aboutsummaryrefslogtreecommitdiff
path: root/gdb/corefile.c
diff options
context:
space:
mode:
authorMark Kettenis <kettenis@gnu.org>2001-07-14 09:50:25 +0000
committerMark Kettenis <kettenis@gnu.org>2001-07-14 09:50:25 +0000
commit0123ceaf7cd087b84b43c6eb203acdc059a68576 (patch)
tree829558443f54809b357cd6789736c65e07b8d6bd /gdb/corefile.c
parent3414af1c3910144f6be1ce2106f08c1062cb4833 (diff)
downloadgdb-0123ceaf7cd087b84b43c6eb203acdc059a68576.zip
gdb-0123ceaf7cd087b84b43c6eb203acdc059a68576.tar.gz
gdb-0123ceaf7cd087b84b43c6eb203acdc059a68576.tar.bz2
* Makefile.in (ALLDEPFILES): Add i386bsd-nat.c and i386bsd-tdep.c
(i386bsd-tdep.o, i386bsd-nat.o): New targets.
Diffstat (limited to 'gdb/corefile.c')
0 files changed, 0 insertions, 0 deletions
121' href='#n121'>121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306
/* Ada language support routines for GDB, the GNU debugger.  Copyright
   1992, 1993, 1994, 1997, 1998, 1999, 2000 Free Software Foundation, Inc.

This file is part of GDB.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.  */

#include <stdio.h>
#include "gdb_string.h"
#include <ctype.h>
#include <stdarg.h>
#include "demangle.h"
#include "defs.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "gdbcmd.h"
#include "expression.h"
#include "parser-defs.h"
#include "language.h"
#include "c-lang.h"
#include "inferior.h"
#include "symfile.h"
#include "objfiles.h"
#include "breakpoint.h"
#include "gdbcore.h"
#include "ada-lang.h"
#ifdef UI_OUT
#include "ui-out.h"
#endif

struct cleanup *unresolved_names;

void extract_string (CORE_ADDR addr, char *buf);

static struct type *ada_create_fundamental_type (struct objfile *, int);

static void modify_general_field (char *, LONGEST, int, int);

static struct type *desc_base_type (struct type *);

static struct type *desc_bounds_type (struct type *);

static struct value *desc_bounds (struct value *);

static int fat_pntr_bounds_bitpos (struct type *);

static int fat_pntr_bounds_bitsize (struct type *);

static struct type *desc_data_type (struct type *);

static struct value *desc_data (struct value *);

static int fat_pntr_data_bitpos (struct type *);

static int fat_pntr_data_bitsize (struct type *);

static struct value *desc_one_bound (struct value *, int, int);

static int desc_bound_bitpos (struct type *, int, int);

static int desc_bound_bitsize (struct type *, int, int);

static struct type *desc_index_type (struct type *, int);

static int desc_arity (struct type *);

static int ada_type_match (struct type *, struct type *, int);

static int ada_args_match (struct symbol *, struct value **, int);

static struct value *place_on_stack (struct value *, CORE_ADDR *);

static struct value *convert_actual (struct value *, struct type *,
				     CORE_ADDR *);

static struct value *make_array_descriptor (struct type *, struct value *,
					    CORE_ADDR *);

static void ada_add_block_symbols (struct block *, const char *,
				   namespace_enum, struct objfile *, int);

static void fill_in_ada_prototype (struct symbol *);

static int is_nonfunction (struct symbol **, int);

static void add_defn_to_vec (struct symbol *, struct block *);

static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
							 *, const char *, int,
							 namespace_enum, int);

static struct symtab *symtab_for_sym (struct symbol *);

static struct value *ada_resolve_subexp (struct expression **, int *, int,
					 struct type *);

static void replace_operator_with_call (struct expression **, int, int, int,
					struct symbol *, struct block *);

static int possible_user_operator_p (enum exp_opcode, struct value **);

static const char *ada_op_name (enum exp_opcode);

static int numeric_type_p (struct type *);

static int integer_type_p (struct type *);

static int scalar_type_p (struct type *);

static int discrete_type_p (struct type *);

static char *extended_canonical_line_spec (struct symtab_and_line,
					   const char *);

static struct value *evaluate_subexp (struct type *, struct expression *,
				      int *, enum noside);

static struct value *evaluate_subexp_type (struct expression *, int *);

static struct type *ada_create_fundamental_type (struct objfile *, int);

static int is_dynamic_field (struct type *, int);

static struct type *to_fixed_variant_branch_type (struct type *, char *,
						  CORE_ADDR, struct value *);

static struct type *to_fixed_range_type (char *, struct value *,
					 struct objfile *);

static struct type *to_static_fixed_type (struct type *);

static struct value *unwrap_value (struct value *);

static struct type *packed_array_type (struct type *, long *);

static struct type *decode_packed_array_type (struct type *);

static struct value *decode_packed_array (struct value *);

static struct value *value_subscript_packed (struct value *, int,
					     struct value **);

static struct value *coerce_unspec_val_to_type (struct value *, long,
						struct type *);

static struct value *get_var_value (char *, char *);

static int lesseq_defined_than (struct symbol *, struct symbol *);

static int equiv_types (struct type *, struct type *);

static int is_name_suffix (const char *);

static int wild_match (const char *, int, const char *);

static struct symtabs_and_lines find_sal_from_funcs_and_line (const char *,
							      int,
							      struct symbol
							      **, int);

static int find_line_in_linetable (struct linetable *, int, struct symbol **,
				   int, int *);

static int find_next_line_in_linetable (struct linetable *, int, int, int);

static struct symtabs_and_lines all_sals_for_line (const char *, int,
						   char ***);

static void read_all_symtabs (const char *);

static int is_plausible_func_for_line (struct symbol *, int);

static struct value *ada_coerce_ref (struct value *);

static struct value *value_pos_atr (struct value *);

static struct value *value_val_atr (struct type *, struct value *);

static struct symbol *standard_lookup (const char *, namespace_enum);

extern void markTimeStart (int index);
extern void markTimeStop (int index);



/* Maximum-sized dynamic type. */
static unsigned int varsize_limit;

static const char *ada_completer_word_break_characters =
  " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";

/* The name of the symbol to use to get the name of the main subprogram */
#define ADA_MAIN_PROGRAM_SYMBOL_NAME "__gnat_ada_main_program_name"

				/* Utilities */

/* extract_string
 *
 * read the string located at ADDR from the inferior and store the
 * result into BUF
 */
void
extract_string (CORE_ADDR addr, char *buf)
{
  int char_index = 0;

  /* Loop, reading one byte at a time, until we reach the '\000' 
     end-of-string marker */
  do
    {
      target_read_memory (addr + char_index * sizeof (char),
			  buf + char_index * sizeof (char), sizeof (char));
      char_index++;
    }
  while (buf[char_index - 1] != '\000');
}

/* Assuming *OLD_VECT points to an array of *SIZE objects of size
   ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
   updating *OLD_VECT and *SIZE as necessary. */

void
grow_vect (void **old_vect, size_t * size, size_t min_size, int element_size)
{
  if (*size < min_size)
    {
      *size *= 2;
      if (*size < min_size)
	*size = min_size;
      *old_vect = xrealloc (*old_vect, *size * element_size);
    }
}

/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
   suffix of FIELD_NAME beginning "___" */

static int
field_name_match (const char *field_name, const char *target)
{
  int len = strlen (target);
  return
    STREQN (field_name, target, len)
    && (field_name[len] == '\0'
	|| (STREQN (field_name + len, "___", 3)
	    && !STREQ (field_name + strlen (field_name) - 6, "___XVN")));
}


/* The length of the prefix of NAME prior to any "___" suffix. */

int
ada_name_prefix_len (const char *name)
{
  if (name == NULL)
    return 0;
  else
    {
      const char *p = strstr (name, "___");
      if (p == NULL)
	return strlen (name);
      else
	return p - name;
    }
}

/* SUFFIX is a suffix of STR. False if STR is null. */
static int
is_suffix (const char *str, const char *suffix)
{
  int len1, len2;
  if (str == NULL)
    return 0;
  len1 = strlen (str);
  len2 = strlen (suffix);
  return (len1 >= len2 && STREQ (str + len1 - len2, suffix));
}

/* Create a value of type TYPE whose contents come from VALADDR, if it
 * is non-null, and whose memory address (in the inferior) is
 * ADDRESS. */
struct value *
value_from_contents_and_address (struct type *type, char *valaddr,
				 CORE_ADDR address)
{
  struct value *v = allocate_value (type);
  if (valaddr == NULL)
    VALUE_LAZY (v) = 1;
  else
    memcpy (VALUE_CONTENTS_RAW (v), valaddr, TYPE_LENGTH (type));
  VALUE_ADDRESS (v) = address;
  if (address != 0)
    VALUE_LVAL (v) = lval_memory;
  return v;
}

/* The contents of value VAL, beginning at offset OFFSET, treated as a
   value of type TYPE.  The result is an lval in memory if VAL is. */

static struct value *
coerce_unspec_val_to_type (struct value *val, long offset, struct type *type)
{
  CHECK_TYPEDEF (type);
  if (VALUE_LVAL (val) == lval_memory)
    return value_at_lazy (type,
			  VALUE_ADDRESS (val) + VALUE_OFFSET (val) + offset,
			  NULL);
  else
    {
      struct value *result = allocate_value (type);
      VALUE_LVAL (result) = not_lval;
      if (VALUE_ADDRESS (val) == 0)
	memcpy (VALUE_CONTENTS_RAW (result), VALUE_CONTENTS (val) + offset,
		TYPE_LENGTH (type) > TYPE_LENGTH (VALUE_TYPE (val))
		? TYPE_LENGTH (VALUE_TYPE (val)) : TYPE_LENGTH (type));
      else
	{
	  VALUE_ADDRESS (result) =
	    VALUE_ADDRESS (val) + VALUE_OFFSET (val) + offset;
	  VALUE_LAZY (result) = 1;
	}
      return result;
    }
}

static char *
cond_offset_host (char *valaddr, long offset)
{
  if (valaddr == NULL)
    return NULL;
  else
    return valaddr + offset;
}

static CORE_ADDR
cond_offset_target (CORE_ADDR address, long offset)
{
  if (address == 0)
    return 0;
  else
    return address + offset;
}

/* Perform execute_command on the result of concatenating all
   arguments up to NULL. */
static void
do_command (const char *arg, ...)
{
  int len;
  char *cmd;
  const char *s;
  va_list ap;

  va_start (ap, arg);
  len = 0;
  s = arg;
  cmd = "";
  for (; s != NULL; s = va_arg (ap, const char *))
    {
      char *cmd1;
      len += strlen (s);
      cmd1 = alloca (len + 1);
      strcpy (cmd1, cmd);
      strcat (cmd1, s);
      cmd = cmd1;
    }
  va_end (ap);
  execute_command (cmd, 0);
}


				/* Language Selection */

/* If the main program is in Ada, return language_ada, otherwise return LANG
   (the main program is in Ada iif the adainit symbol is found).

   MAIN_PST is not used. */

enum language
ada_update_initial_language (enum language lang,
			     struct partial_symtab *main_pst)
{
  if (lookup_minimal_symbol ("adainit", (const char *) NULL,
			     (struct objfile *) NULL) != NULL)
    /*    return language_ada; */
    /* FIXME: language_ada should be defined in defs.h */
    return language_unknown;

  return lang;
}


				/* Symbols */

/* Table of Ada operators and their GNAT-mangled names.  Last entry is pair 
   of NULLs. */

const struct ada_opname_map ada_opname_table[] = {
  {"Oadd", "\"+\"", BINOP_ADD},
  {"Osubtract", "\"-\"", BINOP_SUB},
  {"Omultiply", "\"*\"", BINOP_MUL},
  {"Odivide", "\"/\"", BINOP_DIV},
  {"Omod", "\"mod\"", BINOP_MOD},
  {"Orem", "\"rem\"", BINOP_REM},
  {"Oexpon", "\"**\"", BINOP_EXP},
  {"Olt", "\"<\"", BINOP_LESS},
  {"Ole", "\"<=\"", BINOP_LEQ},
  {"Ogt", "\">\"", BINOP_GTR},
  {"Oge", "\">=\"", BINOP_GEQ},
  {"Oeq", "\"=\"", BINOP_EQUAL},
  {"One", "\"/=\"", BINOP_NOTEQUAL},
  {"Oand", "\"and\"", BINOP_BITWISE_AND},
  {"Oor", "\"or\"", BINOP_BITWISE_IOR},
  {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
  {"Oconcat", "\"&\"", BINOP_CONCAT},
  {"Oabs", "\"abs\"", UNOP_ABS},
  {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
  {"Oadd", "\"+\"", UNOP_PLUS},
  {"Osubtract", "\"-\"", UNOP_NEG},
  {NULL, NULL}
};

/* True if STR should be suppressed in info listings. */
static int
is_suppressed_name (const char *str)
{
  if (STREQN (str, "_ada_", 5))
    str += 5;
  if (str[0] == '_' || str[0] == '\000')
    return 1;
  else
    {
      const char *p;
      const char *suffix = strstr (str, "___");
      if (suffix != NULL && suffix[3] != 'X')
	return 1;
      if (suffix == NULL)
	suffix = str + strlen (str);
      for (p = suffix - 1; p != str; p -= 1)
	if (isupper (*p))
	  {
	    int i;
	    if (p[0] == 'X' && p[-1] != '_')
	      goto OK;
	    if (*p != 'O')
	      return 1;
	    for (i = 0; ada_opname_table[i].mangled != NULL; i += 1)
	      if (STREQN (ada_opname_table[i].mangled, p,
			  strlen (ada_opname_table[i].mangled)))
		goto OK;
	    return 1;
	  OK:;
	  }
      return 0;
    }
}

/* The "mangled" form of DEMANGLED, according to GNAT conventions.
 * The result is valid until the next call to ada_mangle. */
char *
ada_mangle (const char *demangled)
{
  static char *mangling_buffer = NULL;
  static size_t mangling_buffer_size = 0;
  const char *p;
  int k;

  if (demangled == NULL)
    return NULL;

  GROW_VECT (mangling_buffer, mangling_buffer_size,
	     2 * strlen (demangled) + 10);

  k = 0;
  for (p = demangled; *p != '\0'; p += 1)
    {
      if (*p == '.')
	{
	  mangling_buffer[k] = mangling_buffer[k + 1] = '_';
	  k += 2;
	}
      else if (*p == '"')
	{
	  const struct ada_opname_map *mapping;

	  for (mapping = ada_opname_table;
	       mapping->mangled != NULL &&
	       !STREQN (mapping->demangled, p, strlen (mapping->demangled));
	       p += 1)
	    ;
	  if (mapping->mangled == NULL)
	    error ("invalid Ada operator name: %s", p);
	  strcpy (mangling_buffer + k, mapping->mangled);
	  k += strlen (mapping->mangled);
	  break;
	}
      else
	{
	  mangling_buffer[k] = *p;
	  k += 1;
	}
    }

  mangling_buffer[k] = '\0';
  return mangling_buffer;
}

/* Return NAME folded to lower case, or, if surrounded by single
 * quotes, unfolded, but with the quotes stripped away.  Result good
 * to next call. */
char *
ada_fold_name (const char *name)
{
  static char *fold_buffer = NULL;
  static size_t fold_buffer_size = 0;

  int len = strlen (name);
  GROW_VECT (fold_buffer, fold_buffer_size, len + 1);

  if (name[0] == '\'')
    {
      strncpy (fold_buffer, name + 1, len - 2);
      fold_buffer[len - 2] = '\000';
    }
  else
    {
      int i;
      for (i = 0; i <= len; i += 1)
	fold_buffer[i] = tolower (name[i]);
    }

  return fold_buffer;
}

/* Demangle: 
     1. Discard final __{DIGIT}+ or ${DIGIT}+
     2. Convert other instances of embedded "__" to `.'.
     3. Discard leading _ada_.
     4. Convert operator names to the appropriate quoted symbols.
     5. Remove everything after first ___ if it is followed by 
        'X'.
     6. Replace TK__ with __, and a trailing B or TKB with nothing.
     7. Put symbols that should be suppressed in <...> brackets.
     8. Remove trailing X[bn]* suffix (indicating names in package bodies).
   The resulting string is valid until the next call of ada_demangle.
  */

char *
ada_demangle (const char *mangled)
{
  int i, j;
  int len0;
  const char *p;
  char *demangled;
  int at_start_name;
  static char *demangling_buffer = NULL;
  static size_t demangling_buffer_size = 0;

  if (STREQN (mangled, "_ada_", 5))
    mangled += 5;

  if (mangled[0] == '_' || mangled[0] == '<')
    goto Suppress;

  p = strstr (mangled, "___");
  if (p == NULL)
    len0 = strlen (mangled);
  else
    {
      if (p[3] == 'X')
	len0 = p - mangled;
      else
	goto Suppress;
    }
  if (len0 > 3 && STREQ (mangled + len0 - 3, "TKB"))
    len0 -= 3;
  if (len0 > 1 && STREQ (mangled + len0 - 1, "B"))
    len0 -= 1;

  /* Make demangled big enough for possible expansion by operator name. */
  GROW_VECT (demangling_buffer, demangling_buffer_size, 2 * len0 + 1);
  demangled = demangling_buffer;

  if (isdigit (mangled[len0 - 1]))
    {
      for (i = len0 - 2; i >= 0 && isdigit (mangled[i]); i -= 1)
	;
      if (i > 1 && mangled[i] == '_' && mangled[i - 1] == '_')
	len0 = i - 1;
      else if (mangled[i] == '$')
	len0 = i;
    }

  for (i = 0, j = 0; i < len0 && !isalpha (mangled[i]); i += 1, j += 1)
    demangled[j] = mangled[i];

  at_start_name = 1;
  while (i < len0)
    {
      if (at_start_name && mangled[i] == 'O')
	{
	  int k;
	  for (k = 0; ada_opname_table[k].mangled != NULL; k += 1)
	    {
	      int op_len = strlen (ada_opname_table[k].mangled);
	      if (STREQN
		  (ada_opname_table[k].mangled + 1, mangled + i + 1,
		   op_len - 1) && !isalnum (mangled[i + op_len]))
		{
		  strcpy (demangled + j, ada_opname_table[k].demangled);
		  at_start_name = 0;
		  i += op_len;
		  j += strlen (ada_opname_table[k].demangled);
		  break;
		}
	    }
	  if (ada_opname_table[k].mangled != NULL)
	    continue;
	}
      at_start_name = 0;

      if (i < len0 - 4 && STREQN (mangled + i, "TK__", 4))
	i += 2;
      if (mangled[i] == 'X' && i != 0 && isalnum (mangled[i - 1]))
	{
	  do
	    i += 1;
	  while (i < len0 && (mangled[i] == 'b' || mangled[i] == 'n'));
	  if (i < len0)
	    goto Suppress;
	}
      else if (i < len0 - 2 && mangled[i] == '_' && mangled[i + 1] == '_')
	{
	  demangled[j] = '.';
	  at_start_name = 1;
	  i += 2;
	  j += 1;
	}
      else
	{
	  demangled[j] = mangled[i];
	  i += 1;
	  j += 1;
	}
    }
  demangled[j] = '\000';

  for (i = 0; demangled[i] != '\0'; i += 1)
    if (isupper (demangled[i]) || demangled[i] == ' ')
      goto Suppress;

  return demangled;

Suppress:
  GROW_VECT (demangling_buffer, demangling_buffer_size, strlen (mangled) + 3);
  demangled = demangling_buffer;
  if (mangled[0] == '<')
    strcpy (demangled, mangled);
  else
    sprintf (demangled, "<%s>", mangled);
  return demangled;

}

/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
 * suffixes that encode debugging information or leading _ada_ on
 * SYM_NAME (see is_name_suffix commentary for the debugging
 * information that is ignored).  If WILD, then NAME need only match a
 * suffix of SYM_NAME minus the same suffixes. Also returns 0 if
 * either argument is NULL. */

int
ada_match_name (const char *sym_name, const char *name, int wild)
{
  if (sym_name == NULL || name == NULL)
    return 0;
  else if (wild)
    return wild_match (name, strlen (name), sym_name);
  else
    {
      int len_name = strlen (name);
      return (STREQN (sym_name, name, len_name)
	      && is_name_suffix (sym_name + len_name))
	|| (STREQN (sym_name, "_ada_", 5)
	    && STREQN (sym_name + 5, name, len_name)
	    && is_name_suffix (sym_name + len_name + 5));
    }
}

/* True (non-zero) iff in Ada mode, the symbol SYM should be
   suppressed in info listings. */

int
ada_suppress_symbol_printing (struct symbol *sym)
{
  if (SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE)
    return 1;
  else
    return is_suppressed_name (SYMBOL_NAME (sym));
}


				/* Arrays */

/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of 
   array descriptors.  */

static char *bound_name[] = {
  "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
  "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
};

/* Maximum number of array dimensions we are prepared to handle.  */

#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char*)))

/* Like modify_field, but allows bitpos > wordlength. */

static void
modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
{
  modify_field (addr + sizeof (LONGEST) * bitpos / (8 * sizeof (LONGEST)),
		fieldval, bitpos % (8 * sizeof (LONGEST)), bitsize);
}


/* The desc_* routines return primitive portions of array descriptors 
   (fat pointers). */

/* The descriptor or array type, if any, indicated by TYPE; removes
   level of indirection, if needed. */
static struct type *
desc_base_type (struct type *type)
{
  if (type == NULL)
    return NULL;
  CHECK_TYPEDEF (type);
  if (type != NULL && TYPE_CODE (type) == TYPE_CODE_PTR)
    return check_typedef (TYPE_TARGET_TYPE (type));
  else
    return type;
}

/* True iff TYPE indicates a "thin" array pointer type. */
static int
is_thin_pntr (struct type *type)
{
  return
    is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
    || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
}

/* The descriptor type for thin pointer type TYPE. */
static struct type *
thin_descriptor_type (struct type *type)
{
  struct type *base_type = desc_base_type (type);
  if (base_type == NULL)
    return NULL;
  if (is_suffix (ada_type_name (base_type), "___XVE"))
    return base_type;
  else
    {
      struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
      if (alt_type == NULL)
	return base_type;
      else
	return alt_type;
    }
}

/* A pointer to the array data for thin-pointer value VAL. */
static struct value *
thin_data_pntr (struct value *val)
{
  struct type *type = VALUE_TYPE (val);
  if (TYPE_CODE (type) == TYPE_CODE_PTR)
    return value_cast (desc_data_type (thin_descriptor_type (type)),
		       value_copy (val));
  else
    return value_from_longest (desc_data_type (thin_descriptor_type (type)),
			       VALUE_ADDRESS (val) + VALUE_OFFSET (val));
}

/* True iff TYPE indicates a "thick" array pointer type. */
static int
is_thick_pntr (struct type *type)
{
  type = desc_base_type (type);
  return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
	  && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
}

/* If TYPE is the type of an array descriptor (fat or thin pointer) or a 
   pointer to one, the type of its bounds data; otherwise, NULL. */
static struct type *
desc_bounds_type (struct type *type)
{
  struct type *r;

  type = desc_base_type (type);

  if (type == NULL)
    return NULL;
  else if (is_thin_pntr (type))
    {
      type = thin_descriptor_type (type);
      if (type == NULL)
	return NULL;
      r = lookup_struct_elt_type (type, "BOUNDS", 1);
      if (r != NULL)
	return check_typedef (r);
    }
  else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
    {
      r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
      if (r != NULL)
	return check_typedef (TYPE_TARGET_TYPE (check_typedef (r)));
    }
  return NULL;
}

/* If ARR is an array descriptor (fat or thin pointer), or pointer to
   one, a pointer to its bounds data.   Otherwise NULL. */
static struct value *
desc_bounds (struct value *arr)
{
  struct type *type = check_typedef (VALUE_TYPE (arr));
  if (is_thin_pntr (type))
    {
      struct type *bounds_type =
	desc_bounds_type (thin_descriptor_type (type));
      LONGEST addr;

      if (desc_bounds_type == NULL)
	error ("Bad GNAT array descriptor");

      /* NOTE: The following calculation is not really kosher, but
         since desc_type is an XVE-encoded type (and shouldn't be),
         the correct calculation is a real pain. FIXME (and fix GCC). */
      if (TYPE_CODE (type) == TYPE_CODE_PTR)
	addr = value_as_long (arr);
      else
	addr = VALUE_ADDRESS (arr) + VALUE_OFFSET (arr);

      return
	value_from_longest (lookup_pointer_type (bounds_type),
			    addr - TYPE_LENGTH (bounds_type));
    }

  else if (is_thick_pntr (type))
    return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
			     "Bad GNAT array descriptor");
  else
    return NULL;
}

/* If TYPE is the type of an array-descriptor (fat pointer), the bit
   position of the field containing the address of the bounds data. */
static int
fat_pntr_bounds_bitpos (struct type *type)
{
  return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
}

/* If TYPE is the type of an array-descriptor (fat pointer), the bit
   size of the field containing the address of the bounds data. */
static int
fat_pntr_bounds_bitsize (struct type *type)
{
  type = desc_base_type (type);

  if (TYPE_FIELD_BITSIZE (type, 1) > 0)
    return TYPE_FIELD_BITSIZE (type, 1);
  else
    return 8 * TYPE_LENGTH (check_typedef (TYPE_FIELD_TYPE (type, 1)));
}

