aboutsummaryrefslogtreecommitdiff
path: root/gdb
diff options
context:
space:
mode:
authorgdbadmin <gdbadmin@sourceware.org>2005-02-18 00:00:11 +0000
committergdbadmin <gdbadmin@sourceware.org>2005-02-18 00:00:11 +0000
commit3d228ef83a4481f6155945ab8bea90f48e28cdf0 (patch)
treef9aeaa6466f032fcb10e8f87e4e72a5c4b721a29 /gdb
parent91d777eed76adf91d91e558330e7dbb0158656f7 (diff)
downloadgdb-3d228ef83a4481f6155945ab8bea90f48e28cdf0.zip
gdb-3d228ef83a4481f6155945ab8bea90f48e28cdf0.tar.gz
gdb-3d228ef83a4481f6155945ab8bea90f48e28cdf0.tar.bz2
*** empty log message ***
Diffstat (limited to 'gdb')
-rw-r--r--gdb/version.in2
1 files changed, 1 insertions, 1 deletions
diff --git a/gdb/version.in b/gdb/version.in
index c97e2bd..2bb08fb 100644
--- a/gdb/version.in
+++ b/gdb/version.in
@@ -1 +1 @@
-6.3.50.20050217-cvs
+6.3.50.20050218-cvs
a id='n145' href='#n145'>145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
/* Target-dependent code for the NEC V850 for GDB, the GNU debugger.

   Copyright (C) 1996-2019 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "frame.h"
#include "frame-base.h"
#include "trad-frame.h"
#include "frame-unwind.h"
#include "dwarf2-frame.h"
#include "gdbtypes.h"
#include "inferior.h"
#include "gdbcore.h"
#include "arch-utils.h"
#include "regcache.h"
#include "dis-asm.h"
#include "osabi.h"
#include "elf-bfd.h"
#include "elf/v850.h"

enum
  {
    /* General purpose registers.  */
    E_R0_REGNUM,
    E_R1_REGNUM,
    E_R2_REGNUM,
    E_R3_REGNUM, E_SP_REGNUM = E_R3_REGNUM,
    E_R4_REGNUM,
    E_R5_REGNUM,
    E_R6_REGNUM, E_ARG0_REGNUM = E_R6_REGNUM,
    E_R7_REGNUM,
    E_R8_REGNUM,
    E_R9_REGNUM, E_ARGLAST_REGNUM = E_R9_REGNUM,
    E_R10_REGNUM, E_V0_REGNUM = E_R10_REGNUM,
    E_R11_REGNUM, E_V1_REGNUM = E_R11_REGNUM,
    E_R12_REGNUM,
    E_R13_REGNUM,
    E_R14_REGNUM,
    E_R15_REGNUM,
    E_R16_REGNUM,
    E_R17_REGNUM,
    E_R18_REGNUM,
    E_R19_REGNUM,
    E_R20_REGNUM,
    E_R21_REGNUM,
    E_R22_REGNUM,
    E_R23_REGNUM,
    E_R24_REGNUM,
    E_R25_REGNUM,
    E_R26_REGNUM,
    E_R27_REGNUM,
    E_R28_REGNUM,
    E_R29_REGNUM, E_FP_REGNUM = E_R29_REGNUM,
    E_R30_REGNUM, E_EP_REGNUM = E_R30_REGNUM,
    E_R31_REGNUM, E_LP_REGNUM = E_R31_REGNUM,

    /* System registers - main banks.  */
    E_R32_REGNUM, E_SR0_REGNUM = E_R32_REGNUM,
    E_R33_REGNUM,
    E_R34_REGNUM,
    E_R35_REGNUM,
    E_R36_REGNUM,
    E_R37_REGNUM, E_PS_REGNUM = E_R37_REGNUM,
    E_R38_REGNUM,
    E_R39_REGNUM,
    E_R40_REGNUM,
    E_R41_REGNUM,
    E_R42_REGNUM,
    E_R43_REGNUM,
    E_R44_REGNUM,
    E_R45_REGNUM,
    E_R46_REGNUM,
    E_R47_REGNUM,
    E_R48_REGNUM,
    E_R49_REGNUM,
    E_R50_REGNUM,
    E_R51_REGNUM,
    E_R52_REGNUM, E_CTBP_REGNUM = E_R52_REGNUM,
    E_R53_REGNUM,
    E_R54_REGNUM,
    E_R55_REGNUM,
    E_R56_REGNUM,
    E_R57_REGNUM,
    E_R58_REGNUM,
    E_R59_REGNUM,
    E_R60_REGNUM,
    E_R61_REGNUM,
    E_R62_REGNUM,
    E_R63_REGNUM,

    /* PC.  */
    E_R64_REGNUM, E_PC_REGNUM = E_R64_REGNUM,
    E_R65_REGNUM,
    E_NUM_OF_V850_REGS,
    E_NUM_OF_V850E_REGS = E_NUM_OF_V850_REGS,

    /* System registers - MPV (PROT00) bank.  */
    E_R66_REGNUM = E_NUM_OF_V850_REGS,
    E_R67_REGNUM,
    E_R68_REGNUM,
    E_R69_REGNUM,
    E_R70_REGNUM,
    E_R71_REGNUM,
    E_R72_REGNUM,
    E_R73_REGNUM,
    E_R74_REGNUM,
    E_R75_REGNUM,
    E_R76_REGNUM,
    E_R77_REGNUM,
    E_R78_REGNUM,
    E_R79_REGNUM,
    E_R80_REGNUM,
    E_R81_REGNUM,
    E_R82_REGNUM,
    E_R83_REGNUM,
    E_R84_REGNUM,
    E_R85_REGNUM,
    E_R86_REGNUM,
    E_R87_REGNUM,
    E_R88_REGNUM,
    E_R89_REGNUM,
    E_R90_REGNUM,
    E_R91_REGNUM,
    E_R92_REGNUM,
    E_R93_REGNUM,

    /* System registers - MPU (PROT01) bank.  */
    E_R94_REGNUM,
    E_R95_REGNUM,
    E_R96_REGNUM,
    E_R97_REGNUM,
    E_R98_REGNUM,
    E_R99_REGNUM,
    E_R100_REGNUM,
    E_R101_REGNUM,
    E_R102_REGNUM,
    E_R103_REGNUM,
    E_R104_REGNUM,
    E_R105_REGNUM,
    E_R106_REGNUM,
    E_R107_REGNUM,
    E_R108_REGNUM,
    E_R109_REGNUM,
    E_R110_REGNUM,
    E_R111_REGNUM,
    E_R112_REGNUM,
    E_R113_REGNUM,
    E_R114_REGNUM,
    E_R115_REGNUM,
    E_R116_REGNUM,
    E_R117_REGNUM,
    E_R118_REGNUM,
    E_R119_REGNUM,
    E_R120_REGNUM,
    E_R121_REGNUM,

