.c: Fix common/ includes. * auxv.c: Fix common/ includes. * auto-load.c: Fix common/ includes. * arm-tdep.c: Fix common/ includes. * arch/riscv.c: Fix common/ includes. * arch/ppc-linux-common.c: Fix common/ includes. * arch/i386.c: Fix common/ includes. * arch/arm.c: Fix common/ includes. * arch/arm-linux.c: Fix common/ includes. * arch/arm-get-next-pcs.c: Fix common/ includes. * arch/amd64.c: Fix common/ includes. * arch/aarch64.c: Fix common/ includes. * arch/aarch64-insn.c: Fix common/ includes. * arch-utils.c: Fix common/ includes. * amd64-windows-tdep.c: Fix common/ includes. * amd64-tdep.c: Fix common/ includes. * amd64-sol2-tdep.c: Fix common/ includes. * amd64-obsd-tdep.c: Fix common/ includes. * amd64-nbsd-tdep.c: Fix common/ includes. * amd64-linux-tdep.c: Fix common/ includes. * amd64-linux-nat.c: Fix common/ includes. * amd64-fbsd-tdep.c: Fix common/ includes. * amd64-fbsd-nat.c: Fix common/ includes. * amd64-dicos-tdep.c: Fix common/ includes. * amd64-darwin-tdep.c: Fix common/ includes. * agent.c: Fix common/ includes. * ada-lang.h: Fix common/ includes. * ada-lang.c: Fix common/ includes. * aarch64-tdep.c: Fix common/ includes. gdb/gdbserver/ChangeLog 2019-01-25 Tom Tromey <tom@tromey.com> * win32-low.c: Fix common/ includes. * win32-i386-low.c: Fix common/ includes. * tracepoint.c: Fix common/ includes. * thread-db.c: Fix common/ includes. * target.h: Fix common/ includes. * symbol.c: Fix common/ includes. * spu-low.c: Fix common/ includes. * server.h: Fix common/ includes. * server.c: Fix common/ includes. * remote-utils.c: Fix common/ includes. * regcache.h: Fix common/ includes. * regcache.c: Fix common/ includes. * nto-x86-low.c: Fix common/ includes. * notif.h: Fix common/ includes. * mem-break.h: Fix common/ includes. * lynx-low.c: Fix common/ includes. * lynx-i386-low.c: Fix common/ includes. * linux-x86-tdesc-selftest.c: Fix common/ includes. * linux-x86-low.c: Fix common/ includes. * linux-low.c: Fix common/ includes. * inferiors.h: Fix common/ includes. * i387-fp.c: Fix common/ includes. * hostio.c: Fix common/ includes. * hostio-errno.c: Fix common/ includes. * gdbthread.h: Fix common/ includes. * gdbreplay.c: Fix common/ includes. * fork-child.c: Fix common/ includes. * event-loop.c: Fix common/ includes. * ax.c: (enum gdb_agent_op): Fix common/ includes.
2019-01-03RISC-V: Fix wrong use of s0 register name.Jim Wilson1-1/+1
s0 is listed as both an int register name and an FP register name. The FP reg name is wrong. This looks like a simple editting error, and has an easy fix. Tested with riscv64-linux build and check, with no regressions. gdb/ * riscv-tdep.c (riscv_freg_feature): Drop s0 name from f8.
2019-01-01gdb/riscv: Split ISA and ABI featuresAndrew Burgess1-37/+44
The goal of this commit is to allow RV64 binaries compiled for the 'F' extension to run on a target that supports both the 'F' and 'D' extensions. The 'D' extension depends on the 'F' extension and chapter 9 of the RISC-V ISA manual implies that running a program compiled for 'F' on a 'D' target should be fine. To support this the gdbarch now holds two feature sets, one represents the features that are present on the target, and one represents the features requested in the ELF flags. The existing error checks are relaxed slightly to allow binaries compiled for 32-bit 'F' extension to run on targets with the 64-bit 'D' extension. A new set of functions called riscv_abi_{xlen,flen} are added to compliment the existing riscv_isa_{xlen,flen}, and some callers to the isa functions now call the abi functions when that is appropriate. In riscv_call_arg_struct two asserts are removed, these asserts no longer make sense. The asserts were both like this: gdb_assert (TYPE_LENGTH (ainfo->type) <= (cinfo->flen + cinfo->xlen)); And were made in two cases, when passing structures like these: struct { integer field1; float field2; }; or, struct { float field1; integer field2; }; When running on an RV64 target which only has 32-bit float then the integer field could be 64-bits, while if the float field is 32-bits the overall size of the structure can be 128-bits (with 32-bits of padding). In this case the assertion would fail, however, the code isn't incorrect, so its safe to just remove the assertion. This was tested by running on an RV64IMFDC target using a compiler configured for RV64IMFC, and comparing the results with those obtained when using a compiler configured for RV64IMFDC. The only regressions I see (now) are in gdb.base/store.exp and are related too different code generation choices GCC makes between the two targets. Finally, this commit does not make any attempt to support running binaries compiled for RV32 on an RV64 target, though nothing in here should prevent that being supported in the future. gdb/ChangeLog: * arch/riscv.h (struct riscv_gdbarch_features) <hw_float_abi>: Delete. <operator==>: Update with for removed field. <hash>: Likewise. * riscv-tdep.h (struct gdbarch_tdep) <features>: Renamed to... <isa_features>: ...this. <abi_features>: New field. (riscv_isa_flen): Update comment. (riscv_abi_xlen): New declaration. (riscv_abi_flen): New declaration. * riscv-tdep.c (riscv_isa_xlen): Update to get answer from isa_features. (riscv_abi_xlen): New function. (riscv_isa_flen): Update to get answer from isa_features. (riscv_abi_flen): New function. (riscv_has_fp_abi): Update to get answer from abi_features. (riscv_call_info::riscv_call_info): Use abi xlen and flen, not isa xlen and flen. (riscv_call_info) <xlen, flen>: Update comment. (riscv_call_arg_struct): Remove invalid assertions (riscv_features_from_gdbarch_info): Update now hw_float_abi field is removed. (riscv_gdbarch_init): Gather isa features and abi features separately, ensure both match on the gdbarch when reusing an old gdbarch. Relax an error check to allow 32-bit abi float to run on a target with 64-bit float hardware.