/* If TYPE is the type of an array descriptor (fat or thin pointer) or a 
   pointer to one, the type of its array data (a
   pointer-to-array-with-no-bounds type); otherwise,  NULL.  Use
   ada_type_of_array to get an array type with bounds data. */
static struct type *
desc_data_type (struct type *type)
{
  type = desc_base_type (type);

  /* NOTE: The following is bogus; see comment in desc_bounds. */
  if (is_thin_pntr (type))
    return lookup_pointer_type
      (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)));
  else if (is_thick_pntr (type))
    return lookup_struct_elt_type (type, "P_ARRAY", 1);
  else
    return NULL;
}

/* If ARR is an array descriptor (fat or thin pointer), a pointer to
   its array data.  */
static struct value *
desc_data (struct value *arr)
{
  struct type *type = VALUE_TYPE (arr);
  if (is_thin_pntr (type))
    return thin_data_pntr (arr);
  else if (is_thick_pntr (type))
    return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
			     "Bad GNAT array descriptor");
  else
    return NULL;
}


/* If TYPE is the type of an array-descriptor (fat pointer), the bit
   position of the field containing the address of the data. */
static int
fat_pntr_data_bitpos (struct type *type)
{
  return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
}

/* If TYPE is the type of an array-descriptor (fat pointer), the bit
   size of the field containing the address of the data. */
static int
fat_pntr_data_bitsize (struct type *type)
{
  type = desc_base_type (type);

  if (TYPE_FIELD_BITSIZE (type, 0) > 0)
    return TYPE_FIELD_BITSIZE (type, 0);
  else
    return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
}

/* If BOUNDS is an array-bounds structure (or pointer to one), return 
   the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
   bound, if WHICH is 1.  The first bound is I=1. */
static struct value *
desc_one_bound (struct value *bounds, int i, int which)
{
  return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
			   "Bad GNAT array descriptor bounds");
}

/* If BOUNDS is an array-bounds structure type, return the bit position
   of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
   bound, if WHICH is 1.  The first bound is I=1. */
static int
desc_bound_bitpos (struct type *type, int i, int which)
{
  return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
}

/* If BOUNDS is an array-bounds structure type, return the bit field size
   of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
   bound, if WHICH is 1.  The first bound is I=1. */
static int
desc_bound_bitsize (struct type *type, int i, int which)
{
  type = desc_base_type (type);

  if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
    return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
  else
    return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
}

/* If TYPE is the type of an array-bounds structure, the type of its
   Ith bound (numbering from 1). Otherwise, NULL. */
static struct type *
desc_index_type (struct type *type, int i)
{
  type = desc_base_type (type);

  if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
    return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
  else
    return NULL;
}

/* The number of index positions in the array-bounds type TYPE.  0
   if TYPE is NULL. */
static int
desc_arity (struct type *type)
{
  type = desc_base_type (type);

  if (type != NULL)
    return TYPE_NFIELDS (type) / 2;
  return 0;
}


/* Non-zero iff type is a simple array type (or pointer to one). */
int
ada_is_simple_array (struct type *type)
{
  if (type == NULL)
    return 0;
  CHECK_TYPEDEF (type);
  return (TYPE_CODE (type) == TYPE_CODE_ARRAY
	  || (TYPE_CODE (type) == TYPE_CODE_PTR
	      && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
}

/* Non-zero iff type belongs to a GNAT array descriptor. */
int
ada_is_array_descriptor (struct type *type)
{
  struct type *data_type = desc_data_type (type);

  if (type == NULL)
    return 0;
  CHECK_TYPEDEF (type);
  return
    data_type != NULL
    && ((TYPE_CODE (data_type) == TYPE_CODE_PTR
	 && TYPE_TARGET_TYPE (data_type) != NULL
	 && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY)
	||
	TYPE_CODE (data_type) == TYPE_CODE_ARRAY)
    && desc_arity (desc_bounds_type (type)) > 0;
}

/* Non-zero iff type is a partially mal-formed GNAT array
   descriptor.  (FIXME: This is to compensate for some problems with 
   debugging output from GNAT.  Re-examine periodically to see if it
   is still needed. */
int
ada_is_bogus_array_descriptor (struct type *type)
{
  return
    type != NULL
    && TYPE_CODE (type) == TYPE_CODE_STRUCT
    && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
	|| lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
    && !ada_is_array_descriptor (type);
}


/* If ARR has a record type in the form of a standard GNAT array descriptor, 
   (fat pointer) returns the type of the array data described---specifically,
   a pointer-to-array type.  If BOUNDS is non-zero, the bounds data are filled 
   in from the descriptor; otherwise, they are left unspecified.  If
   the ARR denotes a null array descriptor and BOUNDS is non-zero, 
   returns NULL.  The result is simply the type of ARR if ARR is not 
   a descriptor.  */
struct type *
ada_type_of_array (struct value *arr, int bounds)
{
  if (ada_is_packed_array_type (VALUE_TYPE (arr)))
    return decode_packed_array_type (VALUE_TYPE (arr));

  if (!ada_is_array_descriptor (VALUE_TYPE (arr)))
    return VALUE_TYPE (arr);

  if (!bounds)
    return
      check_typedef (TYPE_TARGET_TYPE (desc_data_type (VALUE_TYPE (arr))));
  else
    {
      struct type *elt_type;
      int arity;
      struct value *descriptor;
      struct objfile *objf = TYPE_OBJFILE (VALUE_TYPE (arr));

      elt_type = ada_array_element_type (VALUE_TYPE (arr), -1);
      arity = ada_array_arity (VALUE_TYPE (arr));

      if (elt_type == NULL || arity == 0)
	return check_typedef (VALUE_TYPE (arr));

      descriptor = desc_bounds (arr);
      if (value_as_long (descriptor) == 0)
	return NULL;
      while (arity > 0)
	{
	  struct type *range_type = alloc_type (objf);
	  struct type *array_type = alloc_type (objf);
	  struct value *low = desc_one_bound (descriptor, arity, 0);
	  struct value *high = desc_one_bound (descriptor, arity, 1);
	  arity -= 1;

	  create_range_type (range_type, VALUE_TYPE (low),
			     (int) value_as_long (low),
			     (int) value_as_long (high));
	  elt_type = create_array_type (array_type, elt_type, range_type);
	}

      return lookup_pointer_type (elt_type);
    }
}

/* If ARR does not represent an array, returns ARR unchanged.
   Otherwise, returns either a standard GDB array with bounds set 
   appropriately or, if ARR is a non-null fat pointer, a pointer to a standard 
   GDB array.  Returns NULL if ARR is a null fat pointer. */
struct value *
ada_coerce_to_simple_array_ptr (struct value *arr)
{
  if (ada_is_array_descriptor (VALUE_TYPE (arr)))
    {
      struct type *arrType = ada_type_of_array (arr, 1);
      if (arrType == NULL)
	return NULL;
      return value_cast (arrType, value_copy (desc_data (arr)));
    }
  else if (ada_is_packed_array_type (VALUE_TYPE (arr)))
    return decode_packed_array (arr);
  else
    return arr;
}

/* If ARR does not represent an array, returns ARR unchanged.
   Otherwise, returns a standard GDB array describing ARR (which may
   be ARR itself if it already is in the proper form). */
struct value *
ada_coerce_to_simple_array (struct value *arr)
{
  if (ada_is_array_descriptor (VALUE_TYPE (arr)))
    {
      struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
      if (arrVal == NULL)
	error ("Bounds unavailable for null array pointer.");
      return value_ind (arrVal);
    }
  else if (ada_is_packed_array_type (VALUE_TYPE (arr)))
    return decode_packed_array (arr);
  else
    return arr;
}

/* If TYPE represents a GNAT array type, return it translated to an
   ordinary GDB array type (possibly with BITSIZE fields indicating
   packing). For other types, is the identity. */
struct type *
ada_coerce_to_simple_array_type (struct type *type)
{
  struct value *mark = value_mark ();
  struct value *dummy = value_from_longest (builtin_type_long, 0);
  struct type *result;
  VALUE_TYPE (dummy) = type;
  result = ada_type_of_array (dummy, 0);
  value_free_to_mark (dummy);
  return result;
}

/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
int
ada_is_packed_array_type (struct type *type)
{
  if (type == NULL)
    return 0;
  CHECK_TYPEDEF (type);
  return
    ada_type_name (type) != NULL
    && strstr (ada_type_name (type), "___XP") != NULL;
}

/* Given that TYPE is a standard GDB array type with all bounds filled
   in, and that the element size of its ultimate scalar constituents
   (that is, either its elements, or, if it is an array of arrays, its
   elements' elements, etc.) is *ELT_BITS, return an identical type,
   but with the bit sizes of its elements (and those of any
   constituent arrays) recorded in the BITSIZE components of its
   TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size 
   in bits. */
static struct type *
packed_array_type (struct type *type, long *elt_bits)
{
  struct type *new_elt_type;
  struct type *new_type;
  LONGEST low_bound, high_bound;

  CHECK_TYPEDEF (type);
  if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
    return type;

  new_type = alloc_type (TYPE_OBJFILE (type));
  new_elt_type = packed_array_type (check_typedef (TYPE_TARGET_TYPE (type)),
				    elt_bits);
  create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0));
  TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
  TYPE_NAME (new_type) = ada_type_name (type);

  if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0),
			   &low_bound, &high_bound) < 0)
    low_bound = high_bound = 0;
  if (high_bound < low_bound)
    *elt_bits = TYPE_LENGTH (new_type) = 0;
  else
    {
      *elt_bits *= (high_bound - low_bound + 1);
      TYPE_LENGTH (new_type) =
	(*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
    }

  /*  TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE; */
  /* FIXME:  TYPE_FLAG_FIXED_INSTANCE should be defined in gdbtypes.h */
  return new_type;
}

/* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE).
 */
static struct type *
decode_packed_array_type (struct type *type)
{
  struct symbol **syms;
  struct block **blocks;
  const char *raw_name = ada_type_name (check_typedef (type));
  char *name = (char *) alloca (strlen (raw_name) + 1);
  char *tail = strstr (raw_name, "___XP");
  struct type *shadow_type;
  long bits;
  int i, n;

  memcpy (name, raw_name, tail - raw_name);
  name[tail - raw_name] = '\000';

  /* NOTE: Use ada_lookup_symbol_list because of bug in some versions
   * of gcc (Solaris, e.g.). FIXME when compiler is fixed. */
  n = ada_lookup_symbol_list (name, get_selected_block (NULL),
			      VAR_NAMESPACE, &syms, &blocks);
  for (i = 0; i < n; i += 1)
    if (syms[i] != NULL && SYMBOL_CLASS (syms[i]) == LOC_TYPEDEF
	&& STREQ (name, ada_type_name (SYMBOL_TYPE (syms[i]))))
      break;
  if (i >= n)
    {
      warning ("could not find bounds information on packed array");
      return NULL;
    }
  shadow_type = SYMBOL_TYPE (syms[i]);

  if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
    {
      warning ("could not understand bounds information on packed array");
      return NULL;
    }

  if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
    {
      warning ("could not understand bit size information on packed array");
      return NULL;
    }

  return packed_array_type (shadow_type, &bits);
}

/* Given that ARR is a struct value* indicating a GNAT packed array,
   returns a simple array that denotes that array.  Its type is a
   standard GDB array type except that the BITSIZEs of the array
   target types are set to the number of bits in each element, and the
   type length is set appropriately. */

static struct value *
decode_packed_array (struct value *arr)
{
  struct type *type = decode_packed_array_type (VALUE_TYPE (arr));

  if (type == NULL)
    {
      error ("can't unpack array");
      return NULL;
    }
  else
    return coerce_unspec_val_to_type (arr, 0, type);
}


/* The value of the element of packed array ARR at the ARITY indices
   given in IND.   ARR must be a simple array. */

static struct value *
value_subscript_packed (struct value *arr, int arity, struct value **ind)
{
  int i;
  int bits, elt_off, bit_off;
  long elt_total_bit_offset;
  struct type *elt_type;
  struct value *v;

  bits = 0;
  elt_total_bit_offset = 0;
  elt_type = check_typedef (VALUE_TYPE (arr));
  for (i = 0; i < arity; i += 1)
    {
      if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
	  || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
	error
	  ("attempt to do packed indexing of something other than a packed array");
      else
	{
	  struct type *range_type = TYPE_INDEX_TYPE (elt_type);
	  LONGEST lowerbound, upperbound;
	  LONGEST idx;

	  if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
	    {
	      warning ("don't know bounds of array");
	      lowerbound = upperbound = 0;
	    }

	  idx = value_as_long (value_pos_atr (ind[i]));
	  if (idx < lowerbound || idx > upperbound)
	    warning ("packed array index %ld out of bounds", (long) idx);
	  bits = TYPE_FIELD_BITSIZE (elt_type, 0);
	  elt_total_bit_offset += (idx - lowerbound) * bits;
	  elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
	}
    }
  elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
  bit_off = elt_total_bit_offset % HOST_CHAR_BIT;

  v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
				      bits, elt_type);
  if (VALUE_LVAL (arr) == lval_internalvar)
    VALUE_LVAL (v) = lval_internalvar_component;
  else
    VALUE_LVAL (v) = VALUE_LVAL (arr);
  return v;
}

/* Non-zero iff TYPE includes negative integer values. */

static int
has_negatives (struct type *type)
{
  switch (TYPE_CODE (type))
    {
    default:
      return 0;
    case TYPE_CODE_INT:
      return !TYPE_UNSIGNED (type);
    case TYPE_CODE_RANGE:
      return TYPE_LOW_BOUND (type) < 0;
    }
}


/* Create a new value of type TYPE from the contents of OBJ starting
   at byte OFFSET, and bit offset BIT_OFFSET within that byte,
   proceeding for BIT_SIZE bits.  If OBJ is an lval in memory, then
   assigning through the result will set the field fetched from. OBJ
   may also be NULL, in which case, VALADDR+OFFSET must address the
   start of storage containing the packed value.  The value returned 
   in this case is never an lval.   
   Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */

struct value *
ada_value_primitive_packed_val (struct value *obj, char *valaddr, long offset,
				int bit_offset, int bit_size,
				struct type *type)
{
  struct value *v;
  int src,			/* Index into the source area. */
    targ,			/* Index into the target area. */
    i, srcBitsLeft,		/* Number of source bits left to move. */
    nsrc, ntarg,		/* Number of source and target bytes. */
    unusedLS,			/* Number of bits in next significant
				 * byte of source that are unused. */
    accumSize;			/* Number of meaningful bits in accum */
  unsigned char *bytes;		/* First byte containing data to unpack. */
  unsigned char *unpacked;
  unsigned long accum;		/* Staging area for bits being transferred */
  unsigned char sign;
  int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
  /* Transmit bytes from least to most significant; delta is the
   * direction the indices move. */
  int delta = BITS_BIG_ENDIAN ? -1 : 1;

  CHECK_TYPEDEF (type);

  if (obj == NULL)
    {
      v = allocate_value (type);
      bytes = (unsigned char *) (valaddr + offset);
    }
  else if (VALUE_LAZY (obj))
    {
      v = value_at (type,
		    VALUE_ADDRESS (obj) + VALUE_OFFSET (obj) + offset, NULL);
      bytes = (unsigned char *) alloca (len);
      read_memory (VALUE_ADDRESS (v), bytes, len);
    }
  else
    {
      v = allocate_value (type);
      bytes = (unsigned char *) VALUE_CONTENTS (obj) + offset;
    }

  if (obj != NULL)
    {
      VALUE_LVAL (v) = VALUE_LVAL (obj);
      if (VALUE_LVAL (obj) == lval_internalvar)
	VALUE_LVAL (v) = lval_internalvar_component;
      VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + VALUE_OFFSET (obj) + offset;
      VALUE_BITPOS (v) = bit_offset + VALUE_BITPOS (obj);
      VALUE_BITSIZE (v) = bit_size;
      if (VALUE_BITPOS (v) >= HOST_CHAR_BIT)
	{
	  VALUE_ADDRESS (v) += 1;
	  VALUE_BITPOS (v) -= HOST_CHAR_BIT;
	}
    }
  else
    VALUE_BITSIZE (v) = bit_size;
  unpacked = (unsigned char *) VALUE_CONTENTS (v);

  srcBitsLeft = bit_size;
  nsrc = len;
  ntarg = TYPE_LENGTH (type);
  sign = 0;
  if (bit_size == 0)
    {
      memset (unpacked, 0, TYPE_LENGTH (type));
      return v;
    }
  else if (BITS_BIG_ENDIAN)
    {
      src = len - 1;
      if (has_negatives (type) &&
	  ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
	sign = ~0;

      unusedLS =
	(HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
	% HOST_CHAR_BIT;

      switch (TYPE_CODE (type))
	{
	case TYPE_CODE_ARRAY:
	case TYPE_CODE_UNION:
	case TYPE_CODE_STRUCT:
	  /* Non-scalar values must be aligned at a byte boundary. */
	  accumSize =
	    (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
	  /* And are placed at the beginning (most-significant) bytes
	   * of the target. */
	  targ = src;
	  break;
	default:
	  accumSize = 0;
	  targ = TYPE_LENGTH (type) - 1;
	  break;
	}
    }
  else
    {
      int sign_bit_offset = (bit_size + bit_offset - 1) % 8;

      src = targ = 0;
      unusedLS = bit_offset;
      accumSize = 0;

      if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
	sign = ~0;
    }

  accum = 0;
  while (nsrc > 0)
    {
      /* Mask for removing bits of the next source byte that are not
       * part of the value. */
      unsigned int unusedMSMask =
	(1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
	1;
      /* Sign-extend bits for this byte. */
      unsigned int signMask = sign & ~unusedMSMask;
      accum |=
	(((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
      accumSize += HOST_CHAR_BIT - unusedLS;
      if (accumSize >= HOST_CHAR_BIT)
	{
	  unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
	  accumSize -= HOST_CHAR_BIT;
	  accum >>= HOST_CHAR_BIT;
	  ntarg -= 1;
	  targ += delta;
	}
      srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
      unusedLS = 0;
      nsrc -= 1;
      src += delta;
    }
  while (ntarg > 0)
    {
      accum |= sign << accumSize;
      unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
      accumSize -= HOST_CHAR_BIT;
      accum >>= HOST_CHAR_BIT;
      ntarg -= 1;
      targ += delta;
    }

  return v;
}

/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
   TARGET, starting at bit offset TARG_OFFSET.  SOURCE and TARGET must
   not overlap. */
static void
move_bits (char *target, int targ_offset, char *source, int src_offset, int n)
{
  unsigned int accum, mask;
  int accum_bits, chunk_size;

  target += targ_offset / HOST_CHAR_BIT;
  targ_offset %= HOST_CHAR_BIT;
  source += src_offset / HOST_CHAR_BIT;
  src_offset %= HOST_CHAR_BIT;
  if (BITS_BIG_ENDIAN)
    {
      accum = (unsigned char) *source;
      source += 1;
      accum_bits = HOST_CHAR_BIT - src_offset;

      while (n > 0)
	{
	  int unused_right;
	  accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
	  accum_bits += HOST_CHAR_BIT;
	  source += 1;
	  chunk_size = HOST_CHAR_BIT - targ_offset;
	  if (chunk_size > n)
	    chunk_size = n;
	  unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
	  mask = ((1 << chunk_size) - 1) << unused_right;
	  *target =
	    (*target & ~mask)
	    | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
	  n -= chunk_size;
	  accum_bits -= chunk_size;
	  target += 1;
	  targ_offset = 0;
	}
    }
  else
    {
      accum = (unsigned char) *source >> src_offset;
      source += 1;
      accum_bits = HOST_CHAR_BIT - src_offset;

      while (n > 0)
	{
	  accum = accum + ((unsigned char) *source << accum_bits);
	  accum_bits += HOST_CHAR_BIT;
	  source += 1;
	  chunk_size = HOST_CHAR_BIT - targ_offset;
	  if (chunk_size > n)
	    chunk_size = n;
	  mask = ((1 << chunk_size) - 1) << targ_offset;
	  *target = (*target & ~mask) | ((accum << targ_offset) & mask);
	  n -= chunk_size;
	  accum_bits -= chunk_size;
	  accum >>= chunk_size;
	  target += 1;
	  targ_offset = 0;
	}
    }
}


/* Store the contents of FROMVAL into the location of TOVAL.
   Return a new value with the location of TOVAL and contents of
   FROMVAL.   Handles assignment into packed fields that have
   floating-point or non-scalar types. */

static struct value *
ada_value_assign (struct value *toval, struct value *fromval)
{
  struct type *type = VALUE_TYPE (toval);
  int bits = VALUE_BITSIZE (toval);

  if (!toval->modifiable)
    error ("Left operand of assignment is not a modifiable lvalue.");

  COERCE_REF (toval);

  if (VALUE_LVAL (toval) == lval_memory
      && bits > 0
      && (TYPE_CODE (type) == TYPE_CODE_FLT
	  || TYPE_CODE (type) == TYPE_CODE_STRUCT))
    {
      int len =
	(VALUE_BITPOS (toval) + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
      char *buffer = (char *) alloca (len);
      struct value *val;

      if (TYPE_CODE (type) == TYPE_CODE_FLT)
	fromval = value_cast (type, fromval);

      read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), buffer, len);
      if (BITS_BIG_ENDIAN)
	move_bits (buffer, VALUE_BITPOS (toval),
		   VALUE_CONTENTS (fromval),
		   TYPE_LENGTH (VALUE_TYPE (fromval)) * TARGET_CHAR_BIT -
		   bits, bits);
      else
	move_bits (buffer, VALUE_BITPOS (toval), VALUE_CONTENTS (fromval),
		   0, bits);
      write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), buffer,
		    len);

      val = value_copy (toval);
      memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
	      TYPE_LENGTH (type));
      VALUE_TYPE (val) = type;

      return val;
    }

  return value_assign (toval, fromval);
}


/* The value of the element of array ARR at the ARITY indices given in IND. 
   ARR may be either a simple array, GNAT array descriptor, or pointer 
   thereto.  */

struct value *
ada_value_subscript (struct value *arr, int arity, struct value **ind)
{
  int k;
  struct value *elt;
  struct type *elt_type;

  elt = ada_coerce_to_simple_array (arr);

  elt_type = check_typedef (VALUE_TYPE (elt));
  if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
      && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
    return value_subscript_packed (elt, arity, ind);

  for (k = 0; k < arity; k += 1)
    {
      if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
	error ("too many subscripts (%d expected)", k);
      elt = value_subscript (elt, value_pos_atr (ind[k]));
    }
  return elt;
}

/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
   value of the element of *ARR at the ARITY indices given in
   IND. Does not read the entire array into memory. */

struct value *
ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
			 struct value **ind)
{
  int k;

  for (k = 0; k < arity; k += 1)
    {
      LONGEST lwb, upb;
      struct value *idx;

      if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
	error ("too many subscripts (%d expected)", k);
      arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
			value_copy (arr));
      get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
      if (lwb == 0)
	idx = ind[k];
      else
	idx = value_sub (ind[k], value_from_longest (builtin_type_int, lwb));
      arr = value_add (arr, idx);
      type = TYPE_TARGET_TYPE (type);
    }

  return value_ind (arr);
}

/* If type is a record type in the form of a standard GNAT array
   descriptor, returns the number of dimensions for type.  If arr is a
   simple array, returns the number of "array of"s that prefix its
   type designation. Otherwise, returns 0. */

int
ada_array_arity (struct type *type)
{
  int arity;

  if (type == NULL)
    return 0;

  type = desc_base_type (type);

  arity = 0;
  if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
    return desc_arity (desc_bounds_type (type));
  else
    while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
      {
	arity += 1;
	type = check_typedef (TYPE_TARGET_TYPE (type));
      }

  return arity;
}

/* If TYPE is a record type in the form of a standard GNAT array
   descriptor or a simple array type, returns the element type for
   TYPE after indexing by NINDICES indices, or by all indices if
   NINDICES is -1. Otherwise, returns NULL. */

struct type *
ada_array_element_type (struct type *type, int nindices)
{
  type = desc_base_type (type);

  if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
    {
      int k;
      struct type *p_array_type;

      p_array_type = desc_data_type (type);

      k = ada_array_arity (type);
      if (k == 0)
	return NULL;

      /* Initially p_array_type = elt_type(*)[]...(k times)...[] */
      if (nindices >= 0 && k > nindices)
	k = nindices;
      p_array_type = TYPE_TARGET_TYPE (p_array_type);
      while (k > 0 && p_array_type != NULL)
	{
	  p_array_type = check_typedef (TYPE_TARGET_TYPE (p_array_type));
	  k -= 1;
	}
      return p_array_type;
    }
  else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
    {
      while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
	{
	  type = TYPE_TARGET_TYPE (type);
	  nindices -= 1;
	}
      return type;
    }

  return NULL;
}

/* The type of nth index in arrays of given type (n numbering from 1).  Does 
   not examine memory. */

struct type *
ada_index_type (struct type *type, int n)
{
  type = desc_base_type (type);

  if (n > ada_array_arity (type))
    return NULL;

  if (ada_is_simple_array (type))
    {
      int i;

      for (i = 1; i < n; i += 1)
	type = TYPE_TARGET_TYPE (type);

      return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0));
    }
  else
    return desc_index_type (desc_bounds_type (type), n);
}