    /* FPU system registers.  */
    E_R122_REGNUM,
    E_R123_REGNUM,
    E_R124_REGNUM,
    E_R125_REGNUM,
    E_R126_REGNUM,
    E_R127_REGNUM,
    E_R128_REGNUM, E_FPSR_REGNUM = E_R128_REGNUM,
    E_R129_REGNUM, E_FPEPC_REGNUM = E_R129_REGNUM,
    E_R130_REGNUM, E_FPST_REGNUM = E_R130_REGNUM,
    E_R131_REGNUM, E_FPCC_REGNUM = E_R131_REGNUM,
    E_R132_REGNUM, E_FPCFG_REGNUM = E_R132_REGNUM,
    E_R133_REGNUM,
    E_R134_REGNUM,
    E_R135_REGNUM,
    E_R136_REGNUM,
    E_R137_REGNUM,
    E_R138_REGNUM,
    E_R139_REGNUM,
    E_R140_REGNUM,
    E_R141_REGNUM,
    E_R142_REGNUM,
    E_R143_REGNUM,
    E_R144_REGNUM,
    E_R145_REGNUM,
    E_R146_REGNUM,
    E_R147_REGNUM,
    E_R148_REGNUM,
    E_R149_REGNUM,
    E_NUM_OF_V850E2_REGS,

    /* v850e3v5 system registers, selID 1 thru 7.  */
    E_SELID_1_R0_REGNUM = E_NUM_OF_V850E2_REGS,
    E_SELID_1_R31_REGNUM = E_SELID_1_R0_REGNUM + 31,

    E_SELID_2_R0_REGNUM,
    E_SELID_2_R31_REGNUM = E_SELID_2_R0_REGNUM + 31,

    E_SELID_3_R0_REGNUM,
    E_SELID_3_R31_REGNUM = E_SELID_3_R0_REGNUM + 31,

    E_SELID_4_R0_REGNUM,
    E_SELID_4_R31_REGNUM = E_SELID_4_R0_REGNUM + 31,

    E_SELID_5_R0_REGNUM,
    E_SELID_5_R31_REGNUM = E_SELID_5_R0_REGNUM + 31,

    E_SELID_6_R0_REGNUM,
    E_SELID_6_R31_REGNUM = E_SELID_6_R0_REGNUM + 31,

    E_SELID_7_R0_REGNUM,
    E_SELID_7_R31_REGNUM = E_SELID_7_R0_REGNUM + 31,

    /* v850e3v5 vector registers.  */
    E_VR0_REGNUM,
    E_VR31_REGNUM = E_VR0_REGNUM + 31,

    E_NUM_OF_V850E3V5_REGS,

    /* Total number of possible registers.  */
    E_NUM_REGS = E_NUM_OF_V850E3V5_REGS
  };

enum
{
  v850_reg_size = 4
};

/* Size of return datatype which fits into all return registers.  */
enum
{
  E_MAX_RETTYPE_SIZE_IN_REGS = 2 * v850_reg_size
};

/* When v850 support was added to GCC in the late nineties, the intention
   was to follow the Green Hills ABI for v850.  In fact, the authors of
   that support at the time thought that they were doing so.  As far as
   I can tell, the calling conventions are correct, but the return value
   conventions were not quite right.  Over time, the return value code
   in this file was modified to mostly reflect what GCC was actually
   doing instead of to actually follow the Green Hills ABI as it did
   when the code was first written.

   Renesas defined the RH850 ABI which they use in their compiler.  It
   is similar to the original Green Hills ABI with some minor
   differences.  */

enum v850_abi
{
  V850_ABI_GCC,
  V850_ABI_RH850
};

/* Architecture specific data.  */

struct gdbarch_tdep
{
  /* Fields from the ELF header.  */
  int e_flags;
  int e_machine;

  /* Which ABI are we using?  */
  enum v850_abi abi;
  int eight_byte_align;
};

struct v850_frame_cache
{ 
  /* Base address.  */
  CORE_ADDR base;
  LONGEST sp_offset;
  CORE_ADDR pc;
  
  /* Flag showing that a frame has been created in the prologue code.  */
  int uses_fp;
  
  /* Saved registers.  */
  struct trad_frame_saved_reg *saved_regs;
};

/* Info gleaned from scanning a function's prologue.  */
struct pifsr		/* Info about one saved register.  */
{
  int offset;		/* Offset from sp or fp.  */
  int cur_frameoffset;	/* Current frameoffset.  */
  int reg;		/* Saved register number.  */
};

static const char *
v850_register_name (struct gdbarch *gdbarch, int regnum)
{
  static const char *v850_reg_names[] =
  { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", 
    "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", 
    "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", 
    "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
    "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
    "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
    "sr16", "sr17", "sr18", "sr19", "sr20", "sr21", "sr22", "sr23",
    "sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
    "pc", "fp"
  };
  if (regnum < 0 || regnum > E_NUM_OF_V850_REGS)
    return NULL;
  return v850_reg_names[regnum];
}

static const char *
v850e_register_name (struct gdbarch *gdbarch, int regnum)
{
  static const char *v850e_reg_names[] =
  {
    "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
    "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
    "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
    "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
    "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
    "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
    "ctpc", "ctpsw", "dbpc", "dbpsw", "ctbp", "sr21", "sr22", "sr23",
    "sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
    "pc", "fp"
  };
  if (regnum < 0 || regnum > E_NUM_OF_V850E_REGS)
    return NULL;
  return v850e_reg_names[regnum];
}

static const char *
v850e2_register_name (struct gdbarch *gdbarch, int regnum)
{
  static const char *v850e2_reg_names[] =
  {
    /* General purpose registers.  */
    "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
    "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
    "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
    "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",

    /* System registers - main banks.  */
    "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "pid", "cfg",
    "", "", "", "sccfg", "scbp", "eiic", "feic", "dbic",
    "ctpc", "ctpsw", "dbpc", "dbpsw", "ctbp", "dir", "", "",
    "", "", "", "", "eiwr", "fewr", "dbwr", "bsel",