2019-01-01Update copyright year range in all GDB files.Joel Brobecker1-1/+1
This commit applies all changes made after running the gdb/copyright.py script. Note that one file was flagged by the script, due to an invalid copyright header (gdb/unittests/basic_string_view/element_access/char/empty.cc). As the file was copied from GCC's libstdc++-v3 testsuite, this commit leaves this file untouched for the time being; a patch to fix the header was sent to gcc-patches first. gdb/ChangeLog: Update copyright year range in all GDB files.
2018-12-22gdb/riscv: Prevent buffer overflow in riscv_return_valueAndrew Burgess1-6/+59
The existing code for reading and writing the return value can overflow the passed in buffers in a couple of situations. This commit aims to resolve these issues. The problems were detected using valgrind, here are two examples, first from gdb.base/structs.exp: (gdb) p/x fun9() ==31353== Invalid write of size 8 ==31353== at 0x4C34153: memmove (vg_replace_strmem.c:1270) ==31353== by 0x632EBB: memcpy (string_fortified.h:34) ==31353== by 0x632EBB: readable_regcache::raw_read(int, unsigned char*) (regcache.c:538) ==31353== by 0x659D3F: riscv_return_value(gdbarch*, value*, type*, regcache*, unsigned char*, unsigned char const*) (riscv-tdep.c:2593) ==31353== by 0x583641: get_call_return_value (infcall.c:448) ==31353== by 0x583641: call_thread_fsm_should_stop(thread_fsm*, thread_info*) (infcall.c:546) ==31353== by 0x59BBEC: fetch_inferior_event(void*) (infrun.c:3883) ==31353== by 0x53890B: check_async_event_handlers (event-loop.c:1064) ==31353== by 0x53890B: gdb_do_one_event() [clone .part.4] (event-loop.c:326) ==31353== by 0x6CA34B: wait_sync_command_done() (top.c:503) ==31353== by 0x584653: run_inferior_call (infcall.c:621) ... And from gdb.base/call-sc.exp: (gdb) advance fun fun () at /gdb/gdb/testsuite/gdb.base/call-sc.c:41 41 return foo; (gdb) finish ==1968== Invalid write of size 8 ==1968== at 0x4C34153: memmove (vg_replace_strmem.c:1270) ==1968== by 0x632EBB: memcpy (string_fortified.h:34) ==1968== by 0x632EBB: readable_regcache::raw_read(int, unsigned char*) (regcache.c:538) ==1968== by 0x659D01: riscv_return_value(gdbarch*, value*, type*, regcache*, unsigned char*, unsigned char const*) (riscv-tdep.c:2576) ==1968== by 0x5891E4: get_return_value(value*, type*) (infcmd.c:1640) ==1968== by 0x5892C4: finish_command_fsm_should_stop(thread_fsm*, thread_info*) (infcmd.c:1808) ==1968== by 0x59BBEC: fetch_inferior_event(void*) (infrun.c:3883) ==1968== by 0x53890B: check_async_event_handlers (event-loop.c:1064) ==1968== by 0x53890B: gdb_do_one_event() [clone .part.4] (event-loop.c:326) ==1968== by 0x6CA34B: wait_sync_command_done() (top.c:503) ... There are a couple of problems with the existing code, that are all related. In riscv_call_arg_struct we incorrectly rounded up the size of a structure argument. This is unnecessary, and caused GDB to read too much data into the output buffer when extracting a struct return value. In fixing this it became clear that we were incorrectly assuming that any value being placed in a register (or read from a register) would always access the entire register. This is not true, for example a 9-byte struct on a 64-bit target places 8-bytes in one registers and 1-byte in a second register (assuming available registers). To handle this I switch from using cooked_read to cooked_read_part. Finally, when processing basic integer return value types these are extended to xlen sized types and then passed in registers. We currently don't handle this type expansion in riscv_return_value, but we do in riscv_push_dummy_call. The result is that small integer types (like char) result in a full xlen sized register being written into the output buffer, which results in buffer overflow. To address this issue we now create a value of the expanded type and use this values contents buffer to hold the return value before casting the value down to the smaller expected type. This patch resolves all of the valgrind issues I have found so far, and causes no regressions. Tested against RV32/64 with and without floating point support. gdb/ChangeLog: * riscv-tdep.c (riscv_call_arg_struct): Don't adjust size before assigning locations. (riscv_return_value): Take more care not to read/write outside of argument buffer. Cast return value between the declared type and the abi type.
2018-12-22gdb/riscv: Add float status registers to save and restore reggroupsAndrew Burgess1-1/+4
We should save and restore the floating point status registers. This became an issue when testing 32-bit float on a target with 64-bit with the gdb.base/callfuncs.exp test. gdb/ChangeLog: * riscv-tdep.c (riscv_register_reggroup_p): Save and restore fcsr, fflags, and frm registers.
2018-12-22gdb/riscv: Add gdb to dwarf register number mappingAndrew Burgess1-0/+17
Provide a mapping between GDB's register numbers and DWARF's register numbers. This resolves some failures that I was seeing on gdb.base/store.exp when running on an rv64imfdc target. gdb/ChangeLog: * riscv-tdep.c (riscv_dwarf_reg_to_regnum): New function. (riscv_gdbarch_init): Register new function with gdbarch. * riscv-tdep.h: New enum to define RISC-V DWARF register numbers.
2018-12-21gdb/riscv: Format CORE_ADDR as a string for printingAndrew Burgess1-4/+10
Avoid compiler errors caused by trying to print CORE_ADDR using '%ld' format, instead convert to a string and print that instead. gdb/ChangeLog: * riscv-tdep.c (riscv_scan_prologue): Use plongest to format a signed offset as a string.
2018-12-13RISC-V: Correct printing of MSTATUS and MISA.Jim Wilson1-2/+8
* riscv-tdep.c (riscv_print_one_register_info): For MSTATUS, add comment for SD field, and correct xlen calculation. For MISA, add comment for MXL field, add call to register_size, and correct base calculation.
