aboutsummaryrefslogtreecommitdiff
path: root/gdb/mipsread.c
AgeCommit message (Expand)AuthorFilesLines
2020-01-13gdb: add back declarations for _initialize functionsSimon Marchi1-1/+2
2020-01-08Change section_offsets to a std::vectorTom Tromey1-3/+1
2020-01-01Update copyright year range in all GDB files.Joel Brobecker1-1/+1
2019-09-19bfd_section_* macrosAlan Modra1-4/+4
2019-06-16Remove unnecessary casts of NULLTom Tromey1-1/+1
2019-01-10Move some declarations to mdebugread.hTom Tromey1-0/+1
2019-01-01Update copyright year range in all GDB files.Joel Brobecker1-1/+1
2018-07-20Do not use buildsym.h in some filesTom Tromey1-1/+0
2018-07-20Remove buildsym_initTom Tromey1-1/+0
2018-07-16Remove buildsym_new_initTom Tromey1-1/+1
2018-04-03Change read_alphacoff_dynamic_symtab to use gdb::byte_vectorTom Tromey1-61/+30
2018-01-02Update copyright year range in all GDB filesJoel Brobecker1-1/+1
2017-09-09Remove unnecessary function prototypes.John Baldwin1-3/+0
2017-01-01update copyright year range in GDB filesJoel Brobecker1-1/+1
2016-10-26Make symfile_add_flags and objfile->flags strongly typedPedro Alves1-1/+1
2016-10-21Record minimal symbols directly in reader.Tom Tromey1-5/+7
2016-10-21Change minimal_symbol_reader to store objfileTom Tromey1-2/+2
2016-10-21Introduce minimal_symbol_readerTom Tromey1-5/+2
2016-01-01GDB copyright headers update after running GDB's copyright.py script.Joel Brobecker1-1/+1
2015-09-25Add casts to memory allocation related callsSimon Marchi1-4/+4
2015-01-01Update year range in copyright notice of all files owned by the GDB project.Joel Brobecker1-1/+1
2014-08-07Include string.h in common-defs.hGary Benson1-1/+0
2014-02-26change minsyms not to be relocated at read-timeTom Tromey1-3/+0
2014-01-01Update Copyright year range in all files maintained by GDB.Joel Brobecker1-1/+1
2013-11-18remove gdb_string.hTom Tromey1-1/+1
2013-09-25 * symfile.h (struct sym_fns): Delete member "sym_flavour".Doug Evans1-2/+1
2013-05-30fix mipsread.cTom Tromey1-5/+20
2013-01-01Update years in copyright notice for the GDB files.Joel Brobecker1-2/+1
2012-04-272012-04-27 Sergio Durigan Junior <sergiodj@redhat.com>Sergio Durigan Junior1-0/+1
2012-01-04Copyright year update in most files of the GDB Project.Joel Brobecker1-2/+1
2011-04-19gdbTom Tromey1-1/+1
2011-03-07 * xcoffread.c (xcoff_sym_fns): Update.Tom Tromey1-0/+1
2011-01-092011-01-08 Michael Snyder <msnyder@vmware.com>Michael Snyder1-12/+11
2011-01-01run copyright.sh for 2011.Joel Brobecker1-1/+1
2010-09-30 * symfile.h (struct sym_fns) <next>: Remove.Tom Tromey1-3/+2
2010-03-10gdbTom Tromey1-0/+3
2010-02-032010-02-03 Tristan Gingold <gingold@adacore.com>Tristan Gingold1-0/+1
2010-01-01Update copyright year in most headers.Joel Brobecker1-1/+1
2009-12-072009-12-07 Tristan Gingold <gingold@adacore.com>Tristan Gingold1-1/+1
2009-01-03 Updated copyright notices for most files.Joel Brobecker1-1/+1
2008-09-13 * varobj.c (varobj_set_display_format): Use xfree.Tom Tromey1-4/+4
2008-03-12include/elf/Alan Modra1-0/+3
2008-01-01 Updated copyright notices for most files.Daniel Jacobowitz1-1/+2
2007-09-21 * symfile.h (struct sym_fns): Add new field sym_read_linetable.Joel Brobecker1-0/+1
2007-08-23 Switch the license of all .c files to GPLv3.Joel Brobecker1-4/+2
2007-06-18 * coffread.c (coff_sym_fns): Add default_symfile_segments.Daniel Jacobowitz1-0/+2
2007-01-09Copyright updates for 2007.Daniel Jacobowitz1-2/+1
2005-12-17 * breakpoint.c:Eli Zaretskii1-3/+3
2005-02-112005-02-10 Andrew Cagney <cagney@gnu.org>Andrew Cagney1-1/+1
2004-10-30* mipsread.c: Cleanup coding style.Mark Kettenis1-82/+68
/a> 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924
/* Perform non-arithmetic operations on values, for GDB.

   Copyright (C) 1986-2020 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "value.h"
#include "frame.h"
#include "inferior.h"
#include "gdbcore.h"
#include "target.h"
#include "demangle.h"
#include "language.h"
#include "gdbcmd.h"
#include "regcache.h"
#include "cp-abi.h"
#include "block.h"
#include "infcall.h"
#include "dictionary.h"
#include "cp-support.h"
#include "target-float.h"
#include "tracepoint.h"
#include "observable.h"
#include "objfiles.h"
#include "extension.h"
#include "gdbtypes.h"
#include "gdbsupport/byte-vector.h"

/* Local functions.  */

static int typecmp (int staticp, int varargs, int nargs,
		    struct field t1[], struct value *t2[]);

static struct value *search_struct_field (const char *, struct value *, 
					  struct type *, int);

static struct value *search_struct_method (const char *, struct value **,
					   struct value **,
					   LONGEST, int *, struct type *);

static int find_oload_champ_namespace (gdb::array_view<value *> args,
				       const char *, const char *,
				       std::vector<symbol *> *oload_syms,
				       badness_vector *,
				       const int no_adl);

static int find_oload_champ_namespace_loop (gdb::array_view<value *> args,
					    const char *, const char *,
					    int, std::vector<symbol *> *oload_syms,
					    badness_vector *, int *,
					    const int no_adl);

static int find_oload_champ (gdb::array_view<value *> args,
			     size_t num_fns,
			     fn_field *methods,
			     xmethod_worker_up *xmethods,
			     symbol **functions,
			     badness_vector *oload_champ_bv);

static int oload_method_static_p (struct fn_field *, int);

enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };

static enum oload_classification classify_oload_match
  (const badness_vector &, int, int);

static struct value *value_struct_elt_for_reference (struct type *,
						     int, struct type *,
						     const char *,
						     struct type *,
						     int, enum noside);

static struct value *value_namespace_elt (const struct type *,
					  const char *, int , enum noside);

static struct value *value_maybe_namespace_elt (const struct type *,
						const char *, int,
						enum noside);

static CORE_ADDR allocate_space_in_inferior (int);

static struct value *cast_into_complex (struct type *, struct value *);

bool overload_resolution = false;
static void
show_overload_resolution (struct ui_file *file, int from_tty,
			  struct cmd_list_element *c, 
			  const char *value)
{
  fprintf_filtered (file, _("Overload resolution in evaluating "
			    "C++ functions is %s.\n"),
		    value);
}

/* Find the address of function name NAME in the inferior.  If OBJF_P
   is non-NULL, *OBJF_P will be set to the OBJFILE where the function
   is defined.  */

struct value *
find_function_in_inferior (const char *name, struct objfile **objf_p)
{
  struct block_symbol sym;

  sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
  if (sym.symbol != NULL)
    {
      if (SYMBOL_CLASS (sym.symbol) != LOC_BLOCK)
	{
	  error (_("\"%s\" exists in this program but is not a function."),
		 name);
	}

      if (objf_p)
	*objf_p = symbol_objfile (sym.symbol);

      return value_of_variable (sym.symbol, sym.block);
    }
  else
    {
      struct bound_minimal_symbol msymbol = 
	lookup_bound_minimal_symbol (name);

      if (msymbol.minsym != NULL)
	{
	  struct objfile *objfile = msymbol.objfile;
	  struct gdbarch *gdbarch = get_objfile_arch (objfile);

	  struct type *type;
	  CORE_ADDR maddr;
	  type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
	  type = lookup_function_type (type);
	  type = lookup_pointer_type (type);
	  maddr = BMSYMBOL_VALUE_ADDRESS (msymbol);

	  if (objf_p)
	    *objf_p = objfile;

	  return value_from_pointer (type, maddr);
	}
      else
	{
	  if (!target_has_execution)
	    error (_("evaluation of this expression "
		     "requires the target program to be active"));
	  else
	    error (_("evaluation of this expression requires the "
		     "program to have a function \"%s\"."),
		   name);
	}
    }
}

/* Allocate NBYTES of space in the inferior using the inferior's
   malloc and return a value that is a pointer to the allocated
   space.  */

struct value *
value_allocate_space_in_inferior (int len)
{
  struct objfile *objf;
  struct value *val = find_function_in_inferior ("malloc", &objf);
  struct gdbarch *gdbarch = get_objfile_arch (objf);
  struct value *blocklen;

  blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
  val = call_function_by_hand (val, NULL, blocklen);
  if (value_logical_not (val))
    {
      if (!target_has_execution)
	error (_("No memory available to program now: "
		 "you need to start the target first"));
      else
	error (_("No memory available to program: call to malloc failed"));
    }
  return val;
}

static CORE_ADDR
allocate_space_in_inferior (int len)
{
  return value_as_long (value_allocate_space_in_inferior (len));
}

/* Cast struct value VAL to type TYPE and return as a value.
   Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
   for this to work.  Typedef to one of the codes is permitted.
   Returns NULL if the cast is neither an upcast nor a downcast.  */

static struct value *
value_cast_structs (struct type *type, struct value *v2)
{
  struct type *t1;
  struct type *t2;
  struct value *v;

  gdb_assert (type != NULL && v2 != NULL);

  t1 = check_typedef (type);
  t2 = check_typedef (value_type (v2));

  /* Check preconditions.  */
  gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
	       || TYPE_CODE (t1) == TYPE_CODE_UNION)
	      && !!"Precondition is that type is of STRUCT or UNION kind.");
  gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
	       || TYPE_CODE (t2) == TYPE_CODE_UNION)
	      && !!"Precondition is that value is of STRUCT or UNION kind");

  if (TYPE_NAME (t1) != NULL
      && TYPE_NAME (t2) != NULL
      && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
    return NULL;

  /* Upcasting: look in the type of the source to see if it contains the
     type of the target as a superclass.  If so, we'll need to
     offset the pointer rather than just change its type.  */
  if (TYPE_NAME (t1) != NULL)
    {
      v = search_struct_field (TYPE_NAME (t1),
			       v2, t2, 1);
      if (v)
	return v;
    }

  /* Downcasting: look in the type of the target to see if it contains the
     type of the source as a superclass.  If so, we'll need to
     offset the pointer rather than just change its type.  */
  if (TYPE_NAME (t2) != NULL)
    {
      /* Try downcasting using the run-time type of the value.  */
      int full, using_enc;
      LONGEST top;
      struct type *real_type;

      real_type = value_rtti_type (v2, &full, &top, &using_enc);
      if (real_type)
	{
	  v = value_full_object (v2, real_type, full, top, using_enc);
	  v = value_at_lazy (real_type, value_address (v));
	  real_type = value_type (v);

	  /* We might be trying to cast to the outermost enclosing
	     type, in which case search_struct_field won't work.  */
	  if (TYPE_NAME (real_type) != NULL
	      && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
	    return v;

	  v = search_struct_field (TYPE_NAME (t2), v, real_type, 1);
	  if (v)
	    return v;
	}

      /* Try downcasting using information from the destination type
	 T2.  This wouldn't work properly for classes with virtual
	 bases, but those were handled above.  */
      v = search_struct_field (TYPE_NAME (t2),
			       value_zero (t1, not_lval), t1, 1);
      if (v)
	{
	  /* Downcasting is possible (t1 is superclass of v2).  */
	  CORE_ADDR addr2 = value_address (v2);

	  addr2 -= value_address (v) + value_embedded_offset (v);
	  return value_at (type, addr2);
	}
    }

  return NULL;
}

/* Cast one pointer or reference type to another.  Both TYPE and
   the type of ARG2 should be pointer types, or else both should be
   reference types.  If SUBCLASS_CHECK is non-zero, this will force a
   check to see whether TYPE is a superclass of ARG2's type.  If
   SUBCLASS_CHECK is zero, then the subclass check is done only when
   ARG2 is itself non-zero.  Returns the new pointer or reference.  */

struct value *
value_cast_pointers (struct type *type, struct value *arg2,
		     int subclass_check)
{
  struct type *type1 = check_typedef (type);
  struct type *type2 = check_typedef (value_type (arg2));
  struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
  struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));

  if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
      && TYPE_CODE (t2) == TYPE_CODE_STRUCT
      && (subclass_check || !value_logical_not (arg2)))
    {
      struct value *v2;

      if (TYPE_IS_REFERENCE (type2))
	v2 = coerce_ref (arg2);
      else
	v2 = value_ind (arg2);
      gdb_assert (TYPE_CODE (check_typedef (value_type (v2)))
		  == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
      v2 = value_cast_structs (t1, v2);
      /* At this point we have what we can have, un-dereference if needed.  */
      if (v2)
	{
	  struct value *v = value_addr (v2);

	  deprecated_set_value_type (v, type);
	  return v;
	}
    }

  /* No superclass found, just change the pointer type.  */
  arg2 = value_copy (arg2);
  deprecated_set_value_type (arg2, type);
  set_value_enclosing_type (arg2, type);
  set_value_pointed_to_offset (arg2, 0);	/* pai: chk_val */
  return arg2;
}

/* Cast value ARG2 to type TYPE and return as a value.
   More general than a C cast: accepts any two types of the same length,
   and if ARG2 is an lvalue it can be cast into anything at all.  */
/* In C++, casts may change pointer or object representations.  */

struct value *
value_cast (struct type *type, struct value *arg2)
{
  enum type_code code1;
  enum type_code code2;
  int scalar;
  struct type *type2;

  int convert_to_boolean = 0;

  if (value_type (arg2) == type)
    return arg2;

  /* Check if we are casting struct reference to struct reference.  */
  if (TYPE_IS_REFERENCE (check_typedef (type)))
    {
      /* We dereference type; then we recurse and finally
         we generate value of the given reference.  Nothing wrong with 
	 that.  */
      struct type *t1 = check_typedef (type);
      struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
      struct value *val = value_cast (dereftype, arg2);

      return value_ref (val, TYPE_CODE (t1));
    }

  if (TYPE_IS_REFERENCE (check_typedef (value_type (arg2))))
    /* We deref the value and then do the cast.  */
    return value_cast (type, coerce_ref (arg2)); 

