diff options
author | Andrew Cagney <cagney@redhat.com> | 2002-07-14 00:15:20 +0000 |
---|---|---|
committer | Andrew Cagney <cagney@redhat.com> | 2002-07-14 00:15:20 +0000 |
commit | 3fbeef0be80152e38e0b6966805f1dfc5c26df74 (patch) | |
tree | 40301ef32a7438c2bd037f05db12d278993e793b /sim/d30v/engine.c | |
parent | f971e29ff187b5c6efab9521e539801da35733e3 (diff) | |
download | gdb-3fbeef0be80152e38e0b6966805f1dfc5c26df74.zip gdb-3fbeef0be80152e38e0b6966805f1dfc5c26df74.tar.gz gdb-3fbeef0be80152e38e0b6966805f1dfc5c26df74.tar.bz2 |
Obsolete the d30v.
Diffstat (limited to 'sim/d30v/engine.c')
-rw-r--r-- | sim/d30v/engine.c | 992 |
1 files changed, 496 insertions, 496 deletions
diff --git a/sim/d30v/engine.c b/sim/d30v/engine.c index 2bbaad1..0f4a025 100644 --- a/sim/d30v/engine.c +++ b/sim/d30v/engine.c @@ -1,496 +1,496 @@ -/* This file is part of the program psim. - - Copyright (C) 1994-1997, Andrew Cagney <cagney@highland.com.au> - Copyright (C) 1996, 1997, Free Software Foundation - - This program is free software; you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation; either version 2 of the License, or - (at your option) any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program; if not, write to the Free Software - Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. - - */ - - -#ifndef ENGINE_C -#define ENGINE_C - -#include "sim-main.h" - -#include <stdio.h> -#include <ctype.h> - -#ifdef HAVE_STDLIB_H -#include <stdlib.h> -#endif - -#ifdef HAVE_STRING_H -#include <string.h> -#else -#ifdef HAVE_STRINGS_H -#include <strings.h> -#endif -#endif - -static void -do_stack_swap (SIM_DESC sd) -{ - sim_cpu *cpu = STATE_CPU (sd, 0); - unsigned new_sp = (PSW_VAL(PSW_SM) != 0); - if (cpu->regs.current_sp != new_sp) - { - cpu->regs.sp[cpu->regs.current_sp] = SP; - cpu->regs.current_sp = new_sp; - SP = cpu->regs.sp[cpu->regs.current_sp]; - } -} - -#if WITH_TRACE -/* Implement ALU tracing of 32-bit registers. */ -static void -trace_alu32 (SIM_DESC sd, - sim_cpu *cpu, - address_word cia, - unsigned32 *ptr) -{ - unsigned32 value = *ptr; - - if (ptr >= &GPR[0] && ptr <= &GPR[NR_GENERAL_PURPOSE_REGISTERS]) - trace_one_insn (sd, cpu, cia, 1, "engine.c", __LINE__, "alu", - "Set register r%-2d = 0x%.8lx (%ld)", - ptr - &GPR[0], (long)value, (long)value); - - else if (ptr == &PSW || ptr == &bPSW || ptr == &DPSW) - trace_one_insn (sd, cpu, cia, 1, "engine.c", __LINE__, "alu", - "Set register %s = 0x%.8lx%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s", - (ptr == &PSW) ? "psw" : ((ptr == &bPSW) ? "bpsw" : "dpsw"), - (long)value, - (value & (0x80000000 >> PSW_SM)) ? ", sm" : "", - (value & (0x80000000 >> PSW_EA)) ? ", ea" : "", - (value & (0x80000000 >> PSW_DB)) ? ", db" : "", - (value & (0x80000000 >> PSW_DS)) ? ", ds" : "", - (value & (0x80000000 >> PSW_IE)) ? ", ie" : "", - (value & (0x80000000 >> PSW_RP)) ? ", rp" : "", - (value & (0x80000000 >> PSW_MD)) ? ", md" : "", - (value & (0x80000000 >> PSW_F0)) ? ", f0" : "", - (value & (0x80000000 >> PSW_F1)) ? ", f1" : "", - (value & (0x80000000 >> PSW_F2)) ? ", f2" : "", - (value & (0x80000000 >> PSW_F3)) ? ", f3" : "", - (value & (0x80000000 >> PSW_S)) ? ", s" : "", - (value & (0x80000000 >> PSW_V)) ? ", v" : "", - (value & (0x80000000 >> PSW_VA)) ? ", va" : "", - (value & (0x80000000 >> PSW_C)) ? ", c" : ""); - - else if (ptr >= &CREG[0] && ptr <= &CREG[NR_CONTROL_REGISTERS]) - trace_one_insn (sd, cpu, cia, 1, "engine.c", __LINE__, "alu", - "Set register cr%d = 0x%.8lx (%ld)", - ptr - &CREG[0], (long)value, (long)value); -} - -/* Implement ALU tracing of 32-bit registers. */ -static void -trace_alu64 (SIM_DESC sd, - sim_cpu *cpu, - address_word cia, - unsigned64 *ptr) -{ - unsigned64 value = *ptr; - - if (ptr >= &ACC[0] && ptr <= &ACC[NR_ACCUMULATORS]) - trace_one_insn (sd, cpu, cia, 1, "engine.c", __LINE__, "alu", - "Set register a%-2d = 0x%.8lx 0x%.8lx", - ptr - &ACC[0], - (unsigned long)(unsigned32)(value >> 32), - (unsigned long)(unsigned32)value); - -} -#endif - -/* Process all of