2018-12-12gdb/riscv: Handle passing variadic floating point argumentsAndrew Burgess1-2/+3
This commit fixes some test failures in gdb.base/varargs.exp when running on targets with floating point hardware. Floating point unnamed (variadic) arguments should be passed in integer registers according to the abi. After this commit I see no failures in gdb.base/varargs.exp on 32 or 64 bit targets with floating point hardware. gdb/ChangeLog: * riscv-tdep.c (riscv_call_arg_scalar_float): Unnamed (variadic) arguments are passed in integer registers. (riscv_call_arg_complex_float): Likewise.
2018-12-10gdb/riscv: Remove whitespace before #include lineAndrew Burgess1-1/+1
This fixes an ARI warning in riscv-tdep.c that whitespace before a gdb/ChangeLog: * riscv-tdep.c (riscv_register_name): Fix ARI warning by removing leading whitespace before #include line.
2018-12-05gdb/riscv: Improve logic for when h/w float abi should be usedAndrew Burgess1-12/+49
Currently, if the target announces that it has floating point registers in its target description then GDB assumes that the hardware float ABI should be used. However, there's nothing stopping a user compiling a program for the soft-float abi, and then trying to run this on a target with hardware floating point registers. This commit adjusts the logic that decides if GDB should use the hardware float abi. The primary decision now is based on what the ELF currently being executed says in its headers. If the file was compiled for h/w float abi, then GDB uses h/w float abi, otherwise s/w float is used. If the current BFD is not an ELF then we don't currently have a mechanism for figuring out if the file was compiled for float or not. In this case we disable the h/w float abi. This shouldn't be a problem as, right now, the RISC-V linker can only produce ELFs. If there is NO current BFD (can this happen?) then we will enable h/w float abi if the target has floating point hardware, otherwise, s/w float abi is used. This commit also adds some sanity checking that the features requested in the BFD (xlen and flen) match the target description. For testing I ran the testsuite on a target that returns a target description containing both integer and floating point registers, but used a compiler that didn't have floating point support. Before this commit I would see failures on may tests that made inferior calls using floating point arguments, after this commit, all of these issues are resolved. One example from the testsuite is gdb.base/infcall-nested-structs.exp. gdb/ChangeLog: * riscv-tdep.c (riscv_features_from_gdbarch_info): New function. (riscv_find_default_target_description): Use new function to extract feature from gdbarch_info. (riscv_gdbarch_init): Add error checks for xlen and flen between target description and bfd headers. Be smarter about when we think the hardware floating point abi should be used.
2018-11-30gdb/riscv: Add equality operators to riscv_gdb_featuresAndrew Burgess1-3/+1
Add '==' and '!=' operators for the struct riscv_gdb_features, allowing a small simplification. gdb/ChangeLog: * arch/riscv.h (riscv_gdb_features::operator==): New. (riscv_gdb_features::operator!=): New. * riscv-tdep.c (riscv_gdbarch_init): Make use of the inequality operator.
2018-11-30gdb/riscv: Make some target description functions constantAndrew Burgess1-1/+1
Makes more of the interface related to fetching target descriptions constant. gdb/ChangeLog: * arch/riscv.h (riscv_create_target_description): Make return type const. * arch/riscv.c (riscv_create_target_description): Likewise. * riscv-tdep.c (riscv_find_default_target_description): Likewise.
2018-11-21gdb/riscv: Add target description supportAndrew Burgess1-351/+537
This commit adds target description support for riscv. I've used the split feature approach for specifying the architectural features, and the CSR feature is auto-generated from the riscv-opc.h header file. If the target doesn't provide a suitable target description then GDB will build one by looking at the bfd headers. This commit does not implement target description creation for the Linux or FreeBSD native targets, both of these will need to add read_description methods into their respective target classes, which probe the target features, and then call riscv_create_target_description to build a suitable target description. Until this is done Linux and FreeBSD will get the same default target description based on the bfd that bare-metal targets get. I've only added feature descriptions for 32 and 64 bit registers, 128 bit registers (for RISC-V) are not supported in the reset of GDB yet. This commit removes the special reading of the MISA register in order to establish the target features, this was only used for figuring out the f-register size, and even that wasn't done consistently. We now rely on the target to tell us what size of registers it has (or look in the BFD as a last resort). The result of this is that we should now support RV64 targets with 32-bit float, though I have not extensively tested this combination yet. * Makefile.in (ALL_TARGET_OBS): Add arch/riscv.o. (HFILES_NO_SRCDIR): Add arch/riscv.h. * arch/riscv.c: New file. * arch/riscv.h: New file. * configure.tgt: Add cpu_obs list of riscv, move riscv-tdep.o into this list, and add arch/riscv.o. * features/Makefile: Add riscv features. * features/riscv/32bit-cpu.c: New file. * features/riscv/32bit-cpu.xml: New file. * features/riscv/32bit-csr.c: New file. * features/riscv/32bit-csr.xml: New file. * features/riscv/32bit-fpu.c: New file. * features/riscv/32bit-fpu.xml: New file. * features/riscv/64bit-cpu.c: New file. * features/riscv/64bit-cpu.xml: New file. * features/riscv/64bit-csr.c: New file. * features/riscv/64bit-csr.xml: New file. * features/riscv/64bit-fpu.c: New file. * features/riscv/64bit-fpu.xml: New file. * features/riscv/rebuild-csr-xml.sh: New file. * riscv-tdep.c: Add 'arch/riscv.h' include. (riscv_gdb_reg_names): Delete. (csr_reggroup): New global. (struct riscv_register_alias): Delete. (struct riscv_register_feature): New structure. (riscv_register_aliases): Delete. (riscv_xreg_feature): New global. (riscv_freg_feature): New global. (riscv_virtual_feature): New global. (riscv_csr_feature): New global. (riscv_create_csr_aliases): New function. (riscv_read_misa_reg): Delete. (riscv_has_feature): Delete. (riscv_isa_xlen): Simplify, just return cached xlen. (riscv_isa_flen): Simplify, just return cached flen. (riscv_has_fp_abi): Update for changes in struct gdbarch_tdep. (riscv_register_name): Update to make use of tdesc_register_name. Look up xreg and freg names in the new globals riscv_xreg_feature and riscv_freg_feature. Don't supply csr aliases here. (riscv_fpreg_q_type): Delete. (riscv_register_type): Use tdesc_register_type in almost all cases, override the returned type in a few specific cases only. (riscv_print_one_register_info): Handle errors reading registers. (riscv_register_reggroup_p): Use tdesc_register_in_reggroup_p for registers that are otherwise unknown to GDB. Also check the csr_reggroup. (riscv_print_registers_info): Remove assert about upper register number, and use gdbarch_register_reggroup_p instead of short-cutting. (riscv_find_default_target_description): New function. (riscv_check_tdesc_feature): New function. (riscv_add_reggroups): New function. (riscv_setup_register_aliases): New function. (riscv_init_reggroups): New function. (_initialize_riscv_tdep): Add calls to setup CSR aliases, and setup register groups. Register new riscv debug variable. * riscv-tdep.h: Add 'arch/riscv.h' include. (struct gdbarch_tdep): Remove abi union, and add riscv_gdbarch_features field. Remove cached quad floating point type, and provide initialisation for double type field. * target-descriptions.c (maint_print_c_tdesc_cmd): Add riscv to the list of targets using the feature based target descriptions. * NEWS: Mention target description support. gdb/doc/ChangeLog: * gdb.texinfo (Standard Target Features): Add RISC-V Features sub-section.
