diff options
Diffstat (limited to 'gdb/rs6000-tdep.c')
-rw-r--r-- | gdb/rs6000-tdep.c | 2985 |
1 files changed, 0 insertions, 2985 deletions
diff --git a/gdb/rs6000-tdep.c b/gdb/rs6000-tdep.c deleted file mode 100644 index f661861..0000000 --- a/gdb/rs6000-tdep.c +++ /dev/null @@ -1,2985 +0,0 @@ -/* Target-dependent code for GDB, the GNU debugger. - Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, - 1998, 1999, 2000, 2001, 2002 - Free Software Foundation, Inc. - - This file is part of GDB. - - This program is free software; you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation; either version 2 of the License, or - (at your option) any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program; if not, write to the Free Software - Foundation, Inc., 59 Temple Place - Suite 330, - Boston, MA 02111-1307, USA. */ - -#include "defs.h" -#include "frame.h" -#include "inferior.h" -#include "symtab.h" -#include "target.h" -#include "gdbcore.h" -#include "gdbcmd.h" -#include "symfile.h" -#include "objfiles.h" -#include "arch-utils.h" -#include "regcache.h" -#include "doublest.h" -#include "value.h" -#include "parser-defs.h" - -#include "libbfd.h" /* for bfd_default_set_arch_mach */ -#include "coff/internal.h" /* for libcoff.h */ -#include "libcoff.h" /* for xcoff_data */ -#include "coff/xcoff.h" -#include "libxcoff.h" - -#include "elf-bfd.h" - -#include "solib-svr4.h" -#include "ppc-tdep.h" - -/* If the kernel has to deliver a signal, it pushes a sigcontext - structure on the stack and then calls the signal handler, passing - the address of the sigcontext in an argument register. Usually - the signal handler doesn't save this register, so we have to - access the sigcontext structure via an offset from the signal handler - frame. - The following constants were determined by experimentation on AIX 3.2. */ -#define SIG_FRAME_PC_OFFSET 96 -#define SIG_FRAME_LR_OFFSET 108 -#define SIG_FRAME_FP_OFFSET 284 - -/* To be used by skip_prologue. */ - -struct rs6000_framedata - { - int offset; /* total size of frame --- the distance - by which we decrement sp to allocate - the frame */ - int saved_gpr; /* smallest # of saved gpr */ - int saved_fpr; /* smallest # of saved fpr */ - int saved_vr; /* smallest # of saved vr */ - int saved_ev; /* smallest # of saved ev */ - int alloca_reg; /* alloca register number (frame ptr) */ - char frameless; /* true if frameless functions. */ - char nosavedpc; /* true if pc not saved. */ - int gpr_offset; /* offset of saved gprs from prev sp */ - int fpr_offset; /* offset of saved fprs from prev sp */ - int vr_offset; /* offset of saved vrs from prev sp */ - int ev_offset; /* offset of saved evs from prev sp */ - int lr_offset; /* offset of saved lr */ - int cr_offset; /* offset of saved cr */ - int vrsave_offset; /* offset of saved vrsave register */ - }; - -/* Description of a single register. */ - -struct reg - { - char *name; /* name of register */ - unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */ - unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */ - unsigned char fpr; /* whether register is floating-point */ - unsigned char pseudo; /* whether register is pseudo */ - }; - -/* Breakpoint shadows for the single step instructions will be kept here. */ - -static struct sstep_breaks - { - /* Address, or 0 if this is not in use. */ - CORE_ADDR address; - /* Shadow contents. */ - char data[4]; - } -stepBreaks[2]; - -/* Hook for determining the TOC address when calling functions in the - inferior under AIX. The initialization code in rs6000-nat.c sets - this hook to point to find_toc_address. */ - -CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL; - -/* Hook to set the current architecture when starting a child process. - rs6000-nat.c sets this. */ - -void (*rs6000_set_host_arch_hook) (int) = NULL; - -/* Static function prototypes */ - -static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc, - CORE_ADDR safety); -static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR, - struct rs6000_framedata *); -static void frame_get_saved_regs (struct frame_info * fi, - struct rs6000_framedata * fdatap); -static CORE_ADDR frame_initial_stack_address (struct frame_info *); - -/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */ -int -altivec_register_p (int regno) -{ - struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); - if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0) - return 0; - else - return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum); -} - -/* Read a LEN-byte address from debugged memory address MEMADDR. */ - -static CORE_ADDR -read_memory_addr (CORE_ADDR memaddr, int len) -{ - return read_memory_unsigned_integer (memaddr, len); -} - -static CORE_ADDR -rs6000_skip_prologue (CORE_ADDR pc) -{ - struct rs6000_framedata frame; - pc = skip_prologue (pc, 0, &frame); - return pc; -} - - -/* Fill in fi->saved_regs */ - -struct frame_extra_info -{ - /* Functions calling alloca() change the value of the stack - pointer. We need to use initial stack pointer (which is saved in - r31 by gcc) in such cases. If a compiler emits traceback table, - then we should use the alloca register specified in traceback - table. FIXME. */ - CORE_ADDR initial_sp; /* initial stack pointer. */ -}; - -void -rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi) -{ - fi->extra_info = (struct frame_extra_info *) - frame_obstack_alloc (sizeof (struct frame_extra_info)); - fi->extra_info->initial_sp = 0; - if (fi->next != (CORE_ADDR) 0 - && fi->pc < TEXT_SEGMENT_BASE) - /* We're in get_prev_frame */ - /* and this is a special signal frame. */ - /* (fi->pc will be some low address in the kernel, */ - /* to which the signal handler returns). */ - fi->signal_handler_caller = 1; -} - -/* Put here the code to store, into a struct frame_saved_regs, - the addresses of the saved registers of frame described by FRAME_INFO. - This includes special registers such as pc and fp saved in special - ways in the stack frame. sp is even more special: - the address we return for it IS the sp for the next frame. */ - -/* In this implementation for RS/6000, we do *not* save sp. I am - not sure if it will be needed. The following function takes care of gpr's - and fpr's only. */ - -void -rs6000_frame_init_saved_regs (struct frame_info *fi) -{ - frame_get_saved_regs (fi, NULL); -} - -static CORE_ADDR -rs6000_frame_args_address (struct frame_info *fi) -{ - if (fi->extra_info->initial_sp != 0) - return fi->extra_info->initial_sp; - else - return frame_initial_stack_address (fi); -} - -/* Immediately after a function call, return the saved pc. - Can't go through the frames for this because on some machines - the new frame is not set up until the new function executes - some instructions. */ - -static CORE_ADDR -rs6000_saved_pc_after_call (struct frame_info *fi) -{ - return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum); -} - -/* Calculate the destination of a branch/jump. Return -1 if not a branch. */ - -static CORE_ADDR -branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety) -{ - CORE_ADDR dest; - int immediate; - int absolute; - int ext_op; - - absolute = (int) ((instr >> 1) & 1); - - switch (opcode) - { - case 18: - immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */ - if (absolute) - dest = immediate; - else - dest = pc + immediate; - break; - - case 16: - immediate = ((instr & ~3) << 16) >> 16; /* br conditional */ - if (absolute) - dest = immediate; - else - dest = pc + immediate; - break; - - case 19: - ext_op = (instr >> 1) & 0x3ff; - - if (ext_op == 16) /* br conditional register */ - { - dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3; - - /* If we are about to return from a signal handler, dest is - something like 0x3c90. The current frame is a signal handler - caller frame, upon completion of the sigreturn system call - execution will return to the saved PC in the frame. */ - if (dest < TEXT_SEGMENT_BASE) - { - struct frame_info *fi; - - fi = get_current_frame (); - if (fi != NULL) - dest = read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET, - gdbarch_tdep (current_gdbarch)->wordsize); - } - } - - else if (ext_op == 528) /* br cond to count reg */ - { - dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3; - - /* If we are about to execute a system call, dest is something - like 0x22fc or 0x3b00. Upon completion the system call - will return to the address in the link register. */ - if (dest < TEXT_SEGMENT_BASE) - dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3; - } - else - return -1; - break; - - default: - return -1; - } - return (dest < TEXT_SEGMENT_BASE) ? safety : dest; -} - - -/* Sequence of bytes for breakpoint instruction. */ - -#define BIG_BREAKPOINT { 0x7d, 0x82, 0x10, 0x08 } -#define LITTLE_BREAKPOINT { 0x08, 0x10, 0x82, 0x7d } - -const static unsigned char * -rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size) -{ - static unsigned char big_breakpoint[] = BIG_BREAKPOINT; - static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT; - *bp_size = 4; - if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) - return big_breakpoint; - else - return little_breakpoint; -} - - -/* AIX does not support PT_STEP. Simulate it. */ - -void -rs6000_software_single_step (enum target_signal signal, - int insert_breakpoints_p) -{ - CORE_ADDR dummy; - int breakp_sz; - const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz); - int ii, insn; - CORE_ADDR loc; - CORE_ADDR breaks[2]; - int opcode; - - if (insert_breakpoints_p) - { - - loc = read_pc (); - - insn = read_memory_integer (loc, 4); - - breaks[0] = loc + breakp_sz; - opcode = insn >> 26; - breaks[1] = branch_dest (opcode, insn, loc, breaks[0]); - - /* Don't put two breakpoints on the same address. */ - if (breaks[1] == breaks[0]) - breaks[1] = -1; - - stepBreaks[1].address = 0; - - for (ii = 0; ii < 2; ++ii) - { - - /* ignore invalid breakpoint. */ - if (breaks[ii] == -1) - continue; - target_insert_breakpoint (breaks[ii], stepBreaks[ii].data); - stepBreaks[ii].address = breaks[ii]; - } - - } - else - { - - /* remove step breakpoints. */ - for (ii = 0; ii < 2; ++ii) - if (stepBreaks[ii].address != 0) - target_remove_breakpoint (stepBreaks[ii].address, - stepBreaks[ii].data); - } - errno = 0; /* FIXME, don't ignore errors! */ - /* What errors? {read,write}_memory call error(). */ -} - - -/* return pc value after skipping a function prologue and also return - information about a function frame. - - in struct rs6000_framedata fdata: - - frameless is TRUE, if function does not have a frame. - - nosavedpc is TRUE, if function does not save %pc value in its frame. - - offset is the initial size of this stack frame --- the amount by - which we decrement the sp to allocate the frame. - - saved_gpr is the number of the first saved gpr. - - saved_fpr is the number of the first saved fpr. - - saved_vr is the number of the first saved vr. - - saved_ev is the number of the first saved ev. - - alloca_reg is the number of the register used for alloca() handling. - Otherwise -1. - - gpr_offset is the offset of the first saved gpr from the previous frame. - - fpr_offset is the offset of the first saved fpr from the previous frame. - - vr_offset is the offset of the first saved vr from the previous frame. - - ev_offset is the offset of the first