    /* PC.  */
    "pc", "",

    /* System registers - MPV (PROT00) bank.  */
    "vsecr", "vstid", "vsadr", "", "vmecr", "vmtid", "vmadr", "",
    "vpecr", "vptid", "vpadr", "", "", "", "", "",
    "", "", "", "", "", "", "", "",
    "mca", "mcs", "mcc", "mcr",

    /* System registers - MPU (PROT01) bank.  */
    "mpm", "mpc", "tid", "", "", "", "ipa0l", "ipa0u",
    "ipa1l", "ipa1u", "ipa2l", "ipa2u", "ipa3l", "ipa3u", "ipa4l", "ipa4u",
    "dpa0l", "dpa0u", "dpa1l", "dpa1u", "dpa2l", "dpa2u", "dpa3l", "dpa3u",
    "dpa4l", "dpa4u", "dpa5l", "dpa5u",

    /* FPU system registers.  */
    "", "", "", "", "", "", "fpsr", "fpepc",
    "fpst", "fpcc", "fpcfg", "fpec", "", "", "", "",
    "", "", "", "", "", "", "", "",
    "", "", "", "fpspc"
  };
  if (regnum < 0 || regnum >= E_NUM_OF_V850E2_REGS)
    return NULL;
  return v850e2_reg_names[regnum];
}

/* Implement the "register_name" gdbarch method for v850e3v5.  */

static const char *
v850e3v5_register_name (struct gdbarch *gdbarch, int regnum)
{
  static const char *v850e3v5_reg_names[] =
  {
    /* General purpose registers.  */
    "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
    "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
    "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
    "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",

    /* selID 0, not including FPU registers.  The FPU registers are
       listed later on.  */
    "eipc", "eipsw", "fepc", "fepsw",
    "", "psw", "" /* fpsr */, "" /* fpepc */,
    "" /* fpst */, "" /* fpcc */, "" /* fpcfg */, "" /* fpec */,
    "sesr", "eiic", "feic", "",
    "ctpc", "ctpsw", "", "", "ctbp", "", "", "",
    "", "", "", "", "eiwr", "fewr", "", "bsel",


    /* PC.  */
    "pc", "",

    /* v850e2 MPV bank.  */
    "", "", "", "", "", "", "", "",
    "", "", "", "", "", "", "", "",
    "", "", "", "", "", "", "", "",
    "", "", "", "",

    /* Skip v850e2 MPU bank.  It's tempting to reuse these, but we need
       32 entries for this bank.  */
    "", "", "", "", "", "", "", "",
    "", "", "", "", "", "", "", "",
    "", "", "", "", "", "", "", "",
    "", "", "", "",

    /* FPU system registers.  These are actually in selID 0, but
       are placed here to preserve register numbering compatibility
       with previous architectures.  */
    "", "", "", "", "", "", "fpsr", "fpepc",
    "fpst", "fpcc", "fpcfg", "fpec", "", "", "", "",
    "", "", "", "", "", "", "", "",
    "", "", "", "",

    /* selID 1.  */
    "mcfg0", "mcfg1", "rbase", "ebase", "intbp", "mctl", "pid", "fpipr",
    "", "", "tcsel", "sccfg", "scbp", "hvccfg", "hvcbp", "vsel",
    "vmprt0", "vmprt1", "vmprt2", "", "", "", "", "vmscctl",
    "vmsctbl0", "vmsctbl1", "vmsctbl2", "vmsctbl3", "", "", "", "",

    /* selID 2.  */
    "htcfg0", "", "", "", "", "htctl", "mea", "asid",
    "mei", "ispr", "pmr", "icsr", "intcfg", "", "", "",
    "tlbsch", "", "", "", "", "", "", "htscctl",
    "htsctbl0", "htsctbl1", "htsctbl2", "htsctbl3",
    "htsctbl4", "htsctbl5", "htsctbl6", "htsctbl7",

    /* selID 3.  */
    "", "", "", "", "", "", "", "",
    "", "", "", "", "", "", "", "",
    "", "", "", "", "", "", "", "",
    "", "", "", "", "", "", "", "",

    /* selID 4.  */
    "tlbidx", "", "", "", "telo0", "telo1", "tehi0", "tehi1",
    "", "", "tlbcfg", "", "bwerrl", "bwerrh", "brerrl", "brerrh",
    "ictagl", "ictagh", "icdatl", "icdath",
    "dctagl", "dctagh", "dcdatl", "dcdath",
    "icctrl", "dcctrl", "iccfg", "dccfg", "icerr", "dcerr", "", "",

    /* selID 5.  */
    "mpm", "mprc", "", "", "mpbrgn", "mptrgn", "", "",
    "mca", "mcs", "mcc", "mcr", "", "", "", "",
    "", "", "", "", "mpprt0", "mpprt1", "mpprt2", "",
    "", "", "", "", "", "", "", "",

    /* selID 6.  */
    "mpla0", "mpua0", "mpat0", "", "mpla1", "mpua1", "mpat1", "",
    "mpla2", "mpua2", "mpat2", "", "mpla3", "mpua3", "mpat3", "",
    "mpla4", "mpua4", "mpat4", "", "mpla5", "mpua5", "mpat5", "",
    "mpla6", "mpua6", "mpat6", "", "mpla7", "mpua7", "mpat7", "",

    /* selID 7.  */
    "mpla8", "mpua8", "mpat8", "", "mpla9", "mpua9", "mpat9", "",
    "mpla10", "mpua10", "mpat10", "", "mpla11", "mpua11", "mpat11", "",
    "mpla12", "mpua12", "mpat12", "", "mpla13", "mpua13", "mpat13", "",
    "mpla14", "mpua14", "mpat14", "", "mpla15", "mpua15", "mpat15", "",

    /* Vector Registers */
    "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
    "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
    "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
    "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31",
  };

  if (regnum < 0 || regnum >= E_NUM_OF_V850E3V5_REGS)
    return NULL;
  return v850e3v5_reg_names[regnum];
}

/* Returns the default type for register N.  */

static struct type *
v850_register_type (struct gdbarch *gdbarch, int regnum)
{
  if (regnum == E_PC_REGNUM)
    return builtin_type (gdbarch)->builtin_func_ptr;
  else if (E_VR0_REGNUM <= regnum && regnum <= E_VR31_REGNUM)
    return builtin_type (gdbarch)->builtin_uint64;
  return builtin_type (gdbarch)->builtin_int32;
}

static int
v850_type_is_scalar (struct type *t)
{
  return (TYPE_CODE (t) != TYPE_CODE_STRUCT
	  && TYPE_CODE (t) != TYPE_CODE_UNION
	  && TYPE_CODE (t) != TYPE_CODE_ARRAY);
}

