aboutsummaryrefslogtreecommitdiff
path: root/sim/frv/interrupts.c
diff options
context:
space:
mode:
Diffstat (limited to 'sim/frv/interrupts.c')
-rw-r--r--sim/frv/interrupts.c1329
1 files changed, 1329 insertions, 0 deletions
diff --git a/sim/frv/interrupts.c b/sim/frv/interrupts.c
new file mode 100644
index 0000000..1f5547e
--- /dev/null
+++ b/sim/frv/interrupts.c
@@ -0,0 +1,1329 @@
+/* frv exception and interrupt support
+ Copyright (C) 1999, 2000, 2001 Free Software Foundation, Inc.
+ Contributed by Red Hat.
+
+This file is part of the GNU simulators.
+
+This program is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License along
+with this program; if not, write to the Free Software Foundation, Inc.,
+59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
+
+#define WANT_CPU frvbf
+#define WANT_CPU_FRVBF
+
+#include "sim-main.h"
+#include "bfd.h"
+
+/* FR-V Interrupt table.
+ Describes the interrupts supported by the FR-V.
+ This table *must* be maintained in order of interrupt priority as defined by
+ frv_interrupt_kind. */
+#define DEFERRED 1
+#define PRECISE 1
+#define ITABLE_ENTRY(name, class, deferral, precision, offset) \
+ {FRV_##name, FRV_EC_##name, class, deferral, precision, offset}
+
+struct frv_interrupt frv_interrupt_table[NUM_FRV_INTERRUPT_KINDS] =
+{
+ /* External interrupts */
+ ITABLE_ENTRY(INTERRUPT_LEVEL_1, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x21),
+ ITABLE_ENTRY(INTERRUPT_LEVEL_2, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x22),
+ ITABLE_ENTRY(INTERRUPT_LEVEL_3, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x23),
+ ITABLE_ENTRY(INTERRUPT_LEVEL_4, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x24),
+ ITABLE_ENTRY(INTERRUPT_LEVEL_5, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x25),
+ ITABLE_ENTRY(INTERRUPT_LEVEL_6, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x26),
+ ITABLE_ENTRY(INTERRUPT_LEVEL_7, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x27),
+ ITABLE_ENTRY(INTERRUPT_LEVEL_8, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x28),
+ ITABLE_ENTRY(INTERRUPT_LEVEL_9, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x29),
+ ITABLE_ENTRY(INTERRUPT_LEVEL_10, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x2a),
+ ITABLE_ENTRY(INTERRUPT_LEVEL_11, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x2b),
+ ITABLE_ENTRY(INTERRUPT_LEVEL_12, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x2c),
+ ITABLE_ENTRY(INTERRUPT_LEVEL_13, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x2d),
+ ITABLE_ENTRY(INTERRUPT_LEVEL_14, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x2e),
+ ITABLE_ENTRY(INTERRUPT_LEVEL_15, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x2f),
+ /* Software interrupt */
+ ITABLE_ENTRY(TRAP_INSTRUCTION, FRV_SOFTWARE_INTERRUPT, !DEFERRED, !PRECISE, 0x80),
+ /* Program interrupts */
+ ITABLE_ENTRY(COMMIT_EXCEPTION, FRV_PROGRAM_INTERRUPT, !DEFERRED, !PRECISE, 0x19),
+ ITABLE_ENTRY(DIVISION_EXCEPTION, FRV_PROGRAM_INTERRUPT, !DEFERRED, !PRECISE, 0x17),
+ ITABLE_ENTRY(DATA_STORE_ERROR, FRV_PROGRAM_INTERRUPT, !DEFERRED, !PRECISE, 0x14),
+ ITABLE_ENTRY(DATA_ACCESS_EXCEPTION, FRV_PROGRAM_INTERRUPT, !DEFERRED, !PRECISE, 0x13),
+ ITABLE_ENTRY(DATA_ACCESS_MMU_MISS, FRV_PROGRAM_INTERRUPT, !DEFERRED, !PRECISE, 0x12),
+ ITABLE_ENTRY(DATA_ACCESS_ERROR, FRV_PROGRAM_INTERRUPT, !DEFERRED, !PRECISE, 0x11),
+ ITABLE_ENTRY(MP_EXCEPTION, FRV_PROGRAM_INTERRUPT, !DEFERRED, !PRECISE, 0x0e),
+ ITABLE_ENTRY(FP_EXCEPTION, FRV_PROGRAM_INTERRUPT, !DEFERRED, !PRECISE, 0x0d),
+ ITABLE_ENTRY(MEM_ADDRESS_NOT_ALIGNED, FRV_PROGRAM_INTERRUPT, !DEFERRED, !PRECISE, 0x10),
+ ITABLE_ENTRY(REGISTER_EXCEPTION, FRV_PROGRAM_INTERRUPT, !DEFERRED, PRECISE, 0x08),
+ ITABLE_ENTRY(MP_DISABLED, FRV_PROGRAM_INTERRUPT, !DEFERRED, PRECISE, 0x0b),
+ ITABLE_ENTRY(FP_DISABLED, FRV_PROGRAM_INTERRUPT, !DEFERRED, PRECISE, 0x0a),
+ ITABLE_ENTRY(PRIVILEGED_INSTRUCTION, FRV_PROGRAM_INTERRUPT, !DEFERRED, PRECISE, 0x06),
+ ITABLE_ENTRY(ILLEGAL_INSTRUCTION, FRV_PROGRAM_INTERRUPT, !DEFERRED, PRECISE, 0x07),
+ ITABLE_ENTRY(INSTRUCTION_ACCESS_EXCEPTION, FRV_PROGRAM_INTERRUPT, !DEFERRED, PRECISE, 0x03),
+ ITABLE_ENTRY(INSTRUCTION_ACCESS_ERROR, FRV_PROGRAM_INTERRUPT, !DEFERRED, PRECISE, 0x02),
+ ITABLE_ENTRY(INSTRUCTION_ACCESS_MMU_MISS, FRV_PROGRAM_INTERRUPT, !DEFERRED, PRECISE, 0x01),
+ ITABLE_ENTRY(COMPOUND_EXCEPTION, FRV_PROGRAM_INTERRUPT, !DEFERRED, !PRECISE, 0x20),
+ /* Break interrupt */
+ ITABLE_ENTRY(BREAK_EXCEPTION, FRV_BREAK_INTERRUPT, !DEFERRED, !PRECISE, 0xff),
+ /* Reset interrupt */
+ ITABLE_ENTRY(RESET, FRV_RESET_INTERRUPT, !DEFERRED, !PRECISE, 0x00)
+};
+
+/* The current interrupt state. */
+struct frv_interrupt_state frv_interrupt_state;
+
+/* maintain the address of the start of the previous VLIW insn sequence. */
+IADDR previous_vliw_pc;
+
+/* Add a break interrupt to the interrupt queue. */
+struct frv_interrupt_queue_element *
+frv_queue_break_interrupt (SIM_CPU *current_cpu)
+{
+ return frv_queue_interrupt (current_cpu, FRV_BREAK_EXCEPTION);
+}
+
+/* Add a software interrupt to the interrupt queue. */
+struct frv_interrupt_queue_element *
+frv_queue_software_interrupt (SIM_CPU *current_cpu, SI offset)
+{
+ struct frv_interrupt_queue_element *new_element
+ = frv_queue_interrupt (current_cpu, FRV_TRAP_INSTRUCTION);