saved ev from the previous frame. - - lr_offset is the offset of the saved lr - - cr_offset is the offset of the saved cr - - vrsave_offset is the offset of the saved vrsave register - */ - -#define SIGNED_SHORT(x) \ - ((sizeof (short) == 2) \ - ? ((int)(short)(x)) \ - : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000))) - -#define GET_SRC_REG(x) (((x) >> 21) & 0x1f) - -/* Limit the number of skipped non-prologue instructions, as the examining - of the prologue is expensive. */ -static int max_skip_non_prologue_insns = 10; - -/* Given PC representing the starting address of a function, and - LIM_PC which is the (sloppy) limit to which to scan when looking - for a prologue, attempt to further refine this limit by using - the line data in the symbol table. If successful, a better guess - on where the prologue ends is returned, otherwise the previous - value of lim_pc is returned. */ -static CORE_ADDR -refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc) -{ - struct symtab_and_line prologue_sal; - - prologue_sal = find_pc_line (pc, 0); - if (prologue_sal.line != 0) - { - int i; - CORE_ADDR addr = prologue_sal.end; - - /* Handle the case in which compiler's optimizer/scheduler - has moved instructions into the prologue. We scan ahead - in the function looking for address ranges whose corresponding - line number is less than or equal to the first one that we - found for the function. (It can be less than when the - scheduler puts a body instruction before the first prologue - instruction.) */ - for (i = 2 * max_skip_non_prologue_insns; - i > 0 && (lim_pc == 0 || addr < lim_pc); - i--) - { - struct symtab_and_line sal; - - sal = find_pc_line (addr, 0); - if (sal.line == 0) - break; - if (sal.line <= prologue_sal.line - && sal.symtab == prologue_sal.symtab) - { - prologue_sal = sal; - } - addr = sal.end; - } - - if (lim_pc == 0 || prologue_sal.end < lim_pc) - lim_pc = prologue_sal.end; - } - return lim_pc; -} - - -static CORE_ADDR -skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata) -{ - CORE_ADDR orig_pc = pc; - CORE_ADDR last_prologue_pc = pc; - CORE_ADDR li_found_pc = 0; - char buf[4]; - unsigned long op; - long offset = 0; - long vr_saved_offset = 0; - int lr_reg = -1; - int cr_reg = -1; - int vr_reg = -1; - int ev_reg = -1; - long ev_offset = 0; - int vrsave_reg = -1; - int reg; - int framep = 0; - int minimal_toc_loaded = 0; - int prev_insn_was_prologue_insn = 1; - int num_skip_non_prologue_insns = 0; - const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch); - - /* Attempt to find the end of the prologue when no limit is specified. - Note that refine_prologue_limit() has been written so that it may - be used to "refine" the limits of non-zero PC values too, but this - is only safe if we 1) trust the line information provided by the - compiler and 2) iterate enough to actually find the end of the - prologue. - - It may become a good idea at some point (for both performance and - accuracy) to unconditionally call refine_prologue_limit(). But, - until we can make a clear determination that this is beneficial, - we'll play it safe and only use it to obtain a limit when none - has been specified. */ - if (lim_pc == 0) - lim_pc = refine_prologue_limit (pc, lim_pc); - - memset (fdata, 0, sizeof (struct rs6000_framedata)); - fdata->saved_gpr = -1; - fdata->saved_fpr = -1; - fdata->saved_vr = -1; - fdata->saved_ev = -1; - fdata->alloca_reg = -1; - fdata->frameless = 1; - fdata->nosavedpc = 1; - - for (;; pc += 4) - { - /* Sometimes it isn't clear if an instruction is a prologue - instruction or not. When we encounter one of these ambiguous - cases, we'll set prev_insn_was_prologue_insn to 0 (false). - Otherwise, we'll assume that it really is a prologue instruction. */ - if (prev_insn_was_prologue_insn) - last_prologue_pc = pc; - - /* Stop scanning if we've hit the limit. */ - if (lim_pc != 0 && pc >= lim_pc) - break; - - prev_insn_was_prologue_insn = 1; - - /* Fetch the instruction and convert it to an integer. */ - if (target_read_memory (pc, buf, 4)) - break; - op = extract_signed_integer (buf, 4); - - if ((op & 0xfc1fffff) == 0x7c0802a6) - { /* mflr Rx */ - lr_reg = (op & 0x03e00000) | 0x90010000; - continue; - - } - else if ((op & 0xfc1fffff) == 0x7c000026) - { /* mfcr Rx */ - cr_reg = (op & 0x03e00000) | 0x90010000; - continue; - - } - else if ((op & 0xfc1f0000) == 0xd8010000) - { /* stfd Rx,NUM(r1) */ - reg = GET_SRC_REG (op); - if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg) - { - fdata->saved_fpr = reg; - fdata->fpr_offset = SIGNED_SHORT (op) + offset; - } - continue; - - } - else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */ - (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */ - (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */ - (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */ - { - - reg = GET_SRC_REG (op); - if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg) - { - fdata->saved_gpr = reg; - if ((op & 0xfc1f0003) == 0xf8010000) - op = (op >> 1) << 1; - fdata->gpr_offset = SIGNED_SHORT (op) + offset; - } - continue; - - } - else if ((op & 0xffff0000) == 0x60000000) - { - /* nop */ - /* Allow nops in the prologue, but do not consider them to - be part of the prologue unless followed by other prologue - instructions. */ - prev_insn_was_prologue_insn = 0; - continue; - - } - else if ((op & 0xffff0000) == 0x3c000000) - { /* addis 0,0,NUM, used - for >= 32k frames */ - fdata->offset = (op & 0x0000ffff) << 16; - fdata->frameless = 0; - continue; - - } - else if ((op & 0xffff0000) == 0x60000000) - { /* ori 0,0,NUM, 2nd ha - lf of >= 32k frames */ - fdata->offset |= (op & 0x0000ffff); - fdata->frameless = 0; - continue; - - } - else if (lr_reg != -1 && (op & 0xffff0000) == lr_reg) - { /* st Rx,NUM(r1) - where Rx == lr */ - fdata->lr_offset = SIGNED_SHORT (op) + offset; - fdata->nosavedpc = 0; - lr_reg = 0; - continue; - - } - else if (cr_reg != -1 && (op & 0xffff0000) == cr_reg) - { /* st Rx,NUM(r1) - where Rx == cr */ - fdata->cr_offset = SIGNED_SHORT (op) + offset; - cr_reg = 0; - continue; - - } - else if (op == 0x48000005) - { /* bl .+4 used in - -mrelocatable */ - continue; - - } - else if (op == 0x48000004) - { /* b .+4 (xlc) */ - break; - - } - else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used - in V.4 -mminimal-toc */ - (op & 0xffff0000) == 0x3bde0000) - { /* addi 30,30,foo@l */ - continue; - - } - else if ((op & 0xfc000001) == 0x48000001) - { /* bl foo, - to save fprs??? */ - - fdata->frameless = 0; - /* Don't skip over the subroutine call if it is not within - the first three instructions of the prologue. */ - if ((pc - orig_pc) > 8) - break; - - op = read_memory_integer (pc + 4, 4); - - /* At this point, make sure this is not a trampoline - function (a function that simply calls another functions, - and nothing else). If the next is not a nop, this branch - was part of the function prologue. */ - - if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */ - break; /* don't skip over - this branch */ - continue; - - /* update stack pointer */ - } - else if ((op & 0xffff0000) == 0x94210000 || /* stu r1,NUM(r1) */ - (op & 0xffff0003) == 0xf8210001) /* stdu r1,NUM(r1) */ - { - fdata->frameless = 0; - if ((op & 0xffff0003) == 0xf8210001) - op = (op >> 1) << 1; - fdata->offset = SIGNED_SHORT (op); - offset = fdata->offset; - continue; - - } - else if (op == 0x7c21016e) - { /* stwux 1,1,0 */ - fdata->frameless = 0; - offset = fdata->offset; - continue; - - /* Load up minimal toc pointer */ - } - else if ((op >> 22) == 0x20f - && !minimal_toc_loaded) - { /* l r31,... or l r30,... */ - minimal_toc_loaded = 1; - continue; - - /* move parameters from argument registers to local variable - registers */ - } - else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */ - (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */ - (((op >> 21) & 31) <= 10) && - ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */ - { - continue; - - /* store parameters in stack */ - } - else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */ - (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */ - (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */ - { - continue; - - /* store parameters in stack via frame pointer */ - } - else if (framep && - ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */ - (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */ - (op & 0xfc1f0000) == 0xfc1f0000)) - { /* frsp, fp?,NUM(r1) */ - continue; - - /* Set up frame pointer */ - } - else if (op == 0x603f0000 /* oril r31, r1, 0x0 */ - || op == 0x7c3f0b78) - { /* mr r31, r1 */ - fdata->frameless = 0; - framep = 1; - fdata->alloca_reg = 31; - continue; - - /* Another way to set up the frame pointer. */ - } - else if ((op & 0xfc1fffff) == 0x38010000) - { /* addi rX, r1, 0x0 */ - fdata->frameless = 0; - framep = 1; - fdata->alloca_reg = (op & ~0x38010000) >> 21; - continue; - } - /* AltiVec related instructions. */ - /* Store the vrsave register (spr 256) in another register for - later manipulation, or load a register into the vrsave - register. 2 instructions are used: mfvrsave and - mtvrsave. They are shorthand notation for mfspr Rn, SPR256 - and mtspr SPR256, Rn. */ - /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110 - mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */ - else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */ - { - vrsave_reg = GET_SRC_REG (op); - continue; - } - else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */ - { - continue; - } - /* Store the register where vrsave was saved to onto the stack: - rS is the register where vrsave was stored in a previous - instruction. */ - /* 100100 sssss 00001 dddddddd dddddddd */ - else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */ - { - if (vrsave_reg == GET_SRC_REG (op)) - { - fdata->vrsave_offset = SIGNED_SHORT (op) + offset; - vrsave_reg = -1; - } - continue; - } - /* Compute the new value of vrsave, by modifying the register - where vrsave was saved to. */ - else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */ - || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */ - { - continue; - } - /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first - in a pair of insns to save the vector registers on the - stack. */ - /* 001110 00000 00000 iiii iiii iiii iiii */ - /* 001110 01110 00000 iiii iiii iiii iiii */ - else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */ - || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */ - { - li_found_pc = pc; - vr_saved_offset = SIGNED_SHORT (op); - } - /* Store vector register S at (r31+r0) aligned to 16 bytes. */ - /* 011111 sssss 11111 00000 00111001110 */ - else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */ - { - if (pc == (li_found_pc + 4)) - { - vr_reg = GET_SRC_REG (op); - /* If this is the first vector reg to be saved, or if - it has a lower number than others previously seen, - reupdate the frame info. */ - if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg) - { - fdata->saved_vr = vr_reg; - fdata->vr_offset = vr_saved_offset + offset; - } - vr_saved_offset = -1; - vr_reg = -1; - li_found_pc = 0; - } - } - /* End AltiVec related instructions. */ - - /* Start BookE related instructions. */ - /* Store gen register S at (r31+uimm). - Any register less than r13 is