/* Should call_function allocate stack space for a struct return?  */

static int
v850_use_struct_convention (struct gdbarch *gdbarch, struct type *type)
{
  int i;
  struct type *fld_type, *tgt_type;

  if (gdbarch_tdep (gdbarch)->abi == V850_ABI_RH850)
    {
      if (v850_type_is_scalar (type) && TYPE_LENGTH(type) <= 8)
	return 0;

      /* Structs are never returned in registers for this ABI.  */
      return 1;
    }
  /* 1. The value is greater than 8 bytes -> returned by copying.  */
  if (TYPE_LENGTH (type) > 8)
    return 1;

  /* 2. The value is a single basic type -> returned in register.  */
  if (v850_type_is_scalar (type))
    return 0;

  /* The value is a structure or union with a single element and that
     element is either a single basic type or an array of a single basic
     type whose size is greater than or equal to 4 -> returned in register.  */
  if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
       || TYPE_CODE (type) == TYPE_CODE_UNION)
       && TYPE_NFIELDS (type) == 1)
    {
      fld_type = TYPE_FIELD_TYPE (type, 0);
      if (v850_type_is_scalar (fld_type) && TYPE_LENGTH (fld_type) >= 4)
	return 0;

      if (TYPE_CODE (fld_type) == TYPE_CODE_ARRAY)
        {
	  tgt_type = TYPE_TARGET_TYPE (fld_type);
	  if (v850_type_is_scalar (tgt_type) && TYPE_LENGTH (tgt_type) >= 4)
	    return 0;
	}
    }

  /* The value is a structure whose first element is an integer or a float,
     and which contains no arrays of more than two elements -> returned in
     register.  */
  if (TYPE_CODE (type) == TYPE_CODE_STRUCT
      && v850_type_is_scalar (TYPE_FIELD_TYPE (type, 0))
      && TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == 4)
    {
      for (i = 1; i < TYPE_NFIELDS (type); ++i)
        {
	  fld_type = TYPE_FIELD_TYPE (type, 0);
	  if (TYPE_CODE (fld_type) == TYPE_CODE_ARRAY)
	    {
	      tgt_type = TYPE_TARGET_TYPE (fld_type);
	      if (TYPE_LENGTH (tgt_type) > 0
		  && TYPE_LENGTH (fld_type) / TYPE_LENGTH (tgt_type) > 2)
		return 1;
	    }
	}
      return 0;
    }
    
  /* The value is a union which contains at least one field which
     would be returned in registers according to these rules ->
     returned in register.  */
  if (TYPE_CODE (type) == TYPE_CODE_UNION)
    {
      for (i = 0; i < TYPE_NFIELDS (type); ++i)
        {
	  fld_type = TYPE_FIELD_TYPE (type, 0);
	  if (!v850_use_struct_convention (gdbarch, fld_type))
	    return 0;
	}
    }

  return 1;
}

/* Structure for mapping bits in register lists to register numbers.  */

struct reg_list
{
  long mask;
  int regno;
};

/* Helper function for v850_scan_prologue to handle prepare instruction.  */

static void
v850_handle_prepare (int insn, int insn2, CORE_ADDR * current_pc_ptr,
		     struct v850_frame_cache *pi, struct pifsr **pifsr_ptr)
{
  CORE_ADDR current_pc = *current_pc_ptr;
  struct pifsr *pifsr = *pifsr_ptr;
  long next = insn2 & 0xffff;
  long list12 = ((insn & 1) << 16) + (next & 0xffe0);
  long offset = (insn & 0x3e) << 1;
  static struct reg_list reg_table[] =
  {
    {0x00800, 20},		/* r20 */
    {0x00400, 21},		/* r21 */
    {0x00200, 22},		/* r22 */
    {0x00100, 23},		/* r23 */
    {0x08000, 24},		/* r24 */
    {0x04000, 25},		/* r25 */
    {0x02000, 26},		/* r26 */
    {0x01000, 27},		/* r27 */
    {0x00080, 28},		/* r28 */
    {0x00040, 29},		/* r29 */
    {0x10000, 30},		/* ep */
    {0x00020, 31},		/* lp */
    {0, 0}			/* end of table */
  };
  int i;

  if ((next & 0x1f) == 0x0b)		/* skip imm16 argument */
    current_pc += 2;
  else if ((next & 0x1f) == 0x13)	/* skip imm16 argument */
    current_pc += 2;
  else if ((next & 0x1f) == 0x1b)	/* skip imm32 argument */
    current_pc += 4;

  /* Calculate the total size of the saved registers, and add it to the
     immediate value used to adjust SP.  */
  for (i = 0; reg_table[i].mask != 0; i++)
    if (list12 & reg_table[i].mask)
      offset += v850_reg_size;
  pi->sp_offset -= offset;

  /* Calculate the offsets of the registers relative to the value the SP
     will have after the registers have been pushed and the imm5 value has
     been subtracted from it.  */
  if (pifsr)
    {
      for (i = 0; reg_table[i].mask != 0; i++)
	{
	  if (list12 & reg_table[i].mask)
	    {
	      int reg = reg_table[i].regno;
	      offset -= v850_reg_size;
	      pifsr->reg = reg;
	      pifsr->offset = offset;
	      pifsr->cur_frameoffset = pi->sp_offset;
	      pifsr++;
	    }
	}
    }

  /* Set result parameters.  */
  *current_pc_ptr = current_pc;
  *pifsr_ptr = pifsr;
}


