aboutsummaryrefslogtreecommitdiff
path: root/sim/mn10300/interp.c
diff options
context:
space:
mode:
Diffstat (limited to 'sim/mn10300/interp.c')
-rw-r--r--sim/mn10300/interp.c1117
1 files changed, 0 insertions, 1117 deletions
diff --git a/sim/mn10300/interp.c b/sim/mn10300/interp.c
deleted file mode 100644
index 6beac48..0000000
--- a/sim/mn10300/interp.c
+++ /dev/null
@@ -1,1117 +0,0 @@
-#include <signal.h>
-
-#include "sim-main.h"
-#include "sim-options.h"
-#include "sim-hw.h"
-
-#include "sysdep.h"
-#include "bfd.h"
-#include "sim-assert.h"
-
-
-#ifdef HAVE_STDLIB_H
-#include <stdlib.h>
-#endif
-
-#ifdef HAVE_STRING_H
-#include <string.h>
-#else
-#ifdef HAVE_STRINGS_H
-#include <strings.h>
-#endif
-#endif
-
-#include "bfd.h"
-
-#ifndef INLINE
-#ifdef __GNUC__
-#define INLINE inline
-#else
-#define INLINE
-#endif
-#endif
-
-
-host_callback *mn10300_callback;
-int mn10300_debug;
-struct _state State;
-
-
-/* simulation target board. NULL=default configuration */
-static char* board = NULL;
-
-static DECLARE_OPTION_HANDLER (mn10300_option_handler);
-
-enum {
- OPTION_BOARD = OPTION_START,
-};
-
-static SIM_RC
-mn10300_option_handler (SIM_DESC sd,
- sim_cpu *cpu,
- int opt,
- char *arg,
- int is_command)
-{
- int cpu_nr;
- switch (opt)
- {
- case OPTION_BOARD:
- {
- if (arg)
- {
- board = zalloc(strlen(arg) + 1);
- strcpy(board, arg);
- }
- return SIM_RC_OK;
- }
- }
-
- return SIM_RC_OK;
-}
-
-static const OPTION mn10300_options[] =
-{
-#define BOARD_AM32 "stdeval1"
- { {"board", required_argument, NULL, OPTION_BOARD},
- '\0', "none" /* rely on compile-time string concatenation for other options */
- "|" BOARD_AM32
- , "Customize simulation for a particular board.", mn10300_option_handler },
-
- { {NULL, no_argument, NULL, 0}, '\0', NULL, NULL, NULL }
-};
-
-/* For compatibility */
-SIM_DESC simulator;
-
-/* These default values correspond to expected usage for the chip. */
-
-SIM_DESC
-sim_open (SIM_OPEN_KIND kind,
- host_callback *cb,
- struct bfd *abfd,
- char **argv)
-{
- SIM_DESC sd = sim_state_alloc (kind, cb);
- mn10300_callback = cb;
-
- SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
-
- /* for compatibility */
- simulator = sd;
-
- /* FIXME: should be better way of setting up interrupts. For
- moment, only support watchpoints causing a breakpoint (gdb
- halt). */
- STATE_WATCHPOINTS (sd)->pc = &(PC);
- STATE_WATCHPOINTS (sd)->sizeof_pc = sizeof (PC);
- STATE_WATCHPOINTS (sd)->interrupt_handler = NULL;
- STATE_WATCHPOINTS (sd)->interrupt_names = NULL;
-
- if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
- return 0;
- sim_add_option_table (sd, NULL, mn10300_options);
-
- /* Allocate core managed memory */
- sim_do_command (sd, "memory region 0,0x100000");
- sim_do_command (sd, "memory region 0x40000000,0x200000");
-
- /* getopt will print the error message so we just have to exit if this fails.
- FIXME: Hmmm... in the case of gdb we need getopt to call
- print_filtered. */
- if (sim_parse_args (sd, argv) != SIM_RC_OK)
- {
- /* Uninstall the modules to avoid memory leaks,
- file descriptor leaks, etc. */
- sim_module_uninstall (sd);
- return 0;
- }
-
- if ( NULL != board
- && (strcmp(board, BOARD_AM32) == 0 ) )
- {
- /* environment */
- STATE_ENVIRONMENT (sd) = OPERATING_ENVIRONMENT;
-
- sim_do_command (sd, "memory region 0x44000000,0x40000");
- sim_do_command (sd, "memory region 0x48000000,0x400000");
-
- /* device support for mn1030002 */
- /* interrupt controller */
-
- sim_hw_parse (sd, "/mn103int@0x34000100/reg 0x34000100 0x7C 0x34000200 0x8 0x34000280 0x8");
-
- /* DEBUG: NMI input's */
- sim_hw_parse (sd, "/glue@0x30000000/reg 0x30000000 12");
- sim_hw_parse (sd, "/glue@0x30000000 > int0 nmirq /mn103int");
- sim_hw_parse (sd, "/glue@0x30000000 > int1 watchdog /mn103int");
- sim_hw_parse (sd, "/glue@0x30000000 > int2 syserr /mn103int");
-
- /* DEBUG: ACK input */
- sim_hw_parse (sd, "/glue@0x30002000/reg 0x30002000 4");
- sim_hw_parse (sd, "/glue@0x30002000 > int ack /mn103int");
-
- /* DEBUG: LEVEL output */
- sim_hw_parse (sd, "/glue@0x30004000/reg 0x30004000 8");
- sim_hw_parse (sd, "/mn103int > nmi int0 /glue@0x30004000");