+
+ struct frv_interrupt *interrupt = & frv_interrupt_table[new_element->kind];
+ interrupt->handler_offset = offset;
+
+ return new_element;
+}
+
+/* Add a program interrupt to the interrupt queue. */
+struct frv_interrupt_queue_element *
+frv_queue_program_interrupt (
+ SIM_CPU *current_cpu, enum frv_interrupt_kind kind
+)
+{
+ return frv_queue_interrupt (current_cpu, kind);
+}
+
+/* Add an external interrupt to the interrupt queue. */
+struct frv_interrupt_queue_element *
+frv_queue_external_interrupt (
+ SIM_CPU *current_cpu, enum frv_interrupt_kind kind
+)
+{
+ if (! GET_H_PSR_ET ()
+ || (kind != FRV_INTERRUPT_LEVEL_15 && kind < GET_H_PSR_PIL ()))
+ return NULL; /* Leave it for later. */
+
+ return frv_queue_interrupt (current_cpu, kind);
+}
+
+/* Add any interrupt to the interrupt queue. It will be added in reverse
+ priority order. This makes it easy to find the highest priority interrupt
+ at the end of the queue and to remove it after processing. */
+struct frv_interrupt_queue_element *
+frv_queue_interrupt (SIM_CPU *current_cpu, enum frv_interrupt_kind kind)
+{
+ int i;
+ int j;
+ int limit = frv_interrupt_state.queue_index;
+ struct frv_interrupt_queue_element *new_element;
+ enum frv_interrupt_class iclass;
+
+ if (limit >= FRV_INTERRUPT_QUEUE_SIZE)
+ abort (); /* TODO: Make the queue dynamic */
+
+ /* Find the right place in the queue. */
+ for (i = 0; i < limit; ++i)
+ {
+ if (frv_interrupt_state.queue[i].kind >= kind)
+ break;
+ }
+
+ /* Don't queue two external interrupts of the same priority. */
+ iclass = frv_interrupt_table[kind].iclass;
+ if (i < limit && iclass == FRV_EXTERNAL_INTERRUPT)
+ {
+ if (frv_interrupt_state.queue[i].kind == kind)
+ return & frv_interrupt_state.queue[i];
+ }
+
+ /* Make room for the new interrupt in this spot. */
+ for (j = limit - 1; j >= i; --j)
+ frv_interrupt_state.queue[j + 1] = frv_interrupt_state.queue[j];
+
+ /* Add the new interrupt. */
+ frv_interrupt_state.queue_index++;
+ new_element = & frv_interrupt_state.queue[i];
+ new_element->kind = kind;
+ new_element->vpc = CPU_PC_GET (current_cpu);
+ new_element->u.data_written.length = 0;
+ frv_set_interrupt_queue_slot (current_cpu, new_element);
+
+ return new_element;
+}
+
+struct frv_interrupt_queue_element *
+frv_queue_register_exception_interrupt (SIM_CPU *current_cpu, enum frv_rec rec)
+{
+ struct frv_interrupt_queue_element *new_element =
+ frv_queue_program_interrupt (current_cpu, FRV_REGISTER_EXCEPTION);
+
+ new_element->u.rec = rec;
+
+ return new_element;
+}
+
+struct frv_interrupt_queue_element *
+frv_queue_mem_address_not_aligned_interrupt (SIM_CPU *current_cpu, USI addr)
+{
+ struct frv_interrupt_queue_element *new_element;
+ USI isr = GET_ISR ();
+
+ /* Make sure that this exception is not masked. */
+ if (GET_ISR_EMAM (isr))
+ return NULL;
+
+ /* Queue the interrupt. */
+ new_element = frv_queue_program_interrupt (current_cpu,
+ FRV_MEM_ADDRESS_NOT_ALIGNED);
+ new_element->eaddress = addr;
+ new_element->u.data_written = frv_interrupt_state.data_written;
+ frv_interrupt_state.data_written.length = 0;
+
+ return new_element;
+}
+
+struct frv_interrupt_queue_element *
+frv_queue_data_access_error_interrupt (SIM_CPU *current_cpu, USI addr)
+{
+ struct frv_interrupt_queue_element *new_element;
+ new_element = frv_queue_program_interrupt (current_cpu,
+ FRV_DATA_ACCESS_ERROR);
+ new_element->eaddress = addr;
+ return new_element;
+}
+
+struct frv_interrupt_queue_element *
+frv_queue_data_access_exception_interrupt (SIM_CPU *current_cpu)
+{
+ return frv_queue_program_interrupt (current_cpu, FRV_DATA_ACCESS_EXCEPTION);
+}
+
+struct frv_interrupt_queue_element *
+frv_queue_instruction_access_error_interrupt (SIM_CPU *current_cpu)
+{
+ return frv_queue_program_interrupt (current_cpu, FRV_INSTRUCTION_ACCESS_ERROR);
+}
+
+struct frv_interrupt_queue_element *
+frv_queue_instruction_access_exception_interrupt (SIM_CPU *current_cpu)
+{
+ return frv_queue_program_interrupt (current_cpu, FRV_INSTRUCTION_ACCESS_EXCEPTION);
+}
+
+struct frv_interrupt_queue_element *
+frv_queue_illegal_instruction_interrupt (
+ SIM_CPU *current_cpu, const CGEN_INSN *insn
+)
+{
+ /* The fr400 does not have the fp_exception. */
+ SIM_DESC sd = CPU_STATE (current_cpu);
+ if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr400)
+ {
+ if (frv_is_float_insn (insn) || frv_is_media_insn (insn))
+ {
+ struct frv_fp_exception_info fp_info = {
+ FSR_NO_EXCEPTION, FTT_SEQUENCE_ERROR
+ };
+ return frv_queue_fp_exception_interrupt (current_cpu, & fp_info);
+ }
+ }
+
+ return frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
+}
+
+struct frv_interrupt_queue_element *
+frv_queue_non_implemented_instruction_interrupt (
+ SIM_CPU *current_cpu, const CGEN_INSN *insn
+)
+{
+ /* The fr400 does not have the fp_exception, nor does it generate mp_exception
+ for this case. */
+ SIM_DESC sd = CPU_STATE (current_cpu);
+ if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr400)
+ {
+ if (frv_is_float_insn (insn))
+ {
+ struct frv_fp_exception_info fp_info = {
+ FSR_NO_EXCEPTION, FTT_UNIMPLEMENTED_FPOP
+ };
+ return frv_queue_fp_exception_interrupt (current_cpu, & fp_info);
+ }
+
+ if (frv_is_media_insn (insn))
+ {
+ frv_set_mp_exception_registers (current_cpu, MTT_UNIMPLEMENTED_MPOP,