2018-11-16Pass return_method to _push_dummy_callAlan Hayward1-4/+4
gdb/ChangeLog: * aarch64-tdep.c (aarch64_push_dummy_call): Replace arg with return_method. * alpha-tdep.c (alpha_push_dummy_call): Likewise. * amd64-tdep.c (amd64_push_arguments): Likewise. (amd64_push_dummy_call): Likewise. * amd64-windows-tdep.c (amd64_windows_push_arguments): Likewise. * arc-tdep.c (arc_push_dummy_call): Likewise. * arm-tdep.c (arm_push_dummy_call): Likewise. * avr-tdep.c (avr_push_dummy_call): Likewise. * bfin-tdep.c (bfin_push_dummy_call): Likewise. * cris-tdep.c (cris_push_dummy_call): Likewise. * csky-tdep.c (csky_push_dummy_call): Likewise. * frv-tdep.c (frv_push_dummy_call): Likewise. * gdbarch.c: Regenerate. * gdbarch.h: Regenerate. * gdbarch.sh (gdbarch_push_dummy_call): Replace arg with return_method. * h8300-tdep.c (h8300_push_dummy_call): Likewise. * hppa-tdep.c (hppa32_push_dummy_call): Likewise. (hppa64_push_dummy_call): Likewise. * i386-darwin-tdep.c (i386_darwin_push_dummy_call): Likewise. * i386-tdep.c (i386_push_dummy_call): Likewise. * ia64-tdep.c (ia64_push_dummy_call): Likewise. * infcall.c (call_function_by_hand_dummy): Likewise. * iq2000-tdep.c (iq2000_push_dummy_call): Likewise. * lm32-tdep.c (lm32_push_dummy_call): Likewise. * m32c-tdep.c (m32c_push_dummy_call): Likewise. * m32r-tdep.c (m32r_push_dummy_call): Likewise. * m68hc11-tdep.c (m68hc11_push_dummy_call): Likewise. * m68k-tdep.c (m68k_push_dummy_call): Likewise. * mep-tdep.c (mep_push_dummy_call): Likewise. * mips-tdep.c (mips_eabi_push_dummy_call): Likewise. (mips_n32n64_push_dummy_call): Likewise. (mips_o32_push_dummy_call): Likewise. (mips_o64_push_dummy_call): Likewise. * mn10300-tdep.c (mn10300_push_dummy_call): Likewise. * msp430-tdep.c (msp430_push_dummy_call): Likewise. * nds32-tdep.c (nds32_push_dummy_call): Likewise. * nios2-tdep.c (nios2_push_dummy_call): Likewise. * or1k-tdep.c (or1k_push_dummy_call): Likewise. * ppc-sysv-tdep.c (ppc_sysv_abi_push_dummy_call): Likewise. (ppc64_sysv_abi_push_dummy_call): Likewise. * ppc-tdep.h (ppc_sysv_abi_push_dummy_call): Likewise. (ppc64_sysv_abi_push_dummy_call): Likewise. * riscv-tdep.c (riscv_push_dummy_call): Likewise. * rl78-tdep.c (rl78_push_dummy_call): Likewise. * rs6000-aix-tdep.c (rs6000_push_dummy_call): Likewise. * rs6000-lynx178-tdep.c (rs6000_lynx178_push_dummy_call): Likewise. * rx-tdep.c (rx_push_dummy_call): Likewise. * s390-tdep.c (s390_push_dummy_call): Likewise. * score-tdep.c (score_push_dummy_call): Likewise. * sh-tdep.c (sh_push_dummy_call_fpu): Likewise. (sh_push_dummy_call_nofpu): Likewise. * sparc-tdep.c (sparc32_store_arguments): Likewise. (sparc32_push_dummy_call): Likewise. * sparc64-tdep.c (sparc64_store_arguments): Likewise. (sparc64_push_dummy_call): Likewise. * spu-tdep.c (spu_push_dummy_call): Likewise. * tic6x-tdep.c (tic6x_push_dummy_call): Likewise. * tilegx-tdep.c (tilegx_push_dummy_call): Likewise. * v850-tdep.c (v850_push_dummy_call): Likewise. * vax-tdep.c (vax_push_dummy_call): Likewise. * xstormy16-tdep.c (xstormy16_push_dummy_call): Likewise. * xtensa-tdep.c (xtensa_push_dummy_call): Likewise.