the queued up writes in order now */ -void -unqueue_writes (SIM_DESC sd, - sim_cpu *cpu, - address_word cia) -{ - int i, num; - int did_psw = 0; - unsigned32 *psw_addr = &PSW; - - num = WRITE32_NUM; - for (i = 0; i < num; i++) - { - unsigned32 mask = WRITE32_MASK (i); - unsigned32 *ptr = WRITE32_PTR (i); - unsigned32 value = (*ptr & ~mask) | (WRITE32_VALUE (i) & mask); - int j; - - if (ptr == psw_addr) - { - /* If MU instruction was not a MVTSYS, resolve PSW - contention in favour of IU. */ - if(! STATE_CPU (sd, 0)->mvtsys_left_p) - { - /* Detect contention in parallel writes to the same PSW flags. - The hardware allows the updates from IU to prevail over - those from MU. */ - - unsigned32 flag_bits = - BIT32 (PSW_F0) | BIT32 (PSW_F1) | - BIT32 (PSW_F2) | BIT32 (PSW_F3) | - BIT32 (PSW_S) | BIT32 (PSW_V) | - BIT32 (PSW_VA) | BIT32 (PSW_C); - unsigned32 my_flag_bits = mask & flag_bits; - - for (j = i + 1; j < num; j++) - if (WRITE32_PTR (j) == psw_addr && /* write to PSW */ - WRITE32_MASK (j) & my_flag_bits) /* some of the same flags */ - { - /* Recompute local mask & value, to suppress this - earlier write to the same flag bits. */ - - unsigned32 new_mask = mask & ~(WRITE32_MASK (j) & my_flag_bits); - - /* There is a special case for the VA (accumulated - overflow) flag, in that it is only included in the - second instruction's mask if the overflow - occurred. Yet the hardware still suppresses the - first instruction's update to VA. So we kludge - this by inferring PSW_V -> PSW_VA for the second - instruction. */ - - if (WRITE32_MASK (j) & BIT32 (PSW_V)) - { - new_mask &= ~BIT32 (PSW_VA); - } - - value = (*ptr & ~new_mask) | (WRITE32_VALUE (i) & new_mask); - } - } - - did_psw = 1; - } - - *ptr = value; - -#if WITH_TRACE - if (TRACE_ALU_P (cpu)) - trace_alu32 (sd, cpu, cia, ptr); -#endif - } - - num = WRITE64_NUM; - for (i = 0; i < num; i++) - { - unsigned64 *ptr = WRITE64_PTR (i); - *ptr = WRITE64_VALUE (i); - -#if WITH_TRACE - if (TRACE_ALU_P (cpu)) - trace_alu64 (sd, cpu, cia, ptr); -#endif - } - - WRITE32_NUM = 0; - WRITE64_NUM = 0; - - if (DID_TRAP == 1) /* ordinary trap */ - { - bPSW = PSW; - PSW &= (BIT32 (PSW_DB) | BIT32 (PSW_SM)); - did_psw = 1; - } - else if (DID_TRAP == 2) /* debug trap */ - { - DPSW = PSW; - PSW &= BIT32 (PSW_DS); - PSW |= BIT32 (PSW_DS); - did_psw = 1; - } - DID_TRAP = 0; - - if (did_psw) - do_stack_swap (sd); -} - - -/* SIMULATE INSTRUCTIONS, various different ways of achieving the same - thing */ - -static address_word -do_long (SIM_DESC sd, - l_instruction_word instruction, - address_word cia) -{ - address_word nia = l_idecode_issue(sd, - instruction, - cia); - - unqueue_writes (sd, STATE_CPU (sd, 0), cia); - return nia; -} - -static address_word -do_2_short (SIM_DESC sd, - s_instruction_word insn1, - s_instruction_word insn2, - cpu_units unit, - address_word cia) -{ - address_word nia; - - /* run the first instruction */ - STATE_CPU (sd, 0)->unit = unit; - STATE_CPU (sd, 0)->left_kills_right_p = 0; - STATE_CPU (sd, 0)->mvtsys_left_p = 0; - nia = s_idecode_issue(sd, - insn1, - cia); - - unqueue_writes (sd, STATE_CPU (sd, 0), cia); - - /* Only do the second instruction if the PC has not changed */ - if ((nia == INVALID_INSTRUCTION_ADDRESS) && - (! STATE_CPU (sd, 0)->left_kills_right_p)) { - STATE_CPU (sd, 0)->unit = any_unit; - nia = s_idecode_issue (sd, - insn2, - cia); - - unqueue_writes (sd, STATE_CPU (sd, 0), cia); - } - - STATE_CPU (sd, 0)->left_kills_right_p = 0; - STATE_CPU (sd, 0)->mvtsys_left_p = 0; - return nia; -} - -static address_word -do_parallel (SIM_DESC sd, - s_instruction_word left_insn, - s_instruction_word right_insn, - address_word cia) -{ - address_word nia_left; - address_word nia_right; - address_word nia; - - /* run the first instruction */ - STATE_CPU (sd, 0)->unit = memory_unit; - STATE_CPU (sd, 0)->left_kills_right_p = 0; - STATE_CPU (sd, 0)->mvtsys_left_p = 0; - nia_left = s_idecode_issue(sd, - left_insn, - cia); - - /* run the second instruction */ - STATE_CPU (sd, 0)->unit = integer_unit; - nia_right = s_idecode_issue(sd, - right_insn, - cia); - - /* merge the PC's */ - if (nia_left == INVALID_INSTRUCTION_ADDRESS) { - if (nia_right == INVALID_INSTRUCTION_ADDRESS) - nia = INVALID_INSTRUCTION_ADDRESS; - else - nia = nia_right; - } - else { - if (nia_right == INVALID_INSTRUCTION_ADDRESS) - nia = nia_left; - else { - sim_engine_abort (sd, STATE_CPU (sd, 0), cia, "parallel jumps"); - nia = INVALID_INSTRUCTION_ADDRESS; - } - } - - unqueue_writes (sd, STATE_CPU (sd, 0), cia); - return nia; -} - - -typedef enum { - p_insn = 0, - long_insn = 3, - l_r_insn = 1, - r_l_insn = 2, -} instruction_types; - -STATIC_INLINE instruction_types -instruction_type(l_instruction_word insn) -{ - int fm0 = MASKED64(insn, 0, 0) != 0; - int fm1 = MASKED64(insn, 32, 32) != 0; - return ((fm0 << 1) | fm1); -} - - - -void -sim_engine_run (SIM_DESC sd, - int last_cpu_nr, - int nr_cpus, - int siggnal) -{ - while (1) - { - address_word cia = PC; - address_word nia; - l_instruction_word insn = IMEM(cia); - int rp_was_set; - int rpt_c_was_nonzero; - - /* Before executing the instruction, we need to test whether or - not RPT_C is greater than zero, and save that state for use - after executing the instruction. In particular, we need to - not care whether the instruction changes RPT_C itself. */ - - rpt_c_was_nonzero = (RPT_C > 0); - - /* Before executing the instruction, we need to check to see if - we have to decrement RPT_C, the repeat count register. Do this - if PC == RPT_E, but only if we are in an active repeat block. */ - - if (PC == RPT_E && - (RPT_C > 0 || PSW_VAL (PSW_RP) != 0)) - { - RPT_C --; - } - - /* Now execute the instruction at PC */ - - switch (instruction_type (insn)) - { - case long_insn: - nia = do_long (sd, insn, cia); - break; - case r_l_insn: - /* L <- R */ - nia = do_2_short (sd, insn, insn >> 32, integer_unit, cia); - break; - case l_r_insn: - /* L -> R */ - nia = do_2_short (sd, insn >> 32, insn, memory_unit, cia); - break; - case p_insn: - nia = do_parallel (sd, insn >> 32, insn, cia); - break; - default: - sim_engine_abort (sd, STATE_CPU (sd, 0), cia, - "internal error - engine_run_until_stop - bad switch"); - nia = -1; - } - - if (TRACE_ACTION) - { - if (TRACE_ACTION & TRACE_ACTION_CALL) - call_occurred (sd, STATE_CPU (sd, 0), cia, nia); - - if (TRACE_ACTION & TRACE_ACTION_RETURN) - return_occurred (sd, STATE_CPU (sd, 0), cia, nia); - - TRACE_ACTION = 0; - } - - /* Check now to see if we need to reset the RP bit in the PSW. - There are three conditions for this, the RP bit is already - set (just a speed optimization), the instruction we just - executed is the last instruction in the loop, and the repeat - count is currently zero. */ - - rp_was_set = PSW_VAL (PSW_RP); - if (rp_was_set && (PC == RPT_E) && RPT_C == 0) - { - PSW_SET (PSW_RP, 0); - } - - /* Now update the PC. If we just executed a jump instruction, - that takes precedence over everything else. Next comes - branching back to RPT_S as a result of a loop. Finally, the - default is to simply advance to the next inline - instruction. */ - - if (nia != INVALID_INSTRUCTION_ADDRESS) - { - PC = nia; - } - else if (rp_was_set && rpt_c_was_nonzero && (PC == RPT_E)) - { - PC = RPT_S; - } - else - { - PC = cia + 8; - } - - /* Check for DDBT (debugger debug trap) condition. Do this after - the repeat block checks so the excursion to the trap handler does - not alter looping state. */ - - if (cia == IBA && PSW_VAL (PSW_DB)) - { - DPC = PC; - PSW_SET (PSW_EA, 1); - DPSW = PSW; - /* clear all bits in PSW except SM */ - PSW &= BIT32 (PSW_SM); - /* add DS bit */ - PSW |= BIT32 (PSW_DS); - /* dispatch to DDBT handler */ - PC = 0xfffff128; /* debugger_debug_trap_address */ - } - - /* process any events */ - /* FIXME - should L->R or L<-R insns count as two cycles? */ - if (sim_events_tick (sd)) - { - sim_events_process (sd); - } - } -} - - -/* d30v external interrupt handler. - - Note: This should be replaced by a proper interrupt delivery - mechanism. This interrupt mechanism