/* Given that arr is an array type, returns the lower bound of the
   Nth index (numbering from 1) if WHICH is 0, and the upper bound if
   WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
   array-descriptor type.  If TYPEP is non-null, *TYPEP is set to the 
   bounds type.  It works for other arrays with bounds supplied by 
   run-time quantities other than discriminants. */

LONGEST
ada_array_bound_from_type (struct type * arr_type, int n, int which,
			   struct type ** typep)
{
  struct type *type;
  struct type *index_type_desc;

  if (ada_is_packed_array_type (arr_type))
    arr_type = decode_packed_array_type (arr_type);

  if (arr_type == NULL || !ada_is_simple_array (arr_type))
    {
      if (typep != NULL)
	*typep = builtin_type_int;
      return (LONGEST) - which;
    }

  if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
    type = TYPE_TARGET_TYPE (arr_type);
  else
    type = arr_type;

  index_type_desc = ada_find_parallel_type (type, "___XA");
  if (index_type_desc == NULL)
    {
      struct type *range_type;
      struct type *index_type;

      while (n > 1)
	{
	  type = TYPE_TARGET_TYPE (type);
	  n -= 1;
	}

      range_type = TYPE_INDEX_TYPE (type);
      index_type = TYPE_TARGET_TYPE (range_type);
      if (TYPE_CODE (index_type) == TYPE_CODE_UNDEF)
	index_type = builtin_type_long;
      if (typep != NULL)
	*typep = index_type;
      return
	(LONGEST) (which == 0
		   ? TYPE_LOW_BOUND (range_type)
		   : TYPE_HIGH_BOUND (range_type));
    }
  else
    {
      struct type *index_type =
	to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
			     NULL, TYPE_OBJFILE (arr_type));
      if (typep != NULL)
	*typep = TYPE_TARGET_TYPE (index_type);
      return
	(LONGEST) (which == 0
		   ? TYPE_LOW_BOUND (index_type)
		   : TYPE_HIGH_BOUND (index_type));
    }
}

/* Given that arr is an array value, returns the lower bound of the
   nth index (numbering from 1) if which is 0, and the upper bound if
   which is 1. This routine will also work for arrays with bounds
   supplied by run-time quantities other than discriminants. */

struct value *
ada_array_bound (struct value *arr, int n, int which)
{
  struct type *arr_type = VALUE_TYPE (arr);

  if (ada_is_packed_array_type (arr_type))
    return ada_array_bound (decode_packed_array (arr), n, which);
  else if (ada_is_simple_array (arr_type))
    {
      struct type *type;
      LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type);
      return value_from_longest (type, v);
    }
  else
    return desc_one_bound (desc_bounds (arr), n, which);
}

/* Given that arr is an array value, returns the length of the
   nth index.  This routine will also work for arrays with bounds
   supplied by run-time quantities other than discriminants. Does not
   work for arrays indexed by enumeration types with representation
   clauses at the moment. */

struct value *
ada_array_length (struct value *arr, int n)
{
  struct type *arr_type = check_typedef (VALUE_TYPE (arr));
  struct type *index_type_desc;

  if (ada_is_packed_array_type (arr_type))
    return ada_array_length (decode_packed_array (arr), n);

  if (ada_is_simple_array (arr_type))
    {
      struct type *type;
      LONGEST v =
	ada_array_bound_from_type (arr_type, n, 1, &type) -
	ada_array_bound_from_type (arr_type, n, 0, NULL) + 1;
      return value_from_longest (type, v);
    }
  else
    return
      value_from_longest (builtin_type_ada_int,
			  value_as_long (desc_one_bound (desc_bounds (arr),
							 n, 1))
			  - value_as_long (desc_one_bound (desc_bounds (arr),
							   n, 0)) + 1);
}


				/* Name resolution */

/* The "demangled" name for the user-definable Ada operator corresponding
   to op. */

static const char *
ada_op_name (enum exp_opcode op)
{
  int i;

  for (i = 0; ada_opname_table[i].mangled != NULL; i += 1)
    {
      if (ada_opname_table[i].op == op)
	return ada_opname_table[i].demangled;
    }
  error ("Could not find operator name for opcode");
}


/* Same as evaluate_type (*EXP), but resolves ambiguous symbol 
   references (OP_UNRESOLVED_VALUES) and converts operators that are 
   user-defined into appropriate function calls.  If CONTEXT_TYPE is 
   non-null, it provides a preferred result type [at the moment, only
   type void has any effect---causing procedures to be preferred over
   functions in calls].  A null CONTEXT_TYPE indicates that a non-void
   return type is preferred.  The variable unresolved_names contains a list
   of character strings referenced by expout that should be freed.  
   May change (expand) *EXP.  */

void
ada_resolve (struct expression **expp, struct type *context_type)
{
  int pc;
  pc = 0;
  ada_resolve_subexp (expp, &pc, 1, context_type);
}

/* Resolve the operator of the subexpression beginning at 
   position *POS of *EXPP. "Resolving" consists of replacing
   OP_UNRESOLVED_VALUE with an appropriate OP_VAR_VALUE, replacing
   built-in operators with function calls to user-defined operators,
   where appropriate, and (when DEPROCEDURE_P is non-zero), converting
   function-valued variables into parameterless calls.  May expand
   EXP. The CONTEXT_TYPE functions as in ada_resolve, above. */

static struct value *
ada_resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
		    struct type *context_type)
{
  int pc = *pos;
  int i;
  struct expression *exp;	/* Convenience: == *expp */
  enum exp_opcode op = (*expp)->elts[pc].opcode;
  struct value **argvec;	/* Vector of operand types (alloca'ed). */
  int nargs;			/* Number of operands */

  argvec = NULL;
  nargs = 0;
  exp = *expp;

  /* Pass one: resolve operands, saving their types and updating *pos. */
  switch (op)
    {
    case OP_VAR_VALUE:
      /*    case OP_UNRESOLVED_VALUE: */
      /* FIXME:  OP_UNRESOLVED_VALUE should be defined in expression.h */
      *pos += 4;
      break;

    case OP_FUNCALL:
      nargs = longest_to_int (exp->elts[pc + 1].longconst) + 1;
      /* FIXME:  OP_UNRESOLVED_VALUE should be defined in expression.h */
      /*      if (exp->elts[pc+3].opcode == OP_UNRESOLVED_VALUE)        
         {
         *pos += 7;

         argvec = (struct value* *) alloca (sizeof (struct value*) * (nargs + 1));
         for (i = 0; i < nargs-1; i += 1)
         argvec[i] = ada_resolve_subexp (expp, pos, 1, NULL);
         argvec[i] = NULL;
         }
         else
         {
         *pos += 3;
         ada_resolve_subexp (expp, pos, 0, NULL);
         for (i = 1; i < nargs; i += 1)
         ada_resolve_subexp (expp, pos, 1, NULL);
         }
       */
      exp = *expp;
      break;

      /* FIXME:  UNOP_QUAL should be defined in expression.h */
      /*    case UNOP_QUAL:
         nargs = 1;
         *pos += 3;
         ada_resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type);
         exp = *expp;
         break;
       */
      /* FIXME:  OP_ATTRIBUTE should be defined in expression.h */
      /*    case OP_ATTRIBUTE:
         nargs = longest_to_int (exp->elts[pc + 1].longconst) + 1;
         *pos += 4;
         for (i = 0; i < nargs; i += 1)
         ada_resolve_subexp (expp, pos, 1, NULL);
         exp = *expp;
         break;
       */
    case UNOP_ADDR:
      nargs = 1;
      *pos += 1;
      ada_resolve_subexp (expp, pos, 0, NULL);
      exp = *expp;
      break;

    case BINOP_ASSIGN:
      {
	struct value *arg1;
	nargs = 2;
	*pos += 1;
	arg1 = ada_resolve_subexp (expp, pos, 0, NULL);
	if (arg1 == NULL)
	  ada_resolve_subexp (expp, pos, 1, NULL);
	else
	  ada_resolve_subexp (expp, pos, 1, VALUE_TYPE (arg1));
	break;
      }

    default:
      switch (op)
	{
	default:
	  error ("Unexpected operator during name resolution");
	case UNOP_CAST:
	  /*    case UNOP_MBR:
	     nargs = 1;
	     *pos += 3;
	     break;
	   */
	case BINOP_ADD:
	case BINOP_SUB:
	case BINOP_MUL:
	case BINOP_DIV:
	case BINOP_REM:
	case BINOP_MOD:
	case BINOP_EXP:
	case BINOP_CONCAT:
	case BINOP_LOGICAL_AND:
	case BINOP_LOGICAL_OR:
	case BINOP_BITWISE_AND:
	case BINOP_BITWISE_IOR:
	case BINOP_BITWISE_XOR:

	case BINOP_EQUAL:
	case BINOP_NOTEQUAL:
	case BINOP_LESS:
	case BINOP_GTR:
	case BINOP_LEQ:
	case BINOP_GEQ:

	case BINOP_REPEAT:
	case BINOP_SUBSCRIPT:
	case BINOP_COMMA:
	  nargs = 2;
	  *pos += 1;
	  break;

	case UNOP_NEG:
	case UNOP_PLUS:
	case UNOP_LOGICAL_NOT:
	case UNOP_ABS:
	case UNOP_IND:
	  nargs = 1;
	  *pos += 1;
	  break;

	case OP_LONG:
	case OP_DOUBLE:
	case OP_VAR_VALUE:
	  *pos += 4;
	  break;

	case OP_TYPE:
	case OP_BOOL:
	case OP_LAST:
	case OP_REGISTER:
	case OP_INTERNALVAR:
	  *pos += 3;
	  break;

	case UNOP_MEMVAL:
	  *pos += 3;
	  nargs = 1;
	  break;

	case STRUCTOP_STRUCT:
	case STRUCTOP_PTR:
	  nargs = 1;
	  *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
	  break;

	case OP_ARRAY:
	  *pos += 4;
	  nargs = longest_to_int (exp->elts[pc + 2].longconst) + 1;
	  nargs -= longest_to_int (exp->elts[pc + 1].longconst);
	  /* A null array contains one dummy element to give the type. */
	  /*      if (nargs == 0)
	     nargs = 1;
	     break; */

	case TERNOP_SLICE:
	  /* FIXME: TERNOP_MBR should be defined in expression.h */
	  /*    case TERNOP_MBR:
	     *pos += 1;
	     nargs = 3;
	     break;
	   */
	  /* FIXME: BINOP_MBR should be defined in expression.h */
	  /*    case BINOP_MBR:
	     *pos += 3;
	     nargs = 2;
	     break; */
	}

      argvec =
	(struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
      for (i = 0; i < nargs; i += 1)
	argvec[i] = ada_resolve_subexp (expp, pos, 1, NULL);
      argvec[i] = NULL;
      exp = *expp;
      break;
    }

  /* Pass two: perform any resolution on principal operator. */
  switch (op)
    {
    default:
      break;

      /* FIXME:  OP_UNRESOLVED_VALUE should be defined in expression.h */
      /*    case OP_UNRESOLVED_VALUE:
         {
         struct symbol** candidate_syms;
         struct block** candidate_blocks;
         int n_candidates;

         n_candidates = ada_lookup_symbol_list (exp->elts[pc + 2].name,
         exp->elts[pc + 1].block,
         VAR_NAMESPACE,
         &candidate_syms,
         &candidate_blocks);

         if (n_candidates > 1) 
         { */
      /* Types tend to get re-introduced locally, so if there
         are any local symbols that are not types, first filter
   out all types. *//*
   int j;
   for (j = 0; j < n_candidates; j += 1) 
   switch (SYMBOL_CLASS (candidate_syms[j])) 
   {
   case LOC_REGISTER:
   case LOC_ARG:
   case LOC_REF_ARG:
   case LOC_REGPARM:
   case LOC_REGPARM_ADDR:
   case LOC_LOCAL:
   case LOC_LOCAL_ARG:
   case LOC_BASEREG:
   case LOC_BASEREG_ARG:
   goto FoundNonType;
   default:
   break;
   }
   FoundNonType:
   if (j < n_candidates) 
   {
   j = 0;
   while (j < n_candidates) 
   {
   if (SYMBOL_CLASS (candidate_syms[j]) == LOC_TYPEDEF)
   {
   candidate_syms[j] = candidate_syms[n_candidates-1];
   candidate_blocks[j] = candidate_blocks[n_candidates-1];
   n_candidates -= 1;
   }
   else
   j += 1;
   }
   }
   }

   if (n_candidates == 0)
   error ("No definition found for %s", 
   ada_demangle (exp->elts[pc + 2].name));
   else if (n_candidates == 1)
   i = 0;
   else if (deprocedure_p 
   && ! is_nonfunction (candidate_syms, n_candidates))
   {
   i = ada_resolve_function (candidate_syms, candidate_blocks,
   n_candidates, NULL, 0,
   exp->elts[pc + 2].name, context_type);
   if (i < 0) 
   error ("Could not find a match for %s", 
   ada_demangle (exp->elts[pc + 2].name));
   }
   else 
   {
   printf_filtered ("Multiple matches for %s\n", 
   ada_demangle (exp->elts[pc+2].name));
   user_select_syms (candidate_syms, candidate_blocks, 
   n_candidates, 1);
   i = 0;
   }

   exp->elts[pc].opcode = exp->elts[pc + 3].opcode = OP_VAR_VALUE;
   exp->elts[pc + 1].block = candidate_blocks[i];
   exp->elts[pc + 2].symbol = candidate_syms[i];
   if (innermost_block == NULL ||
   contained_in (candidate_blocks[i], innermost_block))
   innermost_block = candidate_blocks[i];
   } */
      /* FALL THROUGH */

    case OP_VAR_VALUE:
      if (deprocedure_p &&
	  TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol)) ==
	  TYPE_CODE_FUNC)
	{
	  replace_operator_with_call (expp, pc, 0, 0,
				      exp->elts[pc + 2].symbol,
				      exp->elts[pc + 1].block);
	  exp = *expp;
	}
      break;

    case OP_FUNCALL:
      {
	/* FIXME:  OP_UNRESOLVED_VALUE should be defined in expression.h */
	/*      if (exp->elts[pc+3].opcode == OP_UNRESOLVED_VALUE)      
	   {
	   struct symbol** candidate_syms;
	   struct block** candidate_blocks;
	   int n_candidates;

	   n_candidates = ada_lookup_symbol_list (exp->elts[pc + 5].name,
	   exp->elts[pc + 4].block,
	   VAR_NAMESPACE,
	   &candidate_syms,
	   &candidate_blocks);
	   if (n_candidates == 1)
	   i = 0;
	   else
	   {
	   i = ada_resolve_function (candidate_syms, candidate_blocks,
	   n_candidates, argvec, nargs-1,
	   exp->elts[pc + 5].name, context_type);
	   if (i < 0) 
	   error ("Could not find a match for %s", 
	   ada_demangle (exp->elts[pc + 5].name));
	   }

	   exp->elts[pc + 3].opcode = exp->elts[pc + 6].opcode = OP_VAR_VALUE;
	   exp->elts[pc + 4].block = candidate_blocks[i];
	   exp->elts[pc + 5].symbol = candidate_syms[i];
	   if (innermost_block == NULL ||
	   contained_in (candidate_blocks[i], innermost_block))
	   innermost_block = candidate_blocks[i];
	   } */

      }
      break;
    case BINOP_ADD:
    case BINOP_SUB:
    case BINOP_MUL:
    case BINOP_DIV:
    case BINOP_REM:
    case BINOP_MOD:
    case BINOP_CONCAT:
    case BINOP_BITWISE_AND:
    case BINOP_BITWISE_IOR:
    case BINOP_BITWISE_XOR:
    case BINOP_EQUAL:
    case BINOP_NOTEQUAL:
    case BINOP_LESS:
    case BINOP_GTR:
    case BINOP_LEQ:
    case BINOP_GEQ:
    case BINOP_EXP:
    case UNOP_NEG:
    case UNOP_PLUS:
    case UNOP_LOGICAL_NOT:
    case UNOP_ABS:
      if (possible_user_operator_p (op, argvec))
	{
	  struct symbol **candidate_syms;
	  struct block **candidate_blocks;
	  int n_candidates;

	  n_candidates =
	    ada_lookup_symbol_list (ada_mangle (ada_op_name (op)),
				    (struct block *) NULL, VAR_NAMESPACE,
				    &candidate_syms, &candidate_blocks);
	  i =
	    ada_resolve_function (candidate_syms, candidate_blocks,
				  n_candidates, argvec, nargs,
				  ada_op_name (op), NULL);
	  if (i < 0)
	    break;

	  replace_operator_with_call (expp, pc, nargs, 1,
				      candidate_syms[i], candidate_blocks[i]);
	  exp = *expp;
	}
      break;
    }

  *pos = pc;
  return evaluate_subexp_type (exp, pos);
}

/* Return non-zero if formal type FTYPE matches actual type ATYPE.  If
   MAY_DEREF is non-zero, the formal may be a pointer and the actual 
   a non-pointer. */
/* The term "match" here is rather loose.  The match is heuristic and
   liberal.  FIXME: TOO liberal, in fact. */

static int
ada_type_match (struct type *ftype, struct type *atype, int may_deref)
{
  CHECK_TYPEDEF (ftype);
  CHECK_TYPEDEF (atype);

  if (TYPE_CODE (ftype) == TYPE_CODE_REF)
    ftype = TYPE_TARGET_TYPE (ftype);
  if (TYPE_CODE (atype) == TYPE_CODE_REF)
    atype = TYPE_TARGET_TYPE (atype);

  if (TYPE_CODE (ftype) == TYPE_CODE_VOID
      || TYPE_CODE (atype) == TYPE_CODE_VOID)
    return 1;

  switch (TYPE_CODE (ftype))
    {
    default:
      return 1;
    case TYPE_CODE_PTR:
      if (TYPE_CODE (atype) == TYPE_CODE_PTR)
	return ada_type_match (TYPE_TARGET_TYPE (ftype),
			       TYPE_TARGET_TYPE (atype), 0);
      else
	return (may_deref &&
		ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
    case TYPE_CODE_INT:
    case TYPE_CODE_ENUM:
    case TYPE_CODE_RANGE:
      switch (TYPE_CODE (atype))
	{
	case TYPE_CODE_INT:
	case TYPE_CODE_ENUM:
	case TYPE_CODE_RANGE:
	  return 1;
	default:
	  return 0;
	}

    case TYPE_CODE_ARRAY:
      return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
	      || ada_is_array_descriptor (atype));

    case TYPE_CODE_STRUCT:
      if (ada_is_array_descriptor (ftype))
	return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
		|| ada_is_array_descriptor (atype));
      else
	return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
		&& !ada_is_array_descriptor (atype));

    case TYPE_CODE_UNION:
    case TYPE_CODE_FLT:
      return (TYPE_CODE (atype) == TYPE_CODE (ftype));
    }
}

/* Return non-zero if the formals of FUNC "sufficiently match" the
   vector of actual argument types ACTUALS of size N_ACTUALS.  FUNC
   may also be an enumeral, in which case it is treated as a 0-
   argument function. */

static int
ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
{
  int i;
  struct type *func_type = SYMBOL_TYPE (func);

  if (SYMBOL_CLASS (func) == LOC_CONST &&
      TYPE_CODE (func_type) == TYPE_CODE_ENUM)
    return (n_actuals == 0);
  else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
    return 0;

  if (TYPE_NFIELDS (func_type) != n_actuals)
    return 0;

  for (i = 0; i < n_actuals; i += 1)
    {
      struct type *ftype = check_typedef (TYPE_FIELD_TYPE (func_type, i));
      struct type *atype = check_typedef (VALUE_TYPE (actuals[i]));

      if (!ada_type_match (TYPE_FIELD_TYPE (func_type, i),
			   VALUE_TYPE (actuals[i]), 1))
	return 0;
    }
  return 1;
}

/* False iff function type FUNC_TYPE definitely does not produce a value
   compatible with type CONTEXT_TYPE.  Conservatively returns 1 if
   FUNC_TYPE is not a valid function type with a non-null return type
   or an enumerated type.  A null CONTEXT_TYPE indicates any non-void type.  */

static int
return_match (struct type *func_type, struct type *context_type)
{
  struct type *return_type;

  if (func_type == NULL)
    return 1;

  /* FIXME: base_type should be declared in gdbtypes.h, implemented in valarith.c */
  /*  if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
     return_type = base_type (TYPE_TARGET_TYPE (func_type));
     else 
     return_type = base_type (func_type); */
  if (return_type == NULL)
    return 1;

  /* FIXME: base_type should be declared in gdbtypes.h, implemented in valarith.c */
  /*  context_type = base_type (context_type); */

  if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
    return context_type == NULL || return_type == context_type;
  else if (context_type == NULL)
    return TYPE_CODE (return_type) != TYPE_CODE_VOID;
  else
    return TYPE_CODE (return_type) == TYPE_CODE (context_type);
}


/* Return the index in SYMS[0..NSYMS-1] of symbol for the 
   function (if any) that matches the types of the NARGS arguments in
   ARGS.  If CONTEXT_TYPE is non-null, and there is at least one match
   that returns type CONTEXT_TYPE, then eliminate other matches.  If
   CONTEXT_TYPE is null, prefer a non-void-returning function.
   Asks the user if there is more than one match remaining.  Returns -1
   if there is no such symbol or none is selected.  NAME is used
   solely for messages.   May re-arrange and modify SYMS in
   the process; the index returned is for the modified vector.  BLOCKS
   is modified in parallel to SYMS. */

int
ada_resolve_function (struct symbol *syms[], struct block *blocks[],
		      int nsyms, struct value **args, int nargs,
		      const char *name, struct type *context_type)
{
  int k;
  int m;			/* Number of hits */
  struct type *fallback;
  struct type *return_type;

  return_type = context_type;
  if (context_type == NULL)
    fallback = builtin_type_void;
  else
    fallback = NULL;

  m = 0;
  while (1)
    {
      for (k = 0; k < nsyms; k += 1)
	{
	  struct type *type = check_typedef (SYMBOL_TYPE (syms[k]));

	  if (ada_args_match (syms[k], args, nargs)
	      && return_match (SYMBOL_TYPE (syms[k]), return_type))
	    {
	      syms[m] = syms[k];
	      if (blocks != NULL)
		blocks[m] = blocks[k];
	      m += 1;
	    }
	}
      if (m > 0 || return_type == fallback)
	break;
      else
	return_type = fallback;
    }

  if (m == 0)
    return -1;
  else if (m > 1)
    {
      printf_filtered ("Multiple matches for %s\n", name);
      user_select_syms (syms, blocks, m, 1);
      return 0;
    }
  return 0;
}

/* Returns true (non-zero) iff demangled name N0 should appear before N1 */
/* in a listing of choices during disambiguation (see sort_choices, below). */
/* The idea is that overloadings of a subprogram name from the */
/* same package should sort in their source order.  We settle for ordering */
/* such symbols by their trailing number (__N  or $N). */
static int
mangled_ordered_before (char *N0, char *N1)
{
  if (N1 == NULL)
    return 0;
  else if (N0 == NULL)
    return 1;
  else
    {
      int k0, k1;
      for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
	;
      for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
	;
      if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
	  && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
	{
	  int n0, n1;
	  n0 = k0;
	  while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
	    n0 -= 1;
	  n1 = k1;
	  while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
	    n1 -= 1;
	  if (n0 == n1 && STREQN (N0, N1, n0))
	    return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
	}
      return (strcmp (N0, N1) < 0);
    }
}

/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by their */
/* mangled names, rearranging BLOCKS[0..NSYMS-1] according to the same */
/* permutation. */
static void
sort_choices (struct symbol *syms[], struct block *blocks[], int nsyms)
{
  int i, j;
  for (i = 1; i < nsyms; i += 1)
    {
      struct symbol *sym = syms[i];
      struct block *block = blocks[i];
      int j;

      for (j = i - 1; j >= 0; j -= 1)
	{
	  if (mangled_ordered_before (SYMBOL_NAME (syms[j]),
				      SYMBOL_NAME (sym)))
	    break;
	  syms[j + 1] = syms[j];
	  blocks[j + 1] = blocks[j];
	}
      syms[j + 1] = sym;
      blocks[j + 1] = block;
    }
}

/* Given a list of NSYMS symbols in SYMS and corresponding blocks in */
/* BLOCKS, select up to MAX_RESULTS>0 by asking the user (if */
/* necessary), returning the number selected, and setting the first */
/* elements of SYMS and BLOCKS to the selected symbols and */
/* corresponding blocks.  Error if no symbols selected.   BLOCKS may */
/* be NULL, in which case it is ignored. */

/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
   to be re-integrated one of these days. */

int
user_select_syms (struct symbol *syms[], struct block *blocks[], int nsyms,
		  int max_results)
{
  int i;
  int *chosen = (int *) alloca (sizeof (int) * nsyms);
  int n_chosen;
  int first_choice = (max_results == 1) ? 1 : 2;

  if (max_results < 1)
    error ("Request to select 0 symbols!");
  if (nsyms <= 1)
    return nsyms;

  printf_unfiltered ("[0] cancel\n");
  if (max_results > 1)
    printf_unfiltered ("[1] all\n");

  sort_choices (syms, blocks, nsyms);

  for (i = 0; i < nsyms; i += 1)
    {
      if (syms[i] == NULL)
	continue;

      if (SYMBOL_CLASS (syms[i]) == LOC_BLOCK)
	{
	  struct symtab_and_line sal = find_function_start_sal (syms[i], 1);
	  printf_unfiltered ("[%d] %s at %s:%d\n",
			     i + first_choice,
			     SYMBOL_SOURCE_NAME (syms[i]),
			     sal.symtab == NULL
			     ? "<no source file available>"
			     : sal.symtab->filename, sal.line);
	  continue;
	}
      else
	{
	  int is_enumeral =
	    (SYMBOL_CLASS (syms[i]) == LOC_CONST
	     && SYMBOL_TYPE (syms[i]) != NULL
	     && TYPE_CODE (SYMBOL_TYPE (syms[i])) == TYPE_CODE_ENUM);
	  struct symtab *symtab = symtab_for_sym (syms[i]);

	  if (SYMBOL_LINE (syms[i]) != 0 && symtab != NULL)
	    printf_unfiltered ("[%d] %s at %s:%d\n",
			       i + first_choice,
			       SYMBOL_SOURCE_NAME (syms[i]),
			       symtab->filename, SYMBOL_LINE (syms[i]));
	  else if (is_enumeral && TYPE_NAME (SYMBOL_TYPE (syms[i])) != NULL)
	    {
	      printf_unfiltered ("[%d] ", i + first_choice);
	      ada_print_type (SYMBOL_TYPE (syms[i]), NULL, gdb_stdout, -1, 0);
	      printf_unfiltered ("'(%s) (enumeral)\n",
				 SYMBOL_SOURCE_NAME (syms[i]));
	    }
	  else if (symtab != NULL)
	    printf_unfiltered (is_enumeral
			       ? "[%d] %s in %s (enumeral)\n"
			       : "[%d] %s at %s:?\n",
			       i + first_choice,
			       SYMBOL_SOURCE_NAME (syms[i]),
			       symtab->filename);
	  else
	    printf_unfiltered (is_enumeral
			       ? "[%d] %s (enumeral)\n"
			       : "[%d] %s at ?\n",
			       i + first_choice,
			       SYMBOL_SOURCE_NAME (syms[i]));
	}
    }

  n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
			     "overload-choice");

  for (i = 0; i < n_chosen; i += 1)
    {
      syms[i] = syms[chosen[i]];
      if (blocks != NULL)
	blocks[i] = blocks[chosen[i]];
    }

  return n_chosen;
}

/* Read and validate a set of numeric choices from the user in the
   range 0 .. N_CHOICES-1. Place the results in increasing
   order in CHOICES[0 .. N-1], and return N.