+ 0);
+ return NULL; /* no interrupt queued at this time. */
+ }
+
+ }
+
+ return frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
+}
+
+/* Queue the given fp_exception interrupt. Also update fp_info by removing
+ masked interrupts and updating the 'slot' flield. */
+struct frv_interrupt_queue_element *
+frv_queue_fp_exception_interrupt (
+ SIM_CPU *current_cpu, struct frv_fp_exception_info *fp_info
+)
+{
+ SI fsr0 = GET_FSR (0);
+ int tem = GET_FSR_TEM (fsr0);
+ int aexc = GET_FSR_AEXC (fsr0);
+ struct frv_interrupt_queue_element *new_element = NULL;
+
+ /* Update AEXC with the interrupts that are masked. */
+ aexc |= fp_info->fsr_mask & ~tem;
+ SET_FSR_AEXC (fsr0, aexc);
+ SET_FSR (0, fsr0);
+
+ /* update fsr_mask with the exceptions that are enabled. */
+ fp_info->fsr_mask &= tem;
+
+ /* If there is an unmasked interrupt then queue it, unless
+ this was a non-excepting insn, in which case simply set the NE
+ status registers. */
+ if (frv_interrupt_state.ne_index != NE_NOFLAG
+ && fp_info->fsr_mask != FSR_NO_EXCEPTION)
+ {
+ SET_NE_FLAG (frv_interrupt_state.f_ne_flags,
+ frv_interrupt_state.ne_index);
+ /* TODO -- Set NESR for chips which support it. */
+ new_element = NULL;
+ }
+ else if (fp_info->fsr_mask != FSR_NO_EXCEPTION
+ || fp_info->ftt == FTT_UNIMPLEMENTED_FPOP
+ || fp_info->ftt == FTT_SEQUENCE_ERROR
+ || fp_info->ftt == FTT_INVALID_FR)
+ {
+ new_element = frv_queue_program_interrupt (current_cpu, FRV_FP_EXCEPTION);
+ new_element->u.fp_info = *fp_info;
+ }
+
+ return new_element;
+}
+
+struct frv_interrupt_queue_element *
+frv_queue_division_exception_interrupt (SIM_CPU *current_cpu, enum frv_dtt dtt)
+{
+ struct frv_interrupt_queue_element *new_element =
+ frv_queue_program_interrupt (current_cpu, FRV_DIVISION_EXCEPTION);
+
+ new_element->u.dtt = dtt;
+
+ return new_element;
+}
+
+/* Check for interrupts caused by illegal insn access. These conditions are
+ checked in the order specified by the fr400 and fr500 LSI specs. */
+void
+frv_detect_insn_access_interrupts (SIM_CPU *current_cpu, SCACHE *sc)
+{
+
+ const CGEN_INSN *insn = sc->argbuf.idesc->idata;
+ SIM_DESC sd = CPU_STATE (current_cpu);
+ FRV_VLIW *vliw = CPU_VLIW (current_cpu);
+
+ /* Check for vliw constraints. */
+ if (vliw->constraint_violation)
+ frv_queue_illegal_instruction_interrupt (current_cpu, insn);
+ /* Check for non-excepting insns. */
+ else if (CGEN_INSN_ATTR_VALUE (insn, CGEN_INSN_NON_EXCEPTING)
+ && ! GET_H_PSR_NEM ())
+ frv_queue_non_implemented_instruction_interrupt (current_cpu, insn);
+ /* Check for conditional insns. */
+ else if (CGEN_INSN_ATTR_VALUE (insn, CGEN_INSN_CONDITIONAL)
+ && ! GET_H_PSR_CM ())
+ frv_queue_non_implemented_instruction_interrupt (current_cpu, insn);
+ /* Make sure floating point support is enabled. */
+ else if (! GET_H_PSR_EF ())
+ {
+ /* Generate fp_disabled if it is a floating point insn or if PSR.EM is
+ off and the insns accesses a fp register. */
+ if (frv_is_float_insn (insn)
+ || (CGEN_INSN_ATTR_VALUE (insn, CGEN_INSN_FR_ACCESS)
+ && ! GET_H_PSR_EM ()))
+ frv_queue_program_interrupt (current_cpu, FRV_FP_DISABLED);
+ }
+ /* Make sure media support is enabled. */
+ else if (! GET_H_PSR_EM ())
+ {
+ /* Generate mp_disabled if it is a media insn. */
+ if (frv_is_media_insn (insn) || CGEN_INSN_NUM (insn) == FRV_INSN_MTRAP)
+ frv_queue_program_interrupt (current_cpu, FRV_MP_DISABLED);
+ }
+ /* Check for privileged insns. */
+ else if (CGEN_INSN_ATTR_VALUE (insn, CGEN_INSN_PRIVILEGED) &&
+ ! GET_H_PSR_S ())
+ frv_queue_program_interrupt (current_cpu, FRV_PRIVILEGED_INSTRUCTION);
+#if 0 /* disable for now until we find out how FSR0.QNE gets reset. */
+ else
+ {
+ /* Enter the halt state if FSR0.QNE is set and we are executing a
+ floating point insn, a media insn or an insn which access a FR
+ register. */
+ SI fsr0 = GET_FSR (0);
+ if (GET_FSR_QNE (fsr0)
+ && (frv_is_float_insn (insn) || frv_is_media_insn (insn)
+ || CGEN_INSN_ATTR_VALUE (insn, CGEN_INSN_FR_ACCESS)))
+ {
+ sim_engine_halt (sd, current_cpu, NULL, GET_H_PC (), sim_stopped,
+ SIM_SIGINT);
+ }
+ }
+#endif
+}
+
+/* Record the current VLIW slot in the given interrupt queue element. */
+void
+frv_set_interrupt_queue_slot (
+ SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item
+)
+{
+ FRV_VLIW *vliw = CPU_VLIW (current_cpu);
+ int slot = vliw->next_slot - 1;
+ item->slot = (*vliw->current_vliw)[slot];
+}
+
+/* Handle an individual interrupt. */
+static void
+handle_interrupt (SIM_CPU *current_cpu, IADDR pc)
+{
+ struct frv_interrupt *interrupt;
+ int writeback_done = 0;
+ while (1)
+ {
+ /* Interrupts are queued in priority order with the highest priority
+ last. */
+ int index = frv_interrupt_state.queue_index - 1;
+ struct frv_interrupt_queue_element *item
+ = & frv_interrupt_state.queue[index];
+ interrupt = & frv_interrupt_table[item->kind];
+
+ switch (interrupt->iclass)
+ {
+ case FRV_EXTERNAL_INTERRUPT:
+ /* Perform writeback first. This may cause a higher priority
+ interrupt. */
+ if (! writeback_done)
+ {
+ frvbf_perform_writeback (current_cpu);
+ writeback_done = 1;
+ continue;
+ }
+ frv_external_interrupt (current_cpu, item, pc);
+ return;
+ case FRV_SOFTWARE_INTERRUPT:
+ frv_interrupt_state.queue_index = index;
+ frv_software_interrupt (current_cpu, item, pc);