- sim_hw_parse (sd, "/mn103int > level int1 /glue@0x30004000");
-
- /* DEBUG: A bunch of interrupt inputs */
- sim_hw_parse (sd, "/glue@0x30006000/reg 0x30006000 32");
- sim_hw_parse (sd, "/glue@0x30006000 > int0 irq-0 /mn103int");
- sim_hw_parse (sd, "/glue@0x30006000 > int1 irq-1 /mn103int");
- sim_hw_parse (sd, "/glue@0x30006000 > int2 irq-2 /mn103int");
- sim_hw_parse (sd, "/glue@0x30006000 > int3 irq-3 /mn103int");
- sim_hw_parse (sd, "/glue@0x30006000 > int4 irq-4 /mn103int");
- sim_hw_parse (sd, "/glue@0x30006000 > int5 irq-5 /mn103int");
- sim_hw_parse (sd, "/glue@0x30006000 > int6 irq-6 /mn103int");
- sim_hw_parse (sd, "/glue@0x30006000 > int7 irq-7 /mn103int");
-
- /* processor interrupt device */
-
- /* the device */
- sim_hw_parse (sd, "/mn103cpu@0x20000000");
- sim_hw_parse (sd, "/mn103cpu@0x20000000/reg 0x20000000 0x42");
-
- /* DEBUG: ACK output wired upto a glue device */
- sim_hw_parse (sd, "/glue@0x20002000");
- sim_hw_parse (sd, "/glue@0x20002000/reg 0x20002000 4");
- sim_hw_parse (sd, "/mn103cpu > ack int0 /glue@0x20002000");
-
- /* DEBUG: RESET/NMI/LEVEL wired up to a glue device */
- sim_hw_parse (sd, "/glue@0x20004000");
- sim_hw_parse (sd, "/glue@0x20004000/reg 0x20004000 12");
- sim_hw_parse (sd, "/glue@0x20004000 > int0 reset /mn103cpu");
- sim_hw_parse (sd, "/glue@0x20004000 > int1 nmi /mn103cpu");
- sim_hw_parse (sd, "/glue@0x20004000 > int2 level /mn103cpu");
-
- /* REAL: The processor wired up to the real interrupt controller */
- sim_hw_parse (sd, "/mn103cpu > ack ack /mn103int");
- sim_hw_parse (sd, "/mn103int > level level /mn103cpu");
- sim_hw_parse (sd, "/mn103int > nmi nmi /mn103cpu");
-
-
- /* PAL */
-
- /* the device */
- sim_hw_parse (sd, "/pal@0x31000000");
- sim_hw_parse (sd, "/pal@0x31000000/reg 0x31000000 64");
- sim_hw_parse (sd, "/pal@0x31000000/poll? true");
-
- /* DEBUG: PAL wired up to a glue device */
- sim_hw_parse (sd, "/glue@0x31002000");
- sim_hw_parse (sd, "/glue@0x31002000/reg 0x31002000 16");
- sim_hw_parse (sd, "/pal@0x31000000 > countdown int0 /glue@0x31002000");
- sim_hw_parse (sd, "/pal@0x31000000 > timer int1 /glue@0x31002000");
- sim_hw_parse (sd, "/pal@0x31000000 > int int2 /glue@0x31002000");
- sim_hw_parse (sd, "/glue@0x31002000 > int0 int3 /glue@0x31002000");
- sim_hw_parse (sd, "/glue@0x31002000 > int1 int3 /glue@0x31002000");
- sim_hw_parse (sd, "/glue@0x31002000 > int2 int3 /glue@0x31002000");
-
- /* REAL: The PAL wired up to the real interrupt controller */
- sim_hw_parse (sd, "/pal@0x31000000 > countdown irq-0 /mn103int");
- sim_hw_parse (sd, "/pal@0x31000000 > timer irq-1 /mn103int");
- sim_hw_parse (sd, "/pal@0x31000000 > int irq-2 /mn103int");
-
- /* 8 and 16 bit timers */
- sim_hw_parse (sd, "/mn103tim@0x34001000/reg 0x34001000 36 0x34001080 100 0x34004000 16");
-
- /* Hook timer interrupts up to interrupt controller */
- sim_hw_parse (sd, "/mn103tim > timer-0-underflow timer-0-underflow /mn103int");
- sim_hw_parse (sd, "/mn103tim > timer-1-underflow timer-1-underflow /mn103int");
- sim_hw_parse (sd, "/mn103tim > timer-2-underflow timer-2-underflow /mn103int");
- sim_hw_parse (sd, "/mn103tim > timer-3-underflow timer-3-underflow /mn103int");
- sim_hw_parse (sd, "/mn103tim > timer-4-underflow timer-4-underflow /mn103int");
- sim_hw_parse (sd, "/mn103tim > timer-5-underflow timer-5-underflow /mn103int");
- sim_hw_parse (sd, "/mn103tim > timer-6-underflow timer-6-underflow /mn103int");
- sim_hw_parse (sd, "/mn103tim > timer-6-compare-a timer-6-compare-a /mn103int");
- sim_hw_parse (sd, "/mn103tim > timer-6-compare-b timer-6-compare-b /mn103int");
-
-
- /* Serial devices 0,1,2 */
- sim_hw_parse (sd, "/mn103ser@0x34000800/reg 0x34000800 48");
- sim_hw_parse (sd, "/mn103ser@0x34000800/poll? true");
-
- /* Hook serial interrupts up to interrupt controller */
- sim_hw_parse (sd, "/mn103ser > serial-0-receive serial-0-receive /mn103int");
- sim_hw_parse (sd, "/mn103ser > serial-0-transmit serial-0-transmit /mn103int");
- sim_hw_parse (sd, "/mn103ser > serial-1-receive serial-1-receive /mn103int");
- sim_hw_parse (sd, "/mn103ser > serial-1-transmit serial-1-transmit /mn103int");