   The user types choices as a sequence of numbers on one line
   separated by blanks, encoding them as follows:

     + A choice of 0 means to cancel the selection, throwing an error.  
     + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
     + The user chooses k by typing k+IS_ALL_CHOICE+1.

   The user is not allowed to choose more than MAX_RESULTS values. 

   ANNOTATION_SUFFIX, if present, is used to annotate the input
   prompts (for use with the -f switch). */

int
get_selections (int *choices, int n_choices, int max_results,
		int is_all_choice, char *annotation_suffix)
{
  int i;
  char *args;
  const char *prompt;
  int n_chosen;
  int first_choice = is_all_choice ? 2 : 1;

  prompt = getenv ("PS2");
  if (prompt == NULL)
    prompt = ">";

  printf_unfiltered ("%s ", prompt);
  gdb_flush (gdb_stdout);

  args = command_line_input ((char *) NULL, 0, annotation_suffix);

  if (args == NULL)
    error_no_arg ("one or more choice numbers");

  n_chosen = 0;

  /* Set choices[0 .. n_chosen-1] to the users' choices in ascending 
     order, as given in args.   Choices are validated. */
  while (1)
    {
      char *args2;
      int choice, j;

      while (isspace (*args))
	args += 1;
      if (*args == '\0' && n_chosen == 0)
	error_no_arg ("one or more choice numbers");
      else if (*args == '\0')
	break;

      choice = strtol (args, &args2, 10);
      if (args == args2 || choice < 0
	  || choice > n_choices + first_choice - 1)
	error ("Argument must be choice number");
      args = args2;

      if (choice == 0)
	error ("cancelled");

      if (choice < first_choice)
	{
	  n_chosen = n_choices;
	  for (j = 0; j < n_choices; j += 1)
	    choices[j] = j;
	  break;
	}
      choice -= first_choice;

      for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
	{
	}

      if (j < 0 || choice != choices[j])
	{
	  int k;
	  for (k = n_chosen - 1; k > j; k -= 1)
	    choices[k + 1] = choices[k];
	  choices[j + 1] = choice;
	  n_chosen += 1;
	}
    }

  if (n_chosen > max_results)
    error ("Select no more than %d of the above", max_results);

  return n_chosen;
}

/* Replace the operator of length OPLEN at position PC in *EXPP with a call */
/* on the function identified by SYM and BLOCK, and taking NARGS */
/* arguments.  Update *EXPP as needed to hold more space. */

static void
replace_operator_with_call (struct expression **expp, int pc, int nargs,
			    int oplen, struct symbol *sym,
			    struct block *block)
{
  /* A new expression, with 6 more elements (3 for funcall, 4 for function
     symbol, -oplen for operator being replaced). */
  struct expression *newexp = (struct expression *)
    xmalloc (sizeof (struct expression)
	     + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
  struct expression *exp = *expp;

  newexp->nelts = exp->nelts + 7 - oplen;
  newexp->language_defn = exp->language_defn;
  memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
  memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
	  EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));

  newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
  newexp->elts[pc + 1].longconst = (LONGEST) nargs;

  newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
  newexp->elts[pc + 4].block = block;
  newexp->elts[pc + 5].symbol = sym;

  *expp = newexp;
  xfree (exp);
}

/* Type-class predicates */

/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type), or */
/* FLOAT.) */

static int
numeric_type_p (struct type *type)
{
  if (type == NULL)
    return 0;
  else
    {
      switch (TYPE_CODE (type))
	{
	case TYPE_CODE_INT:
	case TYPE_CODE_FLT:
	  return 1;
	case TYPE_CODE_RANGE:
	  return (type == TYPE_TARGET_TYPE (type)
		  || numeric_type_p (TYPE_TARGET_TYPE (type)));
	default:
	  return 0;
	}
    }
}

/* True iff TYPE is integral (an INT or RANGE of INTs). */

static int
integer_type_p (struct type *type)
{
  if (type == NULL)
    return 0;
  else
    {
      switch (TYPE_CODE (type))
	{
	case TYPE_CODE_INT:
	  return 1;
	case TYPE_CODE_RANGE:
	  return (type == TYPE_TARGET_TYPE (type)
		  || integer_type_p (TYPE_TARGET_TYPE (type)));
	default:
	  return 0;
	}
    }
}

/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */

static int
scalar_type_p (struct type *type)
{
  if (type == NULL)
    return 0;
  else
    {
      switch (TYPE_CODE (type))
	{
	case TYPE_CODE_INT:
	case TYPE_CODE_RANGE:
	case TYPE_CODE_ENUM:
	case TYPE_CODE_FLT:
	  return 1;
	default:
	  return 0;
	}
    }
}

/* True iff TYPE is discrete (INT, RANGE, ENUM). */

static int
discrete_type_p (struct type *type)
{
  if (type == NULL)
    return 0;
  else
    {
      switch (TYPE_CODE (type))
	{
	case TYPE_CODE_INT:
	case TYPE_CODE_RANGE:
	case TYPE_CODE_ENUM:
	  return 1;
	default:
	  return 0;
	}
    }
}

/* Returns non-zero if OP with operatands in the vector ARGS could be
   a user-defined function. Errs on the side of pre-defined operators
   (i.e., result 0). */

static int
possible_user_operator_p (enum exp_opcode op, struct value *args[])
{
  struct type *type0 = check_typedef (VALUE_TYPE (args[0]));
  struct type *type1 =
    (args[1] == NULL) ? NULL : check_typedef (VALUE_TYPE (args[1]));

  switch (op)
    {
    default:
      return 0;

    case BINOP_ADD:
    case BINOP_SUB:
    case BINOP_MUL:
    case BINOP_DIV:
      return (!(numeric_type_p (type0) && numeric_type_p (type1)));

    case BINOP_REM:
    case BINOP_MOD:
    case BINOP_BITWISE_AND:
    case BINOP_BITWISE_IOR:
    case BINOP_BITWISE_XOR:
      return (!(integer_type_p (type0) && integer_type_p (type1)));

    case BINOP_EQUAL:
    case BINOP_NOTEQUAL:
    case BINOP_LESS:
    case BINOP_GTR:
    case BINOP_LEQ:
    case BINOP_GEQ:
      return (!(scalar_type_p (type0) && scalar_type_p (type1)));

    case BINOP_CONCAT:
      return ((TYPE_CODE (type0) != TYPE_CODE_ARRAY &&
	       (TYPE_CODE (type0) != TYPE_CODE_PTR ||
		TYPE_CODE (TYPE_TARGET_TYPE (type0))
		!= TYPE_CODE_ARRAY))
	      || (TYPE_CODE (type1) != TYPE_CODE_ARRAY &&
		  (TYPE_CODE (type1) != TYPE_CODE_PTR ||
		   TYPE_CODE (TYPE_TARGET_TYPE (type1)) != TYPE_CODE_ARRAY)));

    case BINOP_EXP:
      return (!(numeric_type_p (type0) && integer_type_p (type1)));

    case UNOP_NEG:
    case UNOP_PLUS:
    case UNOP_LOGICAL_NOT:
    case UNOP_ABS:
      return (!numeric_type_p (type0));

    }
}

				/* Renaming */

/** NOTE: In the following, we assume that a renaming type's name may
 *  have an ___XD suffix.  It would be nice if this went away at some
 *  point. */

/* If TYPE encodes a renaming, returns the renaming suffix, which
 * is XR for an object renaming, XRP for a procedure renaming, XRE for
 * an exception renaming, and XRS for a subprogram renaming.  Returns
 * NULL if NAME encodes none of these. */
const char *
ada_renaming_type (struct type *type)
{
  if (type != NULL && TYPE_CODE (type) == TYPE_CODE_ENUM)
    {
      const char *name = type_name_no_tag (type);
      const char *suffix = (name == NULL) ? NULL : strstr (name, "___XR");
      if (suffix == NULL
	  || (suffix[5] != '\000' && strchr ("PES_", suffix[5]) == NULL))
	return NULL;
      else
	return suffix + 3;
    }
  else
    return NULL;
}

/* Return non-zero iff SYM encodes an object renaming. */
int
ada_is_object_renaming (struct symbol *sym)
{
  const char *renaming_type = ada_renaming_type (SYMBOL_TYPE (sym));
  return renaming_type != NULL
    && (renaming_type[2] == '\0' || renaming_type[2] == '_');
}

/* Assuming that SYM encodes a non-object renaming, returns the original
 * name of the renamed entity.   The name is good until the end of
 * parsing. */
const char *
ada_simple_renamed_entity (struct symbol *sym)
{
  struct type *type;
  const char *raw_name;
  int len;
  char *result;

  type = SYMBOL_TYPE (sym);
  if (type == NULL || TYPE_NFIELDS (type) < 1)
    error ("Improperly encoded renaming.");

  raw_name = TYPE_FIELD_NAME (type, 0);
  len = (raw_name == NULL ? 0 : strlen (raw_name)) - 5;
  if (len <= 0)
    error ("Improperly encoded renaming.");

  result = xmalloc (len + 1);
  /* FIXME: add_name_string_cleanup should be defined in parse.c */
  /*  add_name_string_cleanup (result); */
  strncpy (result, raw_name, len);
  result[len] = '\000';
  return result;
}


				/* Evaluation: Function Calls */

/* Copy VAL onto the stack, using and updating *SP as the stack 
   pointer. Return VAL as an lvalue. */

static struct value *
place_on_stack (struct value *val, CORE_ADDR *sp)
{
  CORE_ADDR old_sp = *sp;

#ifdef STACK_ALIGN
  *sp = push_bytes (*sp, VALUE_CONTENTS_RAW (val),
		    STACK_ALIGN (TYPE_LENGTH
				 (check_typedef (VALUE_TYPE (val)))));
#else
  *sp = push_bytes (*sp, VALUE_CONTENTS_RAW (val),
		    TYPE_LENGTH (check_typedef (VALUE_TYPE (val))));
#endif

  VALUE_LVAL (val) = lval_memory;
  if (INNER_THAN (1, 2))
    VALUE_ADDRESS (val) = *sp;
  else
    VALUE_ADDRESS (val) = old_sp;

  return val;
}

/* Return the value ACTUAL, converted to be an appropriate value for a
   formal of type FORMAL_TYPE.  Use *SP as a stack pointer for
   allocating any necessary descriptors (fat pointers), or copies of
   values not residing in memory, updating it as needed. */

static struct value *
convert_actual (struct value *actual, struct type *formal_type0,
		CORE_ADDR *sp)
{
  struct type *actual_type = check_typedef (VALUE_TYPE (actual));
  struct type *formal_type = check_typedef (formal_type0);
  struct type *formal_target =
    TYPE_CODE (formal_type) == TYPE_CODE_PTR
    ? check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
  struct type *actual_target =
    TYPE_CODE (actual_type) == TYPE_CODE_PTR
    ? check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;

  if (ada_is_array_descriptor (formal_target)
      && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
    return make_array_descriptor (formal_type, actual, sp);
  else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR)
    {
      if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
	  && ada_is_array_descriptor (actual_target))
	return desc_data (actual);
      else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
	{
	  if (VALUE_LVAL (actual) != lval_memory)
	    {
	      struct value *val;
	      actual_type = check_typedef (VALUE_TYPE (actual));
	      val = allocate_value (actual_type);
	      memcpy ((char *) VALUE_CONTENTS_RAW (val),
		      (char *) VALUE_CONTENTS (actual),
		      TYPE_LENGTH (actual_type));
	      actual = place_on_stack (val, sp);
	    }
	  return value_addr (actual);
	}
    }
  else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
    return ada_value_ind (actual);

  return actual;
}


/* Push a descriptor of type TYPE for array value ARR on the stack at 
   *SP, updating *SP to reflect the new descriptor.  Return either 
   an lvalue representing the new descriptor, or (if TYPE is a pointer-
   to-descriptor type rather than a descriptor type), a struct value*
   representing a pointer to this descriptor. */

static struct value *
make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
{
  struct type *bounds_type = desc_bounds_type (type);
  struct type *desc_type = desc_base_type (type);
  struct value *descriptor = allocate_value (desc_type);
  struct value *bounds = allocate_value (bounds_type);
  CORE_ADDR bounds_addr;
  int i;

  for (i = ada_array_arity (check_typedef (VALUE_TYPE (arr))); i > 0; i -= 1)
    {
      modify_general_field (VALUE_CONTENTS (bounds),
			    value_as_long (ada_array_bound (arr, i, 0)),
			    desc_bound_bitpos (bounds_type, i, 0),
			    desc_bound_bitsize (bounds_type, i, 0));
      modify_general_field (VALUE_CONTENTS (bounds),
			    value_as_long (ada_array_bound (arr, i, 1)),
			    desc_bound_bitpos (bounds_type, i, 1),
			    desc_bound_bitsize (bounds_type, i, 1));
    }

  bounds = place_on_stack (bounds, sp);

  modify_general_field (VALUE_CONTENTS (descriptor),
			arr,
			fat_pntr_data_bitpos (desc_type),
			fat_pntr_data_bitsize (desc_type));
  modify_general_field (VALUE_CONTENTS (descriptor),
			VALUE_ADDRESS (bounds),
			fat_pntr_bounds_bitpos (desc_type),
			fat_pntr_bounds_bitsize (desc_type));

  descriptor = place_on_stack (descriptor, sp);

  if (TYPE_CODE (type) == TYPE_CODE_PTR)
    return value_addr (descriptor);
  else
    return descriptor;
}


/* Assuming a dummy frame has been established on the target, perform any 
   conversions needed for calling function FUNC on the NARGS actual
   parameters in ARGS, other than standard C conversions.   Does
   nothing if FUNC does not have Ada-style prototype data, or if NARGS
   does not match the number of arguments expected.   Use *SP as a
   stack pointer for additional data that must be pushed, updating its
   value as needed. */

void
ada_convert_actuals (struct value *func, int nargs, struct value *args[],
		     CORE_ADDR *sp)
{
  int i;

  if (TYPE_NFIELDS (VALUE_TYPE (func)) == 0
      || nargs != TYPE_NFIELDS (VALUE_TYPE (func)))
    return;

  for (i = 0; i < nargs; i += 1)
    args[i] =
      convert_actual (args[i], TYPE_FIELD_TYPE (VALUE_TYPE (func), i), sp);
}


				/* Symbol Lookup */


/* The vectors of symbols and blocks ultimately returned from */
/* ada_lookup_symbol_list. */

/* Current size of defn_symbols and defn_blocks */
static size_t defn_vector_size = 0;

/* Current number of symbols found. */
static int ndefns = 0;

static struct symbol **defn_symbols = NULL;
static struct block **defn_blocks = NULL;

/* Return the result of a standard (literal, C-like) lookup of NAME in 
 * given NAMESPACE. */

static struct symbol *
standard_lookup (const char *name, namespace_enum namespace)
{
  struct symbol *sym;
  struct symtab *symtab;
  sym = lookup_symbol (name, (struct block *) NULL, namespace, 0, &symtab);
  return sym;
}


/* Non-zero iff there is at least one non-function/non-enumeral symbol */
/* in SYMS[0..N-1].  We treat enumerals as functions, since they */
/* contend in overloading in the same way. */
static int
is_nonfunction (struct symbol *syms[], int n)
{
  int i;

  for (i = 0; i < n; i += 1)
    if (TYPE_CODE (SYMBOL_TYPE (syms[i])) != TYPE_CODE_FUNC
	&& TYPE_CODE (SYMBOL_TYPE (syms[i])) != TYPE_CODE_ENUM)
      return 1;

  return 0;
}

/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
   struct types.  Otherwise, they may not. */

static int
equiv_types (struct type *type0, struct type *type1)
{
  if (type0 == type1)
    return 1;
  if (type0 == NULL || type1 == NULL
      || TYPE_CODE (type0) != TYPE_CODE (type1))
    return 0;
  if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
       || TYPE_CODE (type0) == TYPE_CODE_ENUM)
      && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
      && STREQ (ada_type_name (type0), ada_type_name (type1)))
    return 1;

  return 0;
}

/* True iff SYM0 represents the same entity as SYM1, or one that is
   no more defined than that of SYM1. */

static int
lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
{
  if (sym0 == sym1)
    return 1;
  if (SYMBOL_NAMESPACE (sym0) != SYMBOL_NAMESPACE (sym1)
      || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
    return 0;

  switch (SYMBOL_CLASS (sym0))
    {
    case LOC_UNDEF:
      return 1;
    case LOC_TYPEDEF:
      {
	struct type *type0 = SYMBOL_TYPE (sym0);
	struct type *type1 = SYMBOL_TYPE (sym1);
	char *name0 = SYMBOL_NAME (sym0);
	char *name1 = SYMBOL_NAME (sym1);
	int len0 = strlen (name0);
	return
	  TYPE_CODE (type0) == TYPE_CODE (type1)
	  && (equiv_types (type0, type1)
	      || (len0 < strlen (name1) && STREQN (name0, name1, len0)
		  && STREQN (name1 + len0, "___XV", 5)));
      }
    case LOC_CONST:
      return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
	&& equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
    default:
      return 0;
    }
}

/* Append SYM to the end of defn_symbols, and BLOCK to the end of
   defn_blocks, updating ndefns, and expanding defn_symbols and
   defn_blocks as needed.   Do not include SYM if it is a duplicate.  */

static void
add_defn_to_vec (struct symbol *sym, struct block *block)
{
  int i;
  size_t tmp;

  if (SYMBOL_TYPE (sym) != NULL)
    CHECK_TYPEDEF (SYMBOL_TYPE (sym));
  for (i = 0; i < ndefns; i += 1)
    {
      if (lesseq_defined_than (sym, defn_symbols[i]))
	return;
      else if (lesseq_defined_than (defn_symbols[i], sym))
	{
	  defn_symbols[i] = sym;
	  defn_blocks[i] = block;
	  return;
	}
    }

  tmp = defn_vector_size;
  GROW_VECT (defn_symbols, tmp, ndefns + 2);
  GROW_VECT (defn_blocks, defn_vector_size, ndefns + 2);

  defn_symbols[ndefns] = sym;
  defn_blocks[ndefns] = block;
  ndefns += 1;
}

/* Look, in partial_symtab PST, for symbol NAME in given namespace.
   Check the global symbols if GLOBAL, the static symbols if not.  Do
   wild-card match if WILD. */

static struct partial_symbol *
ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
			   int global, namespace_enum namespace, int wild)
{
  struct partial_symbol **start;
  int name_len = strlen (name);
  int length = (global ? pst->n_global_syms : pst->n_static_syms);
  int i;

  if (length == 0)
    {
      return (NULL);
    }

  start = (global ?
	   pst->objfile->global_psymbols.list + pst->globals_offset :
	   pst->objfile->static_psymbols.list + pst->statics_offset);

  if (wild)
    {
      for (i = 0; i < length; i += 1)
	{
	  struct partial_symbol *psym = start[i];

	  if (SYMBOL_NAMESPACE (psym) == namespace &&
	      wild_match (name, name_len, SYMBOL_NAME (psym)))
	    return psym;
	}
      return NULL;
    }
  else
    {
      if (global)
	{
	  int U;
	  i = 0;
	  U = length - 1;
	  while (U - i > 4)
	    {
	      int M = (U + i) >> 1;
	      struct partial_symbol *psym = start[M];
	      if (SYMBOL_NAME (psym)[0] < name[0])
		i = M + 1;
	      else if (SYMBOL_NAME (psym)[0] > name[0])
		U = M - 1;
	      else if (strcmp (SYMBOL_NAME (psym), name) < 0)
		i = M + 1;
	      else
		U = M;
	    }
	}
      else
	i = 0;

      while (i < length)
	{
	  struct partial_symbol *psym = start[i];

	  if (SYMBOL_NAMESPACE (psym) == namespace)
	    {
	      int cmp = strncmp (name, SYMBOL_NAME (psym), name_len);

	      if (cmp < 0)
		{
		  if (global)
		    break;
		}
	      else if (cmp == 0
		       && is_name_suffix (SYMBOL_NAME (psym) + name_len))
		return psym;
	    }
	  i += 1;
	}

      if (global)
	{
	  int U;
	  i = 0;
	  U = length - 1;
	  while (U - i > 4)
	    {
	      int M = (U + i) >> 1;
	      struct partial_symbol *psym = start[M];
	      if (SYMBOL_NAME (psym)[0] < '_')
		i = M + 1;
	      else if (SYMBOL_NAME (psym)[0] > '_')
		U = M - 1;
	      else if (strcmp (SYMBOL_NAME (psym), "_ada_") < 0)
		i = M + 1;
	      else
		U = M;
	    }
	}
      else
	i = 0;

      while (i < length)
	{
	  struct partial_symbol *psym = start[i];

	  if (SYMBOL_NAMESPACE (psym) == namespace)
	    {
	      int cmp;

	      cmp = (int) '_' - (int) SYMBOL_NAME (psym)[0];
	      if (cmp == 0)
		{
		  cmp = strncmp ("_ada_", SYMBOL_NAME (psym), 5);
		  if (cmp == 0)
		    cmp = strncmp (name, SYMBOL_NAME (psym) + 5, name_len);
		}

	      if (cmp < 0)
		{
		  if (global)
		    break;
		}
	      else if (cmp == 0
		       && is_name_suffix (SYMBOL_NAME (psym) + name_len + 5))
		return psym;
	    }
	  i += 1;
	}

    }
  return NULL;
}


/* Find a symbol table containing symbol SYM or NULL if none.  */
static struct symtab *
symtab_for_sym (struct symbol *sym)
{
  struct symtab *s;
  struct objfile *objfile;
  struct block *b;
  struct symbol *tmp_sym;
  int i, j;