volatile, so we don't care. */ - /* 000100 sssss 11111 iiiii 01100100001 */ - else if (arch_info->mach == bfd_mach_ppc_e500 - && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */ - { - if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */ - { - unsigned int imm; - ev_reg = GET_SRC_REG (op); - imm = (op >> 11) & 0x1f; - ev_offset = imm * 8; - /* If this is the first vector reg to be saved, or if - it has a lower number than others previously seen, - reupdate the frame info. */ - if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg) - { - fdata->saved_ev = ev_reg; - fdata->ev_offset = ev_offset + offset; - } - } - continue; - } - /* Store gen register rS at (r1+rB). */ - /* 000100 sssss 00001 bbbbb 01100100000 */ - else if (arch_info->mach == bfd_mach_ppc_e500 - && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */ - { - if (pc == (li_found_pc + 4)) - { - ev_reg = GET_SRC_REG (op); - /* If this is the first vector reg to be saved, or if - it has a lower number than others previously seen, - reupdate the frame info. */ - /* We know the contents of rB from the previous instruction. */ - if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg) - { - fdata->saved_ev = ev_reg; - fdata->ev_offset = vr_saved_offset + offset; - } - vr_saved_offset = -1; - ev_reg = -1; - li_found_pc = 0; - } - continue; - } - /* Store gen register r31 at (rA+uimm). */ - /* 000100 11111 aaaaa iiiii 01100100001 */ - else if (arch_info->mach == bfd_mach_ppc_e500 - && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */ - { - /* Wwe know that the source register is 31 already, but - it can't hurt to compute it. */ - ev_reg = GET_SRC_REG (op); - ev_offset = ((op >> 11) & 0x1f) * 8; - /* If this is the first vector reg to be saved, or if - it has a lower number than others previously seen, - reupdate the frame info. */ - if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg) - { - fdata->saved_ev = ev_reg; - fdata->ev_offset = ev_offset + offset; - } - - continue; - } - /* Store gen register S at (r31+r0). - Store param on stack when offset from SP bigger than 4 bytes. */ - /* 000100 sssss 11111 00000 01100100000 */ - else if (arch_info->mach == bfd_mach_ppc_e500 - && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */ - { - if (pc == (li_found_pc + 4)) - { - if ((op & 0x03e00000) >= 0x01a00000) - { - ev_reg = GET_SRC_REG (op); - /* If this is the first vector reg to be saved, or if - it has a lower number than others previously seen, - reupdate the frame info. */ - /* We know the contents of r0 from the previous - instruction. */ - if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg) - { - fdata->saved_ev = ev_reg; - fdata->ev_offset = vr_saved_offset + offset; - } - ev_reg = -1; - } - vr_saved_offset = -1; - li_found_pc = 0; - continue; - } - } - /* End BookE related instructions. */ - - else - { - /* Not a recognized prologue instruction. - Handle optimizer code motions into the prologue by continuing - the search if we have no valid frame yet or if the return - address is not yet saved in the frame. */ - if (fdata->frameless == 0 - && (lr_reg == -1 || fdata->nosavedpc == 0)) - break; - - if (op == 0x4e800020 /* blr */ - || op == 0x4e800420) /* bctr */ - /* Do not scan past epilogue in frameless functions or - trampolines. */ - break; - if ((op & 0xf4000000) == 0x40000000) /* bxx */ - /* Never skip branches. */ - break; - - if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns) - /* Do not scan too many insns, scanning insns is expensive with - remote targets. */ - break; - - /* Continue scanning. */ - prev_insn_was_prologue_insn = 0; - continue; - } - } - -#if 0 -/* I have problems with skipping over __main() that I need to address - * sometime. Previously, I used to use misc_function_vector which - * didn't work as well as I wanted to be. -MGO */ - - /* If the first thing after skipping a prolog is a branch to a function, - this might be a call to an initializer in main(), introduced by gcc2. - We'd like to skip over it as well. Fortunately, xlc does some extra - work before calling a function right after a prologue, thus we can - single out such gcc2 behaviour. */ - - - if ((op & 0xfc000001) == 0x48000001) - { /* bl foo, an initializer function? */ - op = read_memory_integer (pc + 4, 4); - - if (op == 0x4def7b82) - { /* cror 0xf, 0xf, 0xf (nop) */ - - /* Check and see if we are in main. If so, skip over this - initializer function as well. */ - - tmp = find_pc_misc_function (pc); - if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ())) - return pc + 8; - } - } -#endif /* 0 */ - - fdata->offset = -fdata->offset; - return last_prologue_pc; -} - - -/************************************************************************* - Support for creating pushing a dummy frame into the stack, and popping - frames, etc. -*************************************************************************/ - - -/* Pop the innermost frame, go back to the caller. */ - -static void -rs6000_pop_frame (void) -{ - CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */ - struct rs6000_framedata fdata; - struct frame_info *frame = get_current_frame (); - int ii, wordsize; - - pc = read_pc (); - sp = FRAME_FP (frame); - - if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame)) - { - generic_pop_dummy_frame (); - flush_cached_frames (); - return; - } - - /* Make sure that all registers are valid. */ - read_register_bytes (0, NULL, REGISTER_BYTES); - - /* Figure out previous %pc value. If the function is frameless, it is - still in the link register, otherwise walk the frames and retrieve the - saved %pc value in the previous frame. */ - - addr = get_pc_function_start (frame->pc); - (void) skip_prologue (addr, frame->pc, &fdata); - - wordsize = gdbarch_tdep (current_gdbarch)->wordsize; - if (fdata.frameless) - prev_sp = sp; - else - prev_sp = read_memory_addr (sp, wordsize); - if (fdata.lr_offset == 0) - lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum); - else - lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize); - - /* reset %pc value. */ - write_register (PC_REGNUM, lr); - - /* reset register values if any was saved earlier. */ - - if (fdata.saved_gpr != -1) - { - addr = prev_sp + fdata.gpr_offset; - for (ii = fdata.saved_gpr; ii <= 31; ++ii) - { - read_memory (addr, ®isters[REGISTER_BYTE (ii)], wordsize); - addr += wordsize; - } - } - - if (fdata.saved_fpr != -1) - { - addr = prev_sp + fdata.fpr_offset; - for (ii = fdata.saved_fpr; ii <= 31; ++ii) - { - read_memory (addr, ®isters[REGISTER_BYTE (ii + FP0_REGNUM)], 8); - addr += 8; - } - } - - write_register (SP_REGNUM, prev_sp); - target_store_registers (-1); - flush_cached_frames (); -} - -/* Fixup the call sequence of a dummy function, with the real function - address. Its arguments will be passed by gdb. */ - -static void -rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun, - int nargs, struct value **args, struct type *type, - int gcc_p) -{ - int ii; - CORE_ADDR target_addr; - - if (rs6000_find_toc_address_hook != NULL) - { - CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun); - write_register (gdbarch_tdep (current_gdbarch)->ppc_toc_regnum, - tocvalue); - } -} - -/* Pass the arguments in either registers, or in the stack. In RS/6000, - the first eight words of the argument list (that might be less than - eight parameters if some parameters occupy more than one word) are - passed in r3..r10 registers. float and double parameters are - passed in fpr's, in addition to that. Rest of the parameters if any - are passed in user stack. There might be cases in which half of the - parameter is copied into registers, the other half is pushed into - stack. - - Stack must be aligned on 64-bit boundaries when synthesizing - function calls. - - If the function is returning a structure, then the return address is passed - in r3, then the first 7 words of the parameters can be passed in registers, - starting from r4. */ - -static CORE_ADDR -rs6000_push_arguments (int nargs, struct value **args, CORE_ADDR sp, - int struct_return, CORE_ADDR struct_addr) -{ - int ii; - int len = 0; - int argno; /* current argument number */ - int argbytes; /* current argument byte */ - char tmp_buffer[50]; - int f_argno = 0; /* current floating point argno */ - int wordsize = gdbarch_tdep (current_gdbarch)->wordsize; - - struct value *arg = 0; - struct type *type; - - CORE_ADDR saved_sp; - - /* The first eight words of ther arguments are passed in registers. - Copy them appropriately. - - If the function is returning a `struct', then the first word (which - will be passed in r3) is used for struct return address. In that - case we should advance one word and start from r4 register to copy - parameters. */ - - ii = struct_return ? 1 : 0; - -/* - effectively indirect call... gcc does... - - return_val example( float, int); - - eabi: - float in fp0, int in r3 - offset of stack on overflow 8/16 - for varargs, must go by type. - power open: - float in r3&r4, int in r5 - offset of stack on overflow different - both: - return in r3 or f0. If no float, must study how gcc emulates floats; - pay attention to arg promotion. - User may have to cast\args to handle promotion correctly - since gdb won't know if prototype supplied or not. - */ - - for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii) - { - int reg_size = REGISTER_RAW_SIZE (ii + 3); - - arg = args[argno]; - type = check_typedef (VALUE_TYPE (arg)); - len = TYPE_LENGTH (type); - - if (TYPE_CODE (type) == TYPE_CODE_FLT) - { - - /* Floating point arguments are passed in fpr's, as well as gpr's. - There are 13 fpr's reserved for passing parameters. At this point - there is no way we would run out of them. */ - - if (len > 8) - printf_unfiltered ( - "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno); - - memcpy (®isters[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)], - VALUE_CONTENTS (arg), - len); - ++f_argno; - } - - if (len > reg_size) - { - - /* Argument takes more than one register. */ - while (argbytes < len) - { - memset (®isters[REGISTER_BYTE (ii + 3)], 0, reg_size); - memcpy (®isters[REGISTER_BYTE (ii + 3)], - ((char *) VALUE_CONTENTS (arg)) + argbytes, - (len - argbytes) > reg_size - ? reg_size : len - argbytes); - ++ii, argbytes += reg_size; - - if (ii >= 8) - goto ran_out_of_registers_for_arguments; - } - argbytes = 0; - --ii; - } - else - { - /* Argument can fit in one register. No problem. */ - int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0; - memset (®isters[REGISTER_BYTE (ii + 3)], 0, reg_size); - memcpy ((char *)®isters[REGISTER_BYTE (ii + 3)] + adj, - VALUE_CONTENTS (arg), len); - } - ++argno; - } - -ran_out_of_registers_for_arguments: - - saved_sp = read_sp (); - - /* Location for 8 parameters are always reserved. */ - sp -= wordsize * 8; - - /* Another six words for back chain, TOC register, link register, etc. */ - sp -= wordsize * 6; - - /* Stack pointer must be quadword aligned. */ - sp &= -16; - - /* If there are more arguments, allocate space for them in - the stack, then push them starting from the ninth one. */ - - if ((argno < nargs) || argbytes) - { - int space = 0, jj; - - if (argbytes) - { - space += ((len - argbytes + 3) & -4); - jj = argno + 1; - } - else - jj = argno; - - for (; jj < nargs; ++jj) - { - struct value *val = args[jj]; - space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4; - } - - /* Add location required for the rest of the parameters. */ - space = (space + 15) & -16; - sp -= space; - - /* This is another instance we need to be concerned about - securing our stack space. If we write anything underneath %sp - (r1), we might conflict with the kernel who thinks he is free - to use this area. So, update %sp first before doing anything - else. */ - - write_register (SP_REGNUM, sp); - - /* If the last argument copied into the registers didn't fit there - completely, push the rest of it into stack. */ - - if (argbytes) - { - write_memory (sp + 24 + (ii * 4), - ((char *) VALUE_CONTENTS (arg)) + argbytes, - len - argbytes); - ++argno; - ii += ((len - argbytes + 3) & -4) / 4; - } - - /* Push the rest of the arguments into stack. */ - for (; argno < nargs; ++argno) - { - - arg = args[argno]; - type = check_typedef (VALUE_TYPE (arg)); - len = TYPE_LENGTH (type); - - - /* Float types should be passed in fpr's, as well as in the - stack. */ - if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13) - { - - if (len > 8) - printf_unfiltered ( - "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno); - - memcpy (®isters[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)], - VALUE_CONTENTS (arg), - len); - ++f_argno; - } - - write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len); - ii += ((len + 3) & -4) / 4; - } - } - else - /* Secure stack areas first, before doing anything else. */ - write_register (SP_REGNUM, sp); - - /* set back chain properly */ - store_address (tmp_buffer, 4, saved_sp); - write_memory (sp, tmp_buffer, 4); - - target_store_registers (-1); - return sp; -} - -/* Function: ppc_push_return_address (pc, sp) - Set up the return address for the inferior function call. */ - -static CORE_ADDR -ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp) -{ - write_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum, - CALL_DUMMY_ADDRESS ()); - return sp; -} - -/* Extract a function return value of type TYPE from raw register array - REGBUF, and copy that return value into VALBUF in virtual format. */ -static void -e500_extract_return_value (struct type *valtype, struct regcache *regbuf, void *valbuf) -{ - int offset = 0; - int vallen = TYPE_LENGTH (valtype); - struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); - - if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY - && vallen == 8 - && TYPE_VECTOR (valtype)) - { - regcache_raw_read (regbuf, tdep->ppc_ev0_regnum + 3, valbuf); - } - else - { - /* Return value is copied starting from r3. Note that r3 for us - is a pseudo register. */ - int offset = 0; - int return_regnum = tdep->ppc_gp0_regnum + 3; - int reg_size = REGISTER_RAW_SIZE (return_regnum); - int reg_part_size; - char *val_buffer; - int copied = 0; - int i = 0; - - /* Compute where we will start storing the value from. */ - if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) - { - if (vallen <= reg_size) - offset = reg_size - vallen; - else - offset = reg_size + (reg_size - vallen); - } - - /* How big does the local buffer need to be? */ - if (vallen <= reg_size) - val_buffer = alloca (reg_size); - else - val_buffer = alloca (vallen); - - /* Read all we need into our private buffer. We copy it in - chunks that are as long as one register, never shorter, even - if the value is smaller than the register. */ - while (copied < vallen) - { - reg_part_size = REGISTER_RAW_SIZE (return_regnum + i); - /* It is a pseudo/cooked register. */ - regcache_cooked_read (regbuf, return_regnum + i, - val_buffer + copied); - copied += reg_part_size; - i++; - } - /* Put the stuff in the return buffer. */ - memcpy (valbuf, val_buffer + offset, vallen); - } -} - -static void -rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf) -{ - int offset = 0; - struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); - - if (TYPE_CODE (valtype) == TYPE_CODE_FLT) - { - - double dd; - float ff; - /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes. - We need to truncate the return value into float size (4 byte) if - necessary. */ - - if (TYPE_LENGTH (valtype) > 4) /* this is a double */ - memcpy (valbuf, - ®buf[REGISTER_BYTE (FP0_REGNUM + 1)], - TYPE_LENGTH (valtype)); - else - { /* float */ - memcpy (&dd, ®buf[REGISTER_BYTE (FP0_REGNUM + 1)], 8); - ff = (float) dd; - memcpy (valbuf, &ff, sizeof (float)); - } - } - else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY - && TYPE_LENGTH (valtype) == 16 - && TYPE_VECTOR (valtype)) - { - memcpy (valbuf, regbuf + REGISTER_BYTE (tdep->ppc_vr0_regnum + 2), - TYPE_LENGTH (valtype)); - } - else - { - /* return value is copied starting from r3. */ - if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG - && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3)) - offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype); - - memcpy (valbuf, - regbuf + REGISTER_BYTE (3) + offset, - TYPE_LENGTH (valtype)); - } -} - -/* Keep structure return address in this variable. - FIXME: This is a horrid kludge which should not be allowed to continue - living. This only allows a single nested call to a structure-returning - function. Come on, guys! -- gnu@cygnus.com, Aug 92 */ - -static CORE_ADDR rs6000_struct_return_address; - -/* Return whether handle_inferior_event() should proceed through code - starting at PC in function NAME when stepping. - - The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to - handle memory references that are too distant to fit in instructions - generated by the compiler. For example, if 'foo' in the following - instruction: - - lwz r9,foo(r2) - - is greater than 32767, the linker might replace the lwz with a branch to - somewhere in @FIX1 that does the load in 2 instructions and then branches - back to where execution should continue. - - GDB should silently step over @FIX code, just like AIX dbx does. - Unfortunately, the linker uses the "b" instruction for the branches, - meaning that the link register doesn't get set. Therefore, GDB's usual - step_over_function() mechanism won't work. - - Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks - in handle_inferior_event() to skip past @FIX code. */ - -int -rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name) -{ - return name && !strncmp (name, "@FIX", 4); -} - -/* Skip code that the user doesn't want to see when stepping: - - 1. Indirect function calls use a piece of trampoline code to do context - switching, i.e. to set the new TOC table. Skip such code if we are on - its first instruction (as when we have single-stepped to here). - - 2. Skip shared library trampoline code (which is different from - indirect function call trampolines). - - 3. Skip bigtoc fixup code. - - Result is desired PC to step until, or NULL if we are not in - code that should be skipped. */ - -CORE_ADDR -rs6000_skip_trampoline_code (CORE_ADDR pc) -{ - register unsigned int ii, op; - int rel; - CORE_ADDR solib_target_pc; - struct minimal_symbol *msymbol; - - static unsigned trampoline_code[] = - { - 0x800b0000, /* l r0,0x0(r11) */ - 0x90410014, /* st r2,0x14(r1) */ - 0x7c0903a6, /* mtctr r0 */ - 0x804b0004, /* l r2,0x4(r11) */ - 0x816b0008, /* l r11,0x8(r11) */ - 0x4e800420, /* bctr */ - 0x4e800020, /* br */ - 0 - }; - - /* Check for bigtoc fixup code. */ - msymbol = lookup_minimal_symbol_by_pc (pc); - if (msymbol && rs6000_in_solib_return_trampoline (pc, SYMBOL_NAME (msymbol))) - { - /* Double-check that the third instruction from PC is relative "b". */ - op = read_memory_integer (pc + 8, 4); - if ((op & 0xfc000003) == 0x48000000) - { - /* Extract bits 6-29 as a signed 24-bit relative word address and - add it to the containing PC. */ - rel = ((int)(op << 6) >> 6); - return pc + 8 + rel; - } - } - - /* If pc is in a shared library trampoline, return its target. */ - solib_target_pc = find_solib_trampoline_target (pc); - if (solib_target_pc) - return solib_target_pc; - - for (ii = 0; trampoline_code[ii]; ++ii) - { - op = read_memory_integer (pc + (ii * 4), 4); - if (op != trampoline_code[ii]) - return 0; - } - ii = read_register (11); /* r11 holds destination addr */ - pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */ - return pc; -} - -/* Determines whether the function FI has a frame on the stack or not. */ - -int -rs6000_frameless_function_invocation (struct frame_info *fi) -{ - CORE_ADDR func_start; - struct rs6000_framedata fdata; - - /* Don't even think about framelessness except on the innermost frame - or if the function was interrupted by a signal. */ - if (fi->next != NULL && !fi->next->signal_handler_caller) - return 0; - - func_start = get_pc_function_start (fi->pc); - - /* If we failed to find the start of the function, it is a mistake - to inspect the instructions. */ - - if (!func_start) - { - /* A frame with a zero PC is usually created by dereferencing a NULL - function pointer, normally causing an immediate core dump of the - inferior. Mark function as frameless, as the inferior has no chance - of setting up a stack frame. */ - if (fi->pc == 0) - return 1; - else - return 0; - } - - (void) skip_prologue (func_start, fi->pc, &fdata); - return fdata.frameless; -} - -/* Return the PC saved in a frame. */ - -CORE_ADDR -rs6000_frame_saved_pc (struct frame_info *fi) -{ - CORE_ADDR func_start; - struct rs6000_framedata fdata; - struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); - int wordsize = tdep->wordsize; - - if (fi->signal_handler_caller) - return read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET, wordsize); - - if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) - return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM); - - func_start = get_pc_function_start (fi->pc); - - /* If we failed to find the start of the function, it is a mistake - to inspect the instructions. */ - if (!func_start) - return 0; - - (void) skip_prologue (func_start, fi->pc, &fdata); - - if (fdata.lr_offset == 0 && fi->next != NULL) - { - if (fi->next->signal_handler_caller) - return read_memory_addr (fi->next->frame + SIG_FRAME_LR_OFFSET, - wordsize); - else - return read_memory_addr (FRAME_CHAIN (fi) + tdep->lr_frame_offset, - wordsize); - } - - if (fdata.lr_offset == 0) - return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum); - - return read_memory_addr (FRAME_CHAIN (fi) + fdata.lr_offset, wordsize); -} - -/* If saved registers of frame FI are not known yet, read and cache them. - &FDATAP contains rs6000_framedata; TDATAP can be NULL, - in which case the framedata are read. */ - -static void -frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap) -{ - CORE_ADDR frame_addr; - struct rs6000_framedata work_fdata; - struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch); - int wordsize = tdep->wordsize; - - if (fi->saved_regs) - return; - - if (fdatap == NULL) - { - fdatap = &work_fdata; - (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, fdatap); - } - - frame_saved_regs_zalloc (fi); - - /* If there were any saved registers, figure out parent's stack - pointer. */ - /* The following is true only if the frame doesn't have a call to - alloca(), FIXME. */ - - if (fdatap->saved_fpr == 0 - && fdatap->saved_gpr == 0 - && fdatap->saved_vr == 0 - && fdatap->saved_ev == 0 - && fdatap->lr_offset == 0 - && fdatap->cr_offset == 0 - && fdatap->vr_offset == 0 - && fdatap->ev_offset == 0) - frame_addr = 0; - else - /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most - address of the current frame. Things might be easier if the - ->frame pointed to the outer-most address of the frame. In the - mean time, the address of the prev frame is used as the base - address of this frame. */ - frame_addr = FRAME_CHAIN (fi); - - /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr. - All fpr's from saved_fpr to fp31 are saved. */ - - if (fdatap->saved_fpr >= 0) - { - int i; - CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset; - for (i = fdatap->saved_fpr; i < 32; i++) - { - fi->saved_regs[FP0_REGNUM + i] = fpr_addr; - fpr_addr += 8; - } - } - - /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr. - All gpr's from saved_gpr to gpr31 are saved. */ - - if (fdatap->saved_gpr >= 0) - { - int i; - CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset; - for (i = fdatap->saved_gpr; i < 32; i++) - { - fi->saved_regs[i] = gpr_addr; - gpr_addr += wordsize; - } - } - - /* if != -1, fdatap->saved_vr is the smallest number of saved_vr. - All vr's from saved_vr to vr31 are saved. */ - if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1) - { - if (fdatap->saved_vr >= 0) - { - int i; - CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset; - for (i = fdatap->saved_vr; i < 32; i++) - { - fi->saved_regs[tdep->ppc_vr0_regnum + i] = vr_addr; - vr_addr += REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum); - } - } - } - - /* if != -1, fdatap->saved_ev is the smallest number of saved_ev. - All vr's from saved_ev to ev31 are saved. ????? */ - if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1) - { - if (fdatap->saved_ev >= 0) - { - int i; - CORE_ADDR ev_addr = frame_addr + fdatap->ev_offset; - for (i = fdatap->saved_ev; i < 32; i++) - { - fi->saved_regs[tdep->ppc_ev0_regnum + i] = ev_addr; - fi->saved_regs[tdep->ppc_gp0_regnum + i] = ev_addr + 4; - ev_addr += REGISTER_RAW_SIZE (tdep->ppc_ev0_regnum); - } - } - } - - /* If != 0, fdatap->cr_offset is the offset from the frame that holds - the CR. */ - if (fdatap->cr_offset != 0) - fi->saved_regs[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset; - - /* If != 0, fdatap->lr_offset is the offset from the frame that holds - the LR. */ - if (fdatap->lr_offset != 0) - fi->saved_regs[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset; - - /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds - the VRSAVE. */ - if (fdatap->vrsave_offset != 0) - fi->saved_regs[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset; -} - -/* Return the address of a frame. This is the inital %sp value when the frame - was first allocated. For functions calling alloca(), it might be saved in - an alloca register. */ - -static CORE_ADDR -frame_initial_stack_address (struct frame_info *fi) -{ - CORE_ADDR tmpaddr; - struct rs6000_framedata fdata; - struct frame_info *callee_fi; - - /* If the initial stack pointer (frame address) of this frame is known, - just return it. */ - - if (fi->extra_info->initial_sp) - return fi->extra_info->initial_sp; - - /* Find out if this function is using an alloca register. */ - - (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, &fdata); - - /* If saved registers of this frame are not known yet, read and - cache them. */ - - if (!fi->saved_regs) - frame_get_saved_regs (fi, &fdata); - - /* If no alloca register used, then fi->frame is the value of the %sp for - this frame, and it is good enough. */ - - if (fdata.alloca_reg < 0) - { - fi->extra_info->initial_sp = fi->frame; - return fi->extra_info->initial_sp; - } - - /* There is an alloca register, use its value, in the current frame, - as the initial stack pointer. */ - { - char *tmpbuf = alloca (MAX_REGISTER_RAW_SIZE); - if (frame_register_read (fi, fdata.alloca_reg, tmpbuf)) - { - fi->extra_info->initial_sp - = extract_unsigned_integer (tmpbuf, - REGISTER_RAW_SIZE (fdata.alloca_reg)); - } - else - /* NOTE: cagney/2002-04-17: At present the only time - frame_register_read will fail is when the register isn't - available. If that does happen, use the frame. */ - fi->extra_info->initial_sp = fi->frame; - } - return fi->extra_info->initial_sp; -} - -/* Describe the pointer in each stack frame to the previous stack frame - (its caller). */ - -/* FRAME_CHAIN takes a frame's nominal address - and produces the frame's chain-pointer. */ - -/* In the case of the RS/6000, the frame's nominal address - is the address of a 4-byte word containing the calling frame's address. */ - -CORE_ADDR -rs6000_frame_chain (struct frame_info *thisframe) -{ - CORE_ADDR fp, fpp, lr; - int wordsize = gdbarch_tdep (current_gdbarch)->wordsize; - - if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame)) - return thisframe->frame; /* dummy frame same as caller's frame */ - - if (inside_entry_file (thisframe->pc) || - thisframe->pc == entry_point_address ()) - return 0; - - if (thisframe->signal_handler_caller) - fp = read_memory_addr (thisframe->frame + SIG_FRAME_FP_OFFSET, - wordsize); - else if (thisframe->next != NULL - && thisframe->next->signal_handler_caller - && FRAMELESS_FUNCTION_INVOCATION (thisframe)) - /* A frameless function interrupted by a signal did not change the - frame pointer. */ - fp = FRAME_FP (thisframe); - else - fp = read_memory_addr ((thisframe)->frame, wordsize); - - lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum); - if (lr == entry_point_address ()) - if (fp != 0 && (fpp = read_memory_addr (fp, wordsize)) != 0) - if (PC_IN_CALL_DUMMY (lr, fpp, fpp)) - return fpp; - - return fp; -} - -/* Return the size of register REG when words are WORDSIZE bytes long. If REG - isn't available with that word size, return 0. */ - -static int -regsize (const struct reg *reg, int wordsize) -{ - return wordsize == 8 ? reg->sz64 : reg->sz32; -} - -/* Return the name of register number N, or null if no such register exists - in the current architecture. */ - -static const char * -rs6000_register_name (int n) -{ - struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); - const struct reg *reg = tdep->regs + n; - - if (!regsize (reg, tdep->wordsize)) - return NULL; - return reg->name; -} - -/* Index within `registers' of the first byte of the space for - register N. */ - -static int -rs6000_register_byte (int n) -{ - return gdbarch_tdep (current_gdbarch)->regoff[n]; -} - -/* Return the number of bytes of storage in the actual machine representation - for register N if that register is available, else return 0. */ - -static int -rs6000_register_raw_size (int n) -{ - struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); - const struct reg *reg = tdep->regs + n; - return regsize (reg, tdep->wordsize); -} - -/* Return the GDB type object for the "standard" data type - of data in register N. */ - -static struct type * -rs6000_register_virtual_type (int n) -{ - struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); - const struct reg *reg = tdep->regs + n; - - if (reg->fpr) - return builtin_type_double; - else - { - int size = regsize (reg, tdep->wordsize); - switch (size) - { - case 8: - if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum) - return builtin_type_vec64; - else - return builtin_type_int64; - break; - case 16: - return builtin_type_vec128; - break; - default: - return builtin_type_int32; - break; - } - } -} - -/* For the PowerPC, it appears that the debug info marks float parameters as - floats regardless of whether the function is prototyped, but the actual - values are always passed in as doubles. Tell gdb to always assume that - floats are passed as doubles and then converted in the callee. */ - -static int -rs6000_coerce_float_to_double (struct type *formal, struct type *actual) -{ - return 1; -} - -/* Return whether register N requires conversion when moving from raw format - to virtual format. - - The register format for RS/6000 floating point registers is always - double, we need a conversion if the memory format is float. */ - -static int -rs6000_register_convertible (int n) -{ - const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n; - return reg->fpr; -} - -/* Convert data from raw format for register N in buffer FROM - to virtual format with type TYPE in buffer TO. */ - -static void -rs6000_register_convert_to_virtual (int n, struct type *type, - char *from, char *to) -{ - if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n)) - { - double val = extract_floating (from, REGISTER_RAW_SIZE (n)); - store_floating (to, TYPE_LENGTH (type), val); - } - else - memcpy (to, from, REGISTER_RAW_SIZE (n)); -} - -/* Convert data from virtual format with type TYPE in buffer FROM - to raw format for register N in buffer TO. */ - -static void -rs6000_register_convert_to_raw (struct type *type, int n, - char *from, char *to) -{ - if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n)) - { - double val = extract_floating (from, TYPE_LENGTH (type)); - store_floating (to, REGISTER_RAW_SIZE (n), val); - } - else - memcpy (to, from, REGISTER_RAW_SIZE (n)); -} - -static void -e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, - int reg_nr, void *buffer) -{ - int base_regnum; - int offset = 0; - char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE); - struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); - - if (reg_nr >= tdep->ppc_gp0_regnum - && reg_nr <= tdep->ppc_gplast_regnum) - { - base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum; - - /* Build the value in the provided buffer. */ - /* Read the raw register of which this one is the lower portion. */ - regcache_raw_read (regcache, base_regnum, temp_buffer); - if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) - offset = 4; - memcpy ((char *) buffer, temp_buffer + offset, 4); - } -} - -static void -e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, - int reg_nr, const void *buffer) -{ - int base_regnum; - int offset = 0; - char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE); - struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); - - if (reg_nr >= tdep->ppc_gp0_regnum - && reg_nr <= tdep->ppc_gplast_regnum) - { - base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum; - /* reg_nr is 32 bit here, and base_regnum is 64 bits. */ - if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) - offset = 4; - - /* Let's read the value of the base register into a temporary - buffer, so that overwriting the last four bytes with the new - value of the pseudo will leave the upper 4 bytes unchanged. */ - regcache_raw_read (regcache, base_regnum, temp_buffer); - - /* Write as an 8 byte quantity. */ - memcpy (temp_buffer + offset, (char *) buffer, 4); - regcache_raw_write (regcache, base_regnum, temp_buffer); - } -} - -/* Convert a dwarf2 register number to a gdb REGNUM. */ -static int -e500_dwarf2_reg_to_regnum (int num) -{ - int regnum; - if (0 <= num && num <= 31) - return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum; - else - return num; -} - -/* Convert a dbx stab register number (from `r' declaration) to a gdb - REGNUM. */ -static int -rs6000_stab_reg_to_regnum (int num) -{ - int regnum; - switch (num) - { - case 64: - regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum; - break; - case 65: - regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum; - break; - case 