2018-11-14RISC-V: Fix unnamed arg alignment in registers.Jim Wilson1-4/+22
For riscv64-linux target, second half of fix for FAIL: gdb.base/gnu_vector.exp: call add_various_floatvecs Unnamed arguments with 2*XLEN alignment are passed in aligned register pairs. gdb/ * riscv-tdep.c (struct riscv_arg_info): New field is_unnamed. (riscv_call_arg_scalar_int): If unnamed arg with twice xlen alignment, then increment next_regnum if odd. (riscv_arg_location): New arg is_unnamed. Set ainfo->is_unnamed. (riscv_push_dummy_call): New local ftype. Call check_typedef to set function type. Pass new arg to riscv_arg_location based on function type. (riscv_return_value): Pass new arg to riscv_arg_location.
2018-11-14RISC-V: Handle vector type alignment.Jim Wilson1-0/+7
For riscv64-linux target, first half of fix for FAIL: gdb.base/gnu_vector.exp: call add_various_floatvecs GCC gives vectors natural aligment based on total size, not element size, bounded by the maximum supported type alignment. gdb/ * riscv-tdep.c (BIGGEST_ALIGNMENT): New. (riscv_type_alignment) <TYPE_CODE_ARRAY>: If TYPE_VECTOR, return min of TYPE_LENGTH and BIGGEST_ALIGNMENT.
2018-11-14RISC-V: Give stack slots same align as XLEN.Jim Wilson1-2/+3
For riscv64-linux target, fixes FAIL: gdb.base/gnu_vector.exp: call add_many_charvecs Ensure that stack slots are always the same alignment as XLEN by rounding up arg align to xlen. gdb/ * riscv-tdep.c (riscv_call_arg_scalar_int): Use std::min when setting len. New local align, set to max of arg align and xlen, and pass to first riscv_assign_stack_location call.
2018-11-08gdb/riscv: Handle errors while setting the frame idAndrew Burgess1-3/+14
When we connect to a remote target one of the first things GDB does is establish a frame id. If an error is thrown while building this frame id then GDB will disconnect from the target. This can mean that, if the user is attempting to connect to a target that doesn't yet have a program loaded, or the program the user is going to load onto the target doesn't match what is already loaded, or the target is just in some undefined state, then the very first request for a frame id can fail (for example, by trying to load from an invalid memory address), and GDB will disconnect. It is then impossible for the user to connect to the target and load a new program at all. An example of such a session might look like this: Reading symbols from ./gdb/testsuite/outputs/gdb.arch/riscv-reg-aliases/riscv-reg-aliases... (gdb) target remote :37191 Remote debugging using :37191 0x0000000000000100 in ?? () Cannot access memory at address 0x0 (gdb) load You can't do that when your target is `exec' (gdb) info frame /path/to/gdb/gdb/thread.c:93: internal-error: thread_info* inferior_thread(): Assertion `tp' failed. A problem internal to GDB has been detected, further debugging may prove unreliable. Quit this debugging session? (y or n) The solution is to handle errors in riscv_frame_this_id, and leave the this_id variable with its default value, which is the predefined 'outermost' frame. With this fix in place, connecting to the same target now looks like this: (gdb) target remote :37191 Remote debugging using :37191 0x0000000000000100 in ?? () (gdb) info frame Stack level 0, frame at 0x0: pc = 0x100; saved pc = <not saved> Outermost frame: outermost Arglist at unknown address. Locals at unknown address, Previous frame's sp in sp gdb/ChangeLog: * riscv-tdep.c (riscv_insn::decode): Update header comment. (riscv_frame_this_id): Catch errors thrown while building the frame cache, leave the frame id as the default, which is the outer frame id.
2018-11-01RISC-V: Don't allow unaligned breakpoints.Jim Wilson1-8/+24
Some hardware doesn't support unaligned accesses, and a bare metal target may not have an unaligned access trap handler. So if the PC is 2-byte aligned, then use a 2-byte breakpoint to avoid unaligned accesses. Tested on native RV64GC Linux with gdb testsuite and cross on spike simulator and openocd with riscv-tests/debug. gdb/ * riscv-tdep.c (riscv_breakpoint_kind_from_pc): New local unaligned_p. Set if pcptr if unaligned. Return 2 if unaligned_p true. Update debugging messages.
2018-10-26RISC-V: Linux signal frame support.Jim Wilson1-8/+3
Make riscv_isa_flen available to the linux native code, and clean up duplicate comments. gdb/ * riscv-tdep.c (riscv_isa_xlen): Refer to riscv-tdep.h comment. (riscv_isa_flen): Likewise. Drop static. * riscv-tdep.h (riscv_isa_xlen): Move riscv-tdep.c comment to here. (riscv_isa_flen): Likewise.
2018-10-26gdb/riscv: Remove redundant code, and catch more errors when accessing MISAAndrew Burgess1-22/+29
When reading the MISA register, the RISC-V specification says that, if MISA can't be found then a default value of 0 should be assumed. As such, this patch ensures that GDB ignores errors when accessing both the new and old locations for the MISA register. Additionally, this patch removes an unneeded flag parameter which didn't provide any additional functionality beyond checking the MISA for the default value of 0. gdb/ChangeLog: * riscv-tdep.c (riscv_read_misa_reg): Update comment, remove READ_P parameter, catch and ignore register access errors from either the old or new MISA location. (riscv_has_feature): Update call to riscv_read_misa_reg.
2018-10-23gdb/riscv: Give user-friendly names for CSRsAndrew Burgess1-4/+15
The recent commit: commit 0dbfcfffe9abbc5198bce95eb8c66b6bc9b364be Date: Tue Oct 16 22:40:09 2018 +0100 gdb/riscv: Fix register access for register aliases broke the CSR names for RISC-V, now all of the CSRs have names like, csr0, csr1, csr2, etc. This commit restores the previous user-friendly names. gdb/ChangeLog: * riscv-tdep.c (riscv_register_name): Use the user-friendly names for CSRs.