discards later interrupts if - an earlier interrupt hasn't been delivered. - - Note: This interrupt mechanism does not reset its self when the - simulator is re-opened. */ - -void -d30v_interrupt_event (SIM_DESC sd, - void *data) -{ - if (PSW_VAL (PSW_IE)) - /* interrupts not masked */ - { - /* scrub any pending interrupt */ - if (sd->pending_interrupt != NULL) - sim_events_deschedule (sd, sd->pending_interrupt); - /* deliver */ - bPSW = PSW; - bPC = PC; - PSW = 0; - PC = 0xfffff138; /* external interrupt */ - do_stack_swap (sd); - } - else if (sd->pending_interrupt == NULL) - /* interrupts masked and no interrupt pending */ - { - sd->pending_interrupt = sim_events_schedule (sd, 1, - d30v_interrupt_event, - data); - } -} - -#endif +/* OBSOLETE /* This file is part of the program psim. */ +/* OBSOLETE */ +/* OBSOLETE Copyright (C) 1994-1997, Andrew Cagney <cagney@highland.com.au> */ +/* OBSOLETE Copyright (C) 1996, 1997, Free Software Foundation */ +/* OBSOLETE */ +/* OBSOLETE This program is free software; you can redistribute it and/or modify */ +/* OBSOLETE it under the terms of the GNU General Public License as published by */ +/* OBSOLETE the Free Software Foundation; either version 2 of the License, or */ +/* OBSOLETE (at your option) any later version. */ +/* OBSOLETE */ +/* OBSOLETE This program is distributed in the hope that it will be useful, */ +/* OBSOLETE but WITHOUT ANY WARRANTY; without even the implied warranty of */ +/* OBSOLETE MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */ +/* OBSOLETE GNU General Public License for more details. */ +/* OBSOLETE */ +/* OBSOLETE You should have received a copy of the GNU General Public License */ +/* OBSOLETE along with this program; if not, write to the Free Software */ +/* OBSOLETE Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ +/* OBSOLETE */ +/* OBSOLETE */ */ +/* OBSOLETE */ +/* OBSOLETE */ +/* OBSOLETE #ifndef ENGINE_C */ +/* OBSOLETE #define ENGINE_C */ +/* OBSOLETE */ +/* OBSOLETE #include "sim-main.h" */ +/* OBSOLETE */ +/* OBSOLETE #include <stdio.h> */ +/* OBSOLETE #include <ctype.h> */ +/* OBSOLETE */ +/* OBSOLETE #ifdef HAVE_STDLIB_H */ +/* OBSOLETE #include <stdlib.h> */ +/* OBSOLETE #endif */ +/* OBSOLETE */ +/* OBSOLETE #ifdef HAVE_STRING_H */ +/* OBSOLETE #include <string.h> */ +/* OBSOLETE #else */ +/* OBSOLETE #ifdef HAVE_STRINGS_H */ +/* OBSOLETE #include <strings.h> */ +/* OBSOLETE #endif */ +/* OBSOLETE #endif */ +/* OBSOLETE */ +/* OBSOLETE static void */ +/* OBSOLETE do_stack_swap (SIM_DESC sd) */ +/* OBSOLETE { */ +/* OBSOLETE sim_cpu *cpu = STATE_CPU (sd, 0); */ +/* OBSOLETE unsigned new_sp = (PSW_VAL(PSW_SM) != 0); */ +/* OBSOLETE if (cpu->regs.current_sp != new_sp) */ +/* OBSOLETE { */ +/* OBSOLETE cpu->regs.sp[cpu->regs.current_sp] = SP; */ +/* OBSOLETE cpu->regs.current_sp = new_sp; */ +/* OBSOLETE SP = cpu->regs.sp[cpu->regs.current_sp]; */ +/* OBSOLETE } */ +/* OBSOLETE } */ +/* OBSOLETE */ +/* OBSOLETE #if WITH_TRACE */ +/* OBSOLETE /* Implement ALU tracing of 32-bit registers. */ */ +/* OBSOLETE static void */ +/* OBSOLETE trace_alu32 (SIM_DESC sd, */ +/* OBSOLETE sim_cpu *cpu, */ +/* OBSOLETE address_word cia, */ +/* OBSOLETE unsigned32 *ptr) */ +/* OBSOLETE { */ +/* OBSOLETE unsigned32 value = *ptr; */ +/* OBSOLETE */ +/* OBSOLETE if (ptr >= &GPR[0] && ptr <= &GPR[NR_GENERAL_PURPOSE_REGISTERS]) */ +/* OBSOLETE trace_one_insn (sd, cpu, cia, 1, "engine.c", __LINE__, "alu", */ +/* OBSOLETE "Set register r%-2d = 0x%.8lx (%ld)", */ +/* OBSOLETE ptr - &GPR[0], (long)value, (long)value); */ +/* OBSOLETE */ +/* OBSOLETE else if (ptr == &PSW || ptr == &bPSW || ptr == &DPSW) */ +/* OBSOLETE trace_one_insn (sd, cpu, cia, 1, "engine.c", __LINE__, "alu", */ +/* OBSOLETE "Set register %s = 0x%.8lx%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s", */ +/* OBSOLETE (ptr == &PSW) ? "psw" : ((ptr == &bPSW) ? "bpsw" : "dpsw"), */ +/* OBSOLETE (long)value, */ +/* OBSOLETE (value & (0x80000000 >> PSW_SM)) ? ", sm" : "", */ +/* OBSOLETE (value & (0x80000000 >> PSW_EA)) ? ", ea" : "", */ +/* OBSOLETE (value & (0x80000000 >> PSW_DB)) ? ", db" : "", */ +/* OBSOLETE (value & (0x80000000 >> PSW_DS)) ? ", ds" : "", */ +/* OBSOLETE (value & (0x80000000 >> PSW_IE)) ? ", ie" : "", */ +/* OBSOLETE (value & (0x80000000 >> PSW_RP)) ? ", rp" : "", */ +/* OBSOLETE (value & (0x80000000 >> PSW_MD)) ? ", md" : "", */ +/* OBSOLETE (value & (0x80000000 >> PSW_F0)) ? ", f0" : "", */ +/* OBSOLETE (value & (0x80000000 >> PSW_F1)) ? ", f1" : "", */ +/* OBSOLETE (value & (0x80000000 >> PSW_F2)) ? ", f2" : "", */ +/* OBSOLETE (value & (0x80000000 >> PSW_F3)) ? ", f3" : "", */ +/* OBSOLETE (value & (0x80000000 >> PSW_S)) ? ", s" : "", */ +/* OBSOLETE (value & (0x80000000 >> PSW_V)) ? ", v" : "", */ +/* OBSOLETE (value & (0x80000000 >> PSW_VA)) ? ", va" : "", */ +/* OBSOLETE (value & (0x80000000 >> PSW_C)) ? ", c" : ""); */ +/* OBSOLETE */ +/* OBSOLETE else if (ptr >= &CREG[0] && ptr <= &CREG[NR_CONTROL_REGISTERS]) */ +/* OBSOLETE trace_one_insn (sd, cpu, cia, 1, "engine.c", __LINE__, "alu", */ +/* OBSOLETE "Set register cr%d = 0x%.8lx (%ld)", */ +/* OBSOLETE ptr - &CREG[0], (long)value, (long)value); */ +/* OBSOLETE } */ +/* OBSOLETE */ +/* OBSOLETE /* Implement ALU tracing of 32-bit registers. */ */ +/* OBSOLETE static void */ +/* OBSOLETE trace_alu64 (SIM_DESC sd, */ +/* OBSOLETE sim_cpu *cpu, */ +/* OBSOLETE address_word cia, */ +/* OBSOLETE unsigned64 *ptr) */ +/* OBSOLETE { */ +/* OBSOLETE unsigned64 value = *ptr; */ +/* OBSOLETE */ +/* OBSOLETE if (ptr >= &ACC[0] && ptr <= &ACC[NR_ACCUMULATORS]) */ +/* OBSOLETE trace_one_insn (sd, cpu, cia, 1, "engine.c", __LINE__, "alu", */ +/* OBSOLETE "Set register a%-2d = 0x%.8lx 0x%.8lx", */ +/* OBSOLETE ptr - &ACC[0], */ +/* OBSOLETE (unsigned long)(unsigned32)(value >> 32), */ +/* OBSOLETE (unsigned long)(unsigned32)value); */ +/* OBSOLETE */ +/* OBSOLETE } */ +/* OBSOLETE #endif */ +/* OBSOLETE */ +/* OBSOLETE /* Process all of the queued up writes in order now */ */ +/* OBSOLETE void */ +/* OBSOLETE unqueue_writes (SIM_DESC sd, */ +/* OBSOLETE sim_cpu *cpu, */ +/* OBSOLETE address_word cia) */ +/* OBSOLETE { */ +/* OBSOLETE int i, num; */ +/* OBSOLETE int did_psw = 0; */ +/* OBSOLETE unsigned32 *psw_addr = &PSW; */ +/* OBSOLETE */ +/* OBSOLETE num = WRITE32_NUM; */ +/* OBSOLETE for (i = 0; i < num; i++) */ +/* OBSOLETE { */ +/* OBSOLETE unsigned32 mask = WRITE32_MASK (i); */ +/* OBSOLETE unsigned32 *ptr = WRITE32_PTR (i); */ +/* OBSOLETE unsigned32 value = (*ptr & ~mask) | (WRITE32_VALUE (i) & mask); */ +/* OBSOLETE int j; */ +/* OBSOLETE */ +/* OBSOLETE if (ptr == psw_addr) */ +/* OBSOLETE { */ +/* OBSOLETE /* If MU instruction was not a MVTSYS, resolve PSW */ +/* OBSOLETE contention in favour of IU. */ */ +/* OBSOLETE if(! STATE_CPU (sd, 0)->mvtsys_left_p) */ +/* OBSOLETE { */ +/* OBSOLETE /* Detect contention in parallel writes to the same PSW flags. */ +/* OBSOLETE The hardware allows the updates from IU to prevail over */ +/* OBSOLETE those from MU. */ */ +/* OBSOLETE */ +/* OBSOLETE unsigned32 flag_bits = */ +/* OBSOLETE BIT32 (PSW_F0) | BIT32 (PSW_F1) | */ +/* OBSOLETE BIT32 (PSW_F2) | BIT32 (PSW_F3) | */ +/* OBSOLETE BIT32 (PSW_S) | BIT32 (PSW_V) | */ +/* OBSOLETE BIT32 (PSW_VA) | BIT32 (PSW_C); */ +/* OBSOLETE unsigned32 my_flag_bits = mask & flag_bits; */ +/* OBSOLETE */ +/* OBSOLETE for (j = i + 1; j < num; j++) */ +/* OBSOLETE if (WRITE32_PTR (j) == psw_addr && /* write to PSW */ */ +/* OBSOLETE WRITE32_MASK (j) & my_flag_bits) /* some of the same flags */ */ +/* OBSOLETE { */ +/* OBSOLETE /* Recompute local mask & value, to suppress this */ +/* OBSOLETE earlier write to the same flag bits. */ */ +/* OBSOLETE */ +/* OBSOLETE unsigned32 new_mask = mask & ~(WRITE32_MASK (j) & my_flag_bits); */ +/* OBSOLETE */ +/* OBSOLETE /* There is a special case for the VA (accumulated */ +/* OBSOLETE overflow) flag, in that it is only included in the */ +/* OBSOLETE second instruction's mask if the overflow */ +/* OBSOLETE occurred. Yet the hardware still suppresses