66: - regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum; - break; - case 76: - regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum; - break; - default: - regnum = num; - break; - } - return regnum; -} - -/* Store the address of the place in which to copy the structure the - subroutine will return. This is called from call_function. - - In RS/6000, struct return addresses are passed as an extra parameter in r3. - In function return, callee is not responsible of returning this address - back. Since gdb needs to find it, we will store in a designated variable - `rs6000_struct_return_address'. */ - -static void -rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp) -{ - write_register (3, addr); - rs6000_struct_return_address = addr; -} - -/* Write into appropriate registers a function return value - of type TYPE, given in virtual format. */ -static void -e500_store_return_value (struct type *type, char *valbuf) -{ - struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); - - /* Everything is returned in GPR3 and up. */ - int copied = 0; - int i = 0; - int len = TYPE_LENGTH (type); - while (copied < len) - { - int regnum = gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3 + i; - int reg_size = REGISTER_RAW_SIZE (regnum); - char *reg_val_buf = alloca (reg_size); - - memcpy (reg_val_buf, valbuf + copied, reg_size); - copied += reg_size; - write_register_gen (regnum, reg_val_buf); - i++; - } -} - -static void -rs6000_store_return_value (struct type *type, char *valbuf) -{ - struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); - - if (TYPE_CODE (type) == TYPE_CODE_FLT) - - /* Floating point values are returned starting from FPR1 and up. - Say a double_double_double type could be returned in - FPR1/FPR2/FPR3 triple. */ - - write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf, - TYPE_LENGTH (type)); - else if (TYPE_CODE (type) == TYPE_CODE_ARRAY) - { - if (TYPE_LENGTH (type) == 16 - && TYPE_VECTOR (type)) - write_register_bytes (REGISTER_BYTE (tdep->ppc_vr0_regnum + 2), - valbuf, TYPE_LENGTH (type)); - } - else - /* Everything else is returned in GPR3 and up. */ - write_register_bytes (REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3), - valbuf, TYPE_LENGTH (type)); -} - -/* Extract from an array REGBUF containing the (raw) register state - the address in which a function should return its structure value, - as a CORE_ADDR (or an expression that can be used as one). */ - -static CORE_ADDR -rs6000_extract_struct_value_address (char *regbuf) -{ - return rs6000_struct_return_address; -} - -/* Return whether PC is in a dummy function call. - - FIXME: This just checks for the end of the stack, which is broken - for things like stepping through gcc nested function stubs. */ - -static int -rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp) -{ - return sp < pc && pc < fp; -} - -/* Hook called when a new child process is started. */ - -void -rs6000_create_inferior (int pid) -{ - if (rs6000_set_host_arch_hook) - rs6000_set_host_arch_hook (pid); -} - -/* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR). - - Usually a function pointer's representation is simply the address - of the function. On the RS/6000 however, a function pointer is - represented by a pointer to a TOC entry. This TOC entry contains - three words, the first word is the address of the function, the - second word is the TOC pointer (r2), and the third word is the - static chain value. Throughout GDB it is currently assumed that a - function pointer contains the address of the function, which is not - easy to fix. In addition, the conversion of a function address to - a function pointer would require allocation of a TOC entry in the - inferior's memory space, with all its drawbacks. To be able to - call C++ virtual methods in the inferior (which are called via - function pointers), find_function_addr uses this function to get the - function address from a function pointer. */ - -/* Return real function address if ADDR (a function pointer) is in the data - space and is therefore a special function pointer. */ - -CORE_ADDR -rs6000_convert_from_func_ptr_addr (CORE_ADDR addr) -{ - struct obj_section *s; - - s = find_pc_section (addr); - if (s && s->the_bfd_section->flags & SEC_CODE) - return addr; - - /* ADDR is in the data space, so it's a special function pointer. */ - return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize); -} - - -/* Handling the various POWER/PowerPC variants. */ - - -/* The arrays here called registers_MUMBLE hold information about available - registers. - - For each family of PPC variants, I've tried to isolate out the - common registers and put them up front, so that as long as you get - the general family right, GDB will correctly identify the registers - common to that family. The common register sets are: - - For the 60x family: hid0 hid1 iabr dabr pir - - For the 505 and 860 family: eie eid nri - - For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi - tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1 - pbu1 pbl2 pbu2 - - Most of these register groups aren't anything formal. I arrived at - them by looking at the registers that occurred in more than one - processor. - - Note: kevinb/2002-04-30: Support for the fpscr register was added - during April, 2002. Slot 70 is being used for PowerPC and slot 71 - for Power. For PowerPC, slot 70 was unused and was already in the - PPC_UISA_SPRS which is ideally where fpscr should go. For Power, - slot 70 was being used for "mq", so the next available slot (71) - was chosen. It would have been nice to be able to make the - register numbers the same across processor cores, but this wasn't - possible without either 1) renumbering some registers for some - processors or 2) assigning fpscr to a really high slot that's - larger than any current register number. Doing (1) is bad because - existing stubs would break. Doing (2) is undesirable because it - would introduce a really large gap between fpscr and the rest of - the registers for most processors. */ - -/* Convenience macros for populating register arrays. */ - -/* Within another macro, convert S to a string. */ - -#define STR(s) #s - -/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems - and 64 bits on 64-bit systems. */ -#define R(name) { STR(name), 4, 8, 0, 0 } - -/* Return a struct reg defining register NAME that's 32 bits on all - systems. */ -#define R4(name) { STR(name), 4, 4, 0, 0 } - -/* Return a struct reg defining register NAME that's 64 bits on all - systems. */ -#define R8(name) { STR(name), 8, 8, 0, 0 } - -/* Return a struct reg defining register NAME that's 128 bits on all - systems. */ -#define R16(name) { STR(name), 16, 16, 0, 0 } - -/* Return a struct reg defining floating-point register NAME. */ -#define F(name) { STR(name), 8, 8, 1, 0 } - -/* Return a struct reg defining a pseudo register NAME. */ -#define P(name) { STR(name), 4, 8, 0, 1} - -/* Return a struct reg defining register NAME that's 32 bits on 32-bit - systems and that doesn't exist on 64-bit systems. */ -#define R32(name) { STR(name), 4, 0, 0, 0 } - -/* Return a struct reg defining register NAME that's 64 bits on 64-bit - systems and that doesn't exist on 32-bit systems. */ -#define R64(name) { STR(name), 0, 8, 0, 0 } - -/* Return a struct reg placeholder for a register that doesn't exist. */ -#define R0 { 0, 0, 0, 0, 0 } - -/* UISA registers common across all architectures, including POWER. */ - -#define COMMON_UISA_REGS \ - /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \ - /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \ - /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \ - /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \ - /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \ - /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \ - /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \ - /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \ - /* 64 */ R(pc), R(ps) - -#define COMMON_UISA_NOFP_REGS \ - /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \ - /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \ - /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \ - /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \ - /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \ - /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \ - /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \ - /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \ - /* 64 */ R(pc), R(ps) - -/* UISA-level SPRs for PowerPC. */ -#define PPC_UISA_SPRS \ - /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr) - -/* UISA-level SPRs for PowerPC without floating point support. */ -#define PPC_UISA_NOFP_SPRS \ - /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0 - -/* Segment registers, for PowerPC. */ -#define PPC_SEGMENT_REGS \ - /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \ - /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \ - /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \ - /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15) - -/* OEA SPRs for PowerPC. */ -#define PPC_OEA_SPRS \ - /* 87 */ R4(pvr), \ - /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \ - /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \ - /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \ - /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \ - /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \ - /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \ - /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \ - /* 116 */ R4(dec), R(dabr), R4(ear) - -/* AltiVec registers. */ -#define PPC_ALTIVEC_REGS \ - /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \ - /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \ - /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \ - /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \ - /*151*/R4(vscr), R4(vrsave) - -/* Vectors of hi-lo general purpose registers. */ -#define PPC_EV_REGS \ - /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \ - /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \ - /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \ - /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31) - -/* Lower half of the EV registers. */ -#define PPC_GPRS_PSEUDO_REGS \ - /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \ - /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \ - /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \ - /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31), \ - -/* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover - user-level SPR's. */ -static const struct reg registers_power[] = -{ - COMMON_UISA_REGS, - /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq), - /* 71 */ R4(fpscr) -}; - -/* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only - view of the PowerPC. */ -static const struct reg registers_powerpc[] = -{ - COMMON_UISA_REGS, - PPC_UISA_SPRS, - PPC_ALTIVEC_REGS -}; - -/* PowerPC UISA - a PPC processor as viewed by user-level - code, but without floating point registers. */ -static const struct reg registers_powerpc_nofp[] = -{ - COMMON_UISA_NOFP_REGS, - PPC_UISA_SPRS -}; - -/* IBM PowerPC 403. */ -static const struct reg registers_403[] = -{ - COMMON_UISA_REGS, - PPC_UISA_SPRS, - PPC_SEGMENT_REGS, - PPC_OEA_SPRS, - /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr), - /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit), - /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3), - /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2), - /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr), - /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2) -}; - -/* IBM PowerPC 403GC. */ -static const struct reg registers_403GC[] = -{ - COMMON_UISA_REGS, - PPC_UISA_SPRS, - PPC_SEGMENT_REGS, - PPC_OEA_SPRS, - /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr), - /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit), - /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3), - /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2), - /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr), - /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2), - /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr), - /* 147 */ R(tbhu), R(tblu) -}; - -/* Motorola PowerPC 505. */ -static const struct reg registers_505[] = -{ - COMMON_UISA_REGS, - PPC_UISA_SPRS, - PPC_SEGMENT_REGS, - PPC_OEA_SPRS, - /* 119 */ R(eie), R(eid), R(nri) -}; - -/* Motorola PowerPC 860 or 850. */ -static const struct reg registers_860[] = -{ - COMMON_UISA_REGS, - PPC_UISA_SPRS, - PPC_SEGMENT_REGS, - PPC_OEA_SPRS, - /* 119 */ R(eie), R(eid), R(nri), R(cmpa), - /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr), - /* 127 */ R(der), R(counta), R(countb), R(cmpe), - /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1), - /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst), - /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr), - /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr), - /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc), - /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap), - /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn), - /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1), - /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1) -}; - -/* Motorola PowerPC 601. Note that the 601 has different register numbers - for reading and writing RTCU and RTCL. However, how one reads and writes a - register is the stub's problem. */ -static const struct reg registers_601[] = -{ - COMMON_UISA_REGS, - PPC_UISA_SPRS, - PPC_SEGMENT_REGS, - PPC_OEA_SPRS, - /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr), - /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl) -}; - -/* Motorola PowerPC 602. */ -static const struct reg registers_602[] = -{ - COMMON_UISA_REGS, - PPC_UISA_SPRS, - PPC_SEGMENT_REGS, - PPC_OEA_SPRS, - /* 119 */ R(hid0), R(hid1), R(iabr), R0, - /* 123 */ R0, R(tcr), R(ibr), R(esassr), - /* 127 */ R(sebr), R(ser), R(sp), R(lt) -}; - -/* Motorola/IBM PowerPC 603 or 603e. */ -static const struct reg registers_603[] = -{ - COMMON_UISA_REGS, - PPC_UISA_SPRS, - PPC_SEGMENT_REGS, - PPC_OEA_SPRS, - /* 119 */ R(hid0), R(hid1), R(iabr), R0, - /* 123 */ R0, R(dmiss), R(dcmp), R(hash1), - /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa) -}; - -/* Motorola PowerPC 604 or 604e. */ -static const struct reg registers_604[] = -{ - COMMON_UISA_REGS, - PPC_UISA_SPRS, - PPC_SEGMENT_REGS, - PPC_OEA_SPRS, - /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr), - /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2), - /* 127 */ R(sia), R(sda) -}; - -/* Motorola/IBM PowerPC 750 or 740. */ -static const struct reg registers_750[] = -{ - COMMON_UISA_REGS, - PPC_UISA_SPRS, - PPC_SEGMENT_REGS, - PPC_OEA_SPRS, - /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr), - /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2), - /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4), - /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia), - /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr), - /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3) -}; - - -/* Motorola PowerPC 7400. */ -static const struct reg registers_7400[] = -{ - /* gpr0-gpr31, fpr0-fpr31 */ - COMMON_UISA_REGS, - /* ctr, xre, lr, cr */ - PPC_UISA_SPRS, - /* sr0-sr15 */ - PPC_SEGMENT_REGS, - PPC_OEA_SPRS, - /* vr0-vr31, vrsave, vscr */ - PPC_ALTIVEC_REGS - /* FIXME? Add more registers? */ -}; - -/* Motorola e500. */ -static const struct reg registers_e500[] = -{ - R(pc), R(ps), - /* cr, lr, ctr, xer, "" */ - PPC_UISA_NOFP_SPRS, - /* 7...38 */ - PPC_EV_REGS, - /* 39...70 */ - PPC_GPRS_PSEUDO_REGS -}; - -/* Information about a particular processor variant. */ - -struct variant - { - /* Name of this variant. */ - char *name; - - /* English description of the variant. */ - char *description; - - /* bfd_arch_info.arch corresponding to variant. */ - enum bfd_architecture arch; - - /* bfd_arch_info.mach corresponding to variant. */ - unsigned long mach; - - /* Number of real registers. */ - int nregs; - - /* Number of pseudo registers. */ - int npregs; - - /* Number of total registers (the sum of nregs and npregs). */ - int num_tot_regs; - - /* Table of register names; registers[R] is the name of the register - number R. */ - const struct reg *regs; - }; - -#define tot_num_registers(list) (sizeof (list) / sizeof((list)[0])) - -static int -num_registers (const struct reg *reg_list, int num_tot_regs) -{ - int i; - int nregs = 0; - - for (i = 0; i < num_tot_regs; i++) - if (!reg_list[i].pseudo) - nregs++; - - return nregs; -} - -static int -num_pseudo_registers (const struct reg *reg_list, int num_tot_regs) -{ - int i; - int npregs = 0; - - for (i = 0; i < num_tot_regs; i++) - if (reg_list[i].pseudo) - npregs ++; - - return npregs; -} - -/* Information in this table comes from the following web sites: - IBM: http://www.chips.ibm.com:80/products/embedded/ - Motorola: http://www.mot.com/SPS/PowerPC/ - - I'm sure I've got some of the variant descriptions not quite right. - Please report any inaccuracies you find to GDB's maintainer. - - If you add entries to this table, please be sure to allow the new - value as an argument to the --with-cpu flag, in configure.in. */ - -static struct variant variants[] = -{ - - {"powerpc", "PowerPC user-level", bfd_arch_powerpc, - bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc), - registers_powerpc}, - {"power", "POWER user-level", bfd_arch_rs6000, - bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power), - registers_power}, - {"403", "IBM PowerPC 403", bfd_arch_powerpc, - bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403), - registers_403}, - {"601", "Motorola PowerPC 601", bfd_arch_powerpc, - bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601), - registers_601}, - {"602", "Motorola PowerPC 602", bfd_arch_powerpc, - bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602), - registers_602}, - {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc, - bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603), - registers_603}, - {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc, - 604, -1, -1, tot_num_registers (registers_604), - registers_604}, - {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc, - bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC), - registers_403GC}, - {"505", "Motorola PowerPC 505", bfd_arch_powerpc, - bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505), - registers_505}, - {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc, - bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860), - registers_860}, - {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc, - bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750), - registers_750}, - {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc, - bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400), - registers_7400}, - {"e500", "Motorola PowerPC e500", bfd_arch_powerpc, - bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500), - registers_e500}, - - /* 64-bit */ - {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc, - bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc), - registers_powerpc}, - {"620", "Motorola PowerPC 620", bfd_arch_powerpc, - bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc), - registers_powerpc}, - {"630", "Motorola PowerPC 630", bfd_arch_powerpc, - bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc), - registers_powerpc}, - {"a35", "PowerPC A35", bfd_arch_powerpc, - bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc), - registers_powerpc}, - {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc, - bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc), - registers_powerpc}, - {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc, - bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc), - registers_powerpc}, - - /* FIXME: I haven't checked the register sets of the following. */ - {"rs1", "IBM POWER RS1", bfd_arch_rs6000, - bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power), - registers_power}, - {"rsc", "IBM POWER RSC", bfd_arch_rs6000, - bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power), - registers_power}, - {"rs2", "IBM POWER RS2", bfd_arch_rs6000, - bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power), - registers_power}, - - {0, 0, 0, 0, 0, 0, 0, 0} -}; - -/* Initialize the number of registers and pseudo registers in each variant. */ - -static void -init_variants (void) -{ - struct variant *v; - - for (v = variants; v->name; v++) - { - if (v->nregs == -1) - v->nregs = num_registers (v->regs, v->num_tot_regs); - if (v->npregs == -1) - v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs); - } -} - -/* Return the variant corresponding to architecture ARCH and machine number - MACH. If no such variant exists, return null. */ - -static const struct variant * -find_variant_by_arch (enum bfd_architecture arch, unsigned long mach) -{ - const struct variant *v; - - for (v = variants; v->name; v++) - if (arch == v->arch && mach == v->mach) - return v; - - return NULL; -} - -static int -gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info) -{ - if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) - return print_insn_big_powerpc (memaddr, info); - else - return print_insn_little_powerpc (memaddr, info); -} - -/* Initialize the current architecture based on INFO. If possible, re-use an - architecture from ARCHES, which is a list of architectures already created - during this debugging session. - - Called e.g. at program startup, when reading a core file, and when reading - a binary file. */ - -static struct gdbarch * -rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) -{ - struct gdbarch *gdbarch; - struct gdbarch_tdep *tdep; - int wordsize, from_xcoff_exec, from_elf_exec, power, i, off; - struct reg *regs; - const struct variant *v; - enum bfd_architecture arch; - unsigned long mach; - bfd abfd; - int sysv_abi; - enum gdb_osabi osabi = GDB_OSABI_UNKNOWN; - asection *sect; - - from_xcoff_exec = info.abfd && info.abfd->format == bfd_object && - bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour; - - from_elf_exec = info.abfd && info.abfd->format == bfd_object && - bfd_get_flavour (info.abfd) == bfd_target_elf_flavour; - - sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour; - - if (info.abfd) - osabi = gdbarch_lookup_osabi (info.abfd); - - /* Check word size. If INFO is from a binary file, infer it from - that, else choose a likely