2018-10-23gdb/riscv: expect h/w watchpoints to trigger before the memory is writtenJoel Brobecker1-0/+1
When using QEMU as a RISCV simulator, hardware watchpoint events are reported to GDB before the target memory gets written. GDB currently expects the event to be reported after it is written. As a result of this mismatch, upon receiving the event, GDB sees that the target memory region has not changed, and therefore decides to ignore the event. It therefore resumes the program's execution with a continue, which is the start of an infinite loop between QEMU repeatedly reporting the same watchpoint event over and over, and GDB repeatedly ignoring it. This patch fixes the issue by telling GDB to expect the watchpoint event to be reported ahead of the memory region being modified. Upon receiving the event, GDB then single-steps the program before checking the watched memory value. gdb/ChangeLog: * riscv-tdep.c (riscv_gdbarch_init): Set the gdbarch's have_nonsteppable_watchpoint attribute to 1.
2018-10-23gdb/riscv: Fix register access for register aliasesAndrew Burgess1-105/+116
Some confusion over how the register names and aliases are setup in riscv means that we currently can't access registers through their architectural name. This commit fixes this issue, and moves some of the csr register handling out of the alias handling code and deals with it separately. This has the benefit that we can now directly access some arrays rather than having to iterate over them. A new test is added to ensure that register aliases now work correctly. gdb/ChangeLog: * riscv-tdep.c (riscv_gdb_reg_names): Update comment, and all register names. (struct register_alias): Rename to... (struct riscv_register_alias): ...this, and update comment. (riscv_register_aliases): Update type, and alias names. Remove CSR names from this list. (riscv_register_name): Use riscv_gdb_reg_names for int and float register names. Add an extra assertion. (riscv_is_regnum_a_named_csr): New function. (riscv_register_reggroup_p): Use riscv_is_regnum_a_named_csr. gdb/testsuite/ChangeLog: * gdb.arch/riscv-reg-aliases.c: New file. * gdb.arch/riscv-reg-aliases.exp: New file.
2018-10-22RISC-V: NaN-box FP values smaller than an FP register.Jim Wilson1-2/+12
The hardware requires that values in FP registers be NaN-boxed, so we must extend them with 1's instead of 0's as we do for integer values. gdb/ * riscv-tdep.c (riscv_push_dummy_call) <in_reg>: Check for value in FP reg smaller than FP reg size, and fill with -1 instead of 0.
2018-10-22RISC-V: Print FP regs as union of float types.Jim Wilson1-3/+82
A 64-bit FP register can hold either a single or double float value, so print it as both types by using a union type for FP registers. Likewise for 128-bit regs which can also hold long double. gdb/ * riscv-tdep.c (riscv_fpreg_d_type, riscv_fpreg_q_type): New. (riscv_register_type): Use them. (riscv_print_one_register_info): Handle union of floats same as float. * riscv-tdep.h (struct gdbarch_tdep): Add riscv_fpreg_d_type and riscv_fpreg_q_type fields.
2018-10-04Simple -Wshadow=local fixesTom Tromey1-4/+2
This fixes all the straightforward -Wshadow=local warnings in gdb. A few standard approaches are used here: * Renaming an inner (or outer, but more commonly inner) variable; * Lowering a declaration to avoid a clash; * Moving a declaration into a more inner scope to avoid a clash, including the special case of moving a declaration into a loop header. I did not consider any of the changes in this patch to be particularly noteworthy, though of course they should all still be examined. gdb/ChangeLog 2018-10-04 Tom Tromey <tom@tromey.com> * ctf.c (SET_ARRAY_FIELD): Rename "u32". * p-valprint.c (pascal_val_print): Split inner "i" variable. * xtensa-tdep.c (xtensa_push_dummy_call): Declare "i" in loop header. * xstormy16-tdep.c (xstormy16_push_dummy_call): Declare "val" in more inner scope. * xcoffread.c (read_xcoff_symtab): Rename inner "symbol". * varobj.c (varobj_update): Rename inner "newobj", "type_changed". * valprint.c (generic_emit_char): Rename inner "buf". * valops.c (find_overload_match): Rename inner "temp". (value_struct_elt_for_reference): Declare "v" in more inner scope. * v850-tdep.c (v850_push_dummy_call): Rename "len". * unittests/array-view-selftests.c (run_tests): Rename inner "vec". * tui/tui-stack.c (tui_show_frame_info): Declare "i" in loop header. * tracepoint.c (merge_uploaded_trace_state_variables): Declare "tsv" in more inner scope. (print_one_static_tracepoint_marker): Rename inner "tuple_emitter". * tic6x-tdep.c (tic6x_analyze_prologue): Declare "inst" lower. (tic6x_push_dummy_call): Don't redeclare "addr". * target-float.c: Declare "dto" lower. * symtab.c (lookup_local_symbol): Rename inner "sym". (find_pc_sect_line): Rename inner "pc". * stack.c (print_frame): Don't redeclare "gdbarch". (return_command): Rename inner "gdbarch". * s390-tdep.c (s390_prologue_frame_unwind_cache): Renam inner "sp". * rust-lang.c (rust_internal_print_type): Declare "i" in loop header. * rs6000-tdep.c (ppc_process_record): Rename inner "addr". * riscv-tdep.c (riscv_push_dummy_call): Declare "info" in inner scope. * remote.c (remote_target::update_thread_list): Don't redeclare "tp". (remote_target::process_initial_stop_replies): Rename inner "thread". (remote_target::remote_parse_stop_reply): Don't redeclare "p". (remote_target::wait_as): Don't redeclare "stop_reply". (remote_target::get_thread_local_address): Rename inner "result". (remote_target::get_tib_address): Likewise.
2018-09-28Use the existing instruction to determine the RISC-V breakpoint kind.John Baldwin1-17/+32
RISC-V supports instructions of varying lengths. Standard existing instructions in the base ISA are 4 bytes in length, but the 'C' extension adds support for compressed, 2 byte instructions. RISC-V supports two different breakpoint instructions: EBREAK is a 4 byte instruction in the base ISA, and C.EBREAK is a 2 byte instruction only available on processors implementing the 'C' extension. Using EBREAK to set breakpoints on compressed instructions causes problems as the second half of EBREAK will overwrite the first 2 bytes of the following instruction breaking other threads in the process if their PC is the following instruction. Thus, breakpoints on compressed instructions need to use C.EBREAK instead of EBREAK. Previously, the riscv architecture checked the MISA register to determine if the 'C' extension was available. If so, it used C.EBREAK for all breakpoints. However, the MISA register is not necessarily available to supervisor mode operating systems. While native targets could provide a fake MISA register value, this patch instead examines the existing instruction at a breakpoint target to determine which breakpoint instruction to use. If the existing instruction is a compressed instruction, C.EBREAK is used, otherwise EBREAK is used. gdb/ChangeLog: * disasm-selftests.c (print_one_insn_test): Add bfd_arch_riscv to case with explicit breakpoint kind. * riscv-tdep.c (show_use_compressed_breakpoints): Remove 'additional_info' and related logic. (riscv_debug_breakpoints): New variable. (riscv_breakpoint_kind_from_pc): Use the length of the existing instruction to determine the breakpoint kind. (_initialize_riscv_tdep): Add 'set/show debug riscv breakpoints' flag. Update description of 'set/show riscv use-compressed-breakpoints' flag.