/* Helper function for v850_scan_prologue to handle pushm/pushl instructions.
   The SR bit of the register list is not supported.  gcc does not generate
   this bit.  */

static void
v850_handle_pushm (int insn, int insn2, struct v850_frame_cache *pi,
		   struct pifsr **pifsr_ptr)
{
  struct pifsr *pifsr = *pifsr_ptr;
  long list12 = ((insn & 0x0f) << 16) + (insn2 & 0xfff0);
  long offset = 0;
  static struct reg_list pushml_reg_table[] =
  {
    {0x80000, E_PS_REGNUM},	/* PSW */
    {0x40000, 1},		/* r1 */
    {0x20000, 2},		/* r2 */
    {0x10000, 3},		/* r3 */
    {0x00800, 4},		/* r4 */
    {0x00400, 5},		/* r5 */
    {0x00200, 6},		/* r6 */
    {0x00100, 7},		/* r7 */
    {0x08000, 8},		/* r8 */
    {0x04000, 9},		/* r9 */
    {0x02000, 10},		/* r10 */
    {0x01000, 11},		/* r11 */
    {0x00080, 12},		/* r12 */
    {0x00040, 13},		/* r13 */
    {0x00020, 14},		/* r14 */
    {0x00010, 15},		/* r15 */
    {0, 0}			/* end of table */
  };
  static struct reg_list pushmh_reg_table[] =
  {
    {0x80000, 16},		/* r16 */
    {0x40000, 17},		/* r17 */
    {0x20000, 18},		/* r18 */
    {0x10000, 19},		/* r19 */
    {0x00800, 20},		/* r20 */
    {0x00400, 21},		/* r21 */
    {0x00200, 22},		/* r22 */
    {0x00100, 23},		/* r23 */
    {0x08000, 24},		/* r24 */
    {0x04000, 25},		/* r25 */
    {0x02000, 26},		/* r26 */
    {0x01000, 27},		/* r27 */
    {0x00080, 28},		/* r28 */
    {0x00040, 29},		/* r29 */
    {0x00010, 30},		/* r30 */
    {0x00020, 31},		/* r31 */
    {0, 0}			/* end of table */
  };
  struct reg_list *reg_table;
  int i;

  /* Is this a pushml or a pushmh?  */
  if ((insn2 & 7) == 1)
    reg_table = pushml_reg_table;
  else
    reg_table = pushmh_reg_table;

  /* Calculate the total size of the saved registers, and add it to the
     immediate value used to adjust SP.  */
  for (i = 0; reg_table[i].mask != 0; i++)
    if (list12 & reg_table[i].mask)
      offset += v850_reg_size;
  pi->sp_offset -= offset;

  /* Calculate the offsets of the registers relative to the value the SP
     will have after the registers have been pushed and the imm5 value is
     subtracted from it.  */
  if (pifsr)
    {
      for (i = 0; reg_table[i].mask != 0; i++)
	{
	  if (list12 & reg_table[i].mask)
	    {
	      int reg = reg_table[i].regno;
	      offset -= v850_reg_size;
	      pifsr->reg = reg;
	      pifsr->offset = offset;
	      pifsr->cur_frameoffset = pi->sp_offset;
	      pifsr++;
	    }
	}
    }

  /* Set result parameters.  */
  *pifsr_ptr = pifsr;
}

/* Helper function to evaluate if register is one of the "save" registers.
   This allows to simplify conditionals in v850_analyze_prologue a lot.  */

static int
v850_is_save_register (int reg)
{
 /* The caller-save registers are R2, R20 - R29 and R31.  All other
    registers are either special purpose (PC, SP), argument registers,
    or just considered free for use in the caller.  */
 return reg == E_R2_REGNUM
	|| (reg >= E_R20_REGNUM && reg <= E_R29_REGNUM)
	|| reg == E_R31_REGNUM;
}

/* Scan the prologue of the function that contains PC, and record what
   we find in PI.  Returns the pc after the prologue.  Note that the
   addresses saved in frame->saved_regs are just frame relative (negative
   offsets from the frame pointer).  This is because we don't know the
   actual value of the frame pointer yet.  In some circumstances, the
   frame pointer can't be determined till after we have scanned the
   prologue.  */

static CORE_ADDR
v850_analyze_prologue (struct gdbarch *gdbarch,
		       CORE_ADDR func_addr, CORE_ADDR pc,
		       struct v850_frame_cache *pi, ULONGEST ctbp)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  CORE_ADDR prologue_end, current_pc;
  struct pifsr pifsrs[E_NUM_REGS + 1];
  struct pifsr *pifsr, *pifsr_tmp;
  int ep_used;
  int reg;
  CORE_ADDR save_pc, save_end;
  int regsave_func_p;
  int r12_tmp;

  memset (&pifsrs, 0, sizeof pifsrs);
  pifsr = &pifsrs[0];

  prologue_end = pc;

  /* Now, search the prologue looking for instructions that setup fp, save
     rp, adjust sp and such.  We also record the frame offset of any saved
     registers.  */

  pi->sp_offset = 0;
  pi->uses_fp = 0;
  ep_used = 0;
  regsave_func_p = 0;
  save_pc = 0;
  save_end = 0;
  r12_tmp = 0;

  for (current_pc = func_addr; current_pc < prologue_end;)
    {
      int insn;
      int insn2 = -1; /* dummy value */

      insn = read_memory_integer (current_pc, 2, byte_order);
      current_pc += 2;
      if ((insn & 0x0780) >= 0x0600)	/* Four byte instruction?  */
	{
	  insn2 = read_memory_integer (current_pc, 2, byte_order);
	  current_pc += 2;
	}

      if ((insn & 0xffc0) == ((10 << 11) | 0x0780) && !regsave_func_p)
	{			/* jarl <func>,10 */
	  long low_disp = insn2 & ~(long) 1;
	  long disp = (((((insn & 0x3f) << 16) + low_disp)
			& ~(long) 1) ^ 0x00200000) - 0x00200000;

	  save_pc = current_pc;
	  save_end = prologue_end;
	  regsave_func_p = 1;
	  current_pc += disp - 4;
	  prologue_end = (current_pc
			  + (2 * 3)	/* moves to/from ep */
			  + 4		/* addi <const>,sp,sp */
			  + 2		/* jmp [r10] */
			  + (2 * 12)	/* sst.w to save r2, r20-r29, r31 */
			  + 20);	/* slop area */
	}
      else if ((insn & 0xffc0) == 0x0200 && !regsave_func_p)
	{			/* callt <imm6> */
	  long adr = ctbp + ((insn & 0x3f) << 1);