  ALL_SYMTABS (objfile, s)
  {
    switch (SYMBOL_CLASS (sym))
      {
      case LOC_CONST:
      case LOC_STATIC:
      case LOC_TYPEDEF:
      case LOC_REGISTER:
      case LOC_LABEL:
      case LOC_BLOCK:
      case LOC_CONST_BYTES:
	b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
	ALL_BLOCK_SYMBOLS (b, i, tmp_sym) if (sym == tmp_sym)
	  return s;
	b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
	ALL_BLOCK_SYMBOLS (b, i, tmp_sym) if (sym == tmp_sym)
	  return s;
	break;
      default:
	break;
      }
    switch (SYMBOL_CLASS (sym))
      {
      case LOC_REGISTER:
      case LOC_ARG:
      case LOC_REF_ARG:
      case LOC_REGPARM:
      case LOC_REGPARM_ADDR:
      case LOC_LOCAL:
      case LOC_TYPEDEF:
      case LOC_LOCAL_ARG:
      case LOC_BASEREG:
      case LOC_BASEREG_ARG:
	for (j = FIRST_LOCAL_BLOCK;
	     j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1)
	  {
	    b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j);
	    ALL_BLOCK_SYMBOLS (b, i, tmp_sym) if (sym == tmp_sym)
	      return s;
	  }
	break;
      default:
	break;
      }
  }
  return NULL;
}

/* Return a minimal symbol matching NAME according to Ada demangling 
   rules. Returns NULL if there is no such minimal symbol. */

struct minimal_symbol *
ada_lookup_minimal_symbol (const char *name)
{
  struct objfile *objfile;
  struct minimal_symbol *msymbol;
  int wild_match = (strstr (name, "__") == NULL);

  ALL_MSYMBOLS (objfile, msymbol)
  {
    if (ada_match_name (SYMBOL_NAME (msymbol), name, wild_match)
	&& MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
      return msymbol;
  }

  return NULL;
}

/* For all subprograms that statically enclose the subprogram of the
 * selected frame, add symbols matching identifier NAME in NAMESPACE
 * and their blocks to vectors *defn_symbols and *defn_blocks, as for
 * ada_add_block_symbols (q.v.).   If WILD, treat as NAME with a
 * wildcard prefix.  At the moment, this function uses a heuristic to
 * find the frames of enclosing subprograms: it treats the
 * pointer-sized value at location 0 from the local-variable base of a
 * frame as a static link, and then searches up the call stack for a
 * frame with that same local-variable base. */
static void
add_symbols_from_enclosing_procs (const char *name, namespace_enum namespace,
				  int wild_match)
{
#ifdef i386
  static struct symbol static_link_sym;
  static struct symbol *static_link;

  struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
  struct frame_info *frame;
  struct frame_info *target_frame;

  if (static_link == NULL)
    {
      /* Initialize the local variable symbol that stands for the
       * static link (when it exists). */
      static_link = &static_link_sym;
      SYMBOL_NAME (static_link) = "";
      SYMBOL_LANGUAGE (static_link) = language_unknown;
      SYMBOL_CLASS (static_link) = LOC_LOCAL;
      SYMBOL_NAMESPACE (static_link) = VAR_NAMESPACE;
      SYMBOL_TYPE (static_link) = lookup_pointer_type (builtin_type_void);
      SYMBOL_VALUE (static_link) =
	-(long) TYPE_LENGTH (SYMBOL_TYPE (static_link));
    }

  frame = deprecated_selected_frame;
  while (frame != NULL && ndefns == 0)
    {
      struct block *block;
      struct value *target_link_val = read_var_value (static_link, frame);
      CORE_ADDR target_link;

      if (target_link_val == NULL)
	break;
      QUIT;

      target_link = target_link_val;
      do
	{
	  QUIT;
	  frame = get_prev_frame (frame);
	}
      while (frame != NULL && FRAME_LOCALS_ADDRESS (frame) != target_link);

      if (frame == NULL)
	break;

      block = get_frame_block (frame, 0);
      while (block != NULL && block_function (block) != NULL && ndefns == 0)
	{
	  ada_add_block_symbols (block, name, namespace, NULL, wild_match);

	  block = BLOCK_SUPERBLOCK (block);
	}
    }

  do_cleanups (old_chain);
#endif
}

/* True if TYPE is definitely an artificial type supplied to a symbol
 * for which no debugging information was given in the symbol file. */
static int
is_nondebugging_type (struct type *type)
{
  char *name = ada_type_name (type);
  return (name != NULL && STREQ (name, "<variable, no debug info>"));
}

/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely 
 * duplicate other symbols in the list.  (The only case I know of where
 * this happens is when object files containing stabs-in-ecoff are
 * linked with files containing ordinary ecoff debugging symbols (or no
 * debugging symbols)). Modifies SYMS to squeeze out deleted symbols,
 * and applies the same modification to BLOCKS to maintain the
 * correspondence between SYMS[i] and BLOCKS[i].  Returns the number
 * of symbols in the modified list. */
static int
remove_extra_symbols (struct symbol **syms, struct block **blocks, int nsyms)
{
  int i, j;

  i = 0;
  while (i < nsyms)
    {
      if (SYMBOL_NAME (syms[i]) != NULL
	  && SYMBOL_CLASS (syms[i]) == LOC_STATIC
	  && is_nondebugging_type (SYMBOL_TYPE (syms[i])))
	{
	  for (j = 0; j < nsyms; j += 1)
	    {
	      if (i != j
		  && SYMBOL_NAME (syms[j]) != NULL
		  && STREQ (SYMBOL_NAME (syms[i]), SYMBOL_NAME (syms[j]))
		  && SYMBOL_CLASS (syms[i]) == SYMBOL_CLASS (syms[j])
		  && SYMBOL_VALUE_ADDRESS (syms[i])
		  == SYMBOL_VALUE_ADDRESS (syms[j]))
		{
		  int k;
		  for (k = i + 1; k < nsyms; k += 1)
		    {
		      syms[k - 1] = syms[k];
		      blocks[k - 1] = blocks[k];
		    }
		  nsyms -= 1;
		  goto NextSymbol;
		}
	    }
	}
      i += 1;
    NextSymbol:
      ;
    }
  return nsyms;
}

/* Find symbols in NAMESPACE matching NAME, in BLOCK0 and enclosing 
   scope and in global scopes, returning the number of matches.  Sets 
   *SYMS to point to a vector of matching symbols, with *BLOCKS
   pointing to the vector of corresponding blocks in which those
   symbols reside.  These two vectors are transient---good only to the
   next call of ada_lookup_symbol_list.  Any non-function/non-enumeral symbol
   match within the nest of blocks whose innermost member is BLOCK0,
   is the outermost match returned (no other matches in that or
   enclosing blocks is returned).  If there are any matches in or
   surrounding BLOCK0, then these alone are returned. */

int
ada_lookup_symbol_list (const char *name, struct block *block0,
			namespace_enum namespace, struct symbol ***syms,
			struct block ***blocks)
{
  struct symbol *sym;
  struct symtab *s;
  struct partial_symtab *ps;
  struct blockvector *bv;
  struct objfile *objfile;
  struct block *b;
  struct block *block;
  struct minimal_symbol *msymbol;
  int wild_match = (strstr (name, "__") == NULL);
  int cacheIfUnique;

#ifdef TIMING
  markTimeStart (0);
#endif

  ndefns = 0;
  cacheIfUnique = 0;

  /* Search specified block and its superiors.  */

  block = block0;
  while (block != NULL)
    {
      ada_add_block_symbols (block, name, namespace, NULL, wild_match);

      /* If we found a non-function match, assume that's the one. */
      if (is_nonfunction (defn_symbols, ndefns))
	goto done;

      block = BLOCK_SUPERBLOCK (block);
    }

  /* If we found ANY matches in the specified BLOCK, we're done. */

  if (ndefns > 0)
    goto done;

  cacheIfUnique = 1;

  /* Now add symbols from all global blocks: symbol tables, minimal symbol
     tables, and psymtab's */

  ALL_SYMTABS (objfile, s)
  {
    QUIT;
    if (!s->primary)
      continue;
    bv = BLOCKVECTOR (s);
    block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
    ada_add_block_symbols (block, name, namespace, objfile, wild_match);
  }

  if (namespace == VAR_NAMESPACE)
    {
      ALL_MSYMBOLS (objfile, msymbol)
      {
	if (ada_match_name (SYMBOL_NAME (msymbol), name, wild_match))
	  {
	    switch (MSYMBOL_TYPE (msymbol))
	      {
	      case mst_solib_trampoline:
		break;
	      default:
		s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol));
		if (s != NULL)
		  {
		    int old_ndefns = ndefns;
		    QUIT;
		    bv = BLOCKVECTOR (s);
		    block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
		    ada_add_block_symbols (block,
					   SYMBOL_NAME (msymbol),
					   namespace, objfile, wild_match);
		    if (ndefns == old_ndefns)
		      {
			block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
			ada_add_block_symbols (block,
					       SYMBOL_NAME (msymbol),
					       namespace, objfile,
					       wild_match);
		      }
		  }
	      }
	  }
      }
    }

  ALL_PSYMTABS (objfile, ps)
  {
    QUIT;
    if (!ps->readin
	&& ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match))
      {
	s = PSYMTAB_TO_SYMTAB (ps);
	if (!s->primary)
	  continue;
	bv = BLOCKVECTOR (s);
	block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
	ada_add_block_symbols (block, name, namespace, objfile, wild_match);
      }
  }

  /* Now add symbols from all per-file blocks if we've gotten no hits.  
     (Not strictly correct, but perhaps better than an error).
     Do the symtabs first, then check the psymtabs */

  if (ndefns == 0)
    {

      ALL_SYMTABS (objfile, s)
      {
	QUIT;
	if (!s->primary)
	  continue;
	bv = BLOCKVECTOR (s);
	block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
	ada_add_block_symbols (block, name, namespace, objfile, wild_match);
      }

      ALL_PSYMTABS (objfile, ps)
      {
	QUIT;
	if (!ps->readin
	    && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match))
	  {
	    s = PSYMTAB_TO_SYMTAB (ps);
	    bv = BLOCKVECTOR (s);
	    if (!s->primary)
	      continue;
	    block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
	    ada_add_block_symbols (block, name, namespace,
				   objfile, wild_match);
	  }
      }
    }

  /* Finally, we try to find NAME as a local symbol in some lexically
     enclosing block.  We do this last, expecting this case to be
     rare. */
  if (ndefns == 0)
    {
      add_symbols_from_enclosing_procs (name, namespace, wild_match);
      if (ndefns > 0)
	goto done;
    }

done:
  ndefns = remove_extra_symbols (defn_symbols, defn_blocks, ndefns);


  *syms = defn_symbols;
  *blocks = defn_blocks;
#ifdef TIMING
  markTimeStop (0);
#endif
  return ndefns;
}

/* Return a symbol in NAMESPACE matching NAME, in BLOCK0 and enclosing 
 * scope and in global scopes, or NULL if none.  NAME is folded to
 * lower case first, unless it is surrounded in single quotes. 
 * Otherwise, the result is as for ada_lookup_symbol_list, but is 
 * disambiguated by user query if needed. */

struct symbol *
ada_lookup_symbol (const char *name, struct block *block0,
		   namespace_enum namespace)
{
  struct symbol **candidate_syms;
  struct block **candidate_blocks;
  int n_candidates;

  n_candidates = ada_lookup_symbol_list (name,
					 block0, namespace,
					 &candidate_syms, &candidate_blocks);

  if (n_candidates == 0)
    return NULL;
  else if (n_candidates != 1)
    user_select_syms (candidate_syms, candidate_blocks, n_candidates, 1);

  return candidate_syms[0];
}


/* True iff STR is a possible encoded suffix of a normal Ada name 
 * that is to be ignored for matching purposes.  Suffixes of parallel
 * names (e.g., XVE) are not included here.  Currently, the possible suffixes 
 * are given by the regular expression:
 *        (X[nb]*)?(__[0-9]+|\$[0-9]+|___(LJM|X([FDBUP].*|R[^T]?)))?$
 * 
 */
static int
is_name_suffix (const char *str)
{
  int k;
  if (str[0] == 'X')
    {
      str += 1;
      while (str[0] != '_' && str[0] != '\0')
	{
	  if (str[0] != 'n' && str[0] != 'b')
	    return 0;
	  str += 1;
	}
    }
  if (str[0] == '\000')
    return 1;
  if (str[0] == '_')
    {
      if (str[1] != '_' || str[2] == '\000')
	return 0;
      if (str[2] == '_')
	{
	  if (STREQ (str + 3, "LJM"))
	    return 1;
	  if (str[3] != 'X')
	    return 0;
	  if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B' ||
	      str[4] == 'U' || str[4] == 'P')
	    return 1;
	  if (str[4] == 'R' && str[5] != 'T')
	    return 1;
	  return 0;
	}
      for (k = 2; str[k] != '\0'; k += 1)
	if (!isdigit (str[k]))
	  return 0;
      return 1;
    }
  if (str[0] == '$' && str[1] != '\000')
    {
      for (k = 1; str[k] != '\0'; k += 1)
	if (!isdigit (str[k]))
	  return 0;
      return 1;
    }
  return 0;
}

/* True if NAME represents a name of the form A1.A2....An, n>=1 and 
 * PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1.  Ignores
 * informational suffixes of NAME (i.e., for which is_name_suffix is
 * true). */
static int
wild_match (const char *patn, int patn_len, const char *name)
{
  int name_len;
  int s, e;

  name_len = strlen (name);
  if (name_len >= patn_len + 5 && STREQN (name, "_ada_", 5)
      && STREQN (patn, name + 5, patn_len)
      && is_name_suffix (name + patn_len + 5))
    return 1;

  while (name_len >= patn_len)
    {
      if (STREQN (patn, name, patn_len) && is_name_suffix (name + patn_len))
	return 1;
      do
	{
	  name += 1;
	  name_len -= 1;
	}
      while (name_len > 0
	     && name[0] != '.' && (name[0] != '_' || name[1] != '_'));
      if (name_len <= 0)
	return 0;
      if (name[0] == '_')
	{
	  if (!islower (name[2]))
	    return 0;
	  name += 2;
	  name_len -= 2;
	}
      else
	{
	  if (!islower (name[1]))
	    return 0;
	  name += 1;
	  name_len -= 1;
	}
    }

  return 0;
}


/* Add symbols from BLOCK matching identifier NAME in NAMESPACE to 
   vector *defn_symbols, updating *defn_symbols (if necessary), *SZ (the size of
   the vector *defn_symbols), and *ndefns (the number of symbols
   currently stored in *defn_symbols).  If WILD, treat as NAME with a
   wildcard prefix. OBJFILE is the section containing BLOCK. */

static void
ada_add_block_symbols (struct block *block, const char *name,
		       namespace_enum namespace, struct objfile *objfile,
		       int wild)
{
  int i;
  int name_len = strlen (name);
  /* A matching argument symbol, if any. */
  struct symbol *arg_sym;
  /* Set true when we find a matching non-argument symbol */
  int found_sym;
  int is_sorted = BLOCK_SHOULD_SORT (block);
  struct symbol *sym;

  arg_sym = NULL;
  found_sym = 0;
  if (wild)
    {
      struct symbol *sym;
      ALL_BLOCK_SYMBOLS (block, i, sym)
      {
	if (SYMBOL_NAMESPACE (sym) == namespace &&
	    wild_match (name, name_len, SYMBOL_NAME (sym)))
	  {
	    switch (SYMBOL_CLASS (sym))
	      {
	      case LOC_ARG:
	      case LOC_LOCAL_ARG:
	      case LOC_REF_ARG:
	      case LOC_REGPARM:
	      case LOC_REGPARM_ADDR:
	      case LOC_BASEREG_ARG:
		arg_sym = sym;
		break;
	      case LOC_UNRESOLVED:
		continue;
	      default:
		found_sym = 1;
		fill_in_ada_prototype (sym);
		add_defn_to_vec (fixup_symbol_section (sym, objfile), block);
		break;
	      }
	  }
      }
    }
  else
    {
      if (is_sorted)
	{
	  int U;
	  i = 0;
	  U = BLOCK_NSYMS (block) - 1;
	  while (U - i > 4)
	    {
	      int M = (U + i) >> 1;
	      struct symbol *sym = BLOCK_SYM (block, M);
	      if (SYMBOL_NAME (sym)[0] < name[0])
		i = M + 1;
	      else if (SYMBOL_NAME (sym)[0] > name[0])
		U = M - 1;
	      else if (strcmp (SYMBOL_NAME (sym), name) < 0)
		i = M + 1;
	      else
		U = M;
	    }
	}
      else
	i = 0;

      for (; i < BLOCK_BUCKETS (block); i += 1)
	for (sym = BLOCK_BUCKET (block, i); sym != NULL; sym = sym->hash_next)
	  {
	    if (SYMBOL_NAMESPACE (sym) == namespace)
	      {
		int cmp = strncmp (name, SYMBOL_NAME (sym), name_len);

		if (cmp < 0)
		  {
		    if (is_sorted)
		      {
			i = BLOCK_BUCKETS (block);
			break;
		      }
		  }
		else if (cmp == 0
			 && is_name_suffix (SYMBOL_NAME (sym) + name_len))
		  {
		    switch (SYMBOL_CLASS (sym))
		      {
		      case LOC_ARG:
		      case LOC_LOCAL_ARG:
		      case LOC_REF_ARG:
		      case LOC_REGPARM:
		      case LOC_REGPARM_ADDR:
		      case LOC_BASEREG_ARG:
			arg_sym = sym;
			break;
		      case LOC_UNRESOLVED:
			break;
		      default:
			found_sym = 1;
			fill_in_ada_prototype (sym);
			add_defn_to_vec (fixup_symbol_section (sym, objfile),
					 block);
			break;
		      }
		  }
	      }
	  }
    }

  if (!found_sym && arg_sym != NULL)
    {
      fill_in_ada_prototype (arg_sym);
      add_defn_to_vec (fixup_symbol_section (arg_sym, objfile), block);
    }

  if (!wild)
    {
      arg_sym = NULL;
      found_sym = 0;
      if (is_sorted)
	{
	  int U;
	  i = 0;
	  U = BLOCK_NSYMS (block) - 1;
	  while (U - i > 4)
	    {
	      int M = (U + i) >> 1;
	      struct symbol *sym = BLOCK_SYM (block, M);
	      if (SYMBOL_NAME (sym)[0] < '_')
		i = M + 1;
	      else if (SYMBOL_NAME (sym)[0] > '_')
		U = M - 1;
	      else if (strcmp (SYMBOL_NAME (sym), "_ada_") < 0)
		i = M + 1;
	      else
		U = M;
	    }
	}
      else
	i = 0;

      for (; i < BLOCK_BUCKETS (block); i += 1)
	for (sym = BLOCK_BUCKET (block, i); sym != NULL; sym = sym->hash_next)
	  {
	    struct symbol *sym = BLOCK_SYM (block, i);

	    if (SYMBOL_NAMESPACE (sym) == namespace)
	      {
		int cmp;

		cmp = (int) '_' - (int) SYMBOL_NAME (sym)[0];
		if (cmp == 0)
		  {
		    cmp = strncmp ("_ada_", SYMBOL_NAME (sym), 5);
		    if (cmp == 0)
		      cmp = strncmp (name, SYMBOL_NAME (sym) + 5, name_len);
		  }

		if (cmp < 0)
		  {
		    if (is_sorted)
		      {
			i = BLOCK_BUCKETS (block);
			break;
		      }
		  }
		else if (cmp == 0
			 && is_name_suffix (SYMBOL_NAME (sym) + name_len + 5))
		  {
		    switch (SYMBOL_CLASS (sym))
		      {
		      case LOC_ARG:
		      case LOC_LOCAL_ARG:
		      case LOC_REF_ARG:
		      case LOC_REGPARM:
		      case LOC_REGPARM_ADDR:
		      case LOC_BASEREG_ARG:
			arg_sym = sym;
			break;
		      case LOC_UNRESOLVED:
			break;
		      default:
			found_sym = 1;
			fill_in_ada_prototype (sym);
			add_defn_to_vec (fixup_symbol_section (sym, objfile),
					 block);
			break;
		      }
		  }
	      }
	  }

      /* NOTE: This really shouldn't be needed for _ada_ symbols.
         They aren't parameters, right? */
      if (!found_sym && arg_sym != NULL)
	{
	  fill_in_ada_prototype (arg_sym);
	  add_defn_to_vec (fixup_symbol_section (arg_sym, objfile), block);
	}
    }
}


				/* Function Types */

/* Assuming that SYM is the symbol for a function, fill in its type 
   with prototype information, if it is not already there.  */

static void
fill_in_ada_prototype (struct symbol *func)
{
  struct block *b;
  int nargs, nsyms;
  int i;
  struct type *ftype;
  struct type *rtype;
  size_t max_fields;
  struct symbol *sym;

  if (func == NULL
      || TYPE_CODE (SYMBOL_TYPE (func)) != TYPE_CODE_FUNC
      || TYPE_FIELDS (SYMBOL_TYPE (func)) != NULL)
    return;

  /* We make each function type unique, so that each may have its own */
  /* parameter types.  This particular way of doing so wastes space: */
  /* it would be nicer to build the argument types while the original */
  /* function type is being built (FIXME). */
  rtype = check_typedef (TYPE_TARGET_TYPE (SYMBOL_TYPE (func)));
  ftype = alloc_type (TYPE_OBJFILE (SYMBOL_TYPE (func)));
  make_function_type (rtype, &ftype);
  SYMBOL_TYPE (func) = ftype;

  b = SYMBOL_BLOCK_VALUE (func);

  nargs = 0;
  max_fields = 8;
  TYPE_FIELDS (ftype) =
    (struct field *) xmalloc (sizeof (struct field) * max_fields);
  ALL_BLOCK_SYMBOLS (b, i, sym)
  {
    GROW_VECT (TYPE_FIELDS (ftype), max_fields, nargs + 1);

    switch (SYMBOL_CLASS (sym))
      {
      case LOC_REF_ARG:
      case LOC_REGPARM_ADDR:
	TYPE_FIELD_BITPOS (ftype, nargs) = nargs;
	TYPE_FIELD_BITSIZE (ftype, nargs) = 0;
	TYPE_FIELD_STATIC_KIND (ftype, nargs) = 0;
	TYPE_FIELD_TYPE (ftype, nargs) =
	  lookup_pointer_type (check_typedef (SYMBOL_TYPE (sym)));
	TYPE_FIELD_NAME (ftype, nargs) = SYMBOL_NAME (sym);
	nargs += 1;

	break;

      case LOC_ARG:
      case LOC_REGPARM:
      case LOC_LOCAL_ARG:
      case LOC_BASEREG_ARG:
	TYPE_FIELD_BITPOS (ftype, nargs) = nargs;
	TYPE_FIELD_BITSIZE (ftype, nargs) = 0;
	TYPE_FIELD_STATIC_KIND (ftype, nargs) = 0;
	TYPE_FIELD_TYPE (ftype, nargs) = check_typedef (SYMBOL_TYPE (sym));
	TYPE_FIELD_NAME (ftype, nargs) = SYMBOL_NAME (sym);
	nargs += 1;

	break;

      default:
	break;
      }
  }

  /* Re-allocate fields vector; if there are no fields, make the */
  /* fields pointer non-null anyway, to mark that this function type */
  /* has been filled in. */

  TYPE_NFIELDS (ftype) = nargs;
  if (nargs == 0)
    {
      static struct field dummy_field = { 0, 0, 0, 0 };
      xfree (TYPE_FIELDS (ftype));
      TYPE_FIELDS (ftype) = &dummy_field;
    }
  else
    {
      struct field *fields =
	(struct field *) TYPE_ALLOC (ftype, nargs * sizeof (struct field));
      memcpy ((char *) fields,
	      (char *) TYPE_FIELDS (ftype), nargs * sizeof (struct field));
      xfree (TYPE_FIELDS (ftype));
      TYPE_FIELDS (ftype) = fields;
    }
}


				/* Breakpoint-related */

char no_symtab_msg[] =
  "No symbol table is loaded.  Use the \"file\" command.";

/* Assuming that LINE is pointing at the beginning of an argument to
   'break', return a pointer to the delimiter for the initial segment
   of that name.  This is the first ':', ' ', or end of LINE. 
*/
char *
ada_start_decode_line_1 (char *line)
{
  /* [NOTE: strpbrk would be more elegant, but I am reluctant to be
     the first to use such a library function in GDB code.] */
  char *p;
  for (p = line; *p != '\000' && *p != ' ' && *p != ':'; p += 1)
    ;
  return p;
}

/* *SPEC points to a function and line number spec (as in a break
   command), following any initial file name specification.

   Return all symbol table/line specfications (sals) consistent with the
   information in *SPEC and FILE_TABLE in the
   following sense: 
     + FILE_TABLE is null, or the sal refers to a line in the file
       named by FILE_TABLE.
     + If *SPEC points to an argument with a trailing ':LINENUM',
       then the sal refers to that line (or one following it as closely as 
       possible).
     + If *SPEC does not start with '*', the sal is in a function with 
       that name.

   Returns with 0 elements if no matching non-minimal symbols found.

   If *SPEC begins with a function name of the form <NAME>, then NAME
   is taken as a literal name; otherwise the function name is subject
   to the usual mangling.

   *SPEC is updated to point after the function/line number specification.

   FUNFIRSTLINE is non-zero if we desire the first line of real code
   in each function (this is ignored in the presence of a LINENUM spec.).

   If CANONICAL is non-NULL, and if any of the sals require a
   'canonical line spec', then *CANONICAL is set to point to an array
   of strings, corresponding to and equal in length to the returned
   list of sals, such that (*CANONICAL)[i] is non-null and contains a 
   canonical line spec for the ith returned sal, if needed.  If no 
   canonical line specs are required and CANONICAL is non-null, 
   *CANONICAL is set to NULL.