+ return;
+ case FRV_PROGRAM_INTERRUPT:
+ /* If the program interrupt is not strict (imprecise), then perform
+ writeback first. This may, in turn, cause a higher priority
+ interrupt. */
+ if (! interrupt->precise && ! writeback_done)
+ {
+ frv_interrupt_state.imprecise_interrupt = item;
+ frvbf_perform_writeback (current_cpu);
+ writeback_done = 1;
+ continue;
+ }
+ frv_interrupt_state.queue_index = index;
+ frv_program_interrupt (current_cpu, item, pc);
+ return;
+ case FRV_BREAK_INTERRUPT:
+ frv_interrupt_state.queue_index = index;
+ frv_break_interrupt (current_cpu, interrupt, pc);
+ return;
+ case FRV_RESET_INTERRUPT:
+ break;
+ default:
+ break;
+ }
+ frv_interrupt_state.queue_index = index;
+ break; /* out of loop. */
+ }
+
+ /* We should never get here. */
+ {
+ SIM_DESC sd = CPU_STATE (current_cpu);
+ sim_engine_abort (sd, current_cpu, pc,
+ "interrupt class not supported %d\n",
+ interrupt->iclass);
+ }
+}
+
+/* Check to see the if the RSTR.HR or RSTR.SR bits have been set. If so, handle
+ the appropriate reset interrupt. */
+static int
+check_reset (SIM_CPU *current_cpu, IADDR pc)
+{
+ int hsr0;
+ int hr;
+ int sr;
+ SI rstr;
+ FRV_CACHE *cache = CPU_DATA_CACHE (current_cpu);
+ IADDR address = RSTR_ADDRESS;
+
+ /* We don't want this to show up in the cache statistics, so read the
+ cache passively. */
+ if (! frv_cache_read_passive_SI (cache, address, & rstr))
+ rstr = sim_core_read_unaligned_4 (current_cpu, pc, read_map, address);
+
+ hr = GET_RSTR_HR (rstr);
+ sr = GET_RSTR_SR (rstr);
+
+ if (! hr && ! sr)
+ return 0; /* no reset. */
+
+ /* Reinitialize the machine state. */
+ if (hr)
+ frv_hardware_reset (current_cpu);
+ else
+ frv_software_reset (current_cpu);
+
+ /* Branch to the reset address. */
+ hsr0 = GET_HSR0 ();
+ if (GET_HSR0_SA (hsr0))
+ SET_H_PC (0xff000000);
+ else
+ SET_H_PC (0);
+
+ return 1; /* reset */
+}
+
+/* Process any pending interrupt(s) after a group of parallel insns. */
+void
+frv_process_interrupts (SIM_CPU *current_cpu)
+{
+ SI NE_flags[2];
+ /* Need to save the pc here because writeback may change it (due to a
+ branch). */
+ IADDR pc = CPU_PC_GET (current_cpu);
+
+ /* Check for a reset before anything else. */
+ if (check_reset (current_cpu, pc))
+ return;
+
+ /* First queue the writes for any accumulated NE flags. */
+ if (frv_interrupt_state.f_ne_flags[0] != 0
+ || frv_interrupt_state.f_ne_flags[1] != 0)
+ {
+ GET_NE_FLAGS (NE_flags, H_SPR_FNER0);
+ NE_flags[0] |= frv_interrupt_state.f_ne_flags[0];
+ NE_flags[1] |= frv_interrupt_state.f_ne_flags[1];
+ SET_NE_FLAGS (H_SPR_FNER0, NE_flags);
+ }
+
+ /* If there is no interrupt pending, then perform parallel writeback. This
+ may cause an interrupt. */
+ if (frv_interrupt_state.queue_index <= 0)
+ frvbf_perform_writeback (current_cpu);
+
+ /* If there is an interrupt pending, then process it. */
+ if (frv_interrupt_state.queue_index > 0)
+ handle_interrupt (current_cpu, pc);
+}
+
+/* Find the next available ESR and return its index */
+static int
+esr_for_data_access_exception (
+ SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item
+)
+{
+ if (item->slot == UNIT_I0)
+ return 8; /* Use ESR8, EPCR8, EAR8, EDR8. */
+
+ return 9; /* Use ESR9, EPCR9, EAR9. */
+}
+
+/* Set the next available EDR register with the data which was to be stored
+ and return the index of the register. */
+static int
+set_edr_register (
+ SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item, int edr_index
+)
+{
+ /* EDR0, EDR4 and EDR8 are available as blocks of 4.
+ SI data uses EDR3, EDR7 and EDR11
+ DI data uses EDR2, EDR6 and EDR10
+ XI data uses EDR0, EDR4 and EDR8. */
+ int i;
+ edr_index += 4 - item->u.data_written.length;
+ for (i = 0; i < item->u.data_written.length; ++i)
+ SET_EDR (edr_index + i, item->u.data_written.words[i]);
+
+ return edr_index;
+};
+
+/* Clear ESFR0, EPCRx, ESRx, EARx and EDRx. */
+static void
+clear_exception_status_registers (SIM_CPU *current_cpu)
+{
+ int i;
+ /* It is only necessary to clear the flag bits indicating which registers
+ are valid. */
+ SET_ESFR (0, 0);
+ SET_ESFR (1, 0);
+
+ for (i = 0; i <= 2; ++i)
+ {
+ SI esr = GET_ESR (i);
+ CLEAR_ESR_VALID (esr);
+ SET_ESR (i, esr);
+ }
+ for (i = 8; i <= 13; ++i)
+ {
+ SI esr = GET_ESR (i);
+ CLEAR_ESR_VALID (esr);
+ SET_ESR (i, esr);
+ }
+}
+
+/* Record state for media exception. */
+void
+frv_set_mp_exception_registers (
+ SIM_CPU *current_cpu, enum frv_msr_mtt mtt, int sie
+)
+{
+ /* Record the interrupt factor in MSR0. */
+ SI msr0 = GET_MSR (0);
+ if (GET_MSR_MTT (msr0) == MTT_NONE)
+ SET_MSR_MTT (msr0, mtt);
+
+ /* Also set the OVF bit in the appropriate MSR as well as MSR0.AOVF. */
+ if (mtt == MTT_OVERFLOW)
+ {
+ FRV_VLIW *vliw = CPU_VLIW (current_cpu);
+ int slot = vliw->next_slot - 1;
+
+ /* If this insn is in the M2 slot, then set MSR1.OVF and MSR1.SIE,
+ otherwise set MSR0.OVF and MSR0.SIE. */
+ if ((*vliw->current_vliw)[slot] == UNIT_FM1)
+ {
+ SI msr = GET_MSR (1);
+ OR_MSR_SIE (msr, sie);
+ SET_MSR_OVF (msr);
+ SET_MSR (1, msr);
+ }
+ else
+ {
+ OR_MSR_SIE (msr0, sie);
+ SET_MSR_OVF (msr0);
+ }
+
+ /* Regardless of the slot, set MSR0.AOVF. */
+ SET_MSR_AOVF (msr0);
+ }
+
+ SET_MSR (0, msr0);
+}
+
+/* Determine the correct FQ register to use for the given exception.