- sim_hw_parse (sd, "/mn103ser > serial-2-receive serial-2-receive /mn103int");
- sim_hw_parse (sd, "/mn103ser > serial-2-transmit serial-2-transmit /mn103int");
-
- sim_hw_parse (sd, "/mn103iop@0x36008000/reg 0x36008000 8 0x36008020 8 0x36008040 0xc 0x36008060 8 0x36008080 8");
-
- /* Memory control registers */
- sim_do_command (sd, "memory region 0x32000020,0x30");
- /* Cache control register */
- sim_do_command (sd, "memory region 0x20000070,0x4");
- /* Cache purge regions */
- sim_do_command (sd, "memory region 0x28400000,0x800");
- sim_do_command (sd, "memory region 0x28401000,0x800");
- /* DMA registers */
- sim_do_command (sd, "memory region 0x32000100,0xF");
- sim_do_command (sd, "memory region 0x32000200,0xF");
- sim_do_command (sd, "memory region 0x32000400,0xF");
- sim_do_command (sd, "memory region 0x32000800,0xF");
- }
- else
- {
- if (board != NULL)
- {
- sim_io_eprintf (sd, "Error: Board `%s' unknown.\n", board);
- return 0;
- }
- }
-
-
-
- /* check for/establish the a reference program image */
- if (sim_analyze_program (sd,
- (STATE_PROG_ARGV (sd) != NULL
- ? *STATE_PROG_ARGV (sd)
- : NULL),
- abfd) != SIM_RC_OK)
- {
- sim_module_uninstall (sd);
- return 0;
- }
-
- /* establish any remaining configuration options */
- if (sim_config (sd) != SIM_RC_OK)
- {
- sim_module_uninstall (sd);
- return 0;
- }
-
- if (sim_post_argv_init (sd) != SIM_RC_OK)
- {
- /* Uninstall the modules to avoid memory leaks,
- file descriptor leaks, etc. */
- sim_module_uninstall (sd);
- return 0;
- }
-
-
- /* set machine specific configuration */
-/* STATE_CPU (sd, 0)->psw_mask = (PSW_NP | PSW_EP | PSW_ID | PSW_SAT */
-/* | PSW_CY | PSW_OV | PSW_S | PSW_Z); */
-
- return sd;
-}
-
-
-void
-sim_close (SIM_DESC sd, int quitting)
-{
- sim_module_uninstall (sd);
-}
-
-
-SIM_RC
-sim_create_inferior (SIM_DESC sd,
- struct bfd *prog_bfd,
- char **argv,
- char **env)
-{
- memset (&State, 0, sizeof (State));
- if (prog_bfd != NULL) {
- PC = bfd_get_start_address (prog_bfd);
- } else {
- PC = 0;
- }
- CIA_SET (STATE_CPU (sd, 0), (unsigned64) PC);
-
- if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_am33_2)
- PSW |= PSW_FE;
-
- return SIM_RC_OK;
-}
-
-void
-sim_do_command (SIM_DESC sd, char *cmd)
-{
- char *mm_cmd = "memory-map";
- char *int_cmd = "interrupt";
-
- if (sim_args_command (sd, cmd) != SIM_RC_OK)
- {
- if (strncmp (cmd, mm_cmd, strlen (mm_cmd) == 0))
- sim_io_eprintf (sd, "`memory-map' command replaced by `sim memory'\n");
- else if (strncmp (cmd, int_cmd, strlen (int_cmd)) == 0)
- sim_io_eprintf (sd, "`interrupt' command replaced by `sim watch'\n");
- else
- sim_io_eprintf (sd, "Unknown command `%s'\n", cmd);
- }
-}
-
-/* FIXME These would more efficient to use than load_mem/store_mem,
- but need to be changed to use the memory map. */
-
-uint8
-get_byte (uint8 *x)
-{
- return *x;
-}
-
-uint16
-get_half (uint8 *x)
-{
- uint8 *a = x;
- return (a[1] << 8) + (a[0]);
-}
-
-uint32
-get_word (uint8 *x)
-{
- uint8 *a = x;
- return (a[3]<<24) + (a[2]<<16) + (a[1]<<8) + (a[0]);
-}
-
-void
-put_byte (uint8 *addr, uint8 data)
-{
- uint8 *a = addr;
- a[0] = data;
-}
-
-void
-put_half (uint8 *addr, uint16 data)
-{
- uint8 *a = addr;
- a[0] = data & 0xff;
- a[1] = (data >> 8) & 0xff;
-}
-
-void
-put_word (uint8 *addr, uint32 data)
-{
- uint8 *a = addr;
- a[0] = data & 0xff;
- a[1] = (data >> 8) & 0xff;
- a[2] = (data >> 16) & 0xff;
- a[3] = (data >> 24) & 0xff;
-}
-
-int
-sim_fetch_register (SIM_DESC sd,
- int rn,
- unsigned char *memory,
- int length)
-{
- put_word (memory, State.regs[rn]);
- return -1;
-}
-
-int
-sim_store_register (SIM_DESC sd,
- int rn,
- unsigned char *memory,
- int length)
-{
- State.regs[rn] = get_word (memory);
- return -1;
-}
-
-
-void
-mn10300_core_signal (SIM_DESC sd,
- sim_cpu *cpu,
- sim_cia cia,
- unsigned map,
- int nr_bytes,
- address_word addr,
- transfer_type transfer,
- sim_core_signals sig)
-{
- const char *copy = (transfer == read_transfer ? "read" : "write");
- address_word ip = CIA_ADDR (cia);
-
- switch (sig)
- {
- case sim_core_unmapped_signal:
- sim_io_eprintf (sd, "mn10300-core: %d byte %s to unmapped address 0x%lx at 0x%lx\n",