   A 'canonical line spec' is simply a name (in the format of the
   breakpoint command) that uniquely identifies a breakpoint position,
   with no further contextual information or user selection.  It is
   needed whenever the file name, function name, and line number
   information supplied is insufficient for this unique
   identification.  Currently overloaded functions, the name '*', 
   or static functions without a filename yield a canonical line spec.
   The array and the line spec strings are allocated on the heap; it
   is the caller's responsibility to free them.   */

struct symtabs_and_lines
ada_finish_decode_line_1 (char **spec, struct symtab *file_table,
			  int funfirstline, char ***canonical)
{
  struct symbol **symbols;
  struct block **blocks;
  struct block *block;
  int n_matches, i, line_num;
  struct symtabs_and_lines selected;
  struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
  char *name;

  int len;
  char *lower_name;
  char *unquoted_name;

  if (file_table == NULL)
    block = get_selected_block (NULL);
  else
    block = BLOCKVECTOR_BLOCK (BLOCKVECTOR (file_table), STATIC_BLOCK);

  if (canonical != NULL)
    *canonical = (char **) NULL;

  name = *spec;
  if (**spec == '*')
    *spec += 1;
  else
    {
      while (**spec != '\000' &&
	     !strchr (ada_completer_word_break_characters, **spec))
	*spec += 1;
    }
  len = *spec - name;

  line_num = -1;
  if (file_table != NULL && (*spec)[0] == ':' && isdigit ((*spec)[1]))
    {
      line_num = strtol (*spec + 1, spec, 10);
      while (**spec == ' ' || **spec == '\t')
	*spec += 1;
    }

  if (name[0] == '*')
    {
      if (line_num == -1)
	error ("Wild-card function with no line number or file name.");

      return all_sals_for_line (file_table->filename, line_num, canonical);
    }

  if (name[0] == '\'')
    {
      name += 1;
      len -= 2;
    }

  if (name[0] == '<')
    {
      unquoted_name = (char *) alloca (len - 1);
      memcpy (unquoted_name, name + 1, len - 2);
      unquoted_name[len - 2] = '\000';
      lower_name = NULL;
    }
  else
    {
      unquoted_name = (char *) alloca (len + 1);
      memcpy (unquoted_name, name, len);
      unquoted_name[len] = '\000';
      lower_name = (char *) alloca (len + 1);
      for (i = 0; i < len; i += 1)
	lower_name[i] = tolower (name[i]);
      lower_name[len] = '\000';
    }

  n_matches = 0;
  if (lower_name != NULL)
    n_matches = ada_lookup_symbol_list (ada_mangle (lower_name), block,
					VAR_NAMESPACE, &symbols, &blocks);
  if (n_matches == 0)
    n_matches = ada_lookup_symbol_list (unquoted_name, block,
					VAR_NAMESPACE, &symbols, &blocks);
  if (n_matches == 0 && line_num >= 0)
    error ("No line number information found for %s.", unquoted_name);
  else if (n_matches == 0)
    {
#ifdef HPPA_COMPILER_BUG
      /* FIXME: See comment in symtab.c::decode_line_1 */
#undef volatile
      volatile struct symtab_and_line val;
#define volatile		/*nothing */
#else
      struct symtab_and_line val;
#endif
      struct minimal_symbol *msymbol;

      init_sal (&val);

      msymbol = NULL;
      if (lower_name != NULL)
	msymbol = ada_lookup_minimal_symbol (ada_mangle (lower_name));
      if (msymbol == NULL)
	msymbol = ada_lookup_minimal_symbol (unquoted_name);
      if (msymbol != NULL)
	{
	  val.pc = SYMBOL_VALUE_ADDRESS (msymbol);
	  val.section = SYMBOL_BFD_SECTION (msymbol);
	  if (funfirstline)
	    {
	      val.pc += FUNCTION_START_OFFSET;
	      SKIP_PROLOGUE (val.pc);
	    }
	  selected.sals = (struct symtab_and_line *)
	    xmalloc (sizeof (struct symtab_and_line));
	  selected.sals[0] = val;
	  selected.nelts = 1;
	  return selected;
	}

      if (!have_full_symbols () &&
	  !have_partial_symbols () && !have_minimal_symbols ())
	error (no_symtab_msg);

      error ("Function \"%s\" not defined.", unquoted_name);
      return selected;		/* for lint */
    }

  if (line_num >= 0)
    {
      return
	find_sal_from_funcs_and_line (file_table->filename, line_num,
				      symbols, n_matches);
    }
  else
    {
      selected.nelts =
	user_select_syms (symbols, blocks, n_matches, n_matches);
    }

  selected.sals = (struct symtab_and_line *)
    xmalloc (sizeof (struct symtab_and_line) * selected.nelts);
  memset (selected.sals, 0, selected.nelts * sizeof (selected.sals[i]));
  make_cleanup (xfree, selected.sals);

  i = 0;
  while (i < selected.nelts)
    {
      if (SYMBOL_CLASS (symbols[i]) == LOC_BLOCK)
	selected.sals[i] = find_function_start_sal (symbols[i], funfirstline);
      else if (SYMBOL_LINE (symbols[i]) != 0)
	{
	  selected.sals[i].symtab = symtab_for_sym (symbols[i]);
	  selected.sals[i].line = SYMBOL_LINE (symbols[i]);
	}
      else if (line_num >= 0)
	{
	  /* Ignore this choice */
	  symbols[i] = symbols[selected.nelts - 1];
	  blocks[i] = blocks[selected.nelts - 1];
	  selected.nelts -= 1;
	  continue;
	}
      else
	error ("Line number not known for symbol \"%s\"", unquoted_name);
      i += 1;
    }

  if (canonical != NULL && (line_num >= 0 || n_matches > 1))
    {
      *canonical = (char **) xmalloc (sizeof (char *) * selected.nelts);
      for (i = 0; i < selected.nelts; i += 1)
	(*canonical)[i] =
	  extended_canonical_line_spec (selected.sals[i],
					SYMBOL_SOURCE_NAME (symbols[i]));
    }

  discard_cleanups (old_chain);
  return selected;
}

/* The (single) sal corresponding to line LINE_NUM in a symbol table
   with file name FILENAME that occurs in one of the functions listed 
   in SYMBOLS[0 .. NSYMS-1]. */
static struct symtabs_and_lines
find_sal_from_funcs_and_line (const char *filename, int line_num,
			      struct symbol **symbols, int nsyms)
{
  struct symtabs_and_lines sals;
  int best_index, best;
  struct linetable *best_linetable;
  struct objfile *objfile;
  struct symtab *s;
  struct symtab *best_symtab;

  read_all_symtabs (filename);

  best_index = 0;
  best_linetable = NULL;
  best_symtab = NULL;
  best = 0;
  ALL_SYMTABS (objfile, s)
  {
    struct linetable *l;
    int ind, exact;

    QUIT;

    if (!STREQ (filename, s->filename))
      continue;
    l = LINETABLE (s);
    ind = find_line_in_linetable (l, line_num, symbols, nsyms, &exact);
    if (ind >= 0)
      {
	if (exact)
	  {
	    best_index = ind;
	    best_linetable = l;
	    best_symtab = s;
	    goto done;
	  }
	if (best == 0 || l->item[ind].line < best)
	  {
	    best = l->item[ind].line;
	    best_index = ind;
	    best_linetable = l;
	    best_symtab = s;
	  }
      }
  }

  if (best == 0)
    error ("Line number not found in designated function.");

done:

  sals.nelts = 1;
  sals.sals = (struct symtab_and_line *) xmalloc (sizeof (sals.sals[0]));

  init_sal (&sals.sals[0]);

  sals.sals[0].line = best_linetable->item[best_index].line;
  sals.sals[0].pc = best_linetable->item[best_index].pc;
  sals.sals[0].symtab = best_symtab;

  return sals;
}

/* Return the index in LINETABLE of the best match for LINE_NUM whose
   pc falls within one of the functions denoted by SYMBOLS[0..NSYMS-1].  
   Set *EXACTP to the 1 if the match is exact, and 0 otherwise. */
static int
find_line_in_linetable (struct linetable *linetable, int line_num,
			struct symbol **symbols, int nsyms, int *exactp)
{
  int i, len, best_index, best;

  if (line_num <= 0 || linetable == NULL)
    return -1;

  len = linetable->nitems;
  for (i = 0, best_index = -1, best = 0; i < len; i += 1)
    {
      int k;
      struct linetable_entry *item = &(linetable->item[i]);

      for (k = 0; k < nsyms; k += 1)
	{
	  if (symbols[k] != NULL && SYMBOL_CLASS (symbols[k]) == LOC_BLOCK
	      && item->pc >= BLOCK_START (SYMBOL_BLOCK_VALUE (symbols[k]))
	      && item->pc < BLOCK_END (SYMBOL_BLOCK_VALUE (symbols[k])))
	    goto candidate;
	}
      continue;

    candidate:

      if (item->line == line_num)
	{
	  *exactp = 1;
	  return i;
	}

      if (item->line > line_num && (best == 0 || item->line < best))
	{
	  best = item->line;
	  best_index = i;
	}
    }

  *exactp = 0;
  return best_index;
}

/* Find the smallest k >= LINE_NUM such that k is a line number in
   LINETABLE, and k falls strictly within a named function that begins at
   or before LINE_NUM.  Return -1 if there is no such k. */
static int
nearest_line_number_in_linetable (struct linetable *linetable, int line_num)
{
  int i, len, best;

  if (line_num <= 0 || linetable == NULL || linetable->nitems == 0)
    return -1;
  len = linetable->nitems;

  i = 0;
  best = INT_MAX;
  while (i < len)
    {
      int k;
      struct linetable_entry *item = &(linetable->item[i]);

      if (item->line >= line_num && item->line < best)
	{
	  char *func_name;
	  CORE_ADDR start, end;

	  func_name = NULL;
	  find_pc_partial_function (item->pc, &func_name, &start, &end);

	  if (func_name != NULL && item->pc < end)
	    {
	      if (item->line == line_num)
		return line_num;
	      else
		{
		  struct symbol *sym =
		    standard_lookup (func_name, VAR_NAMESPACE);
		  if (is_plausible_func_for_line (sym, line_num))
		    best = item->line;
		  else
		    {
		      do
			i += 1;
		      while (i < len && linetable->item[i].pc < end);
		      continue;
		    }
		}
	    }
	}

      i += 1;
    }

  return (best == INT_MAX) ? -1 : best;
}


/* Return the next higher index, k, into LINETABLE such that k > IND, 
   entry k in LINETABLE has a line number equal to LINE_NUM, k
   corresponds to a PC that is in a function different from that 
   corresponding to IND, and falls strictly within a named function
   that begins at a line at or preceding STARTING_LINE.  
   Return -1 if there is no such k.  
   IND == -1 corresponds to no function. */

static int
find_next_line_in_linetable (struct linetable *linetable, int line_num,
			     int starting_line, int ind)
{
  int i, len;

  if (line_num <= 0 || linetable == NULL || ind >= linetable->nitems)
    return -1;
  len = linetable->nitems;

  if (ind >= 0)
    {
      CORE_ADDR start, end;

      if (find_pc_partial_function (linetable->item[ind].pc,
				    (char **) NULL, &start, &end))
	{
	  while (ind < len && linetable->item[ind].pc < end)
	    ind += 1;
	}
      else
	ind += 1;
    }
  else
    ind = 0;

  i = ind;
  while (i < len)
    {
      int k;
      struct linetable_entry *item = &(linetable->item[i]);

      if (item->line >= line_num)
	{
	  char *func_name;
	  CORE_ADDR start, end;

	  func_name = NULL;
	  find_pc_partial_function (item->pc, &func_name, &start, &end);

	  if (func_name != NULL && item->pc < end)
	    {
	      if (item->line == line_num)
		{
		  struct symbol *sym =
		    standard_lookup (func_name, VAR_NAMESPACE);
		  if (is_plausible_func_for_line (sym, starting_line))
		    return i;
		  else
		    {
		      while ((i + 1) < len && linetable->item[i + 1].pc < end)
			i += 1;
		    }
		}
	    }
	}
      i += 1;
    }

  return -1;
}

/* True iff function symbol SYM starts somewhere at or before line #
   LINE_NUM. */
static int
is_plausible_func_for_line (struct symbol *sym, int line_num)
{
  struct symtab_and_line start_sal;

  if (sym == NULL)
    return 0;

  start_sal = find_function_start_sal (sym, 0);

  return (start_sal.line != 0 && line_num >= start_sal.line);
}

static void
debug_print_lines (struct linetable *lt)
{
  int i;

  if (lt == NULL)
    return;

  fprintf (stderr, "\t");
  for (i = 0; i < lt->nitems; i += 1)
    fprintf (stderr, "(%d->%p) ", lt->item[i].line, (void *) lt->item[i].pc);
  fprintf (stderr, "\n");
}

static void
debug_print_block (struct block *b)
{
  int i;
  struct symbol *i;

  fprintf (stderr, "Block: %p; [0x%lx, 0x%lx]",
	   b, BLOCK_START (b), BLOCK_END (b));
  if (BLOCK_FUNCTION (b) != NULL)
    fprintf (stderr, " Function: %s", SYMBOL_NAME (BLOCK_FUNCTION (b)));
  fprintf (stderr, "\n");
  fprintf (stderr, "\t    Superblock: %p\n", BLOCK_SUPERBLOCK (b));
  fprintf (stderr, "\t    Symbols:");
  ALL_BLOCK_SYMBOLS (b, i, sym)
  {
    if (i > 0 && i % 4 == 0)
      fprintf (stderr, "\n\t\t    ");
    fprintf (stderr, " %s", SYMBOL_NAME (sym));
  }
  fprintf (stderr, "\n");
}

static void
debug_print_blocks (struct blockvector *bv)
{
  int i;

  if (bv == NULL)
    return;
  for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); i += 1)
    {
      fprintf (stderr, "%6d. ", i);
      debug_print_block (BLOCKVECTOR_BLOCK (bv, i));
    }
}

static void
debug_print_symtab (struct symtab *s)
{
  fprintf (stderr, "Symtab %p\n    File: %s; Dir: %s\n", s,
	   s->filename, s->dirname);
  fprintf (stderr, "    Blockvector: %p, Primary: %d\n",
	   BLOCKVECTOR (s), s->primary);
  debug_print_blocks (BLOCKVECTOR (s));
  fprintf (stderr, "    Line table: %p\n", LINETABLE (s));
  debug_print_lines (LINETABLE (s));
}

/* Read in all symbol tables corresponding to partial symbol tables
   with file name FILENAME. */
static void
read_all_symtabs (const char *filename)
{
  struct partial_symtab *ps;
  struct objfile *objfile;

  ALL_PSYMTABS (objfile, ps)
  {
    QUIT;

    if (STREQ (filename, ps->filename))
      PSYMTAB_TO_SYMTAB (ps);
  }
}

/* All sals corresponding to line LINE_NUM in a symbol table from file
   FILENAME, as filtered by the user.  If CANONICAL is not null, set
   it to a corresponding array of canonical line specs. */
static struct symtabs_and_lines
all_sals_for_line (const char *filename, int line_num, char ***canonical)
{
  struct symtabs_and_lines result;
  struct objfile *objfile;
  struct symtab *s;
  struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
  size_t len;

  read_all_symtabs (filename);

  result.sals =
    (struct symtab_and_line *) xmalloc (4 * sizeof (result.sals[0]));
  result.nelts = 0;
  len = 4;
  make_cleanup (free_current_contents, &result.sals);

  ALL_SYMTABS (objfile, s)
  {
    int ind, target_line_num;

    QUIT;

    if (!STREQ (s->filename, filename))
      continue;

    target_line_num =
      nearest_line_number_in_linetable (LINETABLE (s), line_num);
    if (target_line_num == -1)
      continue;

    ind = -1;
    while (1)
      {
	ind =
	  find_next_line_in_linetable (LINETABLE (s),
				       target_line_num, line_num, ind);

	if (ind < 0)
	  break;

	GROW_VECT (result.sals, len, result.nelts + 1);
	init_sal (&result.sals[result.nelts]);
	result.sals[result.nelts].line = LINETABLE (s)->item[ind].line;
	result.sals[result.nelts].pc = LINETABLE (s)->item[ind].pc;
	result.sals[result.nelts].symtab = s;
	result.nelts += 1;
      }
  }

  if (canonical != NULL || result.nelts > 1)
    {
      int k;
      char **func_names = (char **) alloca (result.nelts * sizeof (char *));
      int first_choice = (result.nelts > 1) ? 2 : 1;
      int n;
      int *choices = (int *) alloca (result.nelts * sizeof (int));

      for (k = 0; k < result.nelts; k += 1)
	{
	  find_pc_partial_function (result.sals[k].pc, &func_names[k],
				    (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
	  if (func_names[k] == NULL)
	    error ("Could not find function for one or more breakpoints.");
	}

      if (result.nelts > 1)
	{
	  printf_unfiltered ("[0] cancel\n");
	  if (result.nelts > 1)
	    printf_unfiltered ("[1] all\n");
	  for (k = 0; k < result.nelts; k += 1)
	    printf_unfiltered ("[%d] %s\n", k + first_choice,
			       ada_demangle (func_names[k]));

	  n = get_selections (choices, result.nelts, result.nelts,
			      result.nelts > 1, "instance-choice");

	  for (k = 0; k < n; k += 1)
	    {
	      result.sals[k] = result.sals[choices[k]];
	      func_names[k] = func_names[choices[k]];
	    }
	  result.nelts = n;
	}

      if (canonical != NULL)
	{
	  *canonical = (char **) xmalloc (result.nelts * sizeof (char **));
	  make_cleanup (xfree, *canonical);
	  for (k = 0; k < result.nelts; k += 1)
	    {
	      (*canonical)[k] =
		extended_canonical_line_spec (result.sals[k], func_names[k]);
	      if ((*canonical)[k] == NULL)
		error ("Could not locate one or more breakpoints.");
	      make_cleanup (xfree, (*canonical)[k]);
	    }
	}
    }

  discard_cleanups (old_chain);
  return result;
}


/* A canonical line specification of the form FILE:NAME:LINENUM for
   symbol table and line data SAL.  NULL if insufficient
   information. The caller is responsible for releasing any space
   allocated. */

static char *
extended_canonical_line_spec (struct symtab_and_line sal, const char *name)
{
  char *r;

  if (sal.symtab == NULL || sal.symtab->filename == NULL || sal.line <= 0)
    return NULL;

  r = (char *) xmalloc (strlen (name) + strlen (sal.symtab->filename)
			+ sizeof (sal.line) * 3 + 3);
  sprintf (r, "%s:'%s':%d", sal.symtab->filename, name, sal.line);
  return r;
}

#if 0
int begin_bnum = -1;
#endif
int begin_annotate_level = 0;

static void
begin_cleanup (void *dummy)
{
  begin_annotate_level = 0;
}

static void
begin_command (char *args, int from_tty)
{
  struct minimal_symbol *msym;
  CORE_ADDR main_program_name_addr;
  char main_program_name[1024];
  struct cleanup *old_chain = make_cleanup (begin_cleanup, NULL);
  begin_annotate_level = 2;

  /* Check that there is a program to debug */
  if (!have_full_symbols () && !have_partial_symbols ())
    error ("No symbol table is loaded.  Use the \"file\" command.");

  /* Check that we are debugging an Ada program */
  /*  if (ada_update_initial_language (language_unknown, NULL) != language_ada)
     error ("Cannot find the Ada initialization procedure.  Is this an Ada main program?");
   */
  /* FIXME: language_ada should be defined in defs.h */

  /* Get the address of the name of the main procedure */
  msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);

  if (msym != NULL)
    {
      main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
      if (main_program_name_addr == 0)
	error ("Invalid address for Ada main program name.");

      /* Read the name of the main procedure */
      extract_string (main_program_name_addr, main_program_name);

      /* Put a temporary breakpoint in the Ada main program and run */
      do_command ("tbreak ", main_program_name, 0);
      do_command ("run ", args, 0);
    }
  else
    {
      /* If we could not find the symbol containing the name of the
         main program, that means that the compiler that was used to build
         was not recent enough. In that case, we fallback to the previous
         mechanism, which is a little bit less reliable, but has proved to work
         in most cases. The only cases where it will fail is when the user
         has set some breakpoints which will be hit before the end of the
         begin command processing (eg in the initialization code).

         The begining of the main Ada subprogram is located by breaking
         on the adainit procedure. Since we know that the binder generates
         the call to this procedure exactly 2 calls before the call to the
         Ada main subprogram, it is then easy to put a breakpoint on this
         Ada main subprogram once we hit adainit.
       */
      do_command ("tbreak adainit", 0);
      do_command ("run ", args, 0);
      do_command ("up", 0);
      do_command ("tbreak +2", 0);
      do_command ("continue", 0);
      do_command ("step", 0);
    }

  do_cleanups (old_chain);
}

int
is_ada_runtime_file (char *filename)
{
  return (STREQN (filename, "s-", 2) ||
	  STREQN (filename, "a-", 2) ||
	  STREQN (filename, "g-", 2) || STREQN (filename, "i-", 2));
}

/* find the first frame that contains debugging information and that is not
   part of the Ada run-time, starting from fi and moving upward. */

int
find_printable_frame (struct frame_info *fi, int level)
{
  struct symtab_and_line sal;

  for (; fi != NULL; level += 1, fi = get_prev_frame (fi))
    {
      find_frame_sal (fi, &sal);
      if (sal.symtab && !is_ada_runtime_file (sal.symtab->filename))
	{
#if defined(__alpha__) && defined(__osf__) && !defined(VXWORKS_TARGET)
	  /* libpthread.so contains some debugging information that prevents us
	     from finding the right frame */

	  if (sal.symtab->objfile &&
	      STREQ (sal.symtab->objfile->name, "/usr/shlib/libpthread.so"))
	    continue;
#endif
	  deprecated_selected_frame = fi;
	  break;
	}
    }

  return level;
}

void
ada_report_exception_break (struct breakpoint *b)
{
#ifdef UI_OUT
  /* FIXME: break_on_exception should be defined in breakpoint.h */
  /*  if (b->break_on_exception == 1)
     {
     /* Assume that cond has 16 elements, the 15th
   being the exception *//*
   if (b->cond && b->cond->nelts == 16)
   {
   ui_out_text (uiout, "on ");
   ui_out_field_string (uiout, "exception",
   SYMBOL_NAME (b->cond->elts[14].symbol));
   }
   else
   ui_out_text (uiout, "on all exceptions");
   }
   else if (b->break_on_exception == 2)
   ui_out_text (uiout, "on unhandled exception");
   else if (b->break_on_exception == 3)
   ui_out_text (uiout, "on assert failure");
   #else
   if (b->break_on_exception == 1)
   { */
  /* Assume that cond has 16 elements, the 15th
   being the exception *//*
   if (b->cond && b->cond->nelts == 16)
   {
   fputs_filtered ("on ", gdb_stdout);
   fputs_filtered (SYMBOL_NAME
   (b->cond->elts[14].symbol), gdb_stdout);
   }
   else
   fputs_filtered ("on all exceptions", gdb_stdout);
   }
   else if (b->break_on_exception == 2)
   fputs_filtered ("on unhandled exception", gdb_stdout);
   else if (b->break_on_exception == 3)
   fputs_filtered ("on assert failure", gdb_stdout);
 */
#endif
}

int
ada_is_exception_sym (struct symbol *sym)
{
  char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));

  return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
	  && SYMBOL_CLASS (sym) != LOC_BLOCK
	  && SYMBOL_CLASS (sym) != LOC_CONST
	  && type_name != NULL && STREQ (type_name, "exception"));
}

int
ada_maybe_exception_partial_symbol (struct partial_symbol *sym)
{
  return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
	  && SYMBOL_CLASS (sym) != LOC_BLOCK
	  && SYMBOL_CLASS (sym) != LOC_CONST);
}

/* If ARG points to an Ada exception or assert breakpoint, rewrite
   into equivalent form.  Return resulting argument string. Set
   *BREAK_ON_EXCEPTIONP to 1 for ordinary break on exception, 2 for
   break on unhandled, 3 for assert, 0 otherwise. */
char *
ada_breakpoint_rewrite (char *arg, int *break_on_exceptionp)
{
  if (arg == NULL)
    return arg;
  *break_on_exceptionp = 0;
  /* FIXME: language_ada should be defined in defs.h */
  /*  if (current_language->la_language == language_ada
     && STREQN (arg, "exception", 9) &&
     (arg[9] == ' ' || arg[9] == '\t' || arg[9] == '\0'))
     {
     char *tok, *end_tok;
     int toklen;