+ Return -1 if a register is not available. */
+static int
+fq_for_exception (
+ SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item
+)
+{
+ SI fq;
+ struct frv_fp_exception_info *fp_info = & item->u.fp_info;
+
+ /* For fp_exception overflow, underflow or inexact, use FQ0 or FQ1. */
+ if (fp_info->ftt == FTT_IEEE_754_EXCEPTION
+ && (fp_info->fsr_mask & (FSR_OVERFLOW | FSR_UNDERFLOW | FSR_INEXACT)))
+ {
+ fq = GET_FQ (0);
+ if (! GET_FQ_VALID (fq))
+ return 0; /* FQ0 is available. */
+ fq = GET_FQ (1);
+ if (! GET_FQ_VALID (fq))
+ return 1; /* FQ1 is available. */
+
+ /* No FQ register is available */
+ {
+ SIM_DESC sd = CPU_STATE (current_cpu);
+ IADDR pc = CPU_PC_GET (current_cpu);
+ sim_engine_abort (sd, current_cpu, pc, "No FQ register available\n");
+ }
+ return -1;
+ }
+ /* For other exceptions, use FQ2 if the insn was in slot F0/I0 and FQ3
+ otherwise. */
+ if (item->slot == UNIT_FM0 || item->slot == UNIT_I0)
+ return 2;
+
+ return 3;
+}
+
+/* Set FSR0, FQ0-FQ9, depending on the interrupt. */
+static void
+set_fp_exception_registers (
+ SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item
+)
+{
+ int fq_index;
+ SI fq;
+ SI insn;
+ SI fsr0;
+ IADDR pc;
+ struct frv_fp_exception_info *fp_info;
+
+ /* Select an FQ and update it with the exception information. */
+ fq_index = fq_for_exception (current_cpu, item);
+ if (fq_index == -1)
+ return;
+
+ fp_info = & item->u.fp_info;
+ fq = GET_FQ (fq_index);
+ SET_FQ_MIV (fq, MIV_FLOAT);
+ SET_FQ_SIE (fq, SIE_NIL);
+ SET_FQ_FTT (fq, fp_info->ftt);
+ SET_FQ_CEXC (fq, fp_info->fsr_mask);
+ SET_FQ_VALID (fq);
+ SET_FQ (fq_index, fq);
+
+ /* Write the failing insn into FQx.OPC. */
+ pc = item->vpc;
+ insn = GETMEMSI (current_cpu, pc, pc);
+ SET_FQ_OPC (fq_index, insn);
+
+ /* Update the fsr. */
+ fsr0 = GET_FSR (0);
+ SET_FSR_QNE (fsr0); /* FQ not empty */
+ SET_FSR_FTT (fsr0, fp_info->ftt);
+ SET_FSR (0, fsr0);
+}
+
+/* Record the state of a division exception in the ISR. */
+static void
+set_isr_exception_fields (
+ SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item
+)
+{
+ USI isr = GET_ISR ();
+ int dtt = GET_ISR_DTT (isr);
+ dtt |= item->u.dtt;
+ SET_ISR_DTT (isr, dtt);
+ SET_ISR (isr);
+}
+
+/* Set ESFR0, EPCRx, ESRx, EARx and EDRx, according to the given program
+ interrupt. */
+static void
+set_exception_status_registers (
+ SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item
+)
+{
+ struct frv_interrupt *interrupt = & frv_interrupt_table[item->kind];
+ int slot = (item->vpc - previous_vliw_pc) / 4;
+ int reg_index = -1;
+ int set_ear = 0;
+ int set_edr = 0;
+ int set_daec = 0;
+ int set_epcr = 0;
+ SI esr = 0;
+ SIM_DESC sd = CPU_STATE (current_cpu);
+
+ /* If the interrupt is strict (precise) or the interrupt is on the insns
+ in the I0 pipe, then set the 0 registers. */
+ if (interrupt->precise)
+ {
+ reg_index = 0;
+ if (interrupt->kind == FRV_REGISTER_EXCEPTION)
+ SET_ESR_REC (esr, item->u.rec);
+ else if (interrupt->kind == FRV_INSTRUCTION_ACCESS_EXCEPTION)
+ SET_ESR_IAEC (esr, item->u.iaec);
+ set_epcr = 1;
+ }
+ else
+ {
+ switch (interrupt->kind)
+ {
+ case FRV_DIVISION_EXCEPTION:
+ set_isr_exception_fields (current_cpu, item);
+ /* fall thru to set reg_index. */
+ case FRV_COMMIT_EXCEPTION:
+ if (item->slot == UNIT_I0)
+ reg_index = 0;
+ else if (item->slot == UNIT_I1)
+ reg_index = 1;
+ set_epcr = 1;
+ break;
+ case FRV_DATA_STORE_ERROR:
+ reg_index = 14; /* Use ESR15, EPCR15. */
+ break;
+ case FRV_DATA_ACCESS_ERROR:
+ reg_index = 15; /* Use ESR15, EPCR15. */
+ if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr400)
+ set_ear = 1;
+ break;
+ case FRV_DATA_ACCESS_EXCEPTION:
+ set_daec = 1;
+ /* fall through */
+ case FRV_DATA_ACCESS_MMU_MISS:
+ case FRV_MEM_ADDRESS_NOT_ALIGNED:
+ /* Get the appropriate ESR, EPCR, EAR and EDR.