- nr_bytes, copy,
- (unsigned long) addr, (unsigned long) ip);
- program_interrupt(sd, cpu, cia, SIM_SIGSEGV);
- break;
-
- case sim_core_unaligned_signal:
- sim_io_eprintf (sd, "mn10300-core: %d byte %s to unaligned address 0x%lx at 0x%lx\n",
- nr_bytes, copy,
- (unsigned long) addr, (unsigned long) ip);
- program_interrupt(sd, cpu, cia, SIM_SIGBUS);
- break;
-
- default:
- sim_engine_abort (sd, cpu, cia,
- "mn10300_core_signal - internal error - bad switch");
- }
-}
-
-
-void
-program_interrupt (SIM_DESC sd,
- sim_cpu *cpu,
- sim_cia cia,
- SIM_SIGNAL sig)
-{
- int status;
- struct hw *device;
- static int in_interrupt = 0;
-
-#ifdef SIM_CPU_EXCEPTION_TRIGGER
- SIM_CPU_EXCEPTION_TRIGGER(sd,cpu,cia);
-#endif
-
- /* avoid infinite recursion */
- if (in_interrupt)
- {
- (*mn10300_callback->printf_filtered) (mn10300_callback,
- "ERROR: recursion in program_interrupt during software exception dispatch.");
- }
- else
- {
- in_interrupt = 1;
- /* copy NMI handler code from dv-mn103cpu.c */
- store_word (SP - 4, CIA_GET (cpu));
- store_half (SP - 8, PSW);
-
- /* Set the SYSEF flag in NMICR by backdoor method. See
- dv-mn103int.c:write_icr(). This is necessary because
- software exceptions are not modelled by actually talking to
- the interrupt controller, so it cannot set its own SYSEF
- flag. */
- if ((NULL != board) && (strcmp(board, BOARD_AM32) == 0))
- store_byte (0x34000103, 0x04);
- }
-
- PSW &= ~PSW_IE;
- SP = SP - 8;
- CIA_SET (cpu, 0x40000008);
-
- in_interrupt = 0;
- sim_engine_halt(sd, cpu, NULL, cia, sim_stopped, sig);
-}
-
-
-void
-mn10300_cpu_exception_trigger(SIM_DESC sd, sim_cpu* cpu, address_word cia)
-{
- ASSERT(cpu != NULL);
-
- if(State.exc_suspended > 0)
- sim_io_eprintf(sd, "Warning, nested exception triggered (%d)\n", State.exc_suspended);
-
- CIA_SET (cpu, cia);
- memcpy(State.exc_trigger_regs, State.regs, sizeof(State.exc_trigger_regs));
- State.exc_suspended = 0;
-}
-
-void
-mn10300_cpu_exception_suspend(SIM_DESC sd, sim_cpu* cpu, int exception)
-{
- ASSERT(cpu != NULL);
-
- if(State.exc_suspended > 0)
- sim_io_eprintf(sd, "Warning, nested exception signal (%d then %d)\n",
- State.exc_suspended, exception);
-
- memcpy(State.exc_suspend_regs, State.regs, sizeof(State.exc_suspend_regs));
- memcpy(State.regs, State.exc_trigger_regs, sizeof(State.regs));
- CIA_SET (cpu, PC); /* copy PC back from new State.regs */
- State.exc_suspended = exception;
-}
-
-void
-mn10300_cpu_exception_resume(SIM_DESC sd, sim_cpu* cpu, int exception)
-{
- ASSERT(cpu != NULL);
-
- if(exception == 0 && State.exc_suspended > 0)
- {
- if(State.exc_suspended != SIGTRAP) /* warn not for breakpoints */
- sim_io_eprintf(sd, "Warning, resuming but ignoring pending exception signal (%d)\n",
- State.exc_suspended);
- }
- else if(exception != 0 && State.exc_suspended > 0)
- {
- if(exception != State.exc_suspended)
- sim_io_eprintf(sd, "Warning, resuming with mismatched exception signal (%d vs %d)\n",
- State.exc_suspended, exception);
-
- memcpy(State.regs, State.exc_suspend_regs, sizeof(State.regs));
- CIA_SET (cpu, PC); /* copy PC back from new State.regs */
- }
- else if(exception != 0 && State.exc_suspended == 0)
- {
- sim_io_eprintf(sd, "Warning, ignoring spontanous exception signal (%d)\n", exception);
- }
- State.exc_suspended = 0;
-}
-
-/* This is called when an FP instruction is issued when the FP unit is
- disabled, i.e., the FE bit of PSW is zero. It raises interrupt
- code 0x1c0. */
-void
-fpu_disabled_exception (SIM_DESC sd, sim_cpu *cpu, sim_cia cia)
-{
- sim_io_eprintf(sd, "FPU disabled exception\n");
- program_interrupt (sd, cpu, cia, SIM_SIGFPE);
-}
-
-/* This is called when the FP unit is enabled but one of the
- unimplemented insns is issued. It raises interrupt code 0x1c8. */
-void
-fpu_unimp_exception (SIM_DESC sd, sim_cpu *cpu, sim_cia cia)
-{
- sim_io_eprintf(sd, "Unimplemented FPU instruction exception\n");
- program_interrupt (sd, cpu, cia, SIM_SIGFPE);
-}
-
-/* This is called at the end of any FP insns that may have triggered
- FP exceptions. If no exception is enabled, it returns immediately.