     *break_on_exceptionp = 1;

     tok = arg+9;
     while (*tok == ' ' || *tok == '\t')
     tok += 1;

     end_tok = tok;

     while (*end_tok != ' ' && *end_tok != '\t' && *end_tok != '\000')
     end_tok += 1;

     toklen = end_tok - tok;

     arg = (char*) xmalloc (sizeof ("__gnat_raise_nodefer_with_msg if "
     "long_integer(e) = long_integer(&)")
     + toklen + 1);
     make_cleanup (xfree, arg);
     if (toklen == 0)
     strcpy (arg, "__gnat_raise_nodefer_with_msg");
     else if (STREQN (tok, "unhandled", toklen))
     {
     *break_on_exceptionp = 2;
     strcpy (arg, "__gnat_unhandled_exception");
     }
     else
     {
     sprintf (arg, "__gnat_raise_nodefer_with_msg if "
     "long_integer(e) = long_integer(&%.*s)", 
     toklen, tok);
     }
     }
     else if (current_language->la_language == language_ada
     && STREQN (arg, "assert", 6) &&
     (arg[6] == ' ' || arg[6] == '\t' || arg[6] == '\0'))
     {
     char *tok = arg + 6;

     *break_on_exceptionp = 3;

     arg = (char*) 
     xmalloc (sizeof ("system__assertions__raise_assert_failure")
     + strlen (tok) + 1);
     make_cleanup (xfree, arg);
     sprintf (arg, "system__assertions__raise_assert_failure%s", tok);
     }
   */
  return arg;
}


				/* Field Access */

/* True if field number FIELD_NUM in struct or union type TYPE is supposed
   to be invisible to users. */

int
ada_is_ignored_field (struct type *type, int field_num)
{
  if (field_num < 0 || field_num > TYPE_NFIELDS (type))
    return 1;
  else
    {
      const char *name = TYPE_FIELD_NAME (type, field_num);
      return (name == NULL
	      || (name[0] == '_' && !STREQN (name, "_parent", 7)));
    }
}

/* True iff structure type TYPE has a tag field. */

int
ada_is_tagged_type (struct type *type)
{
  if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
    return 0;

  return (ada_lookup_struct_elt_type (type, "_tag", 1, NULL) != NULL);
}

/* The type of the tag on VAL. */

struct type *
ada_tag_type (struct value *val)
{
  return ada_lookup_struct_elt_type (VALUE_TYPE (val), "_tag", 0, NULL);
}

/* The value of the tag on VAL. */

struct value *
ada_value_tag (struct value *val)
{
  return ada_value_struct_elt (val, "_tag", "record");
}

/* The parent type of TYPE, or NULL if none. */

struct type *
ada_parent_type (struct type *type)
{
  int i;

  CHECK_TYPEDEF (type);

  if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
    return NULL;

  for (i = 0; i < TYPE_NFIELDS (type); i += 1)
    if (ada_is_parent_field (type, i))
      return check_typedef (TYPE_FIELD_TYPE (type, i));

  return NULL;
}

/* True iff field number FIELD_NUM of structure type TYPE contains the 
   parent-type (inherited) fields of a derived type.  Assumes TYPE is 
   a structure type with at least FIELD_NUM+1 fields. */

int
ada_is_parent_field (struct type *type, int field_num)
{
  const char *name = TYPE_FIELD_NAME (check_typedef (type), field_num);
  return (name != NULL &&
	  (STREQN (name, "PARENT", 6) || STREQN (name, "_parent", 7)));
}

/* True iff field number FIELD_NUM of structure type TYPE is a 
   transparent wrapper field (which should be silently traversed when doing
   field selection and flattened when printing).  Assumes TYPE is a 
   structure type with at least FIELD_NUM+1 fields.  Such fields are always
   structures. */

int
ada_is_wrapper_field (struct type *type, int field_num)
{
  const char *name = TYPE_FIELD_NAME (type, field_num);
  return (name != NULL
	  && (STREQN (name, "PARENT", 6) || STREQ (name, "REP")
	      || STREQN (name, "_parent", 7)
	      || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
}

/* True iff field number FIELD_NUM of structure or union type TYPE 
   is a variant wrapper.  Assumes TYPE is a structure type with at least 
   FIELD_NUM+1 fields. */

int
ada_is_variant_part (struct type *type, int field_num)
{
  struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
  return (TYPE_CODE (field_type) == TYPE_CODE_UNION
	  || (is_dynamic_field (type, field_num)
	      && TYPE_CODE (TYPE_TARGET_TYPE (field_type)) ==
	      TYPE_CODE_UNION));
}

/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
   whose discriminants are contained in the record type OUTER_TYPE, 
   returns the type of the controlling discriminant for the variant.  */

struct type *
ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
{
  char *name = ada_variant_discrim_name (var_type);
  struct type *type = ada_lookup_struct_elt_type (outer_type, name, 1, NULL);
  if (type == NULL)
    return builtin_type_int;
  else
    return type;
}

/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a 
   valid field number within it, returns 1 iff field FIELD_NUM of TYPE
   represents a 'when others' clause; otherwise 0. */

int
ada_is_others_clause (struct type *type, int field_num)
{
  const char *name = TYPE_FIELD_NAME (type, field_num);
  return (name != NULL && name[0] == 'O');
}

/* Assuming that TYPE0 is the type of the variant part of a record,
   returns the name of the discriminant controlling the variant.  The
   value is valid until the next call to ada_variant_discrim_name. */

char *
ada_variant_discrim_name (struct type *type0)
{
  static char *result = NULL;
  static size_t result_len = 0;
  struct type *type;
  const char *name;
  const char *discrim_end;
  const char *discrim_start;

  if (TYPE_CODE (type0) == TYPE_CODE_PTR)
    type = TYPE_TARGET_TYPE (type0);
  else
    type = type0;

  name = ada_type_name (type);

  if (name == NULL || name[0] == '\000')
    return "";

  for (discrim_end = name + strlen (name) - 6; discrim_end != name;
       discrim_end -= 1)
    {
      if (STREQN (discrim_end, "___XVN", 6))
	break;
    }
  if (discrim_end == name)
    return "";

  for (discrim_start = discrim_end; discrim_start != name + 3;
       discrim_start -= 1)
    {
      if (discrim_start == name + 1)
	return "";
      if ((discrim_start > name + 3 && STREQN (discrim_start - 3, "___", 3))
	  || discrim_start[-1] == '.')
	break;
    }

  GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
  strncpy (result, discrim_start, discrim_end - discrim_start);
  result[discrim_end - discrim_start] = '\0';
  return result;
}

/* Scan STR for a subtype-encoded number, beginning at position K. Put the 
   position of the character just past the number scanned in *NEW_K, 
   if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.  Return 1 
   if there was a valid number at the given position, and 0 otherwise.  A 
   "subtype-encoded" number consists of the absolute value in decimal, 
   followed by the letter 'm' to indicate a negative number.  Assumes 0m 
   does not occur. */

int
ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
{
  ULONGEST RU;

  if (!isdigit (str[k]))
    return 0;

  /* Do it the hard way so as not to make any assumption about 
     the relationship of unsigned long (%lu scan format code) and
     LONGEST. */
  RU = 0;
  while (isdigit (str[k]))
    {
      RU = RU * 10 + (str[k] - '0');
      k += 1;
    }

  if (str[k] == 'm')
    {
      if (R != NULL)
	*R = (-(LONGEST) (RU - 1)) - 1;
      k += 1;
    }
  else if (R != NULL)
    *R = (LONGEST) RU;

  /* NOTE on the above: Technically, C does not say what the results of 
     - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
     number representable as a LONGEST (although either would probably work
     in most implementations).  When RU>0, the locution in the then branch
     above is always equivalent to the negative of RU. */

  if (new_k != NULL)
    *new_k = k;
  return 1;
}

/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field), 
   and FIELD_NUM is a valid field number within it, returns 1 iff VAL is 
   in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */

int
ada_in_variant (LONGEST val, struct type *type, int field_num)
{
  const char *name = TYPE_FIELD_NAME (type, field_num);
  int p;

  p = 0;
  while (1)
    {
      switch (name[p])
	{
	case '\0':
	  return 0;
	case 'S':
	  {
	    LONGEST W;
	    if (!ada_scan_number (name, p + 1, &W, &p))
	      return 0;
	    if (val == W)
	      return 1;
	    break;
	  }
	case 'R':
	  {
	    LONGEST L, U;
	    if (!ada_scan_number (name, p + 1, &L, &p)
		|| name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
	      return 0;
	    if (val >= L && val <= U)
	      return 1;
	    break;
	  }
	case 'O':
	  return 1;
	default:
	  return 0;
	}
    }
}

/* Given a value ARG1 (offset by OFFSET bytes)
   of a struct or union type ARG_TYPE,
   extract and return the value of one of its (non-static) fields.
   FIELDNO says which field.   Differs from value_primitive_field only
   in that it can handle packed values of arbitrary type. */

struct value *
ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
			   struct type *arg_type)
{
  struct value *v;
  struct type *type;

  CHECK_TYPEDEF (arg_type);
  type = TYPE_FIELD_TYPE (arg_type, fieldno);

  /* Handle packed fields */

  if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
    {
      int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
      int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);

      return ada_value_primitive_packed_val (arg1, VALUE_CONTENTS (arg1),
					     offset + bit_pos / 8,
					     bit_pos % 8, bit_size, type);
    }
  else
    return value_primitive_field (arg1, offset, fieldno, arg_type);
}


/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
   and search in it assuming it has (class) type TYPE.
   If found, return value, else return NULL.

   Searches recursively through wrapper fields (e.g., '_parent'). */

struct value *
ada_search_struct_field (char *name, struct value *arg, int offset,
			 struct type *type)
{
  int i;
  CHECK_TYPEDEF (type);

  for (i = TYPE_NFIELDS (type) - 1; i >= 0; i -= 1)
    {
      char *t_field_name = TYPE_FIELD_NAME (type, i);

      if (t_field_name == NULL)
	continue;

      else if (field_name_match (t_field_name, name))
	return ada_value_primitive_field (arg, offset, i, type);

      else if (ada_is_wrapper_field (type, i))
	{
	  struct value *v = ada_search_struct_field (name, arg,
						     offset +
						     TYPE_FIELD_BITPOS (type,
									i) /
						     8,
						     TYPE_FIELD_TYPE (type,
								      i));
	  if (v != NULL)
	    return v;
	}

      else if (ada_is_variant_part (type, i))
	{
	  int j;
	  struct type *field_type = check_typedef (TYPE_FIELD_TYPE (type, i));
	  int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;

	  for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
	    {
	      struct value *v = ada_search_struct_field (name, arg,
							 var_offset
							 +
							 TYPE_FIELD_BITPOS
							 (field_type, j) / 8,
							 TYPE_FIELD_TYPE
							 (field_type, j));
	      if (v != NULL)
		return v;
	    }
	}
    }
  return NULL;
}

/* Given ARG, a value of type (pointer to a)* structure/union,
   extract the component named NAME from the ultimate target structure/union
   and return it as a value with its appropriate type.

   The routine searches for NAME among all members of the structure itself 
   and (recursively) among all members of any wrapper members 
   (e.g., '_parent').

   ERR is a name (for use in error messages) that identifies the class 
   of entity that ARG is supposed to be. */

struct value *
ada_value_struct_elt (struct value *arg, char *name, char *err)
{
  struct type *t;
  struct value *v;

  arg = ada_coerce_ref (arg);
  t = check_typedef (VALUE_TYPE (arg));

  /* Follow pointers until we get to a non-pointer.  */

  while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
    {
      arg = ada_value_ind (arg);
      t = check_typedef (VALUE_TYPE (arg));
    }

  if (TYPE_CODE (t) != TYPE_CODE_STRUCT && TYPE_CODE (t) != TYPE_CODE_UNION)
    error ("Attempt to extract a component of a value that is not a %s.",
	   err);

  v = ada_search_struct_field (name, arg, 0, t);
  if (v == NULL)
    error ("There is no member named %s.", name);

  return v;
}

/* Given a type TYPE, look up the type of the component of type named NAME.
   If DISPP is non-null, add its byte displacement from the beginning of a 
   structure (pointed to by a value) of type TYPE to *DISPP (does not 
   work for packed fields).

   Matches any field whose name has NAME as a prefix, possibly
   followed by "___". 

   TYPE can be either a struct or union, or a pointer or reference to 
   a struct or union.  If it is a pointer or reference, its target 
   type is automatically used.

   Looks recursively into variant clauses and parent types.

   If NOERR is nonzero, return NULL if NAME is not suitably defined. */

struct type *
ada_lookup_struct_elt_type (struct type *type, char *name, int noerr,
			    int *dispp)
{
  int i;

  if (name == NULL)
    goto BadName;

  while (1)
    {
      CHECK_TYPEDEF (type);
      if (TYPE_CODE (type) != TYPE_CODE_PTR
	  && TYPE_CODE (type) != TYPE_CODE_REF)
	break;
      type = TYPE_TARGET_TYPE (type);
    }

  if (TYPE_CODE (type) != TYPE_CODE_STRUCT &&
      TYPE_CODE (type) != TYPE_CODE_UNION)
    {
      target_terminal_ours ();
      gdb_flush (gdb_stdout);
      fprintf_unfiltered (gdb_stderr, "Type ");
      type_print (type, "", gdb_stderr, -1);
      error (" is not a structure or union type");
    }

  type = to_static_fixed_type (type);

  for (i = 0; i < TYPE_NFIELDS (type); i += 1)
    {
      char *t_field_name = TYPE_FIELD_NAME (type, i);
      struct type *t;
      int disp;

      if (t_field_name == NULL)
	continue;

      else if (field_name_match (t_field_name, name))
	{
	  if (dispp != NULL)
	    *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
	  return check_typedef (TYPE_FIELD_TYPE (type, i));
	}

      else if (ada_is_wrapper_field (type, i))
	{
	  disp = 0;
	  t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
					  1, &disp);
	  if (t != NULL)
	    {
	      if (dispp != NULL)
		*dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
	      return t;
	    }
	}

      else if (ada_is_variant_part (type, i))
	{
	  int j;
	  struct type *field_type = check_typedef (TYPE_FIELD_TYPE (type, i));

	  for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
	    {
	      disp = 0;
	      t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
					      name, 1, &disp);
	      if (t != NULL)
		{
		  if (dispp != NULL)
		    *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
		  return t;
		}
	    }
	}

    }

BadName:
  if (!noerr)
    {
      target_terminal_ours ();
      gdb_flush (gdb_stdout);
      fprintf_unfiltered (gdb_stderr, "Type ");
      type_print (type, "", gdb_stderr, -1);
      fprintf_unfiltered (gdb_stderr, " has no component named ");
      error ("%s", name == NULL ? "<null>" : name);
    }

  return NULL;
}

/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
   within a value of type OUTER_TYPE that is stored in GDB at
   OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE, 
   numbering from 0) is applicable.  Returns -1 if none are. */

int
ada_which_variant_applies (struct type *var_type, struct type *outer_type,
			   char *outer_valaddr)
{
  int others_clause;
  int i;
  int disp;
  struct type *discrim_type;
  char *discrim_name = ada_variant_discrim_name (var_type);
  LONGEST discrim_val;

  disp = 0;
  discrim_type =
    ada_lookup_struct_elt_type (outer_type, discrim_name, 1, &disp);
  if (discrim_type == NULL)
    return -1;
  discrim_val = unpack_long (discrim_type, outer_valaddr + disp);

  others_clause = -1;
  for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
    {
      if (ada_is_others_clause (var_type, i))
	others_clause = i;
      else if (ada_in_variant (discrim_val, var_type, i))
	return i;
    }

  return others_clause;
}



				/* Dynamic-Sized Records */

/* Strategy: The type ostensibly attached to a value with dynamic size
   (i.e., a size that is not statically recorded in the debugging
   data) does not accurately reflect the size or layout of the value.
   Our strategy is to convert these values to values with accurate,
   conventional types that are constructed on the fly. */

/* There is a subtle and tricky problem here.  In general, we cannot
   determine the size of dynamic records without its data.  However,
   the 'struct value' data structure, which GDB uses to represent
   quantities in the inferior process (the target), requires the size
   of the type at the time of its allocation in order to reserve space
   for GDB's internal copy of the data.  That's why the
   'to_fixed_xxx_type' routines take (target) addresses as parameters,
   rather than struct value*s.  

   However, GDB's internal history variables ($1, $2, etc.) are
   struct value*s containing internal copies of the data that are not, in
   general, the same as the data at their corresponding addresses in
   the target.  Fortunately, the types we give to these values are all
   conventional, fixed-size types (as per the strategy described
   above), so that we don't usually have to perform the
   'to_fixed_xxx_type' conversions to look at their values.
   Unfortunately, there is one exception: if one of the internal
   history variables is an array whose elements are unconstrained
   records, then we will need to create distinct fixed types for each
   element selected.  */

/* The upshot of all of this is that many routines take a (type, host
   address, target address) triple as arguments to represent a value.
   The host address, if non-null, is supposed to contain an internal
   copy of the relevant data; otherwise, the program is to consult the
   target at the target address. */

/* Assuming that VAL0 represents a pointer value, the result of
   dereferencing it.  Differs from value_ind in its treatment of
   dynamic-sized types. */

struct value *
ada_value_ind (struct value *val0)
{
  struct value *val = unwrap_value (value_ind (val0));
  return ada_to_fixed_value (VALUE_TYPE (val), 0,
			     VALUE_ADDRESS (val) + VALUE_OFFSET (val), val);
}

/* The value resulting from dereferencing any "reference to"
 * qualifiers on VAL0. */
static struct value *
ada_coerce_ref (struct value *val0)
{
  if (TYPE_CODE (VALUE_TYPE (val0)) == TYPE_CODE_REF)
    {
      struct value *val = val0;
      COERCE_REF (val);
      val = unwrap_value (val);
      return ada_to_fixed_value (VALUE_TYPE (val), 0,
				 VALUE_ADDRESS (val) + VALUE_OFFSET (val),
				 val);
    }
  else
    return val0;
}

/* Return OFF rounded upward if necessary to a multiple of
   ALIGNMENT (a power of 2). */

static unsigned int
align_value (unsigned int off, unsigned int alignment)
{
  return (off + alignment - 1) & ~(alignment - 1);
}

/* Return the additional bit offset required by field F of template
   type TYPE. */

static unsigned int
field_offset (struct type *type, int f)
{
  int n = TYPE_FIELD_BITPOS (type, f);
  /* Kludge (temporary?) to fix problem with dwarf output. */
  if (n < 0)
    return (unsigned int) n & 0xffff;
  else
    return n;
}


/* Return the bit alignment required for field #F of template type TYPE. */

static unsigned int
field_alignment (struct type *type, int f)
{
  const char *name = TYPE_FIELD_NAME (type, f);
  int len = (name == NULL) ? 0 : strlen (name);
  int align_offset;

  if (len < 8 || !isdigit (name[len - 1]))
    return TARGET_CHAR_BIT;

  if (isdigit (name[len - 2]))
    align_offset = len - 2;
  else
    align_offset = len - 1;

  if (align_offset < 7 || !STREQN ("___XV", name + align_offset - 6, 5))
    return TARGET_CHAR_BIT;

  return atoi (name + align_offset) * TARGET_CHAR_BIT;
}

/* Find a type named NAME.  Ignores ambiguity.  */
struct type *
ada_find_any_type (const char *name)
{
  struct symbol *sym;

  sym = standard_lookup (name, VAR_NAMESPACE);
  if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
    return SYMBOL_TYPE (sym);

  sym = standard_lookup (name, STRUCT_NAMESPACE);
  if (sym != NULL)
    return SYMBOL_TYPE (sym);

  return NULL;
}

/* Because of GNAT encoding conventions, several GDB symbols may match a
   given type name. If the type denoted by TYPE0 is to be preferred to
   that of TYPE1 for purposes of type printing, return non-zero;
   otherwise return 0. */
int
ada_prefer_type (struct type *type0, struct type *type1)
{
  if (type1 == NULL)
    return 1;
  else if (type0 == NULL)
    return 0;
  else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
    return 1;
  else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
    return 0;
  else if (ada_is_packed_array_type (type0))
    return 1;
  else if (ada_is_array_descriptor (type0)
	   && !ada_is_array_descriptor (type1))
    return 1;
  else if (ada_renaming_type (type0) != NULL
	   && ada_renaming_type (type1) == NULL)
    return 1;
  return 0;
}

/* The name of TYPE, which is either its TYPE_NAME, or, if that is
   null, its TYPE_TAG_NAME.  Null if TYPE is null. */
char *
ada_type_name (struct type *type)
{
  if (type == NULL)
    return NULL;
  else if (TYPE_NAME (type) != NULL)
    return TYPE_NAME (type);
  else
    return TYPE_TAG_NAME (type);
}

/* Find a parallel type to TYPE whose name is formed by appending
   SUFFIX to the name of TYPE. */

struct type *
ada_find_parallel_type (struct type *type, const char *suffix)
{
  static char *name;
  static size_t name_len = 0;
  struct symbol **syms;
  struct block **blocks;
  int nsyms;
  int len;
  char *typename = ada_type_name (type);

  if (typename == NULL)
    return NULL;

  len = strlen (typename);

  GROW_VECT (name, name_len, len + strlen (suffix) + 1);

  strcpy (name, typename);
  strcpy (name + len, suffix);

  return ada_find_any_type (name);
}


/* If TYPE is a variable-size record type, return the corresponding template
   type describing its fields.  Otherwise, return NULL. */

static struct type *
dynamic_template_type (struct type *type)
{
  CHECK_TYPEDEF (type);

  if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
      || ada_type_name (type) == NULL)
    return NULL;
  else
    {
      int len = strlen (ada_type_name (type));
      if (len > 6 && STREQ (ada_type_name (type) + len - 6, "___XVE"))
	return type;
      else
	return ada_find_parallel_type (type, "___XVE");
    }
}

/* Assuming that TEMPL_TYPE is a union or struct type, returns
   non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */

static int
is_dynamic_field (struct type *templ_type, int field_num)
{
  const char *name = TYPE_FIELD_NAME (templ_type, field_num);
  return name != NULL
    && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
    && strstr (name, "___XVL") != NULL;
}

/* Assuming that TYPE is a struct type, returns non-zero iff TYPE
   contains a variant part. */

static int
contains_variant_part (struct type *type)
{
  int f;

  if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
      || TYPE_NFIELDS (type) <= 0)
    return 0;
  return ada_is_variant_part (type, TYPE_NFIELDS (type) - 1);
}

/* A record type with no fields, . */
static struct type *
empty_record (struct objfile *objfile)
{
  struct type *type = alloc_type (objfile);
  TYPE_CODE (type) = TYPE_CODE_STRUCT;
  TYPE_NFIELDS (type) = 0;
  TYPE_FIELDS (type) = NULL;
  TYPE_NAME (type) = "<empty>";
  TYPE_TAG_NAME (type) = NULL;
  TYPE_FLAGS (type) = 0;
  TYPE_LENGTH (type) = 0;
  return type;
}

/* An ordinary record type (with fixed-length fields) that describes
   the value of type TYPE at VALADDR or ADDRESS (see comments at 
   the beginning of this section) VAL according to GNAT conventions.  
   DVAL0 should describe the (portion of a) record that contains any 
   necessary discriminants.  It should be NULL if VALUE_TYPE (VAL) is
   an outer-level type (i.e., as opposed to a branch of a variant.)  A
   variant field (unless unchecked) is replaced by a particular branch
   of the variant. */
/* NOTE: Limitations: For now, we assume that dynamic fields and
 * variants occupy whole numbers of bytes.  However, they need not be
 * byte-aligned.  */

static struct type *
template_to_fixed_record_type (struct type *type, char *valaddr,
			       CORE_ADDR address, struct value *dval0)
{
  struct value *mark = value_mark ();
  struct value *dval;
  struct type *rtype;
  int nfields, bit_len;
  long off;
  int f;

  nfields = TYPE_NFIELDS (type);
  rtype = alloc_type (TYPE_OBJFILE (type));
  TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
  INIT_CPLUS_SPECIFIC (rtype);
  TYPE_NFIELDS (rtype) = nfields;
  TYPE_FIELDS (rtype) = (struct field *)
    TYPE_ALLOC (rtype, nfields * sizeof (struct field));
  memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
  TYPE_NAME (rtype) = ada_type_name (type);
  TYPE_TAG_NAME (rtype) = NULL;
  /* FIXME: TYPE_FLAG_FIXED_INSTANCE should be defined in
     gdbtypes.h */
  /*  TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE; */

  off = 0;
  bit_len = 0;
  for (f = 0; f < nfields; f += 1)
    {
      int fld_bit_len, bit_incr;
      off =
	align_value (off,
		     field_alignment (type, f)) + TYPE_FIELD_BITPOS (type, f);
      /* NOTE: used to use field_offset above, but that causes
       * problems with really negative bit positions.  So, let's
       * rediscover why we needed field_offset and fix it properly. */
      TYPE_FIELD_BITPOS (rtype, f) = off;
      TYPE_FIELD_BITSIZE (rtype, f) = 0;
      TYPE_FIELD_STATIC_KIND (rtype, f) = 0;

      if (ada_is_variant_part (type, f))
	{
	  struct type *branch_type;

	  if (dval0 == NULL)
	    dval = value_from_contents_and_address (rtype, valaddr, address);
	  else
	    dval = dval0;

	  branch_type =
	    to_fixed_variant_branch_type
	    (TYPE_FIELD_TYPE (type, f),
	     cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
	     cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
	  if (branch_type == NULL)
	    TYPE_NFIELDS (rtype) -= 1;
	  else
	    {
	      TYPE_FIELD_TYPE (rtype, f) = branch_type;
	      TYPE_FIELD_NAME (rtype, f) = "S";
	    }
	  bit_incr = 0;
	  fld_bit_len =
	    TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
	}
      else if (is_dynamic_field (type, f))
	{
	  if (dval0 == NULL)
	    dval = value_from_contents_and_address (rtype, valaddr, address);
	  else
	    dval = dval0;