+ EAR will be set. EDR will not be set if this is a store insn. */
+ set_ear = 1;
+ if (item->u.data_written.length != 0)
+ set_edr = 1;
+ reg_index = esr_for_data_access_exception (current_cpu, item);
+ set_epcr = 1;
+ break;
+ case FRV_MP_EXCEPTION:
+ break; /* MSR0-1, FQ0-9 are already set. */
+ case FRV_FP_EXCEPTION:
+ set_fp_exception_registers (current_cpu, item);
+ break;
+ default:
+ {
+ SIM_DESC sd = CPU_STATE (current_cpu);
+ IADDR pc = CPU_PC_GET (current_cpu);
+ sim_engine_abort (sd, current_cpu, pc,
+ "invalid non-strict program interrupt kind: %d\n",
+ interrupt->kind);
+ break;
+ }
+ }
+ } /* non-strict (imprecise) interrupt */
+
+ /* Now fill in the selected exception status registers. */
+ if (reg_index != -1)
+ {
+ /* Now set the exception status registers. */
+ SET_ESFR_FLAG (reg_index);
+ SET_ESR_EC (esr, interrupt->ec);
+
+ if (set_epcr)
+ {
+ if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr400)
+ SET_EPCR (reg_index, previous_vliw_pc);
+ else
+ SET_EPCR (reg_index, item->vpc);
+ }
+
+ if (set_ear)
+ {
+ SET_EAR (reg_index, item->eaddress);
+ SET_ESR_EAV (esr);
+ }
+ else
+ CLEAR_ESR_EAV (esr);
+
+ if (set_edr)
+ {
+ int edn = set_edr_register (current_cpu, item, 0/* EDR0-3 */);
+ SET_ESR_EDN (esr, edn);
+ SET_ESR_EDV (esr);
+ }
+ else
+ CLEAR_ESR_EDV (esr);
+
+ if (set_daec)
+ SET_ESR_DAEC (esr, item->u.daec);
+
+ SET_ESR_VALID (esr);
+ SET_ESR (reg_index, esr);
+ }
+}
+
+/* Check for compound interrupts.
+ Returns NULL if no interrupt is to be processed. */
+static struct frv_interrupt *
+check_for_compound_interrupt (
+ SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item
+)
+{
+ struct frv_interrupt *interrupt;
+
+ /* Set the exception status registers for the original interrupt. */
+ set_exception_status_registers (current_cpu, item);
+ interrupt = & frv_interrupt_table[item->kind];
+
+ if (! interrupt->precise)
+ {
+ IADDR vpc = 0;
+ int mask = 0;
+
+ vpc = item->vpc;
+ mask = (1 << item->kind);
+
+ /* Look for more queued program interrupts which are non-deferred
+ (pending inhibit), imprecise (non-strict) different than an interrupt
+ already found and caused by a different insn. A bit mask is used
+ to keep track of interrupts which have already been detected. */
+ while (item != frv_interrupt_state.queue)
+ {
+ enum frv_interrupt_kind kind;
+ struct frv_interrupt *next_interrupt;
+ --item;
+ kind = item->kind;
+ next_interrupt = & frv_interrupt_table[kind];
+
+ if (next_interrupt->iclass != FRV_PROGRAM_INTERRUPT)
+ break; /* no program interrupts left. */
+
+ if (item->vpc == vpc)
+ continue; /* caused by the same insn. */
+
+ vpc = item->vpc;
+ if (! next_interrupt->precise && ! next_interrupt->deferred)
+ {
+ if (! (mask & (1 << kind)))
+ {
+ /* Set the exception status registers for the additional
+ interrupt. */
+ set_exception_status_registers (current_cpu, item);
+ mask |= (1 << kind);
+ interrupt = & frv_interrupt_table[FRV_COMPOUND_EXCEPTION];
+ }
+ }
+ }
+ }
+
+ /* Return with either the original interrupt, a compound_exception,
+ or no exception. */
+ return interrupt;
+}
+
+/* Handle a program interrupt. */
+void
+frv_program_interrupt (
+ SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item, IADDR pc
+)
+{
+ struct frv_interrupt *interrupt;
+
+ clear_exception_status_registers (current_cpu);
+ /* If two or more non-deferred imprecise (non-strict) interrupts occur
+ on two or more insns, then generate a compound_exception. */
+ interrupt = check_for_compound_interrupt (current_cpu, item);
+ if (interrupt != NULL)
+ {
+ frv_program_or_software_interrupt (current_cpu, interrupt, pc);
+ frv_clear_interrupt_classes (FRV_SOFTWARE_INTERRUPT,
+ FRV_PROGRAM_INTERRUPT);
+ }
+}
+
+/* Handle a software interrupt. */
+void
+frv_software_interrupt (
+ SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item, IADDR pc
+)
+{
+ struct frv_interrupt *interrupt = & frv_interrupt_table[item->kind];
+ frv_program_or_software_interrupt (current_cpu, interrupt, pc);
+}
+
+/* Handle a program interrupt or a software interrupt in non-operating mode. */
+void
+frv_non_operating_interrupt (
+ SIM_CPU *current_cpu, enum frv_interrupt_kind kind, IADDR pc
+)
+{
+ SIM_DESC sd = CPU_STATE (current_cpu);
+ switch (kind)
+ {
+ case FRV_INTERRUPT_LEVEL_1:
+ case FRV_INTERRUPT_LEVEL_2:
+ case FRV_INTERRUPT_LEVEL_3:
+ case FRV_INTERRUPT_LEVEL_4:
+ case FRV_INTERRUPT_LEVEL_5:
+ case FRV_INTERRUPT_LEVEL_6:
+ case FRV_INTERRUPT_LEVEL_7:
+ case FRV_INTERRUPT_LEVEL_8:
+ case FRV_INTERRUPT_LEVEL_9:
+ case FRV_INTERRUPT_LEVEL_10:
+ case FRV_INTERRUPT_LEVEL_11:
+ case FRV_INTERRUPT_LEVEL_12:
+ case FRV_INTERRUPT_LEVEL_13:
+ case FRV_INTERRUPT_LEVEL_14:
+ case FRV_INTERRUPT_LEVEL_15:
+ sim_engine_abort (sd, current_cpu, pc,
+ "interrupt: external %d\n", kind + 1);
+ break;