- Otherwise, it raises an exception code 0x1d0. */
-void
-fpu_check_signal_exception (SIM_DESC sd, sim_cpu *cpu, sim_cia cia)
-{
- if ((FPCR & EC_MASK) == 0)
- return;
-
- sim_io_eprintf(sd, "FPU %s%s%s%s%s exception\n",
- (FPCR & EC_V) ? "V" : "",
- (FPCR & EC_Z) ? "Z" : "",
- (FPCR & EC_O) ? "O" : "",
- (FPCR & EC_U) ? "U" : "",
- (FPCR & EC_I) ? "I" : "");
- program_interrupt (sd, cpu, cia, SIM_SIGFPE);
-}
-
-/* Convert a 32-bit single-precision FP value in the target platform
- format to a sim_fpu value. */
-static void
-reg2val_32 (const void *reg, sim_fpu *val)
-{
- FS2FPU (*(reg_t *)reg, *val);
-}
-
-/* Round the given sim_fpu value to single precision, following the
- target platform rounding and denormalization conventions. On
- AM33/2.0, round_near is the only rounding mode. */
-static int
-round_32 (sim_fpu *val)
-{
- return sim_fpu_round_32 (val, sim_fpu_round_near, sim_fpu_denorm_zero);
-}
-
-/* Convert a sim_fpu value to the 32-bit single-precision target
- representation. */
-static void
-val2reg_32 (const sim_fpu *val, void *reg)
-{
- FPU2FS (*val, *(reg_t *)reg);
-}
-
-/* Define the 32-bit single-precision conversion and rounding uniform
- interface. */
-const struct fp_prec_t
-fp_single_prec = {
- reg2val_32, round_32, val2reg_32
-};
-
-/* Convert a 64-bit double-precision FP value in the target platform
- format to a sim_fpu value. */
-static void
-reg2val_64 (const void *reg, sim_fpu *val)
-{
- FD2FPU (*(dword *)reg, *val);
-}
-
-/* Round the given sim_fpu value to double precision, following the
- target platform rounding and denormalization conventions. On
- AM33/2.0, round_near is the only rounding mode. */
-int
-round_64 (sim_fpu *val)
-{
- return sim_fpu_round_64 (val, sim_fpu_round_near, sim_fpu_denorm_zero);
-}
-
-/* Convert a sim_fpu value to the 64-bit double-precision target
- representation. */
-static void
-val2reg_64 (const sim_fpu *val, void *reg)
-{
- FPU2FD (*val, *(dword *)reg);
-}
-
-/* Define the 64-bit single-precision conversion and rounding uniform
- interface. */
-const struct fp_prec_t
-fp_double_prec = {
- reg2val_64, round_64, val2reg_64
-};
-
-/* Define shortcuts to the uniform interface operations. */
-#define REG2VAL(reg,val) (*ops->reg2val) (reg,val)
-#define ROUND(val) (*ops->round) (val)
-#define VAL2REG(val,reg) (*ops->val2reg) (val,reg)
-
-/* Check whether overflow, underflow or inexact exceptions should be
- raised. */
-int
-fpu_status_ok (sim_fpu_status stat)
-{
- if ((stat & sim_fpu_status_overflow)
- && (FPCR & EE_O))
- FPCR |= EC_O;
- else if ((stat & (sim_fpu_status_underflow | sim_fpu_status_denorm))
- && (FPCR & EE_U))
- FPCR |= EC_U;
- else if ((stat & (sim_fpu_status_inexact | sim_fpu_status_rounded))
- && (FPCR & EE_I))
- FPCR |= EC_I;
- else if (stat & ~ (sim_fpu_status_overflow
- | sim_fpu_status_underflow
- | sim_fpu_status_denorm
- | sim_fpu_status_inexact
- | sim_fpu_status_rounded))
- abort ();
- else
- return 1;
- return 0;
-}
-
-/* Implement a 32/64 bit reciprocal square root, signaling FP
- exceptions when appropriate. */
-void
-fpu_rsqrt (SIM_DESC sd, sim_cpu *cpu, sim_cia cia,
- const void *reg_in, void *reg_out, const struct fp_prec_t *ops)
-{
- sim_fpu in, med, out;
-
- REG2VAL (reg_in, &in);
- ROUND (&in);
- FPCR &= ~ EC_MASK;