  /* Strip typedefs / resolve stubs in order to get at the type's
     code/length, but remember the original type, to use as the
     resulting type of the cast, in case it was a typedef.  */
  struct type *to_type = type;

  type = check_typedef (type);
  code1 = TYPE_CODE (type);
  arg2 = coerce_ref (arg2);
  type2 = check_typedef (value_type (arg2));

  /* You can't cast to a reference type.  See value_cast_pointers
     instead.  */
  gdb_assert (!TYPE_IS_REFERENCE (type));

  /* A cast to an undetermined-length array_type, such as 
     (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
     where N is sizeof(OBJECT)/sizeof(TYPE).  */
  if (code1 == TYPE_CODE_ARRAY)
    {
      struct type *element_type = TYPE_TARGET_TYPE (type);
      unsigned element_length = TYPE_LENGTH (check_typedef (element_type));

      if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
	{
	  struct type *range_type = TYPE_INDEX_TYPE (type);
	  int val_length = TYPE_LENGTH (type2);
	  LONGEST low_bound, high_bound, new_length;

	  if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
	    low_bound = 0, high_bound = 0;
	  new_length = val_length / element_length;
	  if (val_length % element_length != 0)
	    warning (_("array element type size does not "
		       "divide object size in cast"));
	  /* FIXME-type-allocation: need a way to free this type when
	     we are done with it.  */
	  range_type = create_static_range_type (NULL,
						 TYPE_TARGET_TYPE (range_type),
						 low_bound,
						 new_length + low_bound - 1);
	  deprecated_set_value_type (arg2, 
				     create_array_type (NULL,
							element_type, 
							range_type));
	  return arg2;
	}
    }

  if (current_language->c_style_arrays
      && TYPE_CODE (type2) == TYPE_CODE_ARRAY
      && !TYPE_VECTOR (type2))
    arg2 = value_coerce_array (arg2);

  if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
    arg2 = value_coerce_function (arg2);

  type2 = check_typedef (value_type (arg2));
  code2 = TYPE_CODE (type2);

  if (code1 == TYPE_CODE_COMPLEX)
    return cast_into_complex (to_type, arg2);
  if (code1 == TYPE_CODE_BOOL)
    {
      code1 = TYPE_CODE_INT;
      convert_to_boolean = 1;
    }
  if (code1 == TYPE_CODE_CHAR)
    code1 = TYPE_CODE_INT;
  if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
    code2 = TYPE_CODE_INT;

  scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
	    || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
	    || code2 == TYPE_CODE_RANGE);

  if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
      && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
      && TYPE_NAME (type) != 0)
    {
      struct value *v = value_cast_structs (to_type, arg2);

      if (v)
	return v;
    }

  if (is_floating_type (type) && scalar)
    {
      if (is_floating_value (arg2))
	{
	  struct value *v = allocate_value (to_type);
	  target_float_convert (value_contents (arg2), type2,
				value_contents_raw (v), type);
	  return v;
	}

      /* The only option left is an integral type.  */
      if (TYPE_UNSIGNED (type2))
	return value_from_ulongest (to_type, value_as_long (arg2));
      else
	return value_from_longest (to_type, value_as_long (arg2));
    }
  else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
	    || code1 == TYPE_CODE_RANGE)
	   && (scalar || code2 == TYPE_CODE_PTR
	       || code2 == TYPE_CODE_MEMBERPTR))
    {
      LONGEST longest;

      /* When we cast pointers to integers, we mustn't use
         gdbarch_pointer_to_address to find the address the pointer
         represents, as value_as_long would.  GDB should evaluate
         expressions just as the compiler would --- and the compiler
         sees a cast as a simple reinterpretation of the pointer's
         bits.  */
      if (code2 == TYPE_CODE_PTR)
        longest = extract_unsigned_integer
		    (value_contents (arg2), TYPE_LENGTH (type2),
		     type_byte_order (type2));
      else
        longest = value_as_long (arg2);
      return value_from_longest (to_type, convert_to_boolean ?
				 (LONGEST) (longest ? 1 : 0) : longest);
    }
  else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT  
				      || code2 == TYPE_CODE_ENUM 
				      || code2 == TYPE_CODE_RANGE))
    {
      /* TYPE_LENGTH (type) is the length of a pointer, but we really
	 want the length of an address! -- we are really dealing with
	 addresses (i.e., gdb representations) not pointers (i.e.,
	 target representations) here.

	 This allows things like "print *(int *)0x01000234" to work
	 without printing a misleading message -- which would
	 otherwise occur when dealing with a target having two byte
	 pointers and four byte addresses.  */

      int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
      LONGEST longest = value_as_long (arg2);

      if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
	{
	  if (longest >= ((LONGEST) 1 << addr_bit)
	      || longest <= -((LONGEST) 1 << addr_bit))
	    warning (_("value truncated"));
	}
      return value_from_longest (to_type, longest);
    }
  else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
	   && value_as_long (arg2) == 0)
    {
      struct value *result = allocate_value (to_type);

      cplus_make_method_ptr (to_type, value_contents_writeable (result), 0, 0);
      return result;
    }
  else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
	   && value_as_long (arg2) == 0)
    {
      /* The Itanium C++ ABI represents NULL pointers to members as
	 minus one, instead of biasing the normal case.  */
      return value_from_longest (to_type, -1);
    }
  else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
	   && code2 == TYPE_CODE_ARRAY && TYPE_VECTOR (type2)
	   && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
    error (_("Cannot convert between vector values of different sizes"));
  else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar
	   && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
    error (_("can only cast scalar to vector of same size"));
  else if (code1 == TYPE_CODE_VOID)
    {
      return value_zero (to_type, not_lval);
    }
  else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
    {
      if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
	return value_cast_pointers (to_type, arg2, 0);

      arg2 = value_copy (arg2);
      deprecated_set_value_type (arg2, to_type);
      set_value_enclosing_type (arg2, to_type);
      set_value_pointed_to_offset (arg2, 0);	/* pai: chk_val */
      return arg2;
    }
  else if (VALUE_LVAL (arg2) == lval_memory)
    return value_at_lazy (to_type, value_address (arg2));
  else
    {
      if (current_language->la_language == language_ada)
	error (_("Invalid type conversion."));
      error (_("Invalid cast."));
    }
}

/* The C++ reinterpret_cast operator.  */

struct value *
value_reinterpret_cast (struct type *type, struct value *arg)
{
  struct value *result;
  struct type *real_type = check_typedef (type);
  struct type *arg_type, *dest_type;
  int is_ref = 0;
  enum type_code dest_code, arg_code;

  /* Do reference, function, and array conversion.  */
  arg = coerce_array (arg);

  /* Attempt to preserve the type the user asked for.  */
  dest_type = type;

  /* If we are casting to a reference type, transform
     reinterpret_cast<T&[&]>(V) to *reinterpret_cast<T*>(&V).  */
  if (TYPE_IS_REFERENCE (real_type))
    {
      is_ref = 1;
      arg = value_addr (arg);
      dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
      real_type = lookup_pointer_type (real_type);
    }

  arg_type = value_type (arg);

  dest_code = TYPE_CODE (real_type);
  arg_code = TYPE_CODE (arg_type);

  /* We can convert pointer types, or any pointer type to int, or int
     type to pointer.  */
  if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
      || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
      || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
      || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
      || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
      || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
      || (dest_code == arg_code
	  && (dest_code == TYPE_CODE_PTR
	      || dest_code == TYPE_CODE_METHODPTR
	      || dest_code == TYPE_CODE_MEMBERPTR)))
    result = value_cast (dest_type, arg);
  else
    error (_("Invalid reinterpret_cast"));

  if (is_ref)
    result = value_cast (type, value_ref (value_ind (result),
                                          TYPE_CODE (type)));

  return result;
}

/* A helper for value_dynamic_cast.  This implements the first of two
   runtime checks: we iterate over all the base classes of the value's
   class which are equal to the desired class; if only one of these
   holds the value, then it is the answer.  */

static int
dynamic_cast_check_1 (struct type *desired_type,
		      const gdb_byte *valaddr,
		      LONGEST embedded_offset,
		      CORE_ADDR address,
		      struct value *val,
		      struct type *search_type,
		      CORE_ADDR arg_addr,
		      struct type *arg_type,
		      struct value **result)
{
  int i, result_count = 0;

  for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
    {
      LONGEST offset = baseclass_offset (search_type, i, valaddr,
					 embedded_offset,
					 address, val);

      if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
	{
	  if (address + embedded_offset + offset >= arg_addr
	      && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
	    {
	      ++result_count;
	      if (!*result)
		*result = value_at_lazy (TYPE_BASECLASS (search_type, i),
					 address + embedded_offset + offset);
	    }
	}
      else
	result_count += dynamic_cast_check_1 (desired_type,
					      valaddr,
					      embedded_offset + offset,
					      address, val,
					      TYPE_BASECLASS (search_type, i),
					      arg_addr,
					      arg_type,
					      result);
    }

  return result_count;
}

/* A helper for value_dynamic_cast.  This implements the second of two
   runtime checks: we look for a unique public sibling class of the
   argument's declared class.  */

static int
dynamic_cast_check_2 (struct type *desired_type,
		      const gdb_byte *valaddr,
		      LONGEST embedded_offset,
		      CORE_ADDR address,
		      struct value *val,
		      struct type *search_type,
		      struct value **result)
{
  int i, result_count = 0;

  for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
    {
      LONGEST offset;

      if (! BASETYPE_VIA_PUBLIC (search_type, i))
	continue;

      offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
				 address, val);
      if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
	{
	  ++result_count;
	  if (*result == NULL)
	    *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
				     address + embedded_offset + offset);
	}
      else
	result_count += dynamic_cast_check_2 (desired_type,
					      valaddr,
					      embedded_offset + offset,
					      address, val,
					      TYPE_BASECLASS (search_type, i),
					      result);
    }

  return result_count;
}

/* The C++ dynamic_cast operator.  */

struct value *
value_dynamic_cast (struct type *type, struct value *arg)
{
  int full, using_enc;
  LONGEST top;
  struct type *resolved_type = check_typedef (type);
  struct type *arg_type = check_typedef (value_type (arg));
  struct type *class_type, *rtti_type;
  struct value *result, *tem, *original_arg = arg;
  CORE_ADDR addr;
  int is_ref = TYPE_IS_REFERENCE (resolved_type);

  if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
      && !TYPE_IS_REFERENCE (resolved_type))
    error (_("Argument to dynamic_cast must be a pointer or reference type"));
  if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
      && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_STRUCT)
    error (_("Argument to dynamic_cast must be pointer to class or `void *'"));

  class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
  if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
    {
      if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
	  && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
		&& value_as_long (arg) == 0))
	error (_("Argument to dynamic_cast does not have pointer type"));
      if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
	{
	  arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
	  if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
	    error (_("Argument to dynamic_cast does "
		     "not have pointer to class type"));
	}

      /* Handle NULL pointers.  */
      if (value_as_long (arg) == 0)
	return value_zero (type, not_lval);

      arg = value_ind (arg);
    }
  else
    {
      if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
	error (_("Argument to dynamic_cast does not have class type"));
    }

  /* If the classes are the same, just return the argument.  */
  if (class_types_same_p (class_type, arg_type))
    return value_cast (type, arg);

  /* If the target type is a unique base class of the argument's
     declared type, just cast it.  */
  if (is_ancestor (class_type, arg_type))
    {
      if (is_unique_ancestor (class_type, arg))
	return value_cast (type, original_arg);
      error (_("Ambiguous dynamic_cast"));
    }

  rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
  if (! rtti_type)
    error (_("Couldn't determine value's most derived type for dynamic_cast"));

  /* Compute the most derived object's address.  */
  addr = value_address (arg);
  if (full)
    {
      /* Done.  */
    }
  else if (using_enc)
    addr += top;
  else
    addr += top + value_embedded_offset (arg);

  /* dynamic_cast<void *> means to return a pointer to the
     most-derived object.  */
  if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
      && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
    return value_at_lazy (type, addr);

  tem = value_at (type, addr);
  type = value_type (tem);

  /* The first dynamic check specified in 5.2.7.  */
  if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
    {
      if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
	return tem;
      result = NULL;
      if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
				value_contents_for_printing (tem),
				value_embedded_offset (tem),
				value_address (tem), tem,
				rtti_type, addr,
				arg_type,
				&result) == 1)
	return value_cast (type,
			   is_ref
			   ? value_ref (result, TYPE_CODE (resolved_type))
			   : value_addr (result));
    }

  /* The second dynamic check specified in 5.2.7.  */
  result = NULL;
  if (is_public_ancestor (arg_type, rtti_type)
      && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
			       value_contents_for_printing (tem),
			       value_embedded_offset (tem),
			       value_address (tem), tem,
			       rtti_type, &result) == 1)
    return value_cast (type,
		       is_ref
		       ? value_ref (result, TYPE_CODE (resolved_type))
		       : value_addr (result));

  if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
    return value_zero (type, not_lval);

  error (_("dynamic_cast failed"));
}

/* Create a value of type TYPE that is zero, and return it.  */

struct value *
value_zero (struct type *type, enum lval_type lv)
{
  struct value *val = allocate_value (type);

  VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv);
  return val;
}

/* Create a not_lval value of numeric type TYPE that is one, and return it.  */

struct value *
value_one (struct type *type)
{
  struct type *type1 = check_typedef (type);
  struct value *val;

  if (is_integral_type (type1) || is_floating_type (type1))
    {
      val = value_from_longest (type, (LONGEST) 1);
    }
  else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
    {
      struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
      int i;
      LONGEST low_bound, high_bound;
      struct value *tmp;

      if (!get_array_bounds (type1, &low_bound, &high_bound))
	error (_("Could not determine the vector bounds"));

      val = allocate_value (type);
      for (i = 0; i < high_bound - low_bound + 1; i++)
	{
	  tmp = value_one (eltype);
	  memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
		  value_contents_all (tmp), TYPE_LENGTH (eltype));
	}
    }
  else
    {
      error (_("Not a numeric type."));
    }

  /* value_one result is never used for assignments to.  */
  gdb_assert (VALUE_LVAL (val) == not_lval);

  return val;
}

/* Helper function for value_at, value_at_lazy, and value_at_lazy_stack.
   The type of the created value may differ from the passed type TYPE.
   Make sure to retrieve the returned values's new type after this call
   e.g. in case the type is a variable length array.  */

static struct value *
get_value_at (struct type *type, CORE_ADDR addr, int lazy)
{
  struct value *val;

  if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
    error (_("Attempt to dereference a generic pointer."));

  val = value_from_contents_and_address (type, NULL, addr);

  if (!lazy)
    value_fetch_lazy (val);

  return val;
}

/* Return a value with type TYPE located at ADDR.