2018-09-26gdb/riscv: Improve non-dwarf stack unwindingAndrew Burgess1-21/+38
This commit improves the prologue scanning stack unwinder, to better support AUIPC, LUI, and more variants of ADD and ADDI. This allows unwinding over frames containing large local variables, where the frame size does not fit into a single instruction immediate, and is first loaded into a temporary register, before being added to the stack pointer. A new test is added that tests this behaviour. As there's nothing truely RiscV specific about this test I've added it into gdb.base, but as this depends on target specific code to perform the unwind it is possible that some targets might fail this new test. gdb/ChangeLog: * riscv-tdep.c (riscv_insn::decode): Decode c.lui. (riscv_scan_prologue): Split handling of AUIPC, LUI, ADD, ADDI, and NOP. gdb/testsuite/ChangeLog: * gdb.base/large-frame-1.c: New file. * gdb.base/large-frame-2.c: New file. * gdb.base/large-frame.exp: New file. * gdb.base/large-frame.h: New file.
2018-09-04gdb/riscv: Fix an ARI warningAndrew Burgess1-2/+2
This patch fixes an ARI violation in riscv-tdep.c (line ends with '+'). gdb/ChangeLog: * riscv-tdep.c (riscv_frame_cache): Fix ARI warning, don't end a line with '+'.
2018-09-03gdb/riscv: Provide non-DWARF stack unwinderAndrew Burgess1-47/+180
Collects information during the prologue scan and uses this to unwind registers when no DWARF information is available. This patch has been tested by disabling the DWARF stack unwinders, and running the complete GDB testsuite against a range of RISC-V targets. The results are comparable to running with the DWARF unwinders in place. gdb/ChangeLog: * riscv-tdep.c: Add 'prologue-value.h' include. (struct riscv_unwind_cache): New struct. (riscv_debug_unwinder): New global. (riscv_scan_prologue): Update arguments, capture register details from prologue scan. (riscv_skip_prologue): Reformat arguments line, move end of prologue calculation into riscv_scan_prologue. (riscv_frame_cache): Update return type, create riscv_unwind_cache, scan the prologue, and fill in remaining cache details. (riscv_frame_this_id): Use frame id computed in riscv_frame_cache. (riscv_frame_prev_register): Use the trad_frame within the riscv_unwind_cache. (_initialize_riscv_tdep): Add 'set/show debug riscv unwinder' flag.
2018-08-30gdb/riscv: Extend instruction decode to cover more instructionsAndrew Burgess1-2/+38
Extends the instruction decoder used during prologue scan and software single step to cover more instructions. These instructions are encountered when running the current GDB testsuite with the DWARF stack unwinders turned off. gdb/ChangeLog: * riscv-tdep.c (riscv_insn::decode): Decode c.addi4spn, c.sd, c.sw, c.swsp, and c.sdsp.
2018-08-30gdb/riscv: remove extra caching of misa registerAndrew Burgess1-101/+5
The RISC-V had a mechanism in place to cache the contents of the misa register per-inferior, the original intention behind this was to reduce the number of times the misa register had to be read (as the contents should be constant), but it was pointed out on the mailing list[1] that the register cache will mean the register is only accessed once each time GDB stops, and any additional caching is probably just unneeded extra complexity. As such, until it can be shown that there's a real need for additional caching, this commit removes all of the additional caching of the misa register, and just accesses the misa register like a normal register. [1] https://sourceware.org/ml/gdb-patches/2018-03/msg00136.html gdb/ChangeLog: * riscv-tdep.c (struct riscv_inferior_data): Delete. (riscv_read_misa_reg): Don't cache value read into inferior data. (riscv_new_inferior_data): Delete. (riscv_inferior_data_cleanup): Delete. (riscv_inferior_data): Delete. (riscv_invalidate_inferior_data): Delete. (_initialize_riscv_tdep): Remove initialisation of inferior data.
2018-08-08RISC-V: Add software single step support.Jim Wilson1-6/+244
This adds software single step support that is needed by the linux native port. This is modeled after equivalent code in the MIPS port. This also fixes a few bugs in the compressed instruction decode support. Some instructions are RV32/RV64 specific, and this wasn't being checked. Also, a few instructions were accidentally using the non-compressed is_* function. This has been tested on a HiFive Unleashed running Fedora, by putting a breakpoint on start, typing stepi, and then holding down the return key until it finishes, and observing that I see everything I expect to see along the way. There is a problem in _dl_addr where I get into an infinite loop, but it seems to be some synchronization code that doesn't agree with single step, so I have to find the end of the loop, put a breakpoint there, continue, and then single step again until the end. gdb/ * riscv-tdep.c (enum opcode): Add jump, branch, lr, and sc opcodes. (decode_register_index_short): New. (decode_j_type_insn, decode_cj_type_insn): New. (decode_b_type_insn, decode_cb_type_insn): New. (riscv_insn::decode): Add support for jumps, branches, lr, and sc. New local xlen. Check xlen when decoding ambiguous compressed insns. In compressed decode, use is_c_lui_insn instead of is_lui_insn, and is_c_sw_insn instead of is_sw_insn. (riscv_next_pc, riscv_next_pc_atomic_sequence): New. (riscv_software_single_step): New. * riscv-tdep.h (riscv_software_single_step): Declare.