- switch (sim_fpu_is (&in))
- {
- case SIM_FPU_IS_SNAN:
- case SIM_FPU_IS_NNUMBER:
- case SIM_FPU_IS_NINF:
- if (FPCR & EE_V)
- FPCR |= EC_V;
- else
- VAL2REG (&sim_fpu_qnan, reg_out);
- break;
-
- case SIM_FPU_IS_QNAN:
- VAL2REG (&sim_fpu_qnan, reg_out);
- break;
-
- case SIM_FPU_IS_PINF:
- VAL2REG (&sim_fpu_zero, reg_out);
- break;
-
- case SIM_FPU_IS_PNUMBER:
- {
- /* Since we don't have a function to compute rsqrt directly,
- use sqrt and inv. */
- sim_fpu_status stat = 0;
- stat |= sim_fpu_sqrt (&med, &in);
- stat |= sim_fpu_inv (&out, &med);
- stat |= ROUND (&out);
- if (fpu_status_ok (stat))
- VAL2REG (&out, reg_out);
- }
- break;
-
- case SIM_FPU_IS_NZERO:
- case SIM_FPU_IS_PZERO:
- if (FPCR & EE_Z)
- FPCR |= EC_Z;
- else
- {
- /* Generate an INF with the same sign. */
- sim_fpu_inv (&out, &in);
- VAL2REG (&out, reg_out);
- }
- break;
-
- default:
- abort ();
- }
-
- fpu_check_signal_exception (sd, cpu, cia);
-}
-
-static inline reg_t
-cmp2fcc (int res)
-{
- switch (res)
- {
- case SIM_FPU_IS_SNAN:
- case SIM_FPU_IS_QNAN:
- return FCC_U;
-
- case SIM_FPU_IS_NINF:
- case SIM_FPU_IS_NNUMBER:
- case SIM_FPU_IS_NDENORM:
- return FCC_L;
-
- case SIM_FPU_IS_PINF:
- case SIM_FPU_IS_PNUMBER:
- case SIM_FPU_IS_PDENORM:
- return FCC_G;
-
- case SIM_FPU_IS_NZERO:
- case SIM_FPU_IS_PZERO:
- return FCC_E;
-
- default:
- abort ();
- }
-}
-
-/* Implement a 32/64 bit FP compare, setting the FPCR status and/or
- exception bits as specified. */
-void
-fpu_cmp (SIM_DESC sd, sim_cpu *cpu, sim_cia cia,
- const void *reg_in1, const void *reg_in2,
- const struct fp_prec_t *ops)
-{
- sim_fpu m, n;
-
- REG2VAL (reg_in1, &m);
- REG2VAL (reg_in2, &n);
- FPCR &= ~ EC_MASK;
- FPCR &= ~ FCC_MASK;
- ROUND (&m);
- ROUND (&n);
- if (sim_fpu_is_snan (&m) || sim_fpu_is_snan (&n))
- {
- if (FPCR & EE_V)
- FPCR |= EC_V;
- else
- FPCR |= FCC_U;
- }
- else
- FPCR |= cmp2fcc (sim_fpu_cmp (&m, &n));
-
- fpu_check_signal_exception (sd, cpu, cia);
-}
-
-/* Implement a 32/64 bit FP add, setting FP exception bits when
- appropriate. */
-void
-fpu_add (SIM_DESC sd, sim_cpu *cpu, sim_cia cia,
- const void *reg_in1, const void *reg_in2,
- void *reg_out, const struct fp_prec_t *ops)
-{
- sim_fpu m, n, r;
-
- REG2VAL (reg_in1, &m);
- REG2VAL (reg_in2, &n);
- ROUND (&m);
- ROUND (&n);
- FPCR &= ~ EC_MASK;
- if (sim_fpu_is_snan (&m) || sim_fpu_is_snan (&n)
- || (sim_fpu_is (&m) == SIM_FPU_IS_PINF
- && sim_fpu_is (&n) == SIM_FPU_IS_NINF)
- || (sim_fpu_is (&m) == SIM_FPU_IS_NINF
- && sim_fpu_is (&n) == SIM_FPU_IS_PINF))
- {
- if (FPCR & EE_V)
- FPCR |= EC_V;
- else
- VAL2REG (&sim_fpu_qnan, reg_out);
- }
- else
- {
- sim_fpu_status stat = sim_fpu_add (&r, &m, &n);
- stat |= ROUND (&r);
- if (fpu_status_ok (stat))
- VAL2REG (&r, reg_out);
- }
-
- fpu_check_signal_exception (sd, cpu, cia);
-}
-
-/* Implement a 32/64 bit FP sub, setting FP exception bits when
- appropriate. */
-void
-fpu_sub (SIM_DESC sd, sim_cpu *cpu, sim_cia cia,
- const void *reg_in1, const void *reg_in2,
- void *reg_out, const struct fp_prec_t *ops)
-{
- sim_fpu m, n, r;
-
- REG2VAL (reg_in1, &m);
- REG2VAL (reg_in2, &n);
- ROUND (&m);
- ROUND (&n);
- FPCR &= ~ EC_MASK;
- if (sim_fpu_is_snan (&m) || sim_fpu_is_snan (&n)
- || (sim_fpu_is (&m) == SIM_FPU_IS_PINF