the */ +/* OBSOLETE first instruction's update to VA. So we kludge */ +/* OBSOLETE this by inferring PSW_V -> PSW_VA for the second */ +/* OBSOLETE instruction. */ */ +/* OBSOLETE */ +/* OBSOLETE if (WRITE32_MASK (j) & BIT32 (PSW_V)) */ +/* OBSOLETE { */ +/* OBSOLETE new_mask &= ~BIT32 (PSW_VA); */ +/* OBSOLETE } */ +/* OBSOLETE */ +/* OBSOLETE value = (*ptr & ~new_mask) | (WRITE32_VALUE (i) & new_mask); */ +/* OBSOLETE } */ +/* OBSOLETE } */ +/* OBSOLETE */ +/* OBSOLETE did_psw = 1; */ +/* OBSOLETE } */ +/* OBSOLETE */ +/* OBSOLETE *ptr = value; */ +/* OBSOLETE */ +/* OBSOLETE #if WITH_TRACE */ +/* OBSOLETE if (TRACE_ALU_P (cpu)) */ +/* OBSOLETE trace_alu32 (sd, cpu, cia, ptr); */ +/* OBSOLETE #endif */ +/* OBSOLETE } */ +/* OBSOLETE */ +/* OBSOLETE num = WRITE64_NUM; */ +/* OBSOLETE for (i = 0; i < num; i++) */ +/* OBSOLETE { */ +/* OBSOLETE unsigned64 *ptr = WRITE64_PTR (i); */ +/* OBSOLETE *ptr = WRITE64_VALUE (i); */ +/* OBSOLETE */ +/* OBSOLETE #if WITH_TRACE */ +/* OBSOLETE if (TRACE_ALU_P (cpu)) */ +/* OBSOLETE trace_alu64 (sd, cpu, cia, ptr); */ +/* OBSOLETE #endif */ +/* OBSOLETE } */ +/* OBSOLETE */ +/* OBSOLETE WRITE32_NUM = 0; */ +/* OBSOLETE WRITE64_NUM = 0; */ +/* OBSOLETE */ +/* OBSOLETE if (DID_TRAP == 1) /* ordinary trap */ */ +/* OBSOLETE { */ +/* OBSOLETE bPSW = PSW; */ +/* OBSOLETE PSW &= (BIT32 (PSW_DB) | BIT32 (PSW_SM)); */ +/* OBSOLETE did_psw = 1; */ +/* OBSOLETE } */ +/* OBSOLETE else if (DID_TRAP == 2) /* debug trap */ */ +/* OBSOLETE { */ +/* OBSOLETE DPSW = PSW; */ +/* OBSOLETE PSW &= BIT32 (PSW_DS); */ +/* OBSOLETE PSW |= BIT32 (PSW_DS); */ +/* OBSOLETE did_psw = 1; */ +/* OBSOLETE } */ +/* OBSOLETE DID_TRAP = 0; */ +/* OBSOLETE */ +/* OBSOLETE if (did_psw) */ +/* OBSOLETE do_stack_swap (sd); */ +/* OBSOLETE } */ +/* OBSOLETE */ +/* OBSOLETE */ +/* OBSOLETE /* SIMULATE INSTRUCTIONS, various different ways of achieving the same */ +/* OBSOLETE thing */ */ +/* OBSOLETE */ +/* OBSOLETE static address_word */ +/* OBSOLETE do_long (SIM_DESC sd, */ +/* OBSOLETE l_instruction_word instruction, */ +/* OBSOLETE address_word cia) */ +/* OBSOLETE { */ +/* OBSOLETE address_word nia = l_idecode_issue(sd, */ +/* OBSOLETE instruction, */ +/* OBSOLETE cia); */ +/* OBSOLETE */ +/* OBSOLETE unqueue_writes (sd, STATE_CPU (sd, 0), cia); */ +/* OBSOLETE return nia; */ +/* OBSOLETE } */ +/* OBSOLETE */ +/* OBSOLETE static address_word */ +/* OBSOLETE do_2_short (SIM_DESC sd, */ +/* OBSOLETE s_instruction_word insn1, */ +/* OBSOLETE s_instruction_word insn2, */ +/* OBSOLETE cpu_units unit, */ +/* OBSOLETE address_word cia) */ +/* OBSOLETE { */ +/* OBSOLETE address_word nia; */ +/* OBSOLETE */ +/* OBSOLETE /* run the first instruction */ */ +/* OBSOLETE STATE_CPU (sd, 0)->unit = unit; */ +/* OBSOLETE STATE_CPU (sd, 0)->left_kills_right_p = 0; */ +/* OBSOLETE STATE_CPU (sd, 0)->mvtsys_left_p = 0; */ +/* OBSOLETE nia = s_idecode_issue(sd, */ +/* OBSOLETE insn1, */ +/* OBSOLETE cia); */ +/* OBSOLETE */ +/* OBSOLETE unqueue_writes (sd, STATE_CPU (sd, 0), cia); */ +/* OBSOLETE */ +/* OBSOLETE /* Only do the second instruction if the PC has not changed */ */ +/* OBSOLETE if ((nia == INVALID_INSTRUCTION_ADDRESS) && */ +/* OBSOLETE (! STATE_CPU (sd, 0)->left_kills_right_p)) { */ +/* OBSOLETE STATE_CPU (sd, 0)->unit = any_unit; */ +/* OBSOLETE nia = s_idecode_issue (sd, */ +/* OBSOLETE insn2, */ +/* OBSOLETE cia); */ +/* OBSOLETE */ +/* OBSOLETE unqueue_writes (sd, STATE_CPU (sd, 0), cia); */ +/* OBSOLETE } */ +/* OBSOLETE */ +/* OBSOLETE STATE_CPU (sd, 0)->left_kills_right_p = 0; */ +/* OBSOLETE STATE_CPU (sd, 0)->mvtsys_left_p = 0; */ +/* OBSOLETE return nia; */ +/* OBSOLETE } */ +/* OBSOLETE */ +/* OBSOLETE static address_word */ +/* OBSOLETE do_parallel (SIM_DESC sd, */ +/* OBSOLETE s_instruction_word left_insn, */ +/* OBSOLETE s_instruction_word right_insn, */ +/* OBSOLETE address_word cia) */ +/* OBSOLETE { */ +/* OBSOLETE address_word nia_left; */ +/* OBSOLETE address_word nia_right; */ +/* OBSOLETE address_word nia; */ +/* OBSOLETE */ +/* OBSOLETE /* run the first instruction */ */ +/* OBSOLETE STATE_CPU (sd, 0)->unit = memory_unit; */ +/* OBSOLETE STATE_CPU (sd, 0)->left_kills_right_p = 0; */ +/* OBSOLETE STATE_CPU (sd, 0)->mvtsys_left_p = 0; */ +/* OBSOLETE nia_left = s_idecode_issue(sd, */ +/* OBSOLETE left_insn, */ +/* OBSOLETE cia); */ +/* OBSOLETE */ +/* OBSOLETE /* run the second instruction */ */ +/* OBSOLETE STATE_CPU (sd, 0)->unit = integer_unit; */ +/* OBSOLETE nia_right = s_idecode_issue(sd, */ +/* OBSOLETE right_insn, */ +/* OBSOLETE cia); */ +/* OBSOLETE */ +/* OBSOLETE /* merge the PC's */ */ +/* OBSOLETE if (nia_left == INVALID_INSTRUCTION_ADDRESS) { */ +/* OBSOLETE if (nia_right == INVALID_INSTRUCTION_ADDRESS) */ +/* OBSOLETE nia = INVALID_INSTRUCTION_ADDRESS; */ +/* OBSOLETE else */ +/* OBSOLETE nia = nia_right; */ +/* OBSOLETE } */ +/* OBSOLETE else { */ +/* OBSOLETE if (nia_right == INVALID_INSTRUCTION_ADDRESS) */ +/* OBSOLETE nia = nia_left; */ +/* OBSOLETE else { */ +/* OBSOLETE sim_engine_abort (sd, STATE_CPU (sd, 0), cia, "parallel jumps"); */ +/* OBSOLETE nia = INVALID_INSTRUCTION_ADDRESS; */ +/* OBSOLETE } */ +/* OBSOLETE } */ +/* OBSOLETE */ +/* OBSOLETE unqueue_writes (sd, STATE_CPU (sd, 0), cia); */ +/* OBSOLETE return nia; */ +/* OBSOLETE } */ +/* OBSOLETE */ +/* OBSOLETE */ +/* OBSOLETE typedef enum { */ +/* OBSOLETE p_insn = 0, */ +/* OBSOLETE long_insn = 3, */ +/* OBSOLETE l_r_insn = 1, */ +/* OBSOLETE r_l_insn = 2, */ +/* OBSOLETE } instruction_types; */ +/* OBSOLETE */ +/* OBSOLETE STATIC_INLINE instruction_types */ +/* OBSOLETE instruction_type(l_instruction_word insn) */ +/* OBSOLETE { */ +/* OBSOLETE int fm0 = MASKED64(insn, 0, 0) != 0; */ +/* OBSOLETE int fm1 = MASKED64(insn, 32, 32) != 0; */ +/* OBSOLETE return ((fm0 << 1) | fm1); */ +/* OBSOLETE } */ +/* OBSOLETE */ +/* OBSOLETE */ +/* OBSOLETE */ +/* OBSOLETE void */ +/* OBSOLETE sim_engine_run (SIM_DESC sd, */ +/* OBSOLETE int last_cpu_nr, */ +/* OBSOLETE int nr_cpus, */ +/* OBSOLETE int siggnal) */ +/* OBSOLETE { */ +/* OBSOLETE while (1) */ +/* OBSOLETE { */ +/* OBSOLETE address_word cia = PC; */ +/* OBSOLETE address_word nia; */ +/* OBSOLETE l_instruction_word insn = IMEM(cia); */ +/* OBSOLETE int rp_was_set; */ +/* OBSOLETE int rpt_c_was_nonzero; */ +/* OBSOLETE */ +/* OBSOLETE /* Before executing the instruction, we need to test whether or */ +/* OBSOLETE not RPT_C is greater than zero, and save that state for use */ +/* OBSOLETE after executing the instruction. In particular, we need to */ +/* OBSOLETE not care whether the instruction changes RPT_C itself. */ */ +/* OBSOLETE */ +/* OBSOLETE rpt_c_was_nonzero = (RPT_C > 0); */ +/* OBSOLETE */ +/* OBSOLETE /* Before executing the instruction, we need to check to see if */ +/* OBSOLETE we have to decrement RPT_C, the repeat count register. Do this */ +/* OBSOLETE if PC == RPT_E, but only if we are in an active repeat block. */ */ +/* OBSOLETE */ +/* OBSOLETE if (PC == RPT_E && */ +/* OBSOLETE (RPT_C > 0 || PSW_VAL (PSW_RP) != 0)) */ +/* OBSOLETE { */ +/* OBSOLETE RPT_C --; */ +/* OBSOLETE } */ +/* OBSOLETE */ +/* OBSOLETE /* Now execute the instruction at PC */ */ +/* OBSOLETE */ +/* OBSOLETE switch (instruction_type (insn)) */ +/* OBSOLETE { */ +/* OBSOLETE case long_insn: */ +/* OBSOLETE nia = do_long (sd, insn, cia); */ +/* OBSOLETE break; */ +/* OBSOLETE case r_l_insn: */ +/* OBSOLETE /* L <- R */ */ +/* OBSOLETE nia = do_2_short (sd, insn, insn >> 32, integer_unit, cia); */ +/* OBSOLETE break; */ +/* OBSOLETE case l_r_insn: */ +/* OBSOLETE /* L -> R */ */ +/* OBSOLETE nia = do_2_short (sd, insn >> 32, insn, memory_unit, cia); */ +/* OBSOLETE break; */ +/* OBSOLETE case p_insn: */ +/* OBSOLETE nia = do_parallel (sd, insn >> 32, insn, cia); */ +/* OBSOLETE break; */ +/* OBSOLETE default: */ +/* OBSOLETE sim_engine_abort (sd, STATE_CPU (sd, 0), cia, */ +/* OBSOLETE "internal error - engine_run_until_stop - bad switch"); */ +/* OBSOLETE nia = -1; */ +/* OBSOLETE } */ +/* OBSOLETE */ +/* OBSOLETE if (TRACE_ACTION) */ +/* OBSOLETE { */ +/* OBSOLETE if (TRACE_ACTION & TRACE_ACTION_CALL) */ +/* OBSOLETE call_occurred (sd, STATE_CPU (sd, 0), cia, nia); */ +/* OBSOLETE */ +/* OBSOLETE if (TRACE_ACTION & TRACE_ACTION_RETURN) */ +/* OBSOLETE return_occurred (sd, STATE_CPU (sd, 0), cia, nia); */ +/* OBSOLETE */ +/* OBSOLETE TRACE_ACTION = 0; */ +/* OBSOLETE } */ +/* OBSOLETE */ +/* OBSOLETE /* Check now to see if we need to reset the RP bit in the PSW. */ +/* OBSOLETE There are three conditions for this, the RP bit is already */ +/* OBSOLETE set (just a speed optimization), the instruction we just */ +/* OBSOLETE executed is the last instruction in the loop, and the repeat */ +/* OBSOLETE count is currently zero. */ */ +/* OBSOLETE */ +/* OBSOLETE rp_was_set = PSW_VAL (PSW_RP); */ +/* OBSOLETE if (rp_was_set && (PC == RPT_E) && RPT_C == 0) */ +/* OBSOLETE { */ +/* OBSOLETE PSW_SET (PSW_RP, 0); */ +/* OBSOLETE } */ +/* OBSOLETE */ +/* OBSOLETE /* Now update the PC. If we just executed a jump instruction, */ +/* OBSOLETE that takes precedence over everything else. Next comes */ +/* OBSOLETE branching back to RPT_S as a result of a loop. Finally, the */ +/* OBSOLETE default is to simply advance to the next inline */ +/* OBSOLETE instruction. */ */ +/* OBSOLETE */ +/* OBSOLETE if (nia != INVALID_INSTRUCTION_ADDRESS) */ +/* OBSOLETE { */ +/* OBSOLETE PC = nia; */ +/* OBSOLETE } */ +/* OBSOLETE else if (rp_was_set && rpt_c_was_nonzero && (PC == RPT_E)) */ +/* OBSOLETE { */ +/* OBSOLETE PC = RPT_S; */ +/* OBSOLETE } */ +/* OBSOLETE else */ +/* OBSOLETE { */ +/* OBSOLETE PC = cia + 8; */ +/* OBSOLETE } */ +/* OBSOLETE */ +/* OBSOLETE /* Check for DDBT (debugger debug trap) condition. Do this after */ +/* OBSOLETE the repeat block checks so the excursion to the trap handler does */ +/* OBSOLETE not alter looping state. */ */ +/* OBSOLETE */ +/* OBSOLETE if (cia == IBA && PSW_VAL (PSW_DB)) */ +/* OBSOLETE { */ +/* OBSOLETE DPC = PC; */ +/* OBSOLETE PSW_SET (PSW_EA, 1); */ +/* OBSOLETE DPSW = PSW; */ +/* OBSOLETE /* clear all bits in PSW except SM */ */ +/* OBSOLETE PSW &= BIT32 (PSW_SM); */ +/* OBSOLETE /* add DS bit */ */ +/* OBSOLETE PSW |= BIT32 (PSW_DS); */ +/* OBSOLETE /* dispatch to DDBT handler */ */ +/* OBSOLETE PC = 0xfffff128; /* debugger_debug_trap_address */ */ +/* OBSOLETE } */ +/* OBSOLETE */ +/* OBSOLETE /* process any events */ */ +/* OBSOLETE /* FIXME - should L->R or L<-R insns count as two cycles? */ */ +/* OBSOLETE if (sim_events_tick (sd)) */ +/* OBSOLETE { */ +/* OBSOLETE sim_events_process (sd); */ +/* OBSOLETE } */ +/* OBSOLETE } */ +/* OBSOLETE } */ +/* OBSOLETE */ +/* OBSOLETE */ +/* OBSOLETE /* d30v external interrupt handler. */ +/* OBSOLETE */ +/* OBSOLETE Note: This should be replaced by a proper interrupt delivery */ +/* OBSOLETE mechanism. This interrupt mechanism discards later interrupts if */ +/* OBSOLETE an earlier interrupt hasn't been delivered. */ +/* OBSOLETE */ +/* OBSOLETE Note: This interrupt mechanism does not reset its self when the */ +/* OBSOLETE simulator is re-opened. */ */ +/* OBSOLETE */ +/* OBSOLETE void */ +/* OBSOLETE d30v_interrupt_event (SIM_DESC sd, */ +/* OBSOLETE void *data) */ +/* OBSOLETE { */ +/* OBSOLETE if (PSW_VAL (PSW_IE)) */ +/* OBSOLETE /* interrupts not masked */ */ +/* OBSOLETE { */ +/* OBSOLETE /* scrub any pending interrupt */ */ +/* OBSOLETE if (sd->pending_interrupt != NULL) */ +/* OBSOLETE sim_events_deschedule (sd, sd->pending_interrupt); */ +/* OBSOLETE /* deliver */ */ +/* OBSOLETE bPSW = PSW; */ +/* OBSOLETE bPC = PC; */ +/* OBSOLETE PSW = 0; */ +/* OBSOLETE PC = 0xfffff138; /* external interrupt */ */ +/* OBSOLETE do_stack_swap (sd); */ +/* OBSOLETE } */ +/* OBSOLETE else if (sd->pending_interrupt == NULL) */ +/* OBSOLETE /* interrupts masked and no interrupt pending */ */ +/* OBSOLETE { */ +/* OBSOLETE sd->pending_interrupt = sim_events_schedule (sd, 1, */ +/* OBSOLETE d30v_interrupt_event, */ +/* OBSOLETE data); */ +/* OBSOLETE } */ +/* OBSOLETE } */ +/* OBSOLETE */ +/* OBSOLETE #endif */ |