+ case FRV_TRAP_INSTRUCTION:
+ break; /* handle as in operating mode. */
+ case FRV_COMMIT_EXCEPTION:
+ sim_engine_abort (sd, current_cpu, pc,
+ "interrupt: commit_exception\n");
+ break;
+ case FRV_DIVISION_EXCEPTION:
+ sim_engine_abort (sd, current_cpu, pc,
+ "interrupt: division_exception\n");
+ break;
+ case FRV_DATA_STORE_ERROR:
+ sim_engine_abort (sd, current_cpu, pc,
+ "interrupt: data_store_error\n");
+ break;
+ case FRV_DATA_ACCESS_EXCEPTION:
+ sim_engine_abort (sd, current_cpu, pc,
+ "interrupt: data_access_exception\n");
+ break;
+ case FRV_DATA_ACCESS_MMU_MISS:
+ sim_engine_abort (sd, current_cpu, pc,
+ "interrupt: data_access_mmu_miss\n");
+ break;
+ case FRV_DATA_ACCESS_ERROR:
+ sim_engine_abort (sd, current_cpu, pc,
+ "interrupt: data_access_error\n");
+ break;
+ case FRV_MP_EXCEPTION:
+ sim_engine_abort (sd, current_cpu, pc,
+ "interrupt: mp_exception\n");
+ break;
+ case FRV_FP_EXCEPTION:
+ sim_engine_abort (sd, current_cpu, pc,
+ "interrupt: fp_exception\n");
+ break;
+ case FRV_MEM_ADDRESS_NOT_ALIGNED:
+ sim_engine_abort (sd, current_cpu, pc,
+ "interrupt: mem_address_not_aligned\n");
+ break;
+ case FRV_REGISTER_EXCEPTION:
+ sim_engine_abort (sd, current_cpu, pc,
+ "interrupt: register_exception\n");
+ break;
+ case FRV_MP_DISABLED:
+ sim_engine_abort (sd, current_cpu, pc,
+ "interrupt: mp_disabled\n");
+ break;
+ case FRV_FP_DISABLED:
+ sim_engine_abort (sd, current_cpu, pc,
+ "interrupt: fp_disabled\n");
+ break;
+ case FRV_PRIVILEGED_INSTRUCTION:
+ sim_engine_abort (sd, current_cpu, pc,
+ "interrupt: privileged_instruction\n");
+ break;
+ case FRV_ILLEGAL_INSTRUCTION:
+ sim_engine_abort (sd, current_cpu, pc,
+ "interrupt: illegal_instruction\n");
+ break;
+ case FRV_INSTRUCTION_ACCESS_EXCEPTION:
+ sim_engine_abort (sd, current_cpu, pc,
+ "interrupt: instruction_access_exception\n");
+ break;
+ case FRV_INSTRUCTION_ACCESS_MMU_MISS:
+ sim_engine_abort (sd, current_cpu, pc,
+ "interrupt: instruction_access_mmu_miss\n");
+ break;
+ case FRV_INSTRUCTION_ACCESS_ERROR:
+ sim_engine_abort (sd, current_cpu, pc,
+ "interrupt: insn_access_error\n");
+ break;
+ case FRV_COMPOUND_EXCEPTION:
+ sim_engine_abort (sd, current_cpu, pc,
+ "interrupt: compound_exception\n");
+ break;
+ case FRV_BREAK_EXCEPTION:
+ sim_engine_abort (sd, current_cpu, pc,
+ "interrupt: break_exception\n");
+ break;
+ case FRV_RESET:
+ sim_engine_abort (sd, current_cpu, pc,
+ "interrupt: reset\n");
+ break;
+ default:
+ sim_engine_abort (sd, current_cpu, pc,
+ "unhandled interrupt kind: %d\n", kind);
+ break;
+ }
+}
+
+/* Handle a break interrupt. */
+void
+frv_break_interrupt (
+ SIM_CPU *current_cpu, struct frv_interrupt *interrupt, IADDR current_pc
+)
+{
+ IADDR new_pc;
+
+ /* BPCSR=PC
+ BPSR.BS=PSR.S
+ BPSR.BET=PSR.ET
+ PSR.S=1
+ PSR.ET=0
+ TBR.TT=0xff
+ PC=TBR
+ */
+ /* Must set PSR.S first to allow access to supervisor-only spr registers. */
+ SET_H_BPSR_BS (GET_H_PSR_S ());
+ SET_H_BPSR_BET (GET_H_PSR_ET ());
+ SET_H_PSR_S (1);
+ SET_H_PSR_ET (0);
+ /* Must set PSR.S first to allow access to supervisor-only spr registers. */
+ SET_H_SPR (H_SPR_BPCSR, current_pc);
+
+ /* Set the new PC in the TBR. */
+ SET_H_TBR_TT (interrupt->handler_offset);
+ new_pc = GET_H_SPR (H_SPR_TBR);
+ SET_H_PC (new_pc);
+
+ CPU_DEBUG_STATE (current_cpu) = 1;
+}
+
+/* Handle a program interrupt or a software interrupt. */
+void
+frv_program_or_software_interrupt (
+ SIM_CPU *current_cpu, struct frv_interrupt *interrupt, IADDR current_pc
+)
+{
+ USI new_pc;
+ int original_psr_et;
+
+ /* PCSR=PC
+ PSR.PS=PSR.S
+ PSR.ET=0
+ PSR.S=1
+ if PSR.ESR==1
+ SR0 through SR3=GR4 through GR7
+ TBR.TT=interrupt handler offset
+ PC=TBR
+ */
+ original_psr_et = GET_H_PSR_ET ();
+
+ SET_H_PSR_PS (GET_H_PSR_S ());
+ SET_H_PSR_ET (0);
+ SET_H_PSR_S (1);
+
+ /* Must set PSR.S first to allow access to supervisor-only spr registers. */
+ /* The PCSR depends on the precision of the interrupt. */
+ if (interrupt->precise)
+ SET_H_SPR (H_SPR_PCSR, previous_vliw_pc);
+ else
+ SET_H_SPR (H_SPR_PCSR, current_pc);
+
+ /* Set the new PC in the TBR. */
+ SET_H_TBR_TT (interrupt->handler_offset);
+ new_pc = GET_H_SPR (H_SPR_TBR);
+ SET_H_PC (new_pc);
+
+ /* If PSR.ET was not originally set, then enter the stopped state. */
+ if (! original_psr_et)
+ {
+ SIM_DESC sd = CPU_STATE (current_cpu);
+ frv_non_operating_interrupt (current_cpu, interrupt->kind, current_pc);
+ sim_engine_halt (sd, current_cpu, NULL, new_pc, sim_stopped, SIM_SIGINT);
+ }
+}
+
+/* Handle a program interrupt or a software interrupt. */
+void
+frv_external_interrupt (
+ SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item, IADDR pc
+)
+{
+ USI new_pc;
+ struct frv_interrupt *interrupt = & frv_interrupt_table[item->kind];
+
+ /* Don't process the interrupt if PSR.ET is not set or if it is masked.