- && sim_fpu_is (&n) == SIM_FPU_IS_PINF)
- || (sim_fpu_is (&m) == SIM_FPU_IS_NINF
- && sim_fpu_is (&n) == SIM_FPU_IS_NINF))
- {
- if (FPCR & EE_V)
- FPCR |= EC_V;
- else
- VAL2REG (&sim_fpu_qnan, reg_out);
- }
- else
- {
- sim_fpu_status stat = sim_fpu_sub (&r, &m, &n);
- stat |= ROUND (&r);
- if (fpu_status_ok (stat))
- VAL2REG (&r, reg_out);
- }
-
- fpu_check_signal_exception (sd, cpu, cia);
-}
-
-/* Implement a 32/64 bit FP mul, setting FP exception bits when
- appropriate. */
-void
-fpu_mul (SIM_DESC sd, sim_cpu *cpu, sim_cia cia,
- const void *reg_in1, const void *reg_in2,
- void *reg_out, const struct fp_prec_t *ops)
-{
- sim_fpu m, n, r;
-
- REG2VAL (reg_in1, &m);
- REG2VAL (reg_in2, &n);
- ROUND (&m);
- ROUND (&n);
- FPCR &= ~ EC_MASK;
- if (sim_fpu_is_snan (&m) || sim_fpu_is_snan (&n)
- || (sim_fpu_is_infinity (&m) && sim_fpu_is_zero (&n))
- || (sim_fpu_is_zero (&m) && sim_fpu_is_infinity (&n)))
- {
- if (FPCR & EE_V)
- FPCR |= EC_V;
- else
- VAL2REG (&sim_fpu_qnan, reg_out);
- }
- else
- {
- sim_fpu_status stat = sim_fpu_mul (&r, &m, &n);
- stat |= ROUND (&r);
- if (fpu_status_ok (stat))
- VAL2REG (&r, reg_out);
- }
-
- fpu_check_signal_exception (sd, cpu, cia);
-}
-
-/* Implement a 32/64 bit FP div, setting FP exception bits when
- appropriate. */
-void
-fpu_div (SIM_DESC sd, sim_cpu *cpu, sim_cia cia,
- const void *reg_in1, const void *reg_in2,
- void *reg_out, const struct fp_prec_t *ops)
-{
- sim_fpu m, n, r;
-
- REG2VAL (reg_in1, &m);
- REG2VAL (reg_in2, &n);
- ROUND (&m);
- ROUND (&n);
- FPCR &= ~ EC_MASK;
- if (sim_fpu_is_snan (&m) || sim_fpu_is_snan (&n)
- || (sim_fpu_is_infinity (&m) && sim_fpu_is_infinity (&n))
- || (sim_fpu_is_zero (&m) && sim_fpu_is_zero (&n)))
- {
- if (FPCR & EE_V)
- FPCR |= EC_V;
- else
- VAL2REG (&sim_fpu_qnan, reg_out);
- }
- else if (sim_fpu_is_number (&m) && sim_fpu_is_zero (&n)
- && (FPCR & EE_Z))
- FPCR |= EC_Z;
- else
- {
- sim_fpu_status stat = sim_fpu_div (&r, &m, &n);
- stat |= ROUND (&r);
- if (fpu_status_ok (stat))
- VAL2REG (&r, reg_out);
- }
-
- fpu_check_signal_exception (sd, cpu, cia);
-}
-
-/* Implement a 32/64 bit FP madd, setting FP exception bits when
- appropriate. */
-void
-fpu_fmadd (SIM_DESC sd, sim_cpu *cpu, sim_cia cia,
- const void *reg_in1, const void *reg_in2, const void *reg_in3,
- void *reg_out, const struct fp_prec_t *ops)
-{
- sim_fpu m1, m2, m, n, r;
-
- REG2VAL (reg_in1, &m1);
- REG2VAL (reg_in2, &m2);
- REG2VAL (reg_in3, &n);
- ROUND (&m1);
- ROUND (&m2);
- ROUND (&n);
- FPCR &= ~ EC_MASK;
- if (sim_fpu_is_snan (&m1) || sim_fpu_is_snan (&m2) || sim_fpu_is_snan (&n)
- || (sim_fpu_is_infinity (&m1) && sim_fpu_is_zero (&m2))
- || (sim_fpu_is_zero (&m1) && sim_fpu_is_infinity (&m2)))
- {
- invalid_operands:
- if (FPCR & EE_V)
- FPCR |= EC_V;
- else
- VAL2REG (&sim_fpu_qnan, reg_out);
- }
- else
- {
- sim_fpu_status stat = sim_fpu_mul (&m, &m1, &m2);
-
- if (sim_fpu_is_infinity (&m) && sim_fpu_is_infinity (&n)
- && sim_fpu_sign (&m) != sim_fpu_sign (&n))
- goto invalid_operands;
-
- stat |= sim_fpu_add (&r, &m, &n);
- stat |= ROUND (&r);
- if (fpu_status_ok (stat))
- VAL2REG (&r, reg_out);
- }
-
- fpu_check_signal_exception (sd, cpu, cia);
-}
-
-/* Implement a 32/64 bit FP msub, setting FP exception bits when
- appropriate. */
-void