   Call value_at only if the data needs to be fetched immediately;
   if we can be 'lazy' and defer the fetch, perhaps indefinitely, call
   value_at_lazy instead.  value_at_lazy simply records the address of
   the data and sets the lazy-evaluation-required flag.  The lazy flag
   is tested in the value_contents macro, which is used if and when
   the contents are actually required.  The type of the created value
   may differ from the passed type TYPE.  Make sure to retrieve the
   returned values's new type after this call e.g. in case the type
   is a variable length array.

   Note: value_at does *NOT* handle embedded offsets; perform such
   adjustments before or after calling it.  */

struct value *
value_at (struct type *type, CORE_ADDR addr)
{
  return get_value_at (type, addr, 0);
}

/* Return a lazy value with type TYPE located at ADDR (cf. value_at).
   The type of the created value may differ from the passed type TYPE.
   Make sure to retrieve the returned values's new type after this call
   e.g. in case the type is a variable length array.  */

struct value *
value_at_lazy (struct type *type, CORE_ADDR addr)
{
  return get_value_at (type, addr, 1);
}

void
read_value_memory (struct value *val, LONGEST bit_offset,
		   int stack, CORE_ADDR memaddr,
		   gdb_byte *buffer, size_t length)
{
  ULONGEST xfered_total = 0;
  struct gdbarch *arch = get_value_arch (val);
  int unit_size = gdbarch_addressable_memory_unit_size (arch);
  enum target_object object;

  object = stack ? TARGET_OBJECT_STACK_MEMORY : TARGET_OBJECT_MEMORY;

  while (xfered_total < length)
    {
      enum target_xfer_status status;
      ULONGEST xfered_partial;

      status = target_xfer_partial (current_top_target (),
				    object, NULL,
				    buffer + xfered_total * unit_size, NULL,
				    memaddr + xfered_total,
				    length - xfered_total,
				    &xfered_partial);

      if (status == TARGET_XFER_OK)
	/* nothing */;
      else if (status == TARGET_XFER_UNAVAILABLE)
	mark_value_bits_unavailable (val, (xfered_total * HOST_CHAR_BIT
					   + bit_offset),
				     xfered_partial * HOST_CHAR_BIT);
      else if (status == TARGET_XFER_EOF)
	memory_error (TARGET_XFER_E_IO, memaddr + xfered_total);
      else
	memory_error (status, memaddr + xfered_total);

      xfered_total += xfered_partial;
      QUIT;
    }
}

/* Store the contents of FROMVAL into the location of TOVAL.
   Return a new value with the location of TOVAL and contents of FROMVAL.  */

struct value *
value_assign (struct value *toval, struct value *fromval)
{
  struct type *type;
  struct value *val;
  struct frame_id old_frame;

  if (!deprecated_value_modifiable (toval))
    error (_("Left operand of assignment is not a modifiable lvalue."));

  toval = coerce_ref (toval);

  type = value_type (toval);
  if (VALUE_LVAL (toval) != lval_internalvar)
    fromval = value_cast (type, fromval);
  else
    {
      /* Coerce arrays and functions to pointers, except for arrays
	 which only live in GDB's storage.  */
      if (!value_must_coerce_to_target (fromval))
	fromval = coerce_array (fromval);
    }

  type = check_typedef (type);

  /* Since modifying a register can trash the frame chain, and
     modifying memory can trash the frame cache, we save the old frame
     and then restore the new frame afterwards.  */
  old_frame = get_frame_id (deprecated_safe_get_selected_frame ());

  switch (VALUE_LVAL (toval))
    {
    case lval_internalvar:
      set_internalvar (VALUE_INTERNALVAR (toval), fromval);
      return value_of_internalvar (get_type_arch (type),
				   VALUE_INTERNALVAR (toval));

    case lval_internalvar_component:
      {
	LONGEST offset = value_offset (toval);

	/* Are we dealing with a bitfield?

	   It is important to mention that `value_parent (toval)' is
	   non-NULL iff `value_bitsize (toval)' is non-zero.  */
	if (value_bitsize (toval))
	  {
	    /* VALUE_INTERNALVAR below refers to the parent value, while
	       the offset is relative to this parent value.  */
	    gdb_assert (value_parent (value_parent (toval)) == NULL);
	    offset += value_offset (value_parent (toval));
	  }

	set_internalvar_component (VALUE_INTERNALVAR (toval),
				   offset,
				   value_bitpos (toval),
				   value_bitsize (toval),
				   fromval);
      }
      break;

    case lval_memory:
      {
	const gdb_byte *dest_buffer;
	CORE_ADDR changed_addr;
	int changed_len;
        gdb_byte buffer[sizeof (LONGEST)];

	if (value_bitsize (toval))
	  {
	    struct value *parent = value_parent (toval);

	    changed_addr = value_address (parent) + value_offset (toval);
	    changed_len = (value_bitpos (toval)
			   + value_bitsize (toval)
			   + HOST_CHAR_BIT - 1)
	      / HOST_CHAR_BIT;

	    /* If we can read-modify-write exactly the size of the
	       containing type (e.g. short or int) then do so.  This
	       is safer for volatile bitfields mapped to hardware
	       registers.  */
	    if (changed_len < TYPE_LENGTH (type)
		&& TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
		&& ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
	      changed_len = TYPE_LENGTH (type);

	    if (changed_len > (int) sizeof (LONGEST))
	      error (_("Can't handle bitfields which "
		       "don't fit in a %d bit word."),
		     (int) sizeof (LONGEST) * HOST_CHAR_BIT);

	    read_memory (changed_addr, buffer, changed_len);
	    modify_field (type, buffer, value_as_long (fromval),
			  value_bitpos (toval), value_bitsize (toval));
	    dest_buffer = buffer;
	  }
	else
	  {
	    changed_addr = value_address (toval);
	    changed_len = type_length_units (type);
	    dest_buffer = value_contents (fromval);
	  }

	write_memory_with_notification (changed_addr, dest_buffer, changed_len);
      }
      break;

    case lval_register:
      {
	struct frame_info *frame;
	struct gdbarch *gdbarch;
	int value_reg;

	/* Figure out which frame this is in currently.
	
	   We use VALUE_FRAME_ID for obtaining the value's frame id instead of
	   VALUE_NEXT_FRAME_ID due to requiring a frame which may be passed to
	   put_frame_register_bytes() below.  That function will (eventually)
	   perform the necessary unwind operation by first obtaining the next
	   frame.  */
	frame = frame_find_by_id (VALUE_FRAME_ID (toval));

	value_reg = VALUE_REGNUM (toval);

	if (!frame)
	  error (_("Value being assigned to is no longer active."));

	gdbarch = get_frame_arch (frame);

	if (value_bitsize (toval))
	  {
	    struct value *parent = value_parent (toval);
	    LONGEST offset = value_offset (parent) + value_offset (toval);
	    int changed_len;
	    gdb_byte buffer[sizeof (LONGEST)];
	    int optim, unavail;

	    changed_len = (value_bitpos (toval)
			   + value_bitsize (toval)
			   + HOST_CHAR_BIT - 1)
			  / HOST_CHAR_BIT;

	    if (changed_len > (int) sizeof (LONGEST))
	      error (_("Can't handle bitfields which "
		       "don't fit in a %d bit word."),
		     (int) sizeof (LONGEST) * HOST_CHAR_BIT);

	    if (!get_frame_register_bytes (frame, value_reg, offset,
					   changed_len, buffer,
					   &optim, &unavail))
	      {
		if (optim)
		  throw_error (OPTIMIZED_OUT_ERROR,
			       _("value has been optimized out"));
		if (unavail)
		  throw_error (NOT_AVAILABLE_ERROR,
			       _("value is not available"));
	      }

	    modify_field (type, buffer, value_as_long (fromval),
			  value_bitpos (toval), value_bitsize (toval));

	    put_frame_register_bytes (frame, value_reg, offset,
				      changed_len, buffer);
	  }
	else
	  {
	    if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval),
					    type))
	      {
		/* If TOVAL is a special machine register requiring
		   conversion of program values to a special raw
		   format.  */
		gdbarch_value_to_register (gdbarch, frame,
					   VALUE_REGNUM (toval), type,
					   value_contents (fromval));
	      }
	    else
	      {
		put_frame_register_bytes (frame, value_reg,
					  value_offset (toval),
					  TYPE_LENGTH (type),
					  value_contents (fromval));
	      }
	  }

	gdb::observers::register_changed.notify (frame, value_reg);
	break;
      }

    case lval_computed:
      {
	const struct lval_funcs *funcs = value_computed_funcs (toval);

	if (funcs->write != NULL)
	  {
	    funcs->write (toval, fromval);
	    break;
	  }
      }
      /* Fall through.  */

    default:
      error (_("Left operand of assignment is not an lvalue."));
    }

  /* Assigning to the stack pointer, frame pointer, and other
     (architecture and calling convention specific) registers may
     cause the frame cache and regcache to be out of date.  Assigning to memory
     also can.  We just do this on all assignments to registers or
     memory, for simplicity's sake; I doubt the slowdown matters.  */
  switch (VALUE_LVAL (toval))
    {
    case lval_memory:
    case lval_register:
    case lval_computed:

      gdb::observers::target_changed.notify (current_top_target ());

      /* Having destroyed the frame cache, restore the selected
	 frame.  */

      /* FIXME: cagney/2002-11-02: There has to be a better way of
	 doing this.  Instead of constantly saving/restoring the
	 frame.  Why not create a get_selected_frame() function that,
	 having saved the selected frame's ID can automatically
	 re-find the previously selected frame automatically.  */

      {
	struct frame_info *fi = frame_find_by_id (old_frame);

	if (fi != NULL)
	  select_frame (fi);
      }

      break;
    default:
      break;
    }
  
  /* If the field does not entirely fill a LONGEST, then zero the sign
     bits.  If the field is signed, and is negative, then sign
     extend.  */
  if ((value_bitsize (toval) > 0)
      && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
    {
      LONGEST fieldval = value_as_long (fromval);
      LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;

      fieldval &= valmask;
      if (!TYPE_UNSIGNED (type) 
	  && (fieldval & (valmask ^ (valmask >> 1))))
	fieldval |= ~valmask;

      fromval = value_from_longest (type, fieldval);
    }

  /* The return value is a copy of TOVAL so it shares its location
     information, but its contents are updated from FROMVAL.  This
     implies the returned value is not lazy, even if TOVAL was.  */
  val = value_copy (toval);
  set_value_lazy (val, 0);
  memcpy (value_contents_raw (val), value_contents (fromval),
	  TYPE_LENGTH (type));

  /* We copy over the enclosing type and pointed-to offset from FROMVAL
     in the case of pointer types.  For object types, the enclosing type
     and embedded offset must *not* be copied: the target object refered
     to by TOVAL retains its original dynamic type after assignment.  */
  if (TYPE_CODE (type) == TYPE_CODE_PTR)
    {
      set_value_enclosing_type (val, value_enclosing_type (fromval));
      set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
    }

  return val;
}

/* Extend a value VAL to COUNT repetitions of its type.  */

struct value *
value_repeat (struct value *arg1, int count)
{
  struct value *val;

  if (VALUE_LVAL (arg1) != lval_memory)
    error (_("Only values in memory can be extended with '@'."));
  if (count < 1)
    error (_("Invalid number %d of repetitions."), count);

  val = allocate_repeat_value (value_enclosing_type (arg1), count);

  VALUE_LVAL (val) = lval_memory;
  set_value_address (val, value_address (arg1));

  read_value_memory (val, 0, value_stack (val), value_address (val),
		     value_contents_all_raw (val),
		     type_length_units (value_enclosing_type (val)));

  return val;
}

struct value *
value_of_variable (struct symbol *var, const struct block *b)
{
  struct frame_info *frame = NULL;

  if (symbol_read_needs_frame (var))
    frame = get_selected_frame (_("No frame selected."));

  return read_var_value (var, b, frame);
}

struct value *
address_of_variable (struct symbol *var, const struct block *b)
{
  struct type *type = SYMBOL_TYPE (var);
  struct value *val;

  /* Evaluate it first; if the result is a memory address, we're fine.
     Lazy evaluation pays off here.  */

  val = value_of_variable (var, b);
  type = value_type (val);

  if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
      || TYPE_CODE (type) == TYPE_CODE_FUNC)
    {
      CORE_ADDR addr = value_address (val);

      return value_from_pointer (lookup_pointer_type (type), addr);
    }

  /* Not a memory address; check what the problem was.  */
  switch (VALUE_LVAL (val))
    {
    case lval_register:
      {
	struct frame_info *frame;
	const char *regname;

	frame = frame_find_by_id (VALUE_NEXT_FRAME_ID (val));
	gdb_assert (frame);

	regname = gdbarch_register_name (get_frame_arch (frame),
					 VALUE_REGNUM (val));
	gdb_assert (regname && *regname);

	error (_("Address requested for identifier "
		 "\"%s\" which is in register $%s"),
	       var->print_name (), regname);
	break;
      }

    default:
      error (_("Can't take address of \"%s\" which isn't an lvalue."),
	     var->print_name ());
      break;
    }

  return val;
}

/* See value.h.  */

bool
value_must_coerce_to_target (struct value *val)
{
  struct type *valtype;

  /* The only lval kinds which do not live in target memory.  */
  if (VALUE_LVAL (val) != not_lval
      && VALUE_LVAL (val) != lval_internalvar
      && VALUE_LVAL (val) != lval_xcallable)
    return false;

  valtype = check_typedef (value_type (val));

  switch (TYPE_CODE (valtype))
    {
    case TYPE_CODE_ARRAY:
      return TYPE_VECTOR (valtype) ? 0 : 1;
    case TYPE_CODE_STRING:
      return true;
    default:
      return false;
    }
}

/* Make sure that VAL lives in target memory if it's supposed to.  For
   instance, strings are constructed as character arrays in GDB's
   storage, and this function copies them to the target.  */

struct value *
value_coerce_to_target (struct value *val)
{
  LONGEST length;
  CORE_ADDR addr;

  if (!value_must_coerce_to_target (val))
    return val;

  length = TYPE_LENGTH (check_typedef (value_type (val)));
  addr = allocate_space_in_inferior (length);
  write_memory (addr, value_contents (val), length);
  return value_at_lazy (value_type (val), addr);
}

/* Given a value which is an array, return a value which is a pointer
   to its first element, regardless of whether or not the array has a
   nonzero lower bound.