	  TYPE_FIELD_TYPE (rtype, f) =
	    ada_to_fixed_type
	    (ada_get_base_type
	     (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))),
	     cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
	     cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
	  TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
	  bit_incr = fld_bit_len =
	    TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
	}
      else
	{
	  TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
	  TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
	  if (TYPE_FIELD_BITSIZE (type, f) > 0)
	    bit_incr = fld_bit_len =
	      TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
	  else
	    bit_incr = fld_bit_len =
	      TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
	}
      if (off + fld_bit_len > bit_len)
	bit_len = off + fld_bit_len;
      off += bit_incr;
      TYPE_LENGTH (rtype) = bit_len / TARGET_CHAR_BIT;
    }
  TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype), TYPE_LENGTH (type));

  value_free_to_mark (mark);
  if (TYPE_LENGTH (rtype) > varsize_limit)
    error ("record type with dynamic size is larger than varsize-limit");
  return rtype;
}

/* As for template_to_fixed_record_type, but uses no run-time values.
   As a result, this type can only be approximate, but that's OK,
   since it is used only for type determinations.   Works on both
   structs and unions.
   Representation note: to save space, we memoize the result of this
   function in the TYPE_TARGET_TYPE of the template type. */

static struct type *
template_to_static_fixed_type (struct type *templ_type)
{
  struct type *type;
  int nfields;
  int f;

  if (TYPE_TARGET_TYPE (templ_type) != NULL)
    return TYPE_TARGET_TYPE (templ_type);

  nfields = TYPE_NFIELDS (templ_type);
  TYPE_TARGET_TYPE (templ_type) = type =
    alloc_type (TYPE_OBJFILE (templ_type));
  TYPE_CODE (type) = TYPE_CODE (templ_type);
  INIT_CPLUS_SPECIFIC (type);
  TYPE_NFIELDS (type) = nfields;
  TYPE_FIELDS (type) = (struct field *)
    TYPE_ALLOC (type, nfields * sizeof (struct field));
  memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
  TYPE_NAME (type) = ada_type_name (templ_type);
  TYPE_TAG_NAME (type) = NULL;
  /* FIXME:  TYPE_FLAG_FIXED_INSTANCE should be defined in gdbtypes.h */
  /*  TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE; */
  TYPE_LENGTH (type) = 0;

  for (f = 0; f < nfields; f += 1)
    {
      TYPE_FIELD_BITPOS (type, f) = 0;
      TYPE_FIELD_BITSIZE (type, f) = 0;
      TYPE_FIELD_STATIC_KIND (type, f) = 0;

      if (is_dynamic_field (templ_type, f))
	{
	  TYPE_FIELD_TYPE (type, f) =
	    to_static_fixed_type (TYPE_TARGET_TYPE
				  (TYPE_FIELD_TYPE (templ_type, f)));
	  TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (templ_type, f);
	}
      else
	{
	  TYPE_FIELD_TYPE (type, f) =
	    check_typedef (TYPE_FIELD_TYPE (templ_type, f));
	  TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (templ_type, f);
	}
    }

  return type;
}

/* A revision of TYPE0 -- a non-dynamic-sized record with a variant
   part -- in which the variant part is replaced with the appropriate
   branch. */
static struct type *
to_record_with_fixed_variant_part (struct type *type, char *valaddr,
				   CORE_ADDR address, struct value *dval)
{
  struct value *mark = value_mark ();
  struct type *rtype;
  struct type *branch_type;
  int nfields = TYPE_NFIELDS (type);

  if (dval == NULL)
    return type;

  rtype = alloc_type (TYPE_OBJFILE (type));
  TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
  INIT_CPLUS_SPECIFIC (type);
  TYPE_NFIELDS (rtype) = TYPE_NFIELDS (type);
  TYPE_FIELDS (rtype) =
    (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
  memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
	  sizeof (struct field) * nfields);
  TYPE_NAME (rtype) = ada_type_name (type);
  TYPE_TAG_NAME (rtype) = NULL;
  /* FIXME:  TYPE_FLAG_FIXED_INSTANCE should be defined in gdbtypes.h */
  /*  TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE; */
  TYPE_LENGTH (rtype) = TYPE_LENGTH (type);

  branch_type =
    to_fixed_variant_branch_type
    (TYPE_FIELD_TYPE (type, nfields - 1),
     cond_offset_host (valaddr,
		       TYPE_FIELD_BITPOS (type,
					  nfields - 1) / TARGET_CHAR_BIT),
     cond_offset_target (address,
			 TYPE_FIELD_BITPOS (type,
					    nfields - 1) / TARGET_CHAR_BIT),
     dval);
  if (branch_type == NULL)
    {
      TYPE_NFIELDS (rtype) -= 1;
      TYPE_LENGTH (rtype) -=
	TYPE_LENGTH (TYPE_FIELD_TYPE (type, nfields - 1));
    }
  else
    {
      TYPE_FIELD_TYPE (rtype, nfields - 1) = branch_type;
      TYPE_FIELD_NAME (rtype, nfields - 1) = "S";
      TYPE_FIELD_BITSIZE (rtype, nfields - 1) = 0;
      TYPE_FIELD_STATIC_KIND (rtype, nfields - 1) = 0;
      TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
      -TYPE_LENGTH (TYPE_FIELD_TYPE (type, nfields - 1));
    }

  return rtype;
}

/* An ordinary record type (with fixed-length fields) that describes
   the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
   beginning of this section].   Any necessary discriminants' values
   should be in DVAL, a record value; it should be NULL if the object
   at ADDR itself contains any necessary  discriminant values.  A
   variant field (unless unchecked) is replaced by a particular branch
   of the variant. */

static struct type *
to_fixed_record_type (struct type *type0, char *valaddr, CORE_ADDR address,
		      struct value *dval)
{
  struct type *templ_type;

  /* FIXME:  TYPE_FLAG_FIXED_INSTANCE should be defined in gdbtypes.h */
  /*  if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
     return type0;
   */
  templ_type = dynamic_template_type (type0);

  if (templ_type != NULL)
    return template_to_fixed_record_type (templ_type, valaddr, address, dval);
  else if (contains_variant_part (type0))
    return to_record_with_fixed_variant_part (type0, valaddr, address, dval);
  else
    {
      /* FIXME:  TYPE_FLAG_FIXED_INSTANCE should be defined in gdbtypes.h */
      /*      TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE; */
      return type0;
    }

}

/* An ordinary record type (with fixed-length fields) that describes
   the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
   union type.  Any necessary discriminants' values should be in DVAL,
   a record value.  That is, this routine selects the appropriate
   branch of the union at ADDR according to the discriminant value
   indicated in the union's type name. */

static struct type *
to_fixed_variant_branch_type (struct type *var_type0, char *valaddr,
			      CORE_ADDR address, struct value *dval)
{
  int which;
  struct type *templ_type;
  struct type *var_type;

  if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
    var_type = TYPE_TARGET_TYPE (var_type0);
  else
    var_type = var_type0;

  templ_type = ada_find_parallel_type (var_type, "___XVU");

  if (templ_type != NULL)
    var_type = templ_type;

  which =
    ada_which_variant_applies (var_type,
			       VALUE_TYPE (dval), VALUE_CONTENTS (dval));

  if (which < 0)
    return empty_record (TYPE_OBJFILE (var_type));
  else if (is_dynamic_field (var_type, which))
    return
      to_fixed_record_type
      (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
       valaddr, address, dval);
  else if (contains_variant_part (TYPE_FIELD_TYPE (var_type, which)))
    return
      to_fixed_record_type
      (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
  else
    return TYPE_FIELD_TYPE (var_type, which);
}

/* Assuming that TYPE0 is an array type describing the type of a value
   at ADDR, and that DVAL describes a record containing any
   discriminants used in TYPE0, returns a type for the value that
   contains no dynamic components (that is, no components whose sizes
   are determined by run-time quantities).  Unless IGNORE_TOO_BIG is
   true, gives an error message if the resulting type's size is over
   varsize_limit.
*/

static struct type *
to_fixed_array_type (struct type *type0, struct value *dval,
		     int ignore_too_big)
{
  struct type *index_type_desc;
  struct type *result;

  /* FIXME:  TYPE_FLAG_FIXED_INSTANCE should be defined in gdbtypes.h */
/*  if (ada_is_packed_array_type (type0)  /* revisit? *//*
   || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE))
   return type0; */

  index_type_desc = ada_find_parallel_type (type0, "___XA");
  if (index_type_desc == NULL)
    {
      struct type *elt_type0 = check_typedef (TYPE_TARGET_TYPE (type0));
      /* NOTE: elt_type---the fixed version of elt_type0---should never
       * depend on the contents of the array in properly constructed
       * debugging data. */
      struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval);

      if (elt_type0 == elt_type)
	result = type0;
      else
	result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
				    elt_type, TYPE_INDEX_TYPE (type0));
    }
  else
    {
      int i;
      struct type *elt_type0;

      elt_type0 = type0;
      for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
	elt_type0 = TYPE_TARGET_TYPE (elt_type0);

      /* NOTE: result---the fixed version of elt_type0---should never
       * depend on the contents of the array in properly constructed
       * debugging data. */
      result = ada_to_fixed_type (check_typedef (elt_type0), 0, 0, dval);
      for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
	{
	  struct type *range_type =
	    to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
				 dval, TYPE_OBJFILE (type0));
	  result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
				      result, range_type);
	}
      if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
	error ("array type with dynamic size is larger than varsize-limit");
    }

/* FIXME:  TYPE_FLAG_FIXED_INSTANCE should be defined in gdbtypes.h */
/*  TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE; */
  return result;
}


/* A standard type (containing no dynamically sized components)
   corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
   DVAL describes a record containing any discriminants used in TYPE0,
   and may be NULL if there are none. */

struct type *
ada_to_fixed_type (struct type *type, char *valaddr, CORE_ADDR address,
		   struct value *dval)
{
  CHECK_TYPEDEF (type);
  switch (TYPE_CODE (type))
    {
    default:
      return type;
    case TYPE_CODE_STRUCT:
      return to_fixed_record_type (type, valaddr, address, NULL);
    case TYPE_CODE_ARRAY:
      return to_fixed_array_type (type, dval, 0);
    case TYPE_CODE_UNION:
      if (dval == NULL)
	return type;
      else
	return to_fixed_variant_branch_type (type, valaddr, address, dval);
    }
}

/* A standard (static-sized) type corresponding as well as possible to
   TYPE0, but based on no runtime data. */

static struct type *
to_static_fixed_type (struct type *type0)
{
  struct type *type;

  if (type0 == NULL)
    return NULL;

  /* FIXME:  TYPE_FLAG_FIXED_INSTANCE should be defined in gdbtypes.h */
  /*  if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)
     return type0;
   */
  CHECK_TYPEDEF (type0);

  switch (TYPE_CODE (type0))
    {
    default:
      return type0;
    case TYPE_CODE_STRUCT:
      type = dynamic_template_type (type0);
      if (type != NULL)
	return template_to_static_fixed_type (type);
      return type0;
    case TYPE_CODE_UNION:
      type = ada_find_parallel_type (type0, "___XVU");
      if (type != NULL)
	return template_to_static_fixed_type (type);
      return type0;
    }
}

/* A static approximation of TYPE with all type wrappers removed. */
static struct type *
static_unwrap_type (struct type *type)
{
  if (ada_is_aligner_type (type))
    {
      struct type *type1 = TYPE_FIELD_TYPE (check_typedef (type), 0);
      if (ada_type_name (type1) == NULL)
	TYPE_NAME (type1) = ada_type_name (type);

      return static_unwrap_type (type1);
    }
  else
    {
      struct type *raw_real_type = ada_get_base_type (type);
      if (raw_real_type == type)
	return type;
      else
	return to_static_fixed_type (raw_real_type);
    }
}

/* In some cases, incomplete and private types require
   cross-references that are not resolved as records (for example, 
      type Foo;
      type FooP is access Foo;
      V: FooP;
      type Foo is array ...;
   ). In these cases, since there is no mechanism for producing 
   cross-references to such types, we instead substitute for FooP a
   stub enumeration type that is nowhere resolved, and whose tag is
   the name of the actual type.  Call these types "non-record stubs". */

/* A type equivalent to TYPE that is not a non-record stub, if one
   exists, otherwise TYPE. */
struct type *
ada_completed_type (struct type *type)
{
  CHECK_TYPEDEF (type);
  if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
      || (TYPE_FLAGS (type) & TYPE_FLAG_STUB) == 0
      || TYPE_TAG_NAME (type) == NULL)
    return type;
  else
    {
      char *name = TYPE_TAG_NAME (type);
      struct type *type1 = ada_find_any_type (name);
      return (type1 == NULL) ? type : type1;
    }
}

/* A value representing the data at VALADDR/ADDRESS as described by
   type TYPE0, but with a standard (static-sized) type that correctly
   describes it.  If VAL0 is not NULL and TYPE0 already is a standard
   type, then return VAL0 [this feature is simply to avoid redundant
   creation of struct values]. */

struct value *
ada_to_fixed_value (struct type *type0, char *valaddr, CORE_ADDR address,
		    struct value *val0)
{
  struct type *type = ada_to_fixed_type (type0, valaddr, address, NULL);
  if (type == type0 && val0 != NULL)
    return val0;
  else
    return value_from_contents_and_address (type, valaddr, address);
}

/* A value representing VAL, but with a standard (static-sized) type 
   chosen to approximate the real type of VAL as well as possible, but
   without consulting any runtime values.  For Ada dynamic-sized
   types, therefore, the type of the result is likely to be inaccurate. */

struct value *
ada_to_static_fixed_value (struct value *val)
{
  struct type *type =
    to_static_fixed_type (static_unwrap_type (VALUE_TYPE (val)));
  if (type == VALUE_TYPE (val))
    return val;
  else
    return coerce_unspec_val_to_type (val, 0, type);
}





/* Attributes */

/* Table mapping attribute numbers to names */
/* NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h */

static const char *attribute_names[] = {
  "<?>",

  "first",
  "last",
  "length",
  "image",
  "img",
  "max",
  "min",
  "pos" "tag",
  "val",

  0
};

const char *
ada_attribute_name (int n)
{
  if (n > 0 && n < (int) ATR_END)
    return attribute_names[n];
  else
    return attribute_names[0];
}

/* Evaluate the 'POS attribute applied to ARG. */

static struct value *
value_pos_atr (struct value *arg)
{
  struct type *type = VALUE_TYPE (arg);

  if (!discrete_type_p (type))
    error ("'POS only defined on discrete types");

  if (TYPE_CODE (type) == TYPE_CODE_ENUM)
    {
      int i;
      LONGEST v = value_as_long (arg);

      for (i = 0; i < TYPE_NFIELDS (type); i += 1)
	{
	  if (v == TYPE_FIELD_BITPOS (type, i))
	    return value_from_longest (builtin_type_ada_int, i);
	}
      error ("enumeration value is invalid: can't find 'POS");
    }
  else
    return value_from_longest (builtin_type_ada_int, value_as_long (arg));
}

/* Evaluate the TYPE'VAL attribute applied to ARG. */

static struct value *
value_val_atr (struct type *type, struct value *arg)
{
  if (!discrete_type_p (type))
    error ("'VAL only defined on discrete types");
  if (!integer_type_p (VALUE_TYPE (arg)))
    error ("'VAL requires integral argument");

  if (TYPE_CODE (type) == TYPE_CODE_ENUM)
    {
      long pos = value_as_long (arg);
      if (pos < 0 || pos >= TYPE_NFIELDS (type))
	error ("argument to 'VAL out of range");
      return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
    }
  else
    return value_from_longest (type, value_as_long (arg));
}


				/* Evaluation */

/* True if TYPE appears to be an Ada character type.  
 * [At the moment, this is true only for Character and Wide_Character;
 * It is a heuristic test that could stand improvement]. */

int
ada_is_character_type (struct type *type)
{
  const char *name = ada_type_name (type);
  return
    name != NULL
    && (TYPE_CODE (type) == TYPE_CODE_CHAR
	|| TYPE_CODE (type) == TYPE_CODE_INT
	|| TYPE_CODE (type) == TYPE_CODE_RANGE)
    && (STREQ (name, "character") || STREQ (name, "wide_character")
	|| STREQ (name, "unsigned char"));
}

/* True if TYPE appears to be an Ada string type. */

int
ada_is_string_type (struct type *type)
{
  CHECK_TYPEDEF (type);
  if (type != NULL
      && TYPE_CODE (type) != TYPE_CODE_PTR
      && (ada_is_simple_array (type) || ada_is_array_descriptor (type))
      && ada_array_arity (type) == 1)
    {
      struct type *elttype = ada_array_element_type (type, 1);

      return ada_is_character_type (elttype);
    }
  else
    return 0;
}


/* True if TYPE is a struct type introduced by the compiler to force the
   alignment of a value.  Such types have a single field with a
   distinctive name. */

int
ada_is_aligner_type (struct type *type)
{
  CHECK_TYPEDEF (type);
  return (TYPE_CODE (type) == TYPE_CODE_STRUCT
	  && TYPE_NFIELDS (type) == 1
	  && STREQ (TYPE_FIELD_NAME (type, 0), "F"));
}

/* If there is an ___XVS-convention type parallel to SUBTYPE, return
   the parallel type. */

struct type *
ada_get_base_type (struct type *raw_type)
{
  struct type *real_type_namer;
  struct type *raw_real_type;
  struct type *real_type;

  if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
    return raw_type;

  real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
  if (real_type_namer == NULL
      || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
      || TYPE_NFIELDS (real_type_namer) != 1)
    return raw_type;

  raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
  if (raw_real_type == NULL)
    return raw_type;
  else
    return raw_real_type;
}

/* The type of value designated by TYPE, with all aligners removed. */

struct type *
ada_aligned_type (struct type *type)
{
  if (ada_is_aligner_type (type))
    return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
  else
    return ada_get_base_type (type);
}


/* The address of the aligned value in an object at address VALADDR
   having type TYPE.  Assumes ada_is_aligner_type (TYPE). */

char *
ada_aligned_value_addr (struct type *type, char *valaddr)
{
  if (ada_is_aligner_type (type))
    return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
				   valaddr +
				   TYPE_FIELD_BITPOS (type,
						      0) / TARGET_CHAR_BIT);
  else
    return valaddr;
}

/* The printed representation of an enumeration literal with encoded
   name NAME. The value is good to the next call of ada_enum_name. */
const char *
ada_enum_name (const char *name)
{
  char *tmp;

  while (1)
    {
      if ((tmp = strstr (name, "__")) != NULL)
	name = tmp + 2;
      else if ((tmp = strchr (name, '.')) != NULL)
	name = tmp + 1;
      else
	break;
    }

  if (name[0] == 'Q')
    {
      static char result[16];
      int v;
      if (name[1] == 'U' || name[1] == 'W')
	{
	  if (sscanf (name + 2, "%x", &v) != 1)
	    return name;
	}
      else
	return name;

      if (isascii (v) && isprint (v))
	sprintf (result, "'%c'", v);
      else if (name[1] == 'U')
	sprintf (result, "[\"%02x\"]", v);
      else
	sprintf (result, "[\"%04x\"]", v);

      return result;
    }
  else
    return name;
}

static struct value *
evaluate_subexp (struct type *expect_type, struct expression *exp, int *pos,
		 enum noside noside)
{
  return (*exp->language_defn->evaluate_exp) (expect_type, exp, pos, noside);
}

/* Evaluate the subexpression of EXP starting at *POS as for
   evaluate_type, updating *POS to point just past the evaluated
   expression. */

static struct value *
evaluate_subexp_type (struct expression *exp, int *pos)
{
  return (*exp->language_defn->evaluate_exp)
    (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
}

/* If VAL is wrapped in an aligner or subtype wrapper, return the
   value it wraps. */

static struct value *
unwrap_value (struct value *val)
{
  struct type *type = check_typedef (VALUE_TYPE (val));
  if (ada_is_aligner_type (type))
    {
      struct value *v = value_struct_elt (&val, NULL, "F",
					  NULL, "internal structure");
      struct type *val_type = check_typedef (VALUE_TYPE (v));
      if (ada_type_name (val_type) == NULL)
	TYPE_NAME (val_type) = ada_type_name (type);

      return unwrap_value (v);
    }
  else
    {
      struct type *raw_real_type =
	ada_completed_type (ada_get_base_type (type));

      if (type == raw_real_type)
	return val;

      return
	coerce_unspec_val_to_type
	(val, 0, ada_to_fixed_type (raw_real_type, 0,
				    VALUE_ADDRESS (val) + VALUE_OFFSET (val),
				    NULL));
    }
}

static struct value *
cast_to_fixed (struct type *type, struct value *arg)
{
  LONGEST val;

  if (type == VALUE_TYPE (arg))
    return arg;
  else if (ada_is_fixed_point_type (VALUE_TYPE (arg)))
    val = ada_float_to_fixed (type,
			      ada_fixed_to_float (VALUE_TYPE (arg),
						  value_as_long (arg)));
  else
    {
      DOUBLEST argd =
	value_as_double (value_cast (builtin_type_double, value_copy (arg)));
      val = ada_float_to_fixed (type, argd);
    }

  return value_from_longest (type, val);
}

static struct value *
cast_from_fixed_to_double (struct value *arg)
{
  DOUBLEST val = ada_fixed_to_float (VALUE_TYPE (arg),
				     value_as_long (arg));
  return value_from_double (builtin_type_double, val);
}

/* Coerce VAL as necessary for assignment to an lval of type TYPE, and 
 * return the converted value. */
static struct value *
coerce_for_assign (struct type *type, struct value *val)
{
  struct type *type2 = VALUE_TYPE (val);
  if (type == type2)
    return val;

  CHECK_TYPEDEF (type2);
  CHECK_TYPEDEF (type);

  if (TYPE_CODE (type2) == TYPE_CODE_PTR
      && TYPE_CODE (type) == TYPE_CODE_ARRAY)
    {
      val = ada_value_ind (val);
      type2 = VALUE_TYPE (val);
    }

  if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
      && TYPE_CODE (type) == TYPE_CODE_ARRAY)
    {
      if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
	  || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
	  != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
	error ("Incompatible types in assignment");
      VALUE_TYPE (val) = type;
    }
  return val;
}

struct value *
ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
		     int *pos, enum noside noside)
{
  enum exp_opcode op;
  enum ada_attribute atr;
  int tem, tem2, tem3;
  int pc;
  struct value *arg1 = NULL, *arg2 = NULL, *arg3;
  struct type *type;
  int nargs;
  struct value **argvec;

  pc = *pos;
  *pos += 1;
  op = exp->elts[pc].opcode;

  switch (op)
    {
    default:
      *pos -= 1;
      return
	unwrap_value (evaluate_subexp_standard
		      (expect_type, exp, pos, noside));

    case UNOP_CAST:
      (*pos) += 2;
      type = exp->elts[pc + 1].type;
      arg1 = evaluate_subexp (type, exp, pos, noside);
      if (noside == EVAL_SKIP)
	goto nosideret;
      if (type != check_typedef (VALUE_TYPE (arg1)))
	{
	  if (ada_is_fixed_point_type (type))
	    arg1 = cast_to_fixed (type, arg1);
	  else if (ada_is_fixed_point_type (VALUE_TYPE (arg1)))
	    arg1 = value_cast (type, cast_from_fixed_to_double (arg1));
	  else if (VALUE_LVAL (arg1) == lval_memory)
	    {
	      /* This is in case of the really obscure (and undocumented,
	         but apparently expected) case of (Foo) Bar.all, where Bar 
	         is an integer constant and Foo is a dynamic-sized type.
	         If we don't do this, ARG1 will simply be relabeled with
	         TYPE. */
	      if (noside == EVAL_AVOID_SIDE_EFFECTS)
		return value_zero (to_static_fixed_type (type), not_lval);
	      arg1 =
		ada_to_fixed_value
		(type, 0, VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1), 0);
	    }
	  else
	    arg1 = value_cast (type, arg1);
	}
      return arg1;

      /* FIXME:  UNOP_QUAL should be defined in expression.h */
      /*    case UNOP_QUAL:
         (*pos) += 2;
         type = exp->elts[pc + 1].type;
         return ada_evaluate_subexp (type, exp, pos, noside);
       */
    case BINOP_ASSIGN:
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside);
      if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
	return arg1;
      if (binop_user_defined_p (op, arg1, arg2))
	return value_x_binop (arg1, arg2, op, OP_NULL, EVAL_NORMAL);
      else
	{
	  if (ada_is_fixed_point_type (VALUE_TYPE (arg1)))
	    arg2 = cast_to_fixed (VALUE_TYPE (arg1), arg2);
	  else if (ada_is_fixed_point_type (VALUE_TYPE (arg2)))
	    error