2018-08-08RISC-V: Make riscv_isa_xlen a global function.Jim Wilson1-1/+1
This allows the function to be used from riscv OS files, which also need to depend on XLEN size. gdb/ * riscv-tdep.c (riscv_isa_xlen): Drop static. * riscv-tdep.h (riscv_isa_xlen): Add extern declaration.
2018-07-22Simple unused variable removalsTom Tromey1-7/+0
This patch holds all the straightforward unused variable deletions. gdb/ChangeLog 2018-07-22 Tom Tromey <tom@tromey.com> * guile/scm-value.c (gdbscm_value_call): Remove unused variables. * guile/scm-math.c (vlscm_unop_gdbthrow, vlscm_binop_gdbthrow) (vlscm_convert_typed_value_from_scheme): Remove unused variable. * buildsym-legacy.c (get_macro_table): Remove unused variable. * stack.c (frame_apply_level_command): Remove unused variable. * tic6x-tdep.c (tic6x_push_dummy_call): Remove unused variable. * sparc64-tdep.c (adi_examine_command): Remove unused variable. * rs6000-lynx178-tdep.c (rs6000_lynx178_push_dummy_call): Remove unused variable. * nios2-tdep.c (nios2_push_dummy_call): Remove unused variable. * mep-tdep.c (mep_push_dummy_call): Remove unused variable. * ada-lang.c (ada_lookup_symbol_list_worker): Remove unused variable. * amd64-tdep.c (amd64_supply_xsave): Remove unused variable. * arm-tdep.c (arm_record_data_proc_misc_ld_str): Remove unused variable. * breakpoint.c (check_no_tracepoint_commands, update_watchpoint): Remove unused variable. * cli/cli-script.c (recurse_read_control_structure): Remove unused variable. * common/tdesc.c (print_xml_feature::visit): Remove unused variable. * compile/compile-object-load.c (store_regs): Remove unused variables. * complaints.c (clear_complaints): Remove unused variable. * corelow.c (core_target_open): Remove unused variable. * fbsd-tdep.c (fbsd_core_info_proc_status): Remove unused variable. * guile/scm-frame.c (gdbscm_frame_read_var): Remove unused variable. * guile/scm-symtab.c (stscm_print_sal_smob): Remove unused variable. * guile/scm-type.c (gdbscm_field_baseclass_p): Remove unused variable. * guile/scm-utils.c (gdbscm_parse_function_args): Remove unused variable. * hppa-tdep.c (hppa_stub_frame_unwind_cache): Remove unused variable. * ia64-tdep.c (examine_prologue): Remove unused variable. * infcall.c (run_inferior_call): Remove unused variable. * inferior.c (exit_inferior): Remove unused variable. * infrun.c (infrun_thread_ptid_changed): Remove unused variable. * linespec.c (decode_line_2): Remove unused variable. * linux-nat.c (super_close): Remove. * linux-tdep.c (linux_info_proc): Remove unused variable. * mi/mi-main.c (mi_execute_command): Remove unused variable. * microblaze-linux-tdep.c (microblaze_linux_sigtramp_cache): Remove unused variable. * parse.c (find_minsym_type_and_address): Remove unused variable. * printcmd.c (info_symbol_command, printf_floating): Remove unused variable. * python/py-breakpoint.c (bppy_set_commands): Remove unused variable. * python/py-unwind.c (unwind_infopy_dealloc): Remove unused variables. * record-btrace.c (record_btrace_target::store_registers): Remove unused variable. (cmd_show_record_btrace_cpu): Remove unused variable. * riscv-tdep.c (riscv_register_reggroup_p) (riscv_push_dummy_call, riscv_return_value): Remove unused variable. * rust-exp.y (literal): Remove unused variable. * rust-lang.c (rust_evaluate_subexp) <OP_RUST_ARARAY>: Remove unused variable. <STRUCTOP_ANONYMOUS>: Likewise. * s390-linux-tdep.c (s390_linux_init_abi_31) (s390_linux_init_abi_64): Remove unused variable. * ser-ming2.c (ser_windows_read_prim, pipe_select_thread) (file_select_thread, net_windows_open, _initialize_ser_windows): Remove unused variables. * symtab.c (find_pc_sect_line): Remove unused variable. * target-memory.c (compute_garbled_blocks): Remove unused variable. (target_write_memory_blocks): Remove unused variable. * target.c (target_stack::unpush): Remove unused variables. * tracepoint.c (start_tracing, all_tracepoint_actions) (merge_uploaded_trace_state_variables) (print_one_static_tracepoint_marker): Remove unused variable. * unittests/basic_string_view/element_access/char/1.cc (test01): Remove unused variable. * windows-nat.c (windows_continue, windows_add_all_dlls) (do_initial_windows_stuff, windows_nat_target::create_inferior): Remove unused variables.
2018-07-17RISC-V: Don't decrement pc after break.Jim Wilson1-23/+2
gdb/ * riscv-tdep.c (riscv_has_feature): Delete comment that refers to set_gdbarch_decr_pc_after_break. Call riscv_read_misa_reg always. (riscv_gdbarch_init): Delete local has_compressed_isa. Delete now unecessary braces after EF_RISCV_RVC test. Delete call to set_gdbarch_decr_pc_after_break.
2018-07-16RISC-V: Add osabi support.Jim Wilson1-0/+3
gdb/ * riscv-tdep.c (riscv_gdbarch_init): Call gdbarch_init_osabi.
2018-07-10gdb/riscv: Fix assertion in inferior call codeAndrew Burgess1-5/+16
An assertion when setting up arguments for an inferior call checks the size of the argument against xlen. However, if xlen and flen are different sizes, and the argument is being placed into a floating pointer register then we should be comparing against flen not xlen. This issue shows up as an assertion failure when running on an rv32g target with a binary compiled using the rv32f abi and making an inferior call involving large floating point arguments, for example the test gdb.base/infcall-nested-structs.exp. gdb/ChangeLog: * riscv-tdep.c (riscv_is_fp_regno_p): New function. (riscv_register_reggroup_p): Use new function, remove unneeded parenthesis. (riscv_push_dummy_call): Extend assert to compare against xlen or flen based on register type.