	  save_pc = current_pc;
	  save_end = prologue_end;
	  regsave_func_p = 1;
	  current_pc = ctbp + (read_memory_unsigned_integer (adr, 2, byte_order)
			       & 0xffff);
	  prologue_end = (current_pc
			  + (2 * 3)	/* prepare list2,imm5,sp/imm */
			  + 4		/* ctret */
			  + 20);	/* slop area */
	  continue;
	}
      else if ((insn & 0xffc0) == 0x0780)	/* prepare list2,imm5 */
	{
	  v850_handle_prepare (insn, insn2, &current_pc, pi, &pifsr);
	  continue;
	}
      else if (insn == 0x07e0 && regsave_func_p && insn2 == 0x0144)
	{			/* ctret after processing register save.  */
	  current_pc = save_pc;
	  prologue_end = save_end;
	  regsave_func_p = 0;
	  continue;
	}
      else if ((insn & 0xfff0) == 0x07e0 && (insn2 & 5) == 1)
	{			/* pushml, pushmh */
	  v850_handle_pushm (insn, insn2, pi, &pifsr);
	  continue;
	}
      else if ((insn & 0xffe0) == 0x0060 && regsave_func_p)
	{			/* jmp after processing register save.  */
	  current_pc = save_pc;
	  prologue_end = save_end;
	  regsave_func_p = 0;
	  continue;
	}
      else if ((insn & 0x07c0) == 0x0780	/* jarl or jr */
	       || (insn & 0xffe0) == 0x0060	/* jmp */
	       || (insn & 0x0780) == 0x0580)	/* branch */
	{
	  break;		/* Ran into end of prologue.  */
	}

      else if ((insn & 0xffe0) == ((E_SP_REGNUM << 11) | 0x0240))
        /* add <imm>,sp */
	pi->sp_offset += ((insn & 0x1f) ^ 0x10) - 0x10;
      else if (insn == ((E_SP_REGNUM << 11) | 0x0600 | E_SP_REGNUM))
        /* addi <imm>,sp,sp */
	pi->sp_offset += insn2;
      else if (insn == ((E_FP_REGNUM << 11) | 0x0000 | E_SP_REGNUM))
        /* mov sp,fp */
	pi->uses_fp = 1;
      else if (insn == ((E_R12_REGNUM << 11) | 0x0640 | E_R0_REGNUM))
        /* movhi hi(const),r0,r12 */
	r12_tmp = insn2 << 16;
      else if (insn == ((E_R12_REGNUM << 11) | 0x0620 | E_R12_REGNUM))
        /* movea lo(const),r12,r12 */
	r12_tmp += insn2;
      else if (insn == ((E_SP_REGNUM << 11) | 0x01c0 | E_R12_REGNUM) && r12_tmp)
        /* add r12,sp */
	pi->sp_offset += r12_tmp;
      else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_SP_REGNUM))
        /* mov sp,ep */
	ep_used = 1;
      else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_R1_REGNUM))
        /* mov r1,ep */
	ep_used = 0;
      else if (((insn & 0x07ff) == (0x0760 | E_SP_REGNUM)	
		|| (pi->uses_fp
		    && (insn & 0x07ff) == (0x0760 | E_FP_REGNUM)))
	       && pifsr
	       && v850_is_save_register (reg = (insn >> 11) & 0x1f))
	{
	  /* st.w <reg>,<offset>[sp] or st.w <reg>,<offset>[fp] */
	  pifsr->reg = reg;
	  pifsr->offset = insn2 & ~1;
	  pifsr->cur_frameoffset = pi->sp_offset;
	  pifsr++;
	}
      else if (ep_used
	       && ((insn & 0x0781) == 0x0501)
	       && pifsr
	       && v850_is_save_register (reg = (insn >> 11) & 0x1f))
	{
	  /* sst.w <reg>,<offset>[ep] */
	  pifsr->reg = reg;
	  pifsr->offset = (insn & 0x007e) << 1;
	  pifsr->cur_frameoffset = pi->sp_offset;
	  pifsr++;
	}
    }

  /* Fix up any offsets to the final offset.  If a frame pointer was created,
     use it instead of the stack pointer.  */
  for (pifsr_tmp = pifsrs; pifsr_tmp != pifsr; pifsr_tmp++)
    {
      pifsr_tmp->offset -= pi->sp_offset - pifsr_tmp->cur_frameoffset;
      pi->saved_regs[pifsr_tmp->reg].addr = pifsr_tmp->offset;
    }

  return current_pc;
}

/* Return the address of the first code past the prologue of the function.  */

static CORE_ADDR
v850_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  CORE_ADDR func_addr, func_end;

  /* See what the symbol table says.  */

  if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
    {
      struct symtab_and_line sal;

      sal = find_pc_line (func_addr, 0);
      if (sal.line != 0 && sal.end < func_end)
	return sal.end;

      /* Either there's no line info, or the line after the prologue is after
	 the end of the function.  In this case, there probably isn't a
	 prologue.  */
      return pc;
    }

  /* We can't find the start of this function, so there's nothing we
     can do.  */
  return pc;
}

/* Return 1 if the data structure has any 8-byte fields that'll require
   the entire data structure to be aligned.  Otherwise, return 0.  */

static int
v850_eight_byte_align_p (struct type *type)
{
  type = check_typedef (type);

  if (v850_type_is_scalar (type))
    return (TYPE_LENGTH (type) == 8);
  else
    {
      int i;

      for (i = 0; i < TYPE_NFIELDS (type); i++)
	{
	  if (v850_eight_byte_align_p (TYPE_FIELD_TYPE (type, i)))
	    return 1;
	}
    }
  return 0;
}

static CORE_ADDR
v850_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
{
  return sp & ~3;
}

/* Setup arguments and LP for a call to the target.  First four args
   go in R6->R9, subsequent args go into sp + 16 -> sp + ...  Structs
   are passed by reference.  64 bit quantities (doubles and long longs)
   may be split between the regs and the stack.  When calling a function
   that returns a struct, a pointer to the struct is passed in as a secret
   first argument (always in R6).