-fpu_fmsub (SIM_DESC sd, sim_cpu *cpu, sim_cia cia,
- const void *reg_in1, const void *reg_in2, const void *reg_in3,
- void *reg_out, const struct fp_prec_t *ops)
-{
- sim_fpu m1, m2, m, n, r;
-
- REG2VAL (reg_in1, &m1);
- REG2VAL (reg_in2, &m2);
- REG2VAL (reg_in3, &n);
- ROUND (&m1);
- ROUND (&m2);
- ROUND (&n);
- FPCR &= ~ EC_MASK;
- if (sim_fpu_is_snan (&m1) || sim_fpu_is_snan (&m2) || sim_fpu_is_snan (&n)
- || (sim_fpu_is_infinity (&m1) && sim_fpu_is_zero (&m2))
- || (sim_fpu_is_zero (&m1) && sim_fpu_is_infinity (&m2)))
- {
- invalid_operands:
- if (FPCR & EE_V)
- FPCR |= EC_V;
- else
- VAL2REG (&sim_fpu_qnan, reg_out);
- }
- else
- {
- sim_fpu_status stat = sim_fpu_mul (&m, &m1, &m2);
-
- if (sim_fpu_is_infinity (&m) && sim_fpu_is_infinity (&n)
- && sim_fpu_sign (&m) == sim_fpu_sign (&n))
- goto invalid_operands;
-
- stat |= sim_fpu_sub (&r, &m, &n);
- stat |= ROUND (&r);
- if (fpu_status_ok (stat))
- VAL2REG (&r, reg_out);
- }
-
- fpu_check_signal_exception (sd, cpu, cia);
-}
-
-/* Implement a 32/64 bit FP nmadd, setting FP exception bits when
- appropriate. */
-void
-fpu_fnmadd (SIM_DESC sd, sim_cpu *cpu, sim_cia cia,
- const void *reg_in1, const void *reg_in2, const void *reg_in3,
- void *reg_out, const struct fp_prec_t *ops)
-{
- sim_fpu m1, m2, m, mm, n, r;
-
- REG2VAL (reg_in1, &m1);
- REG2VAL (reg_in2, &m2);
- REG2VAL (reg_in3, &n);
- ROUND (&m1);
- ROUND (&m2);
- ROUND (&n);
- FPCR &= ~ EC_MASK;
- if (sim_fpu_is_snan (&m1) || sim_fpu_is_snan (&m2) || sim_fpu_is_snan (&n)
- || (sim_fpu_is_infinity (&m1) && sim_fpu_is_zero (&m2))
- || (sim_fpu_is_zero (&m1) && sim_fpu_is_infinity (&m2)))
- {
- invalid_operands:
- if (FPCR & EE_V)
- FPCR |= EC_V;
- else
- VAL2REG (&sim_fpu_qnan, reg_out);
- }
- else
- {
- sim_fpu_status stat = sim_fpu_mul (&m, &m1, &m2);
-
- if (sim_fpu_is_infinity (&m) && sim_fpu_is_infinity (&n)
- && sim_fpu_sign (&m) == sim_fpu_sign (&n))
- goto invalid_operands;
-
- stat |= sim_fpu_neg (&mm, &m);
- stat |= sim_fpu_add (&r, &mm, &n);
- stat |= ROUND (&r);
- if (fpu_status_ok (stat))
- VAL2REG (&r, reg_out);
- }
-
- fpu_check_signal_exception (sd, cpu, cia);
-}
-
-/* Implement a 32/64 bit FP nmsub, setting FP exception bits when
- appropriate. */
-void
-fpu_fnmsub (SIM_DESC sd, sim_cpu *cpu, sim_cia cia,
- const void *reg_in1, const void *reg_in2, const void *reg_in3,
- void *reg_out, const struct fp_prec_t *ops)
-{
- sim_fpu m1, m2, m, mm, n, r;
-
- REG2VAL (reg_in1, &m1);
- REG2VAL (reg_in2, &m2);
- REG2VAL (reg_in3, &n);
- ROUND (&m1);
- ROUND (&m2);
- ROUND (&n);
- FPCR &= ~ EC_MASK;
- if (sim_fpu_is_snan (&m1) || sim_fpu_is_snan (&m2) || sim_fpu_is_snan (&n)
- || (sim_fpu_is_infinity (&m1) && sim_fpu_is_zero (&m2))
- || (sim_fpu_is_zero (&m1) && sim_fpu_is_infinity (&m2)))
- {
- invalid_operands:
- if (FPCR & EE_V)
- FPCR |= EC_V;
- else
- VAL2REG (&sim_fpu_qnan, reg_out);
- }
- else
- {
- sim_fpu_status stat = sim_fpu_mul (&m, &m1, &m2);
-
- if (sim_fpu_is_infinity (&m) && sim_fpu_is_infinity (&n)
- && sim_fpu_sign (&m) != sim_fpu_sign (&n))
- goto invalid_operands;
-
- stat |= sim_fpu_neg (&mm, &m);
- stat |= sim_fpu_sub (&r, &mm, &n);
- stat |= ROUND (&r);
- if (fpu_status_ok (stat))
- VAL2REG (&r, reg_out);
- }
-
- fpu_check_signal_exception (sd, cpu, cia);
-}