   FIXME: A previous comment here indicated that this routine should
   be substracting the array's lower bound.  It's not clear to me that
   this is correct.  Given an array subscripting operation, it would
   certainly work to do the adjustment here, essentially computing:

   (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])

   However I believe a more appropriate and logical place to account
   for the lower bound is to do so in value_subscript, essentially
   computing:

   (&array[0] + ((index - lowerbound) * sizeof array[0]))

   As further evidence consider what would happen with operations
   other than array subscripting, where the caller would get back a
   value that had an address somewhere before the actual first element
   of the array, and the information about the lower bound would be
   lost because of the coercion to pointer type.  */

struct value *
value_coerce_array (struct value *arg1)
{
  struct type *type = check_typedef (value_type (arg1));

  /* If the user tries to do something requiring a pointer with an
     array that has not yet been pushed to the target, then this would
     be a good time to do so.  */
  arg1 = value_coerce_to_target (arg1);

  if (VALUE_LVAL (arg1) != lval_memory)
    error (_("Attempt to take address of value not located in memory."));

  return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
			     value_address (arg1));
}

/* Given a value which is a function, return a value which is a pointer
   to it.  */

struct value *
value_coerce_function (struct value *arg1)
{
  struct value *retval;

  if (VALUE_LVAL (arg1) != lval_memory)
    error (_("Attempt to take address of value not located in memory."));

  retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
			       value_address (arg1));
  return retval;
}

/* Return a pointer value for the object for which ARG1 is the
   contents.  */

struct value *
value_addr (struct value *arg1)
{
  struct value *arg2;
  struct type *type = check_typedef (value_type (arg1));

  if (TYPE_IS_REFERENCE (type))
    {
      if (value_bits_synthetic_pointer (arg1, value_embedded_offset (arg1),
	  TARGET_CHAR_BIT * TYPE_LENGTH (type)))
	arg1 = coerce_ref (arg1);
      else
	{
	  /* Copy the value, but change the type from (T&) to (T*).  We
	     keep the same location information, which is efficient, and
	     allows &(&X) to get the location containing the reference.
	     Do the same to its enclosing type for consistency.  */
	  struct type *type_ptr
	    = lookup_pointer_type (TYPE_TARGET_TYPE (type));
	  struct type *enclosing_type
	    = check_typedef (value_enclosing_type (arg1));
	  struct type *enclosing_type_ptr
	    = lookup_pointer_type (TYPE_TARGET_TYPE (enclosing_type));

	  arg2 = value_copy (arg1);
	  deprecated_set_value_type (arg2, type_ptr);
	  set_value_enclosing_type (arg2, enclosing_type_ptr);

	  return arg2;
	}
    }
  if (TYPE_CODE (type) == TYPE_CODE_FUNC)
    return value_coerce_function (arg1);

  /* If this is an array that has not yet been pushed to the target,
     then this would be a good time to force it to memory.  */
  arg1 = value_coerce_to_target (arg1);

  if (VALUE_LVAL (arg1) != lval_memory)
    error (_("Attempt to take address of value not located in memory."));

  /* Get target memory address.  */
  arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
			     (value_address (arg1)
			      + value_embedded_offset (arg1)));

  /* This may be a pointer to a base subobject; so remember the
     full derived object's type ...  */
  set_value_enclosing_type (arg2,
			    lookup_pointer_type (value_enclosing_type (arg1)));
  /* ... and also the relative position of the subobject in the full
     object.  */
  set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
  return arg2;
}

/* Return a reference value for the object for which ARG1 is the
   contents.  */

struct value *
value_ref (struct value *arg1, enum type_code refcode)
{
  struct value *arg2;
  struct type *type = check_typedef (value_type (arg1));

  gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);

  if ((TYPE_CODE (type) == TYPE_CODE_REF
       || TYPE_CODE (type) == TYPE_CODE_RVALUE_REF)
      && TYPE_CODE (type) == refcode)
    return arg1;

  arg2 = value_addr (arg1);
  deprecated_set_value_type (arg2, lookup_reference_type (type, refcode));
  return arg2;
}

/* Given a value of a pointer type, apply the C unary * operator to
   it.  */

struct value *
value_ind (struct value *arg1)
{
  struct type *base_type;
  struct value *arg2;

  arg1 = coerce_array (arg1);

  base_type = check_typedef (value_type (arg1));

  if (VALUE_LVAL (arg1) == lval_computed)
    {
      const struct lval_funcs *funcs = value_computed_funcs (arg1);

      if (funcs->indirect)
	{
	  struct value *result = funcs->indirect (arg1);

	  if (result)
	    return result;
	}
    }

  if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
    {
      struct type *enc_type;

      /* We may be pointing to something embedded in a larger object.
         Get the real type of the enclosing object.  */
      enc_type = check_typedef (value_enclosing_type (arg1));
      enc_type = TYPE_TARGET_TYPE (enc_type);

      if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
	  || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
	/* For functions, go through find_function_addr, which knows
	   how to handle function descriptors.  */
	arg2 = value_at_lazy (enc_type, 
			      find_function_addr (arg1, NULL));
      else
	/* Retrieve the enclosing object pointed to.  */
	arg2 = value_at_lazy (enc_type, 
			      (value_as_address (arg1)
			       - value_pointed_to_offset (arg1)));

      enc_type = value_type (arg2);
      return readjust_indirect_value_type (arg2, enc_type, base_type, arg1);
    }

  error (_("Attempt to take contents of a non-pointer value."));
}

/* Create a value for an array by allocating space in GDB, copying the
   data into that space, and then setting up an array value.

   The array bounds are set from LOWBOUND and HIGHBOUND, and the array
   is populated from the values passed in ELEMVEC.

   The element type of the array is inherited from the type of the
   first element, and all elements must have the same size (though we
   don't currently enforce any restriction on their types).  */

struct value *
value_array (int lowbound, int highbound, struct value **elemvec)
{
  int nelem;
  int idx;
  ULONGEST typelength;
  struct value *val;
  struct type *arraytype;

  /* Validate that the bounds are reasonable and that each of the
     elements have the same size.  */

  nelem = highbound - lowbound + 1;
  if (nelem <= 0)
    {
      error (_("bad array bounds (%d, %d)"), lowbound, highbound);
    }
  typelength = type_length_units (value_enclosing_type (elemvec[0]));
  for (idx = 1; idx < nelem; idx++)
    {
      if (type_length_units (value_enclosing_type (elemvec[idx]))
	  != typelength)
	{
	  error (_("array elements must all be the same size"));
	}
    }

  arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
				       lowbound, highbound);

  if (!current_language->c_style_arrays)
    {
      val = allocate_value (arraytype);
      for (idx = 0; idx < nelem; idx++)
	value_contents_copy (val, idx * typelength, elemvec[idx], 0,
			     typelength);
      return val;
    }

  /* Allocate space to store the array, and then initialize it by
     copying in each element.  */

  val = allocate_value (arraytype);
  for (idx = 0; idx < nelem; idx++)
    value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
  return val;
}

struct value *
value_cstring (const char *ptr, ssize_t len, struct type *char_type)
{
  struct value *val;
  int lowbound = current_language->string_lower_bound;
  ssize_t highbound = len / TYPE_LENGTH (char_type);
  struct type *stringtype
    = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);

  val = allocate_value (stringtype);
  memcpy (value_contents_raw (val), ptr, len);
  return val;
}

/* Create a value for a string constant by allocating space in the
   inferior, copying the data into that space, and returning the
   address with type TYPE_CODE_STRING.  PTR points to the string
   constant data; LEN is number of characters.

   Note that string types are like array of char types with a lower
   bound of zero and an upper bound of LEN - 1.  Also note that the
   string may contain embedded null bytes.  */

struct value *
value_string (const char *ptr, ssize_t len, struct type *char_type)
{
  struct value *val;
  int lowbound = current_language->string_lower_bound;
  ssize_t highbound = len / TYPE_LENGTH (char_type);
  struct type *stringtype
    = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);

  val = allocate_value (stringtype);
  memcpy (value_contents_raw (val), ptr, len);
  return val;
}


/* See if we can pass arguments in T2 to a function which takes
   arguments of types T1.  T1 is a list of NARGS arguments, and T2 is
   a NULL-terminated vector.  If some arguments need coercion of some
   sort, then the coerced values are written into T2.  Return value is
   0 if the arguments could be matched, or the position at which they
   differ if not.

   STATICP is nonzero if the T1 argument list came from a static
   member function.  T2 will still include the ``this'' pointer, but
   it will be skipped.

   For non-static member functions, we ignore the first argument,
   which is the type of the instance variable.  This is because we
   want to handle calls with objects from derived classes.  This is
   not entirely correct: we should actually check to make sure that a
   requested operation is type secure, shouldn't we?  FIXME.  */

static int
typecmp (int staticp, int varargs, int nargs,
	 struct field t1[], struct value *t2[])
{
  int i;

  if (t2 == 0)
    internal_error (__FILE__, __LINE__, 
		    _("typecmp: no argument list"));

  /* Skip ``this'' argument if applicable.  T2 will always include
     THIS.  */
  if (staticp)
    t2 ++;

  for (i = 0;
       (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
       i++)
    {
      struct type *tt1, *tt2;

      if (!t2[i])
	return i + 1;

      tt1 = check_typedef (t1[i].type);
      tt2 = check_typedef (value_type (t2[i]));

      if (TYPE_IS_REFERENCE (tt1)
	  /* We should be doing hairy argument matching, as below.  */
	  && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1)))
	      == TYPE_CODE (tt2)))
	{
	  if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
	    t2[i] = value_coerce_array (t2[i]);
	  else
	    t2[i] = value_ref (t2[i], TYPE_CODE (tt1));
	  continue;
	}

      /* djb - 20000715 - Until the new type structure is in the
	 place, and we can attempt things like implicit conversions,
	 we need to do this so you can take something like a map<const
	 char *>, and properly access map["hello"], because the
	 argument to [] will be a reference to a pointer to a char,
	 and the argument will be a pointer to a char.  */
      while (TYPE_IS_REFERENCE (tt1) || TYPE_CODE (tt1) == TYPE_CODE_PTR)
	{
	  tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
	}
      while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
	     || TYPE_CODE(tt2) == TYPE_CODE_PTR
	     || TYPE_IS_REFERENCE (tt2))
	{
	  tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
	}
      if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
	continue;
      /* Array to pointer is a `trivial conversion' according to the
	 ARM.  */

      /* We should be doing much hairier argument matching (see
         section 13.2 of the ARM), but as a quick kludge, just check
         for the same type code.  */
      if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
	return i + 1;
    }
  if (varargs || t2[i] == NULL)
    return 0;
  return i + 1;
}

/* Helper class for do_search_struct_field that updates *RESULT_PTR
   and *LAST_BOFFSET, and possibly throws an exception if the field
   search has yielded ambiguous results.  */

static void
update_search_result (struct value **result_ptr, struct value *v,
		      LONGEST *last_boffset, LONGEST boffset,
		      const char *name, struct type *type)
{
  if (v != NULL)
    {
      if (*result_ptr != NULL
	  /* The result is not ambiguous if all the classes that are
	     found occupy the same space.  */
	  && *last_boffset != boffset)
	error (_("base class '%s' is ambiguous in type '%s'"),
	       name, TYPE_SAFE_NAME (type));
      *result_ptr = v;
      *last_boffset = boffset;
    }
}

/* A helper for search_struct_field.  This does all the work; most
   arguments are as passed to search_struct_field.  The result is
   stored in *RESULT_PTR, which must be initialized to NULL.
   OUTERMOST_TYPE is the type of the initial type passed to
   search_struct_field; this is used for error reporting when the
   lookup is ambiguous.  */

static void
do_search_struct_field (const char *name, struct value *arg1, LONGEST offset,
			struct type *type, int looking_for_baseclass,
			struct value **result_ptr,
			LONGEST *last_boffset,
			struct type *outermost_type)
{
  int i;
  int nbases;

  type = check_typedef (type);
  nbases = TYPE_N_BASECLASSES (type);

  if (!looking_for_baseclass)
    for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
      {
	const char *t_field_name = TYPE_FIELD_NAME (type, i);

	if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
	  {
	    struct value *v;

	    if (field_is_static (&TYPE_FIELD (type, i)))
	      v = value_static_field (type, i);
	    else
	      v = value_primitive_field (arg1, offset, i, type);
	    *result_ptr = v;
	    return;
	  }

	if (t_field_name
	    && t_field_name[0] == '\0')
	  {
	    struct type *field_type = TYPE_FIELD_TYPE (type, i);

	    if (TYPE_CODE (field_type) == TYPE_CODE_UNION
		|| TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
	      {
		/* Look for a match through the fields of an anonymous
		   union, or anonymous struct.  C++ provides anonymous
		   unions.

		   In the GNU Chill (now deleted from GDB)
		   implementation of variant record types, each
		   <alternative field> has an (anonymous) union type,
		   each member of the union represents a <variant
		   alternative>.  Each <variant alternative> is
		   represented as a struct, with a member for each
		   <variant field>.  */

		struct value *v = NULL;
		LONGEST new_offset = offset;

		/* This is pretty gross.  In G++, the offset in an
		   anonymous union is relative to the beginning of the
		   enclosing struct.  In the GNU Chill (now deleted
		   from GDB) implementation of variant records, the
		   bitpos is zero in an anonymous union field, so we
		   have to add the offset of the union here.  */
		if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
		    || (TYPE_NFIELDS (field_type) > 0
			&& TYPE_FIELD_BITPOS (field_type, 0) == 0))
		  new_offset += TYPE_FIELD_BITPOS (type, i) / 8;

		do_search_struct_field (name, arg1, new_offset, 
					field_type,
					looking_for_baseclass, &v,
					last_boffset,
					outermost_type);
		if (v)
		  {
		    *result_ptr = v;
		    return;
		  }
	      }
	  }
      }

  for (i = 0; i < nbases; i++)
    {
      struct value *v = NULL;
      struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
      /* If we are looking for baseclasses, this is what we get when
         we hit them.  But it could happen that the base part's member
         name is not yet filled in.  */
      int found_baseclass = (looking_for_baseclass
			     && TYPE_BASECLASS_NAME (type, i) != NULL
			     && (strcmp_iw (name, 
					    TYPE_BASECLASS_NAME (type, 
								 i)) == 0));
      LONGEST boffset = value_embedded_offset (arg1) + offset;

      if (BASETYPE_VIA_VIRTUAL (type, i))
	{
	  struct value *v2;

	  boffset = baseclass_offset (type, i,
				      value_contents_for_printing (arg1),
				      value_embedded_offset (arg1) + offset,
				      value_address (arg1),
				      arg1);

	  /* The virtual base class pointer might have been clobbered
	     by the user program.  Make sure that it still points to a
	     valid memory location.  */

	  boffset += value_embedded_offset (arg1) + offset;
	  if (boffset < 0
	      || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
	    {
	      CORE_ADDR base_addr;

	      base_addr = value_address (arg1) + boffset;
	      v2 = value_at_lazy (basetype, base_addr);
	      if (target_read_memory (base_addr, 
				      value_contents_raw (v2),
				      TYPE_LENGTH (value_type (v2))) != 0)
		error (_("virtual baseclass botch"));
	    }
	  else
	    {
	      v2 = value_copy (arg1);
	      deprecated_set_value_type (v2, basetype);
	      set_value_embedded_offset (v2, boffset);
	    }

	  if (found_baseclass)
	    v = v2;
	  else
	    {
	      do_search_struct_field (name, v2, 0,
				      TYPE_BASECLASS (type, i),
				      looking_for_baseclass,
				      result_ptr, last_boffset,
				      outermost_type);
	    }
	}
      else if (found_baseclass)
	v = value_primitive_field (arg1, offset, i, type);
      else
	{
	  do_search_struct_field (name, arg1,
				  offset + TYPE_BASECLASS_BITPOS (type, 
								  i) / 8,
				  basetype, looking_for_baseclass,
				  result_ptr, last_boffset,
				  outermost_type);
	}

      update_search_result (result_ptr, v, last_boffset,
			    boffset, name, outermost_type);
    }
}

/* Helper function used by value_struct_elt to recurse through
   baseclasses.  Look for a field NAME in ARG1.  Search in it assuming
   it has (class) type TYPE.  If found, return value, else return NULL.