+ Interrupt 15 is processed even if it appears to be masked. */
+ if (! GET_H_PSR_ET ()
+ || (interrupt->kind != FRV_INTERRUPT_LEVEL_15
+ && interrupt->kind < GET_H_PSR_PIL ()))
+ return; /* Leave it for later. */
+
+ /* Remove the interrupt from the queue. */
+ --frv_interrupt_state.queue_index;
+
+ /* PCSR=PC
+ PSR.PS=PSR.S
+ PSR.ET=0
+ PSR.S=1
+ if PSR.ESR==1
+ SR0 through SR3=GR4 through GR7
+ TBR.TT=interrupt handler offset
+ PC=TBR
+ */
+ SET_H_PSR_PS (GET_H_PSR_S ());
+ SET_H_PSR_ET (0);
+ SET_H_PSR_S (1);
+ /* Must set PSR.S first to allow access to supervisor-only spr registers. */
+ SET_H_SPR (H_SPR_PCSR, GET_H_PC ());
+
+ /* Set the new PC in the TBR. */
+ SET_H_TBR_TT (interrupt->handler_offset);
+ new_pc = GET_H_SPR (H_SPR_TBR);
+ SET_H_PC (new_pc);
+}
+
+/* Clear interrupts which fall within the range of classes given. */
+void
+frv_clear_interrupt_classes (
+ enum frv_interrupt_class low_class, enum frv_interrupt_class high_class
+)
+{
+ int i;
+ int j;
+ int limit = frv_interrupt_state.queue_index;
+
+ /* Find the lowest priority interrupt to be removed. */
+ for (i = 0; i < limit; ++i)
+ {
+ enum frv_interrupt_kind kind = frv_interrupt_state.queue[i].kind;
+ struct frv_interrupt* interrupt = & frv_interrupt_table[kind];
+ if (interrupt->iclass >= low_class)
+ break;
+ }
+
+ /* Find the highest priority interrupt to be removed. */
+ for (j = limit - 1; j >= i; --j)
+ {
+ enum frv_interrupt_kind kind = frv_interrupt_state.queue[j].kind;
+ struct frv_interrupt* interrupt = & frv_interrupt_table[kind];
+ if (interrupt->iclass <= high_class)
+ break;
+ }
+
+ /* Shuffle the remaining high priority interrupts down into the empty space
+ left by the deleted interrupts. */
+ if (j >= i)
+ {
+ for (++j; j < limit; ++j)
+ frv_interrupt_state.queue[i++] = frv_interrupt_state.queue[j];
+ frv_interrupt_state.queue_index -= (j - i);
+ }
+}
+
+/* Save data written to memory into the interrupt state so that it can be
+ copied to the appropriate EDR register, if necessary, in the event of an
+ interrupt. */
+void
+frv_save_data_written_for_interrupts (
+ SIM_CPU *current_cpu, CGEN_WRITE_QUEUE_ELEMENT *item
+)
+{
+ /* Record the slot containing the insn doing the write in the
+ interrupt state. */
+ frv_interrupt_state.slot = CGEN_WRITE_QUEUE_ELEMENT_PIPE (item);
+
+ /* Now record any data written to memory in the interrupt state. */
+ switch (CGEN_WRITE_QUEUE_ELEMENT_KIND (item))
+ {
+ case CGEN_BI_WRITE:
+ case CGEN_QI_WRITE:
+ case CGEN_SI_WRITE:
+ case CGEN_SF_WRITE:
+ case CGEN_PC_WRITE:
+ case CGEN_FN_HI_WRITE:
+ case CGEN_FN_SI_WRITE:
+ case CGEN_FN_SF_WRITE:
+ case CGEN_FN_DI_WRITE:
+ case CGEN_FN_DF_WRITE:
+ case CGEN_FN_XI_WRITE:
+ case CGEN_FN_PC_WRITE:
+ break; /* Ignore writes to registers. */
+ case CGEN_MEM_QI_WRITE:
+ frv_interrupt_state.data_written.length = 1;
+ frv_interrupt_state.data_written.words[0]
+ = item->kinds.mem_qi_write.value;
+ break;
+ case CGEN_MEM_HI_WRITE:
+ frv_interrupt_state.data_written.length = 1;
+ frv_interrupt_state.data_written.words[0]
+ = item->kinds.mem_hi_write.value;
+ break;
+ case CGEN_MEM_SI_WRITE:
+ frv_interrupt_state.data_written.length = 1;
+ frv_interrupt_state.data_written.words[0]
+ = item->kinds.mem_si_write.value;
+ break;
+ case CGEN_MEM_DI_WRITE:
+ frv_interrupt_state.data_written.length = 2;
+ frv_interrupt_state.data_written.words[0]
+ = item->kinds.mem_di_write.value >> 32;
+ frv_interrupt_state.data_written.words[1]
+ = item->kinds.mem_di_write.value;
+ break;
+ case CGEN_MEM_DF_WRITE:
+ frv_interrupt_state.data_written.length = 2;
+ frv_interrupt_state.data_written.words[0]
+ = item->kinds.mem_df_write.value >> 32;
+ frv_interrupt_state.data_written.words[1]
+ = item->kinds.mem_df_write.value;
+ break;
+ case CGEN_MEM_XI_WRITE:
+ frv_interrupt_state.data_written.length = 4;
+ frv_interrupt_state.data_written.words[0]
+ = item->kinds.mem_xi_write.value[0];
+ frv_interrupt_state.data_written.words[1]
+ = item->kinds.mem_xi_write.value[1];
+ frv_interrupt_state.data_written.words[2]
+ = item->kinds.mem_xi_write.value[2];
+ frv_interrupt_state.data_written.words[3]
+ = item->kinds.mem_xi_write.value[3];
+ break;
+ case CGEN_FN_MEM_QI_WRITE:
+ frv_interrupt_state.data_written.length = 1;
+ frv_interrupt_state.data_written.words[0]
+ = item->kinds.fn_mem_qi_write.value;
+ break;
+ case CGEN_FN_MEM_HI_WRITE:
+ frv_interrupt_state.data_written.length = 1;
+ frv_interrupt_state.data_written.words[0]
+ = item->kinds.fn_mem_hi_write.value;
+ break;
+ case CGEN_FN_MEM_SI_WRITE:
+ frv_interrupt_state.data_written.length = 1;
+ frv_interrupt_state.data_written.words[0]
+ = item->kinds.fn_mem_si_write.value;
+ break;
+ case CGEN_FN_MEM_DI_WRITE:
+ frv_interrupt_state.data_written.length = 2;
+ frv_interrupt_state.data_written.words[0]
+ = item->kinds.fn_mem_di_write.value >> 32;
+ frv_interrupt_state.data_written.words[1]
+ = item->kinds.fn_mem_di_write.value;
+ break;
+ case CGEN_FN_MEM_DF_WRITE:
+ frv_interrupt_state.data_written.length = 2;
+ frv_interrupt_state.data_written.words[0]
+ = item->kinds.fn_mem_df_write.value >> 32;
+ frv_interrupt_state.data_written.words[1]
+ = item->kinds.fn_mem_df_write.value;
+ break;
+ case CGEN_FN_MEM_XI_WRITE:
+ frv_interrupt_state.data_written.length = 4;
+ frv_interrupt_state.data_written.words[0]
+ = item->kinds.fn_mem_xi_write.value[0];
+ frv_interrupt_state.data_written.words[1]
+ = item->kinds.fn_mem_xi_write.value[1];
+ frv_interrupt_state.data_written.words[2]
+ = item->kinds.fn_mem_xi_write.value[2];
+ frv_interrupt_state.data_written.words[3]
+ = item->kinds.fn_mem_xi_write.value[3];
+ break;
+ default:
+ {
+ SIM_DESC sd = CPU_STATE (current_cpu);
+ IADDR pc = CPU_PC_GET (current_cpu);
+ sim_engine_abort (sd, current_cpu, pc,
+ "unknown write kind during save for interrupt\n");
+ }
+ break;
+ }
+}