   Stack space for the args has NOT been allocated: that job is up to us.  */

static CORE_ADDR
v850_push_dummy_call (struct gdbarch *gdbarch,
		      struct value *function,
		      struct regcache *regcache,
		      CORE_ADDR bp_addr,
		      int nargs,
		      struct value **args,
		      CORE_ADDR sp,
		      function_call_return_method return_method,
		      CORE_ADDR struct_addr)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int argreg;
  int argnum;
  int arg_space = 0;
  int stack_offset;

  if (gdbarch_tdep (gdbarch)->abi == V850_ABI_RH850)
    stack_offset = 0;
  else
  /* The offset onto the stack at which we will start copying parameters
     (after the registers are used up) begins at 16 rather than at zero.
     That's how the ABI is defined, though there's no indication that these
     16 bytes are used for anything, not even for saving incoming
     argument registers.  */
  stack_offset = 16;

  /* Now make space on the stack for the args.  */
  for (argnum = 0; argnum < nargs; argnum++)
    arg_space += ((TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3);
  sp -= arg_space + stack_offset;

  argreg = E_ARG0_REGNUM;
  /* The struct_return pointer occupies the first parameter register.  */
  if (return_method == return_method_struct)
    regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);

  /* Now load as many as possible of the first arguments into
     registers, and push the rest onto the stack.  There are 16 bytes
     in four registers available.  Loop thru args from first to last.  */
  for (argnum = 0; argnum < nargs; argnum++)
    {
      int len;
      gdb_byte *val;
      gdb_byte valbuf[v850_reg_size];

      if (!v850_type_is_scalar (value_type (*args))
         && gdbarch_tdep (gdbarch)->abi == V850_ABI_GCC
	  && TYPE_LENGTH (value_type (*args)) > E_MAX_RETTYPE_SIZE_IN_REGS)
	{
	  store_unsigned_integer (valbuf, 4, byte_order,
				  value_address (*args));
	  len = 4;
	  val = valbuf;
	}
      else
	{
	  len = TYPE_LENGTH (value_type (*args));
	  val = (gdb_byte *) value_contents (*args);
	}

      if (gdbarch_tdep (gdbarch)->eight_byte_align
          && v850_eight_byte_align_p (value_type (*args)))
        {
	  if (argreg <= E_ARGLAST_REGNUM && (argreg & 1))
	    argreg++;
	  else if (stack_offset & 0x4)
	    stack_offset += 4;
	}

      while (len > 0)
	if (argreg <= E_ARGLAST_REGNUM)
	  {
	    CORE_ADDR regval;

	    regval = extract_unsigned_integer (val, v850_reg_size, byte_order);
	    regcache_cooked_write_unsigned (regcache, argreg, regval);

	    len -= v850_reg_size;
	    val += v850_reg_size;
	    argreg++;
	  }
	else
	  {
	    write_memory (sp + stack_offset, val, 4);

	    len -= 4;
	    val += 4;
	    stack_offset += 4;
	  }
      args++;
    }

  /* Store return address.  */
  regcache_cooked_write_unsigned (regcache, E_LP_REGNUM, bp_addr);

  /* Update stack pointer.  */
  regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);

  return sp;
}

static void
v850_extract_return_value (struct type *type, struct regcache *regcache,
			   gdb_byte *valbuf)
{
  struct gdbarch *gdbarch = regcache->arch ();
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int len = TYPE_LENGTH (type);

  if (len <= v850_reg_size)
    {
      ULONGEST val;

      regcache_cooked_read_unsigned (regcache, E_V0_REGNUM, &val);
      store_unsigned_integer (valbuf, len, byte_order, val);
    }
  else if (len <= 2 * v850_reg_size)
    {
      int i, regnum = E_V0_REGNUM;
      gdb_byte buf[v850_reg_size];
      for (i = 0; len > 0; i += 4, len -= 4)
	{
	  regcache->raw_read (regnum++, buf);
	  memcpy (valbuf + i, buf, len > 4 ? 4 : len);
	}
    }
}

static void
v850_store_return_value (struct type *type, struct regcache *regcache,
			 const gdb_byte *valbuf)
{
  struct gdbarch *gdbarch = regcache->arch ();
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int len = TYPE_LENGTH (type);

  if (len <= v850_reg_size)
      regcache_cooked_write_unsigned
	(regcache, E_V0_REGNUM,
	 extract_unsigned_integer (valbuf, len, byte_order));
  else if (len <= 2 * v850_reg_size)
    {
      int i, regnum = E_V0_REGNUM;
      for (i = 0; i < len; i += 4)
	regcache->raw_write (regnum++, valbuf + i);
    }
}

static enum return_value_convention
v850_return_value (struct gdbarch *gdbarch, struct value *function,
		   struct type *type, struct regcache *regcache,
		   gdb_byte *readbuf, const gdb_byte *writebuf)
{
  if (v850_use_struct_convention (gdbarch, type))
    return RETURN_VALUE_STRUCT_CONVENTION;
  if (writebuf)
    v850_store_return_value (type, regcache, writebuf);
  else if (readbuf)
    v850_extract_return_value (type, regcache, readbuf);
  return RETURN_VALUE_REGISTER_CONVENTION;
}

/* Implement the breakpoint_kind_from_pc gdbarch method.  */

static int
v850_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
{
  return 2;
}

/* Implement the sw_breakpoint_from_kind gdbarch method.  */

static const gdb_byte *
v850_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
{
  *size = kind;

    switch (gdbarch_bfd_arch_info (gdbarch)->mach)
    {
    case bfd_mach_v850e2:
    case bfd_mach_v850e2v3:
    case bfd_mach_v850e3v5:
      {
	/* Implement software breakpoints by using the dbtrap instruction.
	   Older architectures had no such instruction.  For those, an
	   unconditional branch to self instruction is used.  */

	static unsigned char dbtrap_breakpoint[] = { 0x40, 0xf8 };

	return dbtrap_breakpoint;
      }
      break;
    default:
      {
	static unsigned char breakpoint[] = { 0x85, 0x05 };

	return breakpoint;
      }
      break;
    }
}

static struct v850_frame_cache *
v850_alloc_frame_cache (struct frame_info *this_frame)
{
  struct v850_frame_cache *cache;

  cache = FRAME_OBSTACK_ZALLOC (struct v850_frame_cache);
  cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);

  /* Base address.  */
  cache->base = 0;
  cache->sp_offset = 0;
  cache->pc = 0;

  /* Frameless until proven otherwise.  */
  cache->uses_fp = 0;

  return cache;
}

static struct v850_frame_cache *
v850_frame_cache (struct frame_info *this_frame, void **this_cache)
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  struct v850_frame_cache *cache;
  CORE_ADDR current_pc;
  int i;

  if (*this_cache)
    return (struct v850_frame_cache *) *this_cache;

  cache = v850_alloc_frame_cache (this_frame);
  *this_cache = cache;