   If LOOKING_FOR_BASECLASS, then instead of looking for struct
   fields, look for a baseclass named NAME.  */

static struct value *
search_struct_field (const char *name, struct value *arg1,
		     struct type *type, int looking_for_baseclass)
{
  struct value *result = NULL;
  LONGEST boffset = 0;

  do_search_struct_field (name, arg1, 0, type, looking_for_baseclass,
			  &result, &boffset, type);
  return result;
}

/* Helper function used by value_struct_elt to recurse through
   baseclasses.  Look for a field NAME in ARG1.  Adjust the address of
   ARG1 by OFFSET bytes, and search in it assuming it has (class) type
   TYPE.

   If found, return value, else if name matched and args not return
   (value) -1, else return NULL.  */

static struct value *
search_struct_method (const char *name, struct value **arg1p,
		      struct value **args, LONGEST offset,
		      int *static_memfuncp, struct type *type)
{
  int i;
  struct value *v;
  int name_matched = 0;

  type = check_typedef (type);
  for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
    {
      const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);

      if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
	{
	  int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
	  struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);

	  name_matched = 1;
	  check_stub_method_group (type, i);
	  if (j > 0 && args == 0)
	    error (_("cannot resolve overloaded method "
		     "`%s': no arguments supplied"), name);
	  else if (j == 0 && args == 0)
	    {
	      v = value_fn_field (arg1p, f, j, type, offset);
	      if (v != NULL)
		return v;
	    }
	  else
	    while (j >= 0)
	      {
		if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
			      TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
			      TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
			      TYPE_FN_FIELD_ARGS (f, j), args))
		  {
		    if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
		      return value_virtual_fn_field (arg1p, f, j, 
						     type, offset);
		    if (TYPE_FN_FIELD_STATIC_P (f, j) 
			&& static_memfuncp)
		      *static_memfuncp = 1;
		    v = value_fn_field (arg1p, f, j, type, offset);
		    if (v != NULL)
		      return v;       
		  }
		j--;
	      }
	}
    }

  for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
    {
      LONGEST base_offset;
      LONGEST this_offset;

      if (BASETYPE_VIA_VIRTUAL (type, i))
	{
	  struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
	  struct value *base_val;
	  const gdb_byte *base_valaddr;

	  /* The virtual base class pointer might have been
	     clobbered by the user program.  Make sure that it
	     still points to a valid memory location.  */

	  if (offset < 0 || offset >= TYPE_LENGTH (type))
	    {
	      CORE_ADDR address;

	      gdb::byte_vector tmp (TYPE_LENGTH (baseclass));
	      address = value_address (*arg1p);

	      if (target_read_memory (address + offset,
				      tmp.data (), TYPE_LENGTH (baseclass)) != 0)
		error (_("virtual baseclass botch"));

	      base_val = value_from_contents_and_address (baseclass,
							  tmp.data (),
							  address + offset);
	      base_valaddr = value_contents_for_printing (base_val);
	      this_offset = 0;
	    }
	  else
	    {
	      base_val = *arg1p;
	      base_valaddr = value_contents_for_printing (*arg1p);
	      this_offset = offset;
	    }

	  base_offset = baseclass_offset (type, i, base_valaddr,
					  this_offset, value_address (base_val),
					  base_val);
	}
      else
	{
	  base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
	}
      v = search_struct_method (name, arg1p, args, base_offset + offset,
				static_memfuncp, TYPE_BASECLASS (type, i));
      if (v == (struct value *) - 1)
	{
	  name_matched = 1;
	}
      else if (v)
	{
	  /* FIXME-bothner:  Why is this commented out?  Why is it here?  */
	  /* *arg1p = arg1_tmp; */
	  return v;
	}
    }
  if (name_matched)
    return (struct value *) - 1;
  else
    return NULL;
}

/* Given *ARGP, a value of type (pointer to a)* structure/union,
   extract the component named NAME from the ultimate target
   structure/union and return it as a value with its appropriate type.
   ERR is used in the error message if *ARGP's type is wrong.

   C++: ARGS is a list of argument types to aid in the selection of
   an appropriate method.  Also, handle derived types.

   STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
   where the truthvalue of whether the function that was resolved was
   a static member function or not is stored.

   ERR is an error message to be printed in case the field is not
   found.  */

struct value *
value_struct_elt (struct value **argp, struct value **args,
		  const char *name, int *static_memfuncp, const char *err)
{
  struct type *t;
  struct value *v;

  *argp = coerce_array (*argp);

  t = check_typedef (value_type (*argp));

  /* Follow pointers until we get to a non-pointer.  */

  while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
    {
      *argp = value_ind (*argp);
      /* Don't coerce fn pointer to fn and then back again!  */
      if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
	*argp = coerce_array (*argp);
      t = check_typedef (value_type (*argp));
    }

  if (TYPE_CODE (t) != TYPE_CODE_STRUCT
      && TYPE_CODE (t) != TYPE_CODE_UNION)
    error (_("Attempt to extract a component of a value that is not a %s."),
	   err);

  /* Assume it's not, unless we see that it is.  */
  if (static_memfuncp)
    *static_memfuncp = 0;

  if (!args)
    {
      /* if there are no arguments ...do this...  */

      /* Try as a field first, because if we succeed, there is less
         work to be done.  */
      v = search_struct_field (name, *argp, t, 0);
      if (v)
	return v;

      /* C++: If it was not found as a data field, then try to
         return it as a pointer to a method.  */
      v = search_struct_method (name, argp, args, 0, 
				static_memfuncp, t);

      if (v == (struct value *) - 1)
	error (_("Cannot take address of method %s."), name);
      else if (v == 0)
	{
	  if (TYPE_NFN_FIELDS (t))
	    error (_("There is no member or method named %s."), name);
	  else
	    error (_("There is no member named %s."), name);
	}
      return v;
    }

  v = search_struct_method (name, argp, args, 0, 
			    static_memfuncp, t);
  
  if (v == (struct value *) - 1)
    {
      error (_("One of the arguments you tried to pass to %s could not "
	       "be converted to what the function wants."), name);
    }
  else if (v == 0)
    {
      /* See if user tried to invoke data as function.  If so, hand it
         back.  If it's not callable (i.e., a pointer to function),
         gdb should give an error.  */
      v = search_struct_field (name, *argp, t, 0);
      /* If we found an ordinary field, then it is not a method call.
	 So, treat it as if it were a static member function.  */
      if (v && static_memfuncp)
	*static_memfuncp = 1;
    }

  if (!v)
    throw_error (NOT_FOUND_ERROR,
                 _("Structure has no component named %s."), name);
  return v;
}

/* Given *ARGP, a value of type structure or union, or a pointer/reference
   to a structure or union, extract and return its component (field) of
   type FTYPE at the specified BITPOS.
   Throw an exception on error.  */

struct value *
value_struct_elt_bitpos (struct value **argp, int bitpos, struct type *ftype,
			 const char *err)
{
  struct type *t;
  int i;

  *argp = coerce_array (*argp);

  t = check_typedef (value_type (*argp));

  while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
    {
      *argp = value_ind (*argp);
      if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
	*argp = coerce_array (*argp);
      t = check_typedef (value_type (*argp));
    }

  if (TYPE_CODE (t) != TYPE_CODE_STRUCT
      && TYPE_CODE (t) != TYPE_CODE_UNION)
    error (_("Attempt to extract a component of a value that is not a %s."),
	   err);

  for (i = TYPE_N_BASECLASSES (t); i < TYPE_NFIELDS (t); i++)
    {
      if (!field_is_static (&TYPE_FIELD (t, i))
	  && bitpos == TYPE_FIELD_BITPOS (t, i)
	  && types_equal (ftype, TYPE_FIELD_TYPE (t, i)))
	return value_primitive_field (*argp, 0, i, t);
    }

  error (_("No field with matching bitpos and type."));

  /* Never hit.  */
  return NULL;
}

/* See value.h.  */

int
value_union_variant (struct type *union_type, const gdb_byte *contents)
{
  gdb_assert (TYPE_CODE (union_type) == TYPE_CODE_UNION
	      && TYPE_FLAG_DISCRIMINATED_UNION (union_type));

  struct dynamic_prop *discriminant_prop
    = get_dyn_prop (DYN_PROP_DISCRIMINATED, union_type);
  gdb_assert (discriminant_prop != nullptr);

  struct discriminant_info *info
    = (struct discriminant_info *) discriminant_prop->data.baton;
  gdb_assert (info != nullptr);

  /* If this is a univariant union, just return the sole field.  */
  if (TYPE_NFIELDS (union_type) == 1)
    return 0;
  /* This should only happen for univariants, which we already dealt
     with.  */
  gdb_assert (info->discriminant_index != -1);

  /* Compute the discriminant.  Note that unpack_field_as_long handles
     sign extension when necessary, as does the DWARF reader -- so
     signed discriminants will be handled correctly despite the use of
     an unsigned type here.  */
  ULONGEST discriminant = unpack_field_as_long (union_type, contents,
						info->discriminant_index);

  for (int i = 0; i < TYPE_NFIELDS (union_type); ++i)
    {
      if (i != info->default_index
	  && i != info->discriminant_index
	  && discriminant == info->discriminants[i])
	return i;
    }

  if (info->default_index == -1)
    error (_("Could not find variant corresponding to discriminant %s"),
	   pulongest (discriminant));
  return info->default_index;
}

/* Search through the methods of an object (and its bases) to find a
   specified method.  Return a reference to the fn_field list METHODS of
   overloaded instances defined in the source language.  If available
   and matching, a vector of matching xmethods defined in extension
   languages are also returned in XMETHODS.

   Helper function for value_find_oload_list.
   ARGP is a pointer to a pointer to a value (the object).
   METHOD is a string containing the method name.
   OFFSET is the offset within the value.
   TYPE is the assumed type of the object.
   METHODS is a pointer to the matching overloaded instances defined
      in the source language.  Since this is a recursive function,
      *METHODS should be set to NULL when calling this function.
   NUM_FNS is the number of overloaded instances.  *NUM_FNS should be set to
      0 when calling this function.
   XMETHODS is the vector of matching xmethod workers.  *XMETHODS
      should also be set to NULL when calling this function.
   BASETYPE is set to the actual type of the subobject where the
      method is found.
   BOFFSET is the offset of the base subobject where the method is found.  */

static void
find_method_list (struct value **argp, const char *method,
		  LONGEST offset, struct type *type,
		  gdb::array_view<fn_field> *methods,
		  std::vector<xmethod_worker_up> *xmethods,
		  struct type **basetype, LONGEST *boffset)
{
  int i;
  struct fn_field *f = NULL;

  gdb_assert (methods != NULL && xmethods != NULL);
  type = check_typedef (type);

  /* First check in object itself.
     This function is called recursively to search through base classes.
     If there is a source method match found at some stage, then we need not
     look for source methods in consequent recursive calls.  */
  if (methods->empty ())
    {
      for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
	{
	  /* pai: FIXME What about operators and type conversions?  */
	  const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);

	  if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
	    {
	      int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
	      f = TYPE_FN_FIELDLIST1 (type, i);
	      *methods = gdb::make_array_view (f, len);

	      *basetype = type;
	      *boffset = offset;

	      /* Resolve any stub methods.  */
	      check_stub_method_group (type, i);

	      break;
	    }
	}
    }

  /* Unlike source methods, xmethods can be accumulated over successive
     recursive calls.  In other words, an xmethod named 'm' in a class
     will not hide an xmethod named 'm' in its base class(es).  We want
     it to be this way because xmethods are after all convenience functions
     and hence there is no point restricting them with something like method
     hiding.  Moreover, if hiding is done for xmethods as well, then we will
     have to provide a mechanism to un-hide (like the 'using' construct).  */
  get_matching_xmethod_workers (type, method, xmethods);

  /* If source methods are not found in current class, look for them in the
     base classes.  We also have to go through the base classes to gather
     extension methods.  */
  for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
    {
      LONGEST base_offset;

      if (BASETYPE_VIA_VIRTUAL (type, i))
	{
	  base_offset = baseclass_offset (type, i,
					  value_contents_for_printing (*argp),
					  value_offset (*argp) + offset,
					  value_address (*argp), *argp);
	}
      else /* Non-virtual base, simply use bit position from debug
	      info.  */
	{
	  base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
	}

      find_method_list (argp, method, base_offset + offset,
			TYPE_BASECLASS (type, i), methods,
			xmethods, basetype, boffset);
    }
}

/* Return the list of overloaded methods of a specified name.  The methods
   could be those GDB finds in the binary, or xmethod.  Methods found in
   the binary are returned in METHODS, and xmethods are returned in
   XMETHODS.

   ARGP is a pointer to a pointer to a value (the object).
   METHOD is the method name.
   OFFSET is the offset within the value contents.
   METHODS is the list of matching overloaded instances defined in
      the source language.
   XMETHODS is the vector of matching xmethod workers defined in
      extension languages.
   BASETYPE is set to the type of the base subobject that defines the
      method.
   BOFFSET is the offset of the base subobject which defines the method.  */

static void
value_find_oload_method_list (struct value **argp, const char *method,
			      LONGEST offset,
			      gdb::array_view<fn_field> *methods,
			      std::vector<xmethod_worker_up> *xmethods,
			      struct type **basetype, LONGEST *boffset)
{
  struct type *t;

  t = check_typedef (value_type (*argp));

  /* Code snarfed from value_struct_elt.  */
  while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
    {
      *argp = value_ind (*argp);
      /* Don't coerce fn pointer to fn and then back again!  */
      if (TYPE_CODE (check_typedef (value_type (*argp))) != TYPE_CODE_FUNC)
	*argp = coerce_array (*argp);
      t = check_typedef (value_type (*argp));
    }

  if (TYPE_CODE (t) != TYPE_CODE_STRUCT
      && TYPE_CODE (t) != TYPE_CODE_UNION)
    error (_("Attempt to extract a component of a "
	     "value that is not a struct or union"));

  gdb_assert (methods != NULL && xmethods != NULL);

  /* Clear the lists.  */
  *methods = {};
  xmethods->clear ();

  find_method_list (argp, method, 0, t, methods, xmethods,
		    basetype, boffset);
}

/* Given an array of arguments (ARGS) (which includes an entry for
   "this" in the case of C++ methods), the NAME of a function, and
   whether it's a method or not (METHOD), find the best function that
   matches on the argument types according to the overload resolution
   rules.