default. */ - if (from_xcoff_exec) - { - if (bfd_xcoff_is_xcoff64 (info.abfd)) - wordsize = 8; - else - wordsize = 4; - } - else if (from_elf_exec) - { - if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64) - wordsize = 8; - else - wordsize = 4; - } - else - { - if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0) - wordsize = info.bfd_arch_info->bits_per_word / - info.bfd_arch_info->bits_per_byte; - else - wordsize = 4; - } - - /* Find a candidate among extant architectures. */ - for (arches = gdbarch_list_lookup_by_info (arches, &info); - arches != NULL; - arches = gdbarch_list_lookup_by_info (arches->next, &info)) - { - /* Word size in the various PowerPC bfd_arch_info structs isn't - meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform - separate word size check. */ - tdep = gdbarch_tdep (arches->gdbarch); - if (tdep && tdep->wordsize == wordsize && tdep->osabi == osabi) - return arches->gdbarch; - } - - /* None found, create a new architecture from INFO, whose bfd_arch_info - validity depends on the source: - - executable useless - - rs6000_host_arch() good - - core file good - - "set arch" trust blindly - - GDB startup useless but harmless */ - - if (!from_xcoff_exec) - { - arch = info.bfd_arch_info->arch; - mach = info.bfd_arch_info->mach; - } - else - { - arch = bfd_arch_powerpc; - mach = 0; - bfd_default_set_arch_mach (&abfd, arch, mach); - info.bfd_arch_info = bfd_get_arch_info (&abfd); - } - tdep = xmalloc (sizeof (struct gdbarch_tdep)); - tdep->wordsize = wordsize; - tdep->osabi = osabi; - - /* For e500 executables, the apuinfo section is of help here. Such - section contains the identifier and revision number of each - Application-specific Processing Unit that is present on the - chip. The content of the section is determined by the assembler - which looks at each instruction and determines which unit (and - which version of it) can execute it. In our case we just look for - the existance of the section. */ - - if (info.abfd) - { - sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo"); - if (sect) - { - arch = info.bfd_arch_info->arch; - mach = bfd_mach_ppc_e500; - bfd_default_set_arch_mach (&abfd, arch, mach); - info.bfd_arch_info = bfd_get_arch_info (&abfd); - } - } - - gdbarch = gdbarch_alloc (&info, tdep); - power = arch == bfd_arch_rs6000; - - /* Initialize the number of real and pseudo registers in each variant. */ - init_variants (); - - /* Choose variant. */ - v = find_variant_by_arch (arch, mach); - if (!v) - return NULL; - - tdep->regs = v->regs; - - tdep->ppc_gp0_regnum = 0; - tdep->ppc_gplast_regnum = 31; - tdep->ppc_toc_regnum = 2; - tdep->ppc_ps_regnum = 65; - tdep->ppc_cr_regnum = 66; - tdep->ppc_lr_regnum = 67; - tdep->ppc_ctr_regnum = 68; - tdep->ppc_xer_regnum = 69; - if (v->mach == bfd_mach_ppc_601) - tdep->ppc_mq_regnum = 124; - else if (power) - tdep->ppc_mq_regnum = 70; - else - tdep->ppc_mq_regnum = -1; - tdep->ppc_fpscr_regnum = power ? 71 : 70; - - set_gdbarch_pc_regnum (gdbarch, 64); - set_gdbarch_sp_regnum (gdbarch, 1); - set_gdbarch_fp_regnum (gdbarch, 1); - set_gdbarch_deprecated_extract_return_value (gdbarch, - rs6000_extract_return_value); - set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value); - - if (v->arch == bfd_arch_powerpc) - switch (v->mach) - { - case bfd_mach_ppc: - tdep->ppc_vr0_regnum = 71; - tdep->ppc_vrsave_regnum = 104; - tdep->ppc_ev0_regnum = -1; - tdep->ppc_ev31_regnum = -1; - break; - case bfd_mach_ppc_7400: - tdep->ppc_vr0_regnum = 119; - tdep->ppc_vrsave_regnum = 153; - tdep->ppc_ev0_regnum = -1; - tdep->ppc_ev31_regnum = -1; - break; - case bfd_mach_ppc_e500: - tdep->ppc_gp0_regnum = 39; - tdep->ppc_gplast_regnum = 70; - tdep->ppc_toc_regnum = -1; - tdep->ppc_ps_regnum = 1; - tdep->ppc_cr_regnum = 2; - tdep->ppc_lr_regnum = 3; - tdep->ppc_ctr_regnum = 4; - tdep->ppc_xer_regnum = 5; - tdep->ppc_ev0_regnum = 7; - tdep->ppc_ev31_regnum = 38; - set_gdbarch_pc_regnum (gdbarch, 0); - set_gdbarch_sp_regnum (gdbarch, 40); - set_gdbarch_fp_regnum (gdbarch, 40); - set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum); - set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read); - set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write); - set_gdbarch_extract_return_value (gdbarch, e500_extract_return_value); - set_gdbarch_deprecated_store_return_value (gdbarch, e500_store_return_value); - break; - default: - tdep->ppc_vr0_regnum = -1; - tdep->ppc_vrsave_regnum = -1; - tdep->ppc_ev0_regnum = -1; - tdep->ppc_ev31_regnum = -1; - break; - } - - /* Set lr_frame_offset. */ - if (wordsize == 8) - tdep->lr_frame_offset = 16; - else if (sysv_abi) - tdep->lr_frame_offset = 4; - else - tdep->lr_frame_offset = 8; - - /* Calculate byte offsets in raw register array. */ - tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int)); - for (i = off = 0; i < v->num_tot_regs; i++) - { - tdep->regoff[i] = off; - off += regsize (v->regs + i, wordsize); - } - - /* Select instruction printer. */ - if (arch == power) - set_gdbarch_print_insn (gdbarch, print_insn_rs6000); - else - set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc); - - set_gdbarch_read_pc (gdbarch, generic_target_read_pc); - set_gdbarch_write_pc (gdbarch, generic_target_write_pc); - set_gdbarch_read_fp (gdbarch, generic_target_read_fp); - set_gdbarch_read_sp (gdbarch, generic_target_read_sp); - set_gdbarch_write_sp (gdbarch, generic_target_write_sp); - - set_gdbarch_num_regs (gdbarch, v->nregs); - set_gdbarch_num_pseudo_regs (gdbarch, v->npregs); - set_gdbarch_register_name (gdbarch, rs6000_register_name); - set_gdbarch_register_size (gdbarch, wordsize); - set_gdbarch_register_bytes (gdbarch, off); - set_gdbarch_register_byte (gdbarch, rs6000_register_byte); - set_gdbarch_register_raw_size (gdbarch, rs6000_register_raw_size); - set_gdbarch_max_register_raw_size (gdbarch, 16); - set_gdbarch_register_virtual_size (gdbarch, generic_register_size); - set_gdbarch_max_register_virtual_size (gdbarch, 16); - set_gdbarch_register_virtual_type (gdbarch, rs6000_register_virtual_type); - - set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT); - set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT); - set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT); - set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT); - set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT); - set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT); - set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); - set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); - set_gdbarch_char_signed (gdbarch, 0); - - set_gdbarch_use_generic_dummy_frames (gdbarch, 1); - set_gdbarch_call_dummy_length (gdbarch, 0); - set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT); - set_gdbarch_call_dummy_address (gdbarch, entry_point_address); - set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1); - set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0); - set_gdbarch_call_dummy_start_offset (gdbarch, 0); - set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy); - set_gdbarch_call_dummy_p (gdbarch, 1); - set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0); - set_gdbarch_get_saved_register (gdbarch, generic_unwind_get_saved_register); - set_gdbarch_fix_call_dummy (gdbarch, rs6000_fix_call_dummy); - set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame); - set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos); - set_gdbarch_push_return_address (gdbarch, ppc_push_return_address); - set_gdbarch_believe_pcc_promotion (gdbarch, 1); - set_gdbarch_coerce_float_to_double (gdbarch, rs6000_coerce_float_to_double); - - set_gdbarch_register_convertible (gdbarch, rs6000_register_convertible); - set_gdbarch_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual); - set_gdbarch_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw); - set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum); - /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments() - is correct for the SysV ABI when the wordsize is 8, but I'm also - fairly certain that ppc_sysv_abi_push_arguments() will give even - worse results since it only works for 32-bit code. So, for the moment, - we're better off calling rs6000_push_arguments() since it works for - 64-bit code. At some point in the future, this matter needs to be - revisited. */ - if (sysv_abi && wordsize == 4) - set_gdbarch_push_arguments (gdbarch, ppc_sysv_abi_push_arguments); - else - set_gdbarch_push_arguments (gdbarch, rs6000_push_arguments); - - set_gdbarch_store_struct_return (gdbarch, rs6000_store_struct_return); - set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address); - set_gdbarch_pop_frame (gdbarch, rs6000_pop_frame); - - set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue); - set_gdbarch_inner_than (gdbarch, core_addr_lessthan); - set_gdbarch_decr_pc_after_break (gdbarch, 0); - set_gdbarch_function_start_offset (gdbarch, 0); - set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc); - - /* Not sure on this. FIXMEmgo */ - set_gdbarch_frame_args_skip (gdbarch, 8); - - if (sysv_abi) - set_gdbarch_use_struct_convention (gdbarch, - ppc_sysv_abi_use_struct_convention); - else - set_gdbarch_use_struct_convention (gdbarch, - generic_use_struct_convention); - - set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid); - - set_gdbarch_frameless_function_invocation (gdbarch, - rs6000_frameless_function_invocation); - set_gdbarch_frame_chain (gdbarch, rs6000_frame_chain); - set_gdbarch_frame_saved_pc (gdbarch, rs6000_frame_saved_pc); - - set_gdbarch_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs); - set_gdbarch_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info); - - if (!sysv_abi) - { - /* Handle RS/6000 function pointers (which are really function - descriptors). */ - set_gdbarch_convert_from_func_ptr_addr (gdbarch, - rs6000_convert_from_func_ptr_addr); - } - set_gdbarch_frame_args_address (gdbarch, rs6000_frame_args_address); - set_gdbarch_frame_locals_address (gdbarch, rs6000_frame_args_address); - set_gdbarch_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call); - - /* We can't tell how many args there are - now that the C compiler delays popping them. */ - set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown); - - /* Hook in ABI-specific overrides, if they have been registered. */ - gdbarch_init_osabi (info, gdbarch, osabi); - - return gdbarch; -} - -static void -rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file) -{ - struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); - - if (tdep == NULL) - return; - - fprintf_unfiltered (file, "rs6000_dump_tdep: OS ABI = %s\n", - gdbarch_osabi_name (tdep->osabi)); -} - -static struct cmd_list_element *info_powerpc_cmdlist = NULL; - -static void -rs6000_info_powerpc_command (char *args, int from_tty) -{ - help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout); -} - -/* Initialization code. */ - -void -_initialize_rs6000_tdep (void) -{ - gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep); - gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep); - - /* Add root prefix command for "info powerpc" commands */ - add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command, - "Various POWERPC info specific commands.", - &info_powerpc_cmdlist, "info powerpc ", 0, &infolist); -} |