  /* In principle, for normal frames, fp holds the frame pointer,
     which holds the base address for the current stack frame.
     However, for functions that don't need it, the frame pointer is
     optional.  For these "frameless" functions the frame pointer is
     actually the frame pointer of the calling frame.  */
  cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM);
  if (cache->base == 0)
    return cache;

  cache->pc = get_frame_func (this_frame);
  current_pc = get_frame_pc (this_frame);
  if (cache->pc != 0)
    {
      ULONGEST ctbp;
      ctbp = get_frame_register_unsigned (this_frame, E_CTBP_REGNUM);
      v850_analyze_prologue (gdbarch, cache->pc, current_pc, cache, ctbp);
    }

  if (!cache->uses_fp)
    {
      /* We didn't find a valid frame, which means that CACHE->base
         currently holds the frame pointer for our calling frame.  If
         we're at the start of a function, or somewhere half-way its
         prologue, the function's frame probably hasn't been fully
         setup yet.  Try to reconstruct the base address for the stack
         frame by looking at the stack pointer.  For truly "frameless"
         functions this might work too.  */
      cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
    }

  /* Now that we have the base address for the stack frame we can
     calculate the value of sp in the calling frame.  */
  trad_frame_set_value (cache->saved_regs, E_SP_REGNUM,
  			cache->base - cache->sp_offset);

  /* Adjust all the saved registers such that they contain addresses
     instead of offsets.  */
  for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
    if (trad_frame_addr_p (cache->saved_regs, i))
      cache->saved_regs[i].addr += cache->base;

  /* The call instruction moves the caller's PC in the callee's LP.
     Since this is an unwind, do the reverse.  Copy the location of LP
     into PC (the address / regnum) so that a request for PC will be
     converted into a request for the LP.  */

  cache->saved_regs[E_PC_REGNUM] = cache->saved_regs[E_LP_REGNUM];

  return cache;
}


static struct value *
v850_frame_prev_register (struct frame_info *this_frame,
			  void **this_cache, int regnum)
{
  struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache);

  gdb_assert (regnum >= 0);

  return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum);
}

static void
v850_frame_this_id (struct frame_info *this_frame, void **this_cache,
		    struct frame_id *this_id)
{
  struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache);

  /* This marks the outermost frame.  */
  if (cache->base == 0)
    return;

  *this_id = frame_id_build (cache->saved_regs[E_SP_REGNUM].addr, cache->pc);
}

static const struct frame_unwind v850_frame_unwind = {
  NORMAL_FRAME,
  default_frame_unwind_stop_reason,
  v850_frame_this_id,
  v850_frame_prev_register,
  NULL,
  default_frame_sniffer
};

static CORE_ADDR
v850_frame_base_address (struct frame_info *this_frame, void **this_cache)
{
  struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache);

  return cache->base;
}

static const struct frame_base v850_frame_base = {
  &v850_frame_unwind,
  v850_frame_base_address,
  v850_frame_base_address,
  v850_frame_base_address
};

static struct gdbarch *
v850_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
  struct gdbarch *gdbarch;
  struct gdbarch_tdep *tdep;
  int e_flags, e_machine;

  /* Extract the elf_flags if available.  */
  if (info.abfd != NULL
      && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
    {
      e_flags = elf_elfheader (info.abfd)->e_flags;
      e_machine = elf_elfheader (info.abfd)->e_machine;
    }
  else
    {
      e_flags = 0;
      e_machine = 0;
    }


  /* Try to find the architecture in the list of already defined
     architectures.  */
  for (arches = gdbarch_list_lookup_by_info (arches, &info);
       arches != NULL;
       arches = gdbarch_list_lookup_by_info (arches->next, &info))
    {
      if (gdbarch_tdep (arches->gdbarch)->e_flags != e_flags
          || gdbarch_tdep (arches->gdbarch)->e_machine != e_machine)
	continue;

      return arches->gdbarch;
    }
  tdep = XCNEW (struct gdbarch_tdep);
  tdep->e_flags = e_flags;
  tdep->e_machine = e_machine;

  switch (tdep->e_machine)
    {
    case EM_V800:
      tdep->abi = V850_ABI_RH850;
      break;
    default:
      tdep->abi = V850_ABI_GCC;
      break;
    }

  tdep->eight_byte_align = (tdep->e_flags & EF_RH850_DATA_ALIGN8) ? 1 : 0;
  gdbarch = gdbarch_alloc (&info, tdep);

  switch (info.bfd_arch_info->mach)
    {
    case bfd_mach_v850:
      set_gdbarch_register_name (gdbarch, v850_register_name);
      set_gdbarch_num_regs (gdbarch, E_NUM_OF_V850_REGS);
      break;
    case bfd_mach_v850e:
    case bfd_mach_v850e1:
      set_gdbarch_register_name (gdbarch, v850e_register_name);
      set_gdbarch_num_regs (gdbarch, E_NUM_OF_V850E_REGS);
      break;
    case bfd_mach_v850e2:
    case bfd_mach_v850e2v3:
      set_gdbarch_register_name (gdbarch, v850e2_register_name);
      set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
      break;
    case bfd_mach_v850e3v5:
      set_gdbarch_register_name (gdbarch, v850e3v5_register_name);
      set_gdbarch_num_regs (gdbarch, E_NUM_OF_V850E3V5_REGS);
      break;
    }

  set_gdbarch_num_pseudo_regs (gdbarch, 0);
  set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
  set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
  set_gdbarch_fp0_regnum (gdbarch, -1);

  set_gdbarch_register_type (gdbarch, v850_register_type);

  set_gdbarch_char_signed (gdbarch, 1);
  set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
  set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);

  set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
  set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);

  set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);

  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);

  set_gdbarch_breakpoint_kind_from_pc (gdbarch, v850_breakpoint_kind_from_pc);
  set_gdbarch_sw_breakpoint_from_kind (gdbarch, v850_sw_breakpoint_from_kind);
  set_gdbarch_return_value (gdbarch, v850_return_value);
  set_gdbarch_push_dummy_call (gdbarch, v850_push_dummy_call);
  set_gdbarch_skip_prologue (gdbarch, v850_skip_prologue);

  set_gdbarch_frame_align (gdbarch, v850_frame_align);
  frame_base_set_default (gdbarch, &v850_frame_base);

  /* Hook in ABI-specific overrides, if they have been registered.  */
  gdbarch_init_osabi (info, gdbarch);

  dwarf2_append_unwinders (gdbarch);
  frame_unwind_append_unwinder (gdbarch, &v850_frame_unwind);

  return gdbarch;
}

void
_initialize_v850_tdep (void)
{
  register_gdbarch_init (bfd_arch_v850, v850_gdbarch_init);
  register_gdbarch_init (bfd_arch_v850_rh850, v850_gdbarch_init);
}