   METHOD can be one of three values:
     NON_METHOD for non-member functions.
     METHOD: for member functions.
     BOTH: used for overload resolution of operators where the
       candidates are expected to be either member or non member
       functions.  In this case the first argument ARGTYPES
       (representing 'this') is expected to be a reference to the
       target object, and will be dereferenced when attempting the
       non-member search.

   In the case of class methods, the parameter OBJ is an object value
   in which to search for overloaded methods.

   In the case of non-method functions, the parameter FSYM is a symbol
   corresponding to one of the overloaded functions.

   Return value is an integer: 0 -> good match, 10 -> debugger applied
   non-standard coercions, 100 -> incompatible.

   If a method is being searched for, VALP will hold the value.
   If a non-method is being searched for, SYMP will hold the symbol 
   for it.

   If a method is being searched for, and it is a static method,
   then STATICP will point to a non-zero value.

   If NO_ADL argument dependent lookup is disabled.  This is used to prevent
   ADL overload candidates when performing overload resolution for a fully
   qualified name.

   If NOSIDE is EVAL_AVOID_SIDE_EFFECTS, then OBJP's memory cannot be
   read while picking the best overload match (it may be all zeroes and thus
   not have a vtable pointer), in which case skip virtual function lookup.
   This is ok as typically EVAL_AVOID_SIDE_EFFECTS is only used to determine
   the result type.

   Note: This function does *not* check the value of
   overload_resolution.  Caller must check it to see whether overload
   resolution is permitted.  */

int
find_overload_match (gdb::array_view<value *> args,
		     const char *name, enum oload_search_type method,
		     struct value **objp, struct symbol *fsym,
		     struct value **valp, struct symbol **symp, 
		     int *staticp, const int no_adl,
		     const enum noside noside)
{
  struct value *obj = (objp ? *objp : NULL);
  struct type *obj_type = obj ? value_type (obj) : NULL;
  /* Index of best overloaded function.  */
  int func_oload_champ = -1;
  int method_oload_champ = -1;
  int src_method_oload_champ = -1;
  int ext_method_oload_champ = -1;

  /* The measure for the current best match.  */
  badness_vector method_badness;
  badness_vector func_badness;
  badness_vector ext_method_badness;
  badness_vector src_method_badness;

  struct value *temp = obj;
  /* For methods, the list of overloaded methods.  */
  gdb::array_view<fn_field> methods;
  /* For non-methods, the list of overloaded function symbols.  */
  std::vector<symbol *> functions;
  /* For xmethods, the vector of xmethod workers.  */
  std::vector<xmethod_worker_up> xmethods;
  struct type *basetype = NULL;
  LONGEST boffset;

  const char *obj_type_name = NULL;
  const char *func_name = NULL;
  gdb::unique_xmalloc_ptr<char> temp_func;
  enum oload_classification match_quality;
  enum oload_classification method_match_quality = INCOMPATIBLE;
  enum oload_classification src_method_match_quality = INCOMPATIBLE;
  enum oload_classification ext_method_match_quality = INCOMPATIBLE;
  enum oload_classification func_match_quality = INCOMPATIBLE;

  /* Get the list of overloaded methods or functions.  */
  if (method == METHOD || method == BOTH)
    {
      gdb_assert (obj);

      /* OBJ may be a pointer value rather than the object itself.  */
      obj = coerce_ref (obj);
      while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
	obj = coerce_ref (value_ind (obj));
      obj_type_name = TYPE_NAME (value_type (obj));

      /* First check whether this is a data member, e.g. a pointer to
	 a function.  */
      if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
	{
	  *valp = search_struct_field (name, obj,
				       check_typedef (value_type (obj)), 0);
	  if (*valp)
	    {
	      *staticp = 1;
	      return 0;
	    }
	}

      /* Retrieve the list of methods with the name NAME.  */
      value_find_oload_method_list (&temp, name, 0, &methods,
				    &xmethods, &basetype, &boffset);
      /* If this is a method only search, and no methods were found
         the search has failed.  */
      if (method == METHOD && methods.empty () && xmethods.empty ())
	error (_("Couldn't find method %s%s%s"),
	       obj_type_name,
	       (obj_type_name && *obj_type_name) ? "::" : "",
	       name);
      /* If we are dealing with stub method types, they should have
	 been resolved by find_method_list via
	 value_find_oload_method_list above.  */
      if (!methods.empty ())
	{
	  gdb_assert (TYPE_SELF_TYPE (methods[0].type) != NULL);

	  src_method_oload_champ
	    = find_oload_champ (args,
				methods.size (),
				methods.data (), NULL, NULL,
				&src_method_badness);

	  src_method_match_quality = classify_oload_match
	    (src_method_badness, args.size (),
	     oload_method_static_p (methods.data (), src_method_oload_champ));
	}

      if (!xmethods.empty ())
	{
	  ext_method_oload_champ
	    = find_oload_champ (args,
				xmethods.size (),
				NULL, xmethods.data (), NULL,
				&ext_method_badness);
	  ext_method_match_quality = classify_oload_match (ext_method_badness,
							   args.size (), 0);
	}

      if (src_method_oload_champ >= 0 && ext_method_oload_champ >= 0)
	{
	  switch (compare_badness (ext_method_badness, src_method_badness))
	    {
	      case 0: /* Src method and xmethod are equally good.  */
		/* If src method and xmethod are equally good, then
		   xmethod should be the winner.  Hence, fall through to the
		   case where a xmethod is better than the source
		   method, except when the xmethod match quality is
		   non-standard.  */
		/* FALLTHROUGH */
	      case 1: /* Src method and ext method are incompatible.  */
		/* If ext method match is not standard, then let source method
		   win.  Otherwise, fallthrough to let xmethod win.  */
		if (ext_method_match_quality != STANDARD)
		  {
		    method_oload_champ = src_method_oload_champ;
		    method_badness = src_method_badness;
		    ext_method_oload_champ = -1;
		    method_match_quality = src_method_match_quality;
		    break;
		  }
		/* FALLTHROUGH */
	      case 2: /* Ext method is champion.  */
		method_oload_champ = ext_method_oload_champ;
		method_badness = ext_method_badness;
		src_method_oload_champ = -1;
		method_match_quality = ext_method_match_quality;
		break;
	      case 3: /* Src method is champion.  */
		method_oload_champ = src_method_oload_champ;
		method_badness = src_method_badness;
		ext_method_oload_champ = -1;
		method_match_quality = src_method_match_quality;
		break;
	      default:
		gdb_assert_not_reached ("Unexpected overload comparison "
					"result");
		break;
	    }
	}
      else if (src_method_oload_champ >= 0)
	{
	  method_oload_champ = src_method_oload_champ;
	  method_badness = src_method_badness;
	  method_match_quality = src_method_match_quality;
	}
      else if (ext_method_oload_champ >= 0)
	{
	  method_oload_champ = ext_method_oload_champ;
	  method_badness = ext_method_badness;
	  method_match_quality = ext_method_match_quality;
	}
    }

  if (method == NON_METHOD || method == BOTH)
    {
      const char *qualified_name = NULL;

      /* If the overload match is being search for both as a method
         and non member function, the first argument must now be
         dereferenced.  */
      if (method == BOTH)
	args[0] = value_ind (args[0]);

      if (fsym)
        {
          qualified_name = fsym->natural_name ();

          /* If we have a function with a C++ name, try to extract just
	     the function part.  Do not try this for non-functions (e.g.
	     function pointers).  */
          if (qualified_name
              && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym)))
	      == TYPE_CODE_FUNC)
            {
	      temp_func = cp_func_name (qualified_name);

	      /* If cp_func_name did not remove anything, the name of the
	         symbol did not include scope or argument types - it was
	         probably a C-style function.  */
	      if (temp_func != nullptr)
		{
		  if (strcmp (temp_func.get (), qualified_name) == 0)
		    func_name = NULL;
		  else
		    func_name = temp_func.get ();
		}
            }
        }
      else
	{
	  func_name = name;
	  qualified_name = name;
	}

      /* If there was no C++ name, this must be a C-style function or
	 not a function at all.  Just return the same symbol.  Do the
	 same if cp_func_name fails for some reason.  */
      if (func_name == NULL)
        {
	  *symp = fsym;
          return 0;
        }

      func_oload_champ = find_oload_champ_namespace (args,
                                                     func_name,
                                                     qualified_name,
                                                     &functions,
                                                     &func_badness,
                                                     no_adl);

      if (func_oload_champ >= 0)
	func_match_quality = classify_oload_match (func_badness,
						   args.size (), 0);
    }

  /* Did we find a match ?  */
  if (method_oload_champ == -1 && func_oload_champ == -1)
    throw_error (NOT_FOUND_ERROR,
                 _("No symbol \"%s\" in current context."),
                 name);

  /* If we have found both a method match and a function
     match, find out which one is better, and calculate match
     quality.  */
  if (method_oload_champ >= 0 && func_oload_champ >= 0)
    {
      switch (compare_badness (func_badness, method_badness))
        {
	  case 0: /* Top two contenders are equally good.  */
	    /* FIXME: GDB does not support the general ambiguous case.
	     All candidates should be collected and presented the
	     user.  */
	    error (_("Ambiguous overload resolution"));
	    break;
	  case 1: /* Incomparable top contenders.  */
	    /* This is an error incompatible candidates
	       should not have been proposed.  */
	    error (_("Internal error: incompatible "
		     "overload candidates proposed"));
	    break;
	  case 2: /* Function champion.  */
	    method_oload_champ = -1;
	    match_quality = func_match_quality;
	    break;
	  case 3: /* Method champion.  */
	    func_oload_champ = -1;
	    match_quality = method_match_quality;
	    break;
	  default:
	    error (_("Internal error: unexpected overload comparison result"));
	    break;
        }
    }
  else
    {
      /* We have either a method match or a function match.  */
      if (method_oload_champ >= 0)
	match_quality = method_match_quality;
      else
	match_quality = func_match_quality;
    }

  if (match_quality == INCOMPATIBLE)
    {
      if (method == METHOD)
	error (_("Cannot resolve method %s%s%s to any overloaded instance"),
	       obj_type_name,
	       (obj_type_name && *obj_type_name) ? "::" : "",
	       name);
      else
	error (_("Cannot resolve function %s to any overloaded instance"),
	       func_name);
    }
  else if (match_quality == NON_STANDARD)
    {
      if (method == METHOD)
	warning (_("Using non-standard conversion to match "
		   "method %s%s%s to supplied arguments"),
		 obj_type_name,
		 (obj_type_name && *obj_type_name) ? "::" : "",
		 name);
      else
	warning (_("Using non-standard conversion to match "
		   "function %s to supplied arguments"),
		 func_name);
    }

  if (staticp != NULL)
    *staticp = oload_method_static_p (methods.data (), method_oload_champ);

  if (method_oload_champ >= 0)
    {
      if (src_method_oload_champ >= 0)
	{
	  if (TYPE_FN_FIELD_VIRTUAL_P (methods, method_oload_champ)
	      && noside != EVAL_AVOID_SIDE_EFFECTS)
	    {
	      *valp = value_virtual_fn_field (&temp, methods.data (),
					      method_oload_champ, basetype,
					      boffset);
	    }
	  else
	    *valp = value_fn_field (&temp, methods.data (),
				    method_oload_champ, basetype, boffset);
	}
      else
	*valp = value_from_xmethod
	  (std::move (xmethods[ext_method_oload_champ]));
    }
  else
    *symp = functions[func_oload_champ];

  if (objp)
    {
      struct type *temp_type = check_typedef (value_type (temp));
      struct type *objtype = check_typedef (obj_type);

      if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
	  && (TYPE_CODE (objtype) == TYPE_CODE_PTR
	      || TYPE_IS_REFERENCE (objtype)))
	{
	  temp = value_addr (temp);
	}
      *objp = temp;
    }

  switch (match_quality)
    {
    case INCOMPATIBLE:
      return 100;
    case NON_STANDARD:
      return 10;
    default:				/* STANDARD */
      return 0;
    }
}

/* Find the best overload match, searching for FUNC_NAME in namespaces
   contained in QUALIFIED_NAME until it either finds a good match or
   runs out of namespaces.  It stores the overloaded functions in
   *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV.  If NO_ADL,
   argument dependent lookup is not performed.  */

static int
find_oload_champ_namespace (gdb::array_view<value *> args,
			    const char *func_name,
			    const char *qualified_name,
			    std::vector<symbol *> *oload_syms,
			    badness_vector *oload_champ_bv,
			    const int no_adl)
{
  int oload_champ;

  find_oload_champ_namespace_loop (args,
				   func_name,
				   qualified_name, 0,
				   oload_syms, oload_champ_bv,
				   &oload_champ,
				   no_adl);

  return oload_champ;
}

/* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
   how deep we've looked for namespaces, and the champ is stored in
   OLOAD_CHAMP.  The return value is 1 if the champ is a good one, 0
   if it isn't.  Other arguments are the same as in
   find_oload_champ_namespace.  */

static int
find_oload_champ_namespace_loop (gdb::array_view<value *> args,
				 const char *func_name,
				 const char *qualified_name,
				 int namespace_len,
				 std::vector<symbol *> *oload_syms,
				 badness_vector *oload_champ_bv,
				 int *oload_champ,
				 const int no_adl)
{
  int next_namespace_len = namespace_len;
  int searched_deeper = 0;
  int new_oload_champ;
  char *new_namespace;

  if (next_namespace_len != 0)
    {
      gdb_assert (qualified_name[next_namespace_len] == ':');
      next_namespace_len +=  2;
    }
  next_namespace_len +=
    cp_find_first_component (qualified_name + next_namespace_len);

  /* First, see if we have a deeper namespace we can search in.
     If we get a good match there, use it.  */

  if (qualified_name[next_namespace_len] == ':')
    {
      searched_deeper = 1;

      if (find_oload_champ_namespace_loop (args,
					   func_name, qualified_name,
					   next_namespace_len,
					   oload_syms, oload_champ_bv,
					   oload_champ, no_adl))
	{
	  return 1;
	}
    };

  /* If we reach here, either we're in the deepest namespace or we
     didn't find a good match in a deeper namespace.  But, in the
     latter case, we still have a bad match in a deeper namespace;
     note that we might not find any match at all in the current
     namespace.  (There's always a match in the deepest namespace,
     because this overload mechanism only gets called if there's a
     function symbol to start off with.)  */

  new_namespace = (char *) alloca (namespace_len + 1);
  strncpy (new_namespace, qualified_name, namespace_len);
  new_namespace[namespace_len] = '\0';

  std::vector<symbol *> new_oload_syms
    = make_symbol_overload_list (func_name, new_namespace);

  /* If we have reached the deepest level perform argument
     determined lookup.  */
  if (!searched_deeper && !no_adl)
    {
      int ix;
      struct type **arg_types;

      /* Prepare list of argument types for overload resolution.  */
      arg_types = (struct type **)
	alloca (args.size () * (sizeof (struct type *)));
      for (ix = 0; ix < args.size (); ix++)
	arg_types[ix] = value_type (args[ix]);
      add_symbol_overload_list_adl ({arg_types, args.size ()}, func_name,
				    &new_oload_syms);
    }

  badness_vector new_oload_champ_bv;
  new_oload_champ = find_oload_champ (args,
				      new_oload_syms.size (),
				      NULL, NULL, new_oload_syms.data (),
				      &new_oload_champ_bv);

  /* Case 1: We found a good match.  Free earlier matches (if any),
     and return it.  Case 2: We didn't find a good match, but we're
     not the deepest function.  Then go with the bad match that the
     deeper function found.  Case 3: We found a bad match, and we're
     the deepest function.  Then return what we found, even though
     it's a bad match.  */

  if (new_oload_champ != -1
      && classify_oload_match (new_oload_champ_bv, args.size (), 0) == STANDARD)
    {
      *oload_syms = std::move (new_oload_syms);
      *oload_champ = new_oload_champ;
      *oload_champ_bv = std::move (new_oload_champ_bv);
      return 1;
    }
  else if (searched_deeper)
    {
      return 0;
    }
  else
    {
      *oload_syms = std::move (new_oload_syms);
      *oload_champ = new_oload_champ;
      *oload_champ_bv = std::move (new_oload_champ_bv);
      return 0;
    }
}

/* Look for a function to take ARGS.  Find the best match from among
   the overloaded methods or functions given by METHODS or FUNCTIONS
   or XMETHODS, respectively.  One, and only one of METHODS, FUNCTIONS
   and XMETHODS can be non-NULL.

   NUM_FNS is the length of the array pointed at by METHODS, FUNCTIONS
   or XMETHODS, whichever is non-NULL.

   Return the index of the best match; store an indication of the
   quality of the match in OLOAD_CHAMP_BV.  */

static int
find_oload_champ (gdb::array_view<value *> args,
		  size_t num_fns,
		  fn_field *methods,
		  xmethod_worker_up *xmethods,
		  symbol **functions,
		  badness_vector *oload_champ_bv)
{
  /* A measure of how good an overloaded instance is.  */
  badness_vector bv;
  /* Index of best overloaded function.  */
  int oload_champ = -1;
  /* Current ambiguity state for overload resolution.  */
  int oload_ambiguous = 0;
  /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs.  */

  /* A champion can be found among methods alone, or among functions
     alone, or in xmethods alone, but not in more than one of these
     groups.  */
  gdb_assert ((methods != NULL) + (functions != NULL) + (xmethods != NULL)
	      == 1);

  /* Consider each candidate in turn.  */
  for (size_t ix = 0; ix < num_fns; ix++)
    {
      int jj;
      int static_offset = 0;
      std::vector<type *> parm_types;

      if (xmethods != NULL)
	parm_types = xmethods[ix]->get_arg_types ();
      else
	{
	  size_t nparms;

	  if (methods != NULL)
	    {
	      nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (methods, ix));
	      static_offset = oload_method_static_p (methods, ix);
	    }
	  else
	    nparms = TYPE_NFIELDS (SYMBOL_TYPE (functions[ix]));

	  parm_types.reserve (nparms);
	  for (jj = 0; jj < nparms; jj++)
	    {
	      type *t = (methods != NULL
			 ? (TYPE_FN_FIELD_ARGS (methods, ix)[jj].type)
			 : TYPE_FIELD_TYPE (SYMBOL_TYPE (functions[ix]),
					    jj));
	      parm_types.push_back (t);
	    }
	}

      /* Compare parameter types to supplied argument types.  Skip
         THIS for static methods.  */
      bv = rank_function (parm_types,
			  args.slice (static_offset));

      if (overload_debug)
	{
	  if (methods != NULL)
	    fprintf_filtered (gdb_stderr,
			      "Overloaded method instance %s, # of parms %d\n",
			      methods[ix].physname, (int) parm_types.size ());
	  else if (xmethods != NULL)
	    fprintf_filtered (gdb_stderr,
			      "Xmethod worker, # of parms %d\n",
			      (int) parm_types.size ());
	  else
	    fprintf_filtered (gdb_stderr,
			      "Overloaded function instance "
			      "%s # of parms %d\n",
			      functions[ix]->demangled_name (),
			      (int) parm_types.size ());

	  fprintf_filtered (gdb_stderr,
			    "...Badness of length : {%d, %d}\n",
			    bv[0].rank, bv[0].subrank);

	  for (jj = 1; jj < bv.size (); jj++)
	    fprintf_filtered (gdb_stderr,
			      "...Badness of arg %d : {%d, %d}\n",
			      jj, bv[jj].rank, bv[jj].subrank);
	}

      if (oload_champ_bv->empty ())
	{
	  *oload_champ_bv = std::move (bv);
	  oload_champ = 0;
	}
      else /* See whether current candidate is better or worse than
	      previous best.  */
	switch (compare_badness (bv, *oload_champ_bv))
	  {
	  case 0:		/* Top two contenders are equally good.  */
	    oload_ambiguous = 1;
	    break;
	  case 1:		/* Incomparable top contenders.  */
	    oload_ambiguous = 2;
	    break;
	  case 2:		/* New champion, record details.  */
	    *oload_champ_bv = std::move (bv);
	    oload_ambiguous = 0;
	    oload_champ = ix;
	    break;
	  case 3:
	  default:
	    break;
	  }
      if (overload_debug)
	fprintf_filtered (gdb_stderr, "Overload resolution "
			  "champion is %d, ambiguous? %d\n",
			  oload_champ, oload_ambiguous);
    }

  return oload_champ;
}

/* Return 1 if we're looking at a static method, 0 if we're looking at
   a non-static method or a function that isn't a method.  */

static int
oload_method_static_p (struct fn_field *fns_ptr, int index)
{
  if (fns_ptr && index >= 0 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
    return 1;
  else
    return 0;
}

/* Check how good an overload match OLOAD_CHAMP_BV represents.  */

static enum oload_classification
classify_oload_match (const badness_vector &oload_champ_bv,
		      int nargs,
		      int static_offset)
{
  int ix;
  enum oload_classification worst = STANDARD;

  for (ix = 1; ix <= nargs - static_offset; ix++)
    {
      /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
         or worse return INCOMPATIBLE.  */
      if (compare_ranks (oload_champ_bv[ix],
                         INCOMPATIBLE_TYPE_BADNESS) <= 0)
	return INCOMPATIBLE;	/* Truly mismatched types.  */
      /* Otherwise If this conversion is as bad as
         NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD.  */
      else if (compare_ranks (oload_champ_bv[ix],
                              NS_POINTER_CONVERSION_BADNESS) <= 0)
	worst = NON_STANDARD;	/* Non-standard type conversions
				   needed.  */
    }

  /* If no INCOMPATIBLE classification was found, return the worst one
     that was found (if any).  */
  return worst;
}

/* C++: return 1 is NAME is a legitimate name for the destructor of
   type TYPE.  If TYPE does not have a destructor, or if NAME is
   inappropriate for TYPE, an error is signaled.  Parameter TYPE should not yet
   have CHECK_TYPEDEF applied, this function will apply it itself.  */

int
destructor_name_p (const char *name, struct type *type)
{
  if (name[0] == '~')
    {
      const char *dname = type_name_or_error (type);
      const char *cp = strchr (dname, '<');
      unsigned int len;

      /* Do not compare the template part for template classes.  */
      if (cp == NULL)
	len = strlen (dname);
      else
	len = cp - dname;
      if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
	error (_("name of destructor must equal name of class"));
      else
	return 1;
    }
  return 0;
}

/* Find an enum constant named NAME in TYPE.  TYPE must be an "enum
   class".  If the name is found, return a value representing it;
   otherwise throw an exception.  */

static struct value *
enum_constant_from_type (struct type *type, const char *name)
{
  int i;
  int name_len = strlen (name);

  gdb_assert (TYPE_CODE (type) == TYPE_CODE_ENUM
	      && TYPE_DECLARED_CLASS (type));

  for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); ++i)
    {
      const char *fname = TYPE_FIELD_NAME (type, i);
      int len;

      if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_ENUMVAL
	  || fname == NULL)
	continue;

      /* Look for the trailing "::NAME", since enum class constant
	 names are qualified here.  */
      len = strlen (fname);
      if (len + 2 >= name_len
	  && fname[len - name_len - 2] == ':'
	  && fname[len - name_len - 1] == ':'
	  && strcmp (&fname[len - name_len], name) == 0)
	return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, i));
    }

  error (_("no constant named \"%s\" in enum \"%s\""),
	 name, TYPE_NAME (type));
}

/* C++: Given an aggregate type CURTYPE, and a member name NAME,
   return the appropriate member (or the address of the member, if
   WANT_ADDRESS).  This function is used to resolve user expressions
   of the form "DOMAIN::NAME".  For more details on what happens, see
   the comment before value_struct_elt_for_reference.  */

struct value *
value_aggregate_elt (struct type *curtype, const char *name,
		     struct type *expect_type, int want_address,
		     enum noside noside)
{
  switch (TYPE_CODE (curtype))
    {
    case TYPE_CODE_STRUCT:
    case TYPE_CODE_UNION:
      return value_struct_elt_for_reference (curtype, 0, curtype, 
					     name, expect_type,
					     want_address, noside);
    case TYPE_CODE_NAMESPACE:
      return value_namespace_elt (curtype, name, 
				  want_address, noside);

    case TYPE_CODE_ENUM:
      return enum_constant_from_type (curtype, name);

    default:
      internal_error (__FILE__, __LINE__,
		      _("non-aggregate type in value_aggregate_elt"));
    }
}

/* Compares the two method/function types T1 and T2 for "equality" 
   with respect to the methods' parameters.  If the types of the
   two parameter lists are the same, returns 1; 0 otherwise.  This
   comparison may ignore any artificial parameters in T1 if
   SKIP_ARTIFICIAL is non-zero.  This function will ALWAYS skip
   the first artificial parameter in T1, assumed to be a 'this' pointer.

   The type T2 is expected to have come from make_params (in eval.c).  */

static int
compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
{
  int start = 0;

  if (TYPE_NFIELDS (t1) > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
    ++start;

  /* If skipping artificial fields, find the first real field
     in T1.  */
  if (skip_artificial)
    {
      while (start < TYPE_NFIELDS (t1)
	     && TYPE_FIELD_ARTIFICIAL (t1, start))
	++start;
    }

  /* Now compare parameters.  */

  /* Special case: a method taking void.  T1 will contain no
     non-artificial fields, and T2 will contain TYPE_CODE_VOID.  */
  if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
      && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
    return 1;

  if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
    {
      int i;

      for (i = 0; i < TYPE_NFIELDS (t2); ++i)
	{
	  if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
					    TYPE_FIELD_TYPE (t2, i), NULL),
	                     EXACT_MATCH_BADNESS) != 0)
	    return 0;
	}

      return 1;
    }

  return 0;
}

/* C++: Given an aggregate type VT, and a class type CLS, search
   recursively for CLS using value V; If found, store the offset
   which is either fetched from the virtual base pointer if CLS
   is virtual or accumulated offset of its parent classes if
   CLS is non-virtual in *BOFFS, set ISVIRT to indicate if CLS
   is virtual, and return true.  If not found, return false.  */

static bool
get_baseclass_offset (struct type *vt, struct type *cls,
		      struct value *v, int *boffs, bool *isvirt)
{
  for (int i = 0; i < TYPE_N_BASECLASSES (vt); i++)
    {
      struct type *t = TYPE_FIELD_TYPE (vt, i);
      if (types_equal (t, cls))
        {
          if (BASETYPE_VIA_VIRTUAL (vt, i))
            {
	      const gdb_byte *adr = value_contents_for_printing (v);
	      *boffs = baseclass_offset (vt, i, adr, value_offset (v),
					 value_as_long (v), v);
	      *isvirt = true;
            }
          else
	    *isvirt = false;
          return true;
        }

      if (get_baseclass_offset (check_typedef (t), cls, v, boffs, isvirt))
        {
	  if (*isvirt == false)	/* Add non-virtual base offset.  */
	    {
	      const gdb_byte *adr = value_contents_for_printing (v);
	      *boffs += baseclass_offset (vt, i, adr, value_offset (v),
					  value_as_long (v), v);
	    }
	  return true;
	}
    }

  return false;
}

/* C++: Given an aggregate type CURTYPE, and a member name NAME,
   return the address of this member as a "pointer to member" type.
   If INTYPE is non-null, then it will be the type of the member we
   are looking for.  This will help us resolve "pointers to member
   functions".  This function is used to resolve user expressions of
   the form "DOMAIN::NAME".  */

static struct value *
value_struct_elt_for_reference (struct type *domain, int offset,
				struct type *curtype, const char *name,
				struct type *intype, 
				int want_address,
				enum noside noside)
{
  struct type *t = check_typedef (curtype);
  int i;
  struct value *result;

  if (TYPE_CODE (t) != TYPE_CODE_STRUCT
      && TYPE_CODE (t) != TYPE_CODE_UNION)
    error (_("Internal error: non-aggregate type "
	     "to value_struct_elt_for_reference"));

  for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
    {
      const char *t_field_name = TYPE_FIELD_NAME (t, i);

      if (t_field_name && strcmp (t_field_name, name) == 0)
	{
	  if (field_is_static (&TYPE_FIELD (t, i)))
	    {
	      struct value *v = value_static_field (t, i);
	      if (want_address)
		v = value_addr (v);
	      return v;
	    }
	  if (TYPE_FIELD_PACKED (t, i))
	    error (_("pointers to bitfield members not allowed"));

	  if (want_address)
	    return value_from_longest
	      (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
	       offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
	  else if (noside != EVAL_NORMAL)
	    return allocate_value (TYPE_FIELD_TYPE (t, i));
	  else
	    {
	      /* Try to evaluate NAME as a qualified name with implicit
		 this pointer.  In this case, attempt to return the
		 equivalent to `this->*(&TYPE::NAME)'.  */
	      struct value *v = value_of_this_silent (current_language);
	      if (v != NULL)
		{
		  struct value *ptr, *this_v = v;
		  long mem_offset;
		  struct type *type, *tmp;

		  ptr = value_aggregate_elt (domain, name, NULL, 1, noside);
		  type = check_typedef (value_type (ptr));
		  gdb_assert (type != NULL
			      && TYPE_CODE (type) == TYPE_CODE_MEMBERPTR);
		  tmp = lookup_pointer_type (TYPE_SELF_TYPE (type));
		  v = value_cast_pointers (tmp, v, 1);
		  mem_offset = value_as_long (ptr);
		  if (domain != curtype)
		    {
		      /* Find class offset of type CURTYPE from either its
			 parent type DOMAIN or the type of implied this.  */
		      int boff = 0;
		      bool isvirt = false;
		      if (get_baseclass_offset (domain, curtype, v, &boff,
						&isvirt))
		        mem_offset += boff;
		      else
		        {
		          struct type *p = check_typedef (value_type (this_v));
		          p = check_typedef (TYPE_TARGET_TYPE (p));
		          if (get_baseclass_offset (p, curtype, this_v,
						    &boff, &isvirt))
		            mem_offset += boff;
		        }
		    }
		  tmp = lookup_pointer_type (TYPE_TARGET_TYPE (type));
		  result = value_from_pointer (tmp,
					       value_as_long (v) + mem_offset);
		  return value_ind (result);
		}

	      error (_("Cannot reference non-static field \"%s\""), name);
	    }
	}
    }

  /* C++: If it was not found as a data field, then try to return it
     as a pointer to a method.  */

  /* Perform all necessary dereferencing.  */
  while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
    intype = TYPE_TARGET_TYPE (intype);

  for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
    {
      const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);

      if (t_field_name && strcmp (t_field_name, name) == 0)
	{
	  int j;
	  int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
	  struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);

	  check_stub_method_group (t, i);

	  if (intype)
	    {
	      for (j = 0; j < len; ++j)
		{
		  if (TYPE_CONST (intype) != TYPE_FN_FIELD_CONST (f, j))
		    continue;
		  if (TYPE_VOLATILE (intype) != TYPE_FN_FIELD_VOLATILE (f, j))
		    continue;

		  if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
		      || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
					     intype, 1))
		    break;
		}

	      if (j == len)
		error (_("no member function matches "
			 "that type instantiation"));
	    }
	  else
	    {
	      int ii;

	      j = -1;
	      for (ii = 0; ii < len; ++ii)
		{
		  /* Skip artificial methods.  This is necessary if,
		     for example, the user wants to "print
		     subclass::subclass" with only one user-defined
		     constructor.  There is no ambiguity in this case.
		     We are careful here to allow artificial methods
		     if they are the unique result.  */
		  if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
		    {
		      if (j == -1)
			j = ii;
		      continue;
		    }

		  /* Desired method is ambiguous if more than one
		     method is defined.  */
		  if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
		    error (_("non-unique member `%s' requires "
			     "type instantiation"), name);

		  j = ii;
		}

	      if (j == -1)
		error (_("no matching member function"));
	    }

	  if (TYPE_FN_FIELD_STATIC_P (f, j))
	    {
	      struct symbol *s = 
		lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
			       0, VAR_DOMAIN, 0).symbol;

	      if (s == NULL)
		return NULL;

	      if (want_address)
		return value_addr (read_var_value (s, 0, 0));
	      else
		return read_var_value (s, 0, 0);
	    }

	  if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
	    {
	      if (want_address)
		{
		  result = allocate_value
		    (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
		  cplus_make_method_ptr (value_type (result),
					 value_contents_writeable (result),
					 TYPE_FN_FIELD_VOFFSET (f, j), 1);
		}
	      else if (noside == EVAL_AVOID_SIDE_EFFECTS)
		return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
	      else
		error (_("Cannot reference virtual member function \"%s\""),
		       name);
	    }
	  else
	    {
	      struct symbol *s = 
		lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
			       0, VAR_DOMAIN, 0).symbol;

	      if (s == NULL)
		return NULL;

	      struct value *v = read_var_value (s, 0, 0);
	      if (!want_address)
		result = v;
	      else
		{
		  result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
		  cplus_make_method_ptr (value_type (result),
					 value_contents_writeable (result),
					 value_address (v), 0);
		}
	    }
	  return result;
	}
    }
  for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
    {
      struct value *v;
      int base_offset;

      if (BASETYPE_VIA_VIRTUAL (t, i))
	base_offset = 0;
      else
	base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
      v = value_struct_elt_for_reference (domain,
					  offset + base_offset,
					  TYPE_BASECLASS (t, i),
					  name, intype, 
					  want_address, noside);
      if (v)
	return v;
    }

  /* As a last chance, pretend that CURTYPE is a namespace, and look
     it up that way; this (frequently) works for types nested inside
     classes.  */

  return value_maybe_namespace_elt (curtype, name, 
				    want_address, noside);
}

/* C++: Return the member NAME of the namespace given by the type
   CURTYPE.  */

static struct value *
value_namespace_elt (const struct type *curtype,
		     const char *name, int want_address,
		     enum noside noside)
{
  struct value *retval = value_maybe_namespace_elt (curtype, name,
						    want_address, 
						    noside);

  if (retval == NULL)
    error (_("No symbol \"%s\" in namespace \"%s\"."), 
	   name, TYPE_NAME (curtype));

  return retval;
}

/* A helper function used by value_namespace_elt and
   value_struct_elt_for_reference.  It looks up NAME inside the
   context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
   is a class and NAME refers to a type in CURTYPE itself (as opposed
   to, say, some base class of CURTYPE).  */

static struct value *
value_maybe_namespace_elt (const struct type *curtype,
			   const char *name, int want_address,
			   enum noside noside)
{
  const char *namespace_name = TYPE_NAME (curtype);
  struct block_symbol sym;
  struct value *result;

  sym = cp_lookup_symbol_namespace (namespace_name, name,
				    get_selected_block (0), VAR_DOMAIN);

  if (sym.symbol == NULL)
    return NULL;
  else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
	   && (SYMBOL_CLASS (sym.symbol) == LOC_TYPEDEF))
    result = allocate_value (SYMBOL_TYPE (sym.symbol));
  else
    result = value_of_variable (sym.symbol, sym.block);

  if (want_address)
    result = value_addr (result);

  return result;
}

/* Given a pointer or a reference value V, find its real (RTTI) type.

   Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
   and refer to the values computed for the object pointed to.  */

struct type *
value_rtti_indirect_type (struct value *v, int *full, 
			  LONGEST *top, int *using_enc)
{
  struct value *target = NULL;
  struct type *type, *real_type, *target_type;

  type = value_type (v);
  type = check_typedef (type);
  if (TYPE_IS_REFERENCE (type))
    target = coerce_ref (v);
  else if (TYPE_CODE (type) == TYPE_CODE_PTR)
    {

      try
        {
	  target = value_ind (v);
        }
      catch (const gdb_exception_error &except)
	{
	  if (except.error == MEMORY_ERROR)
	    {
	      /* value_ind threw a memory error. The pointer is NULL or
	         contains an uninitialized value: we can't determine any
	         type.  */
	      return NULL;
	    }
	  throw;
	}
    }
  else
    return NULL;

  real_type = value_rtti_type (target, full, top, using_enc);

  if (real_type)
    {
      /* Copy qualifiers to the referenced object.  */
      target_type = value_type (target);
      real_type = make_cv_type (TYPE_CONST (target_type),
				TYPE_VOLATILE (target_type), real_type, NULL);
      if (TYPE_IS_REFERENCE (type))
        real_type = lookup_reference_type (real_type, TYPE_CODE (type));
      else if (TYPE_CODE (type) == TYPE_CODE_PTR)
        real_type = lookup_pointer_type (real_type);
      else
        internal_error (__FILE__, __LINE__, _("Unexpected value type."));

      /* Copy qualifiers to the pointer/reference.  */
      real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type),
				real_type, NULL);
    }

  return real_type;
}

/* Given a value pointed to by ARGP, check its real run-time type, and
   if that is different from the enclosing type, create a new value
   using the real run-time type as the enclosing type (and of the same
   type as ARGP) and return it, with the embedded offset adjusted to
   be the correct offset to the enclosed object.  RTYPE is the type,
   and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
   by value_rtti_type().  If these are available, they can be supplied
   and a second call to value_rtti_type() is avoided.  (Pass RTYPE ==
   NULL if they're not available.  */

struct value *
value_full_object (struct value *argp, 
		   struct type *rtype, 
		   int xfull, int xtop,
		   int xusing_enc)
{
  struct type *real_type;
  int full = 0;
  LONGEST top = -1;
  int using_enc = 0;
  struct value *new_val;

  if (rtype)
    {
      real_type = rtype;
      full = xfull;
      top = xtop;
      using_enc = xusing_enc;
    }
  else
    real_type = value_rtti_type (argp, &full, &top, &using_enc);

  /* If no RTTI data, or if object is already complete, do nothing.  */
  if (!real_type || real_type == value_enclosing_type (argp))
    return argp;

  /* In a destructor we might see a real type that is a superclass of
     the object's type.  In this case it is better to leave the object
     as-is.  */
  if (full
      && TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp)))
    return argp;

  /* If we have the full object, but for some reason the enclosing
     type is wrong, set it.  */
  /* pai: FIXME -- sounds iffy */
  if (full)
    {
      argp = value_copy (argp);
      set_value_enclosing_type (argp, real_type);
      return argp;
    }

  /* Check if object is in memory.  */
  if (VALUE_LVAL (argp) != lval_memory)
    {
      warning (_("Couldn't retrieve complete object of RTTI "
		 "type %s; object may be in register(s)."), 
	       TYPE_NAME (real_type));

      return argp;
    }

  /* All other cases -- retrieve the complete object.  */
  /* Go back by the computed top_offset from the beginning of the
     object, adjusting for the embedded offset of argp if that's what
     value_rtti_type used for its computation.  */
  new_val = value_at_lazy (real_type, value_address (argp) - top +
			   (using_enc ? 0 : value_embedded_offset (argp)));
  deprecated_set_value_type (new_val, value_type (argp));
  set_value_embedded_offset (new_val, (using_enc
				       ? top + value_embedded_offset (argp)
				       : top));
  return new_val;
}


/* Return the value of the local variable, if one exists.  Throw error
   otherwise, such as if the request is made in an inappropriate context.  */

struct value *
value_of_this (const struct language_defn *lang)
{
  struct block_symbol sym;
  const struct block *b;
  struct frame_info *frame;

  if (!lang->la_name_of_this)
    error (_("no `this' in current language"));

  frame = get_selected_frame (_("no frame selected"));

  b = get_frame_block (frame, NULL);

  sym = lookup_language_this (lang, b);
  if (sym.symbol == NULL)
    error (_("current stack frame does not contain a variable named `%s'"),
	   lang->la_name_of_this);

  return read_var_value (sym.symbol, sym.block, frame);
}

/* Return the value of the local variable, if one exists.  Return NULL
   otherwise.  Never throw error.  */

struct value *
value_of_this_silent (const struct language_defn *lang)
{
  struct value *ret = NULL;

  try
    {
      ret = value_of_this (lang);
    }
  catch (const gdb_exception_error &except)
    {
    }

  return ret;
}

/* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
   elements long, starting at LOWBOUND.  The result has the same lower
   bound as the original ARRAY.  */

struct value *
value_slice (struct value *array, int lowbound, int length)
{
  struct type *slice_range_type, *slice_type, *range_type;
  LONGEST lowerbound, upperbound;
  struct value *slice;
  struct type *array_type;

  array_type = check_typedef (value_type (array));
  if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
      && TYPE_CODE (array_type) != TYPE_CODE_STRING)
    error (_("cannot take slice of non-array"));

  if (type_not_allocated (array_type))
    error (_("array not allocated"));
  if (type_not_associated (array_type))
    error (_("array not associated"));

  range_type = TYPE_INDEX_TYPE (array_type);
  if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
    error (_("slice from bad array or bitstring"));

  if (lowbound < lowerbound || length < 0
      || lowbound + length - 1 > upperbound)
    error (_("slice out of range"));

  /* FIXME-type-allocation: need a way to free this type when we are
     done with it.  */
  slice_range_type = create_static_range_type (NULL,
					       TYPE_TARGET_TYPE (range_type),
					       lowbound,
					       lowbound + length - 1);

  {
    struct type *element_type = TYPE_TARGET_TYPE (array_type);
    LONGEST offset
      = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));

    slice_type = create_array_type (NULL,
				    element_type,
				    slice_range_type);
    TYPE_CODE (slice_type) = TYPE_CODE (array_type);

    if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
      slice = allocate_value_lazy (slice_type);
    else
      {
	slice = allocate_value (slice_type);
	value_contents_copy (slice, 0, array, offset,
			     type_length_units (slice_type));
      }

    set_value_component_location (slice, array);
    set_value_offset (slice, value_offset (array) + offset);
  }

  return slice;
}

/* Create a value for a FORTRAN complex number.  Currently most of the
   time values are coerced to COMPLEX*16 (i.e. a complex number
   composed of 2 doubles.  This really should be a smarter routine
   that figures out precision intelligently as opposed to assuming
   doubles.  FIXME: fmb  */

struct value *
value_literal_complex (struct value *arg1, 
		       struct value *arg2,
		       struct type *type)
{
  struct value *val;
  struct type *real_type = TYPE_TARGET_TYPE (type);

  val = allocate_value (type);
  arg1 = value_cast (real_type, arg1);
  arg2 = value_cast (real_type, arg2);

  memcpy (value_contents_raw (val),
	  value_contents (arg1), TYPE_LENGTH (real_type));
  memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
	  value_contents (arg2), TYPE_LENGTH (real_type));
  return val;
}

/* Cast a value into the appropriate complex data type.  */

static struct value *
cast_into_complex (struct type *type, struct value *val)
{
  struct type *real_type = TYPE_TARGET_TYPE (type);

  if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
    {
      struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
      struct value *re_val = allocate_value (val_real_type);
      struct value *im_val = allocate_value (val_real_type);

      memcpy (value_contents_raw (re_val),
	      value_contents (val), TYPE_LENGTH (val_real_type));
      memcpy (value_contents_raw (im_val),
	      value_contents (val) + TYPE_LENGTH (val_real_type),
	      TYPE_LENGTH (val_real_type));

      return value_literal_complex (re_val, im_val, type);
    }
  else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
	   || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
    return value_literal_complex (val, 
				  value_zero (real_type, not_lval), 
				  type);
  else
    error (_("cannot cast non-number to complex"));
}

void _initialize_valops ();
void
_initialize_valops ()
{
  add_setshow_boolean_cmd ("overload-resolution", class_support,
			   &overload_resolution, _("\
Set overload resolution in evaluating C++ functions."), _("\
Show overload resolution in evaluating C++ functions."), 
			   NULL, NULL,
			   show_overload_resolution,
			   &setlist, &showlist);
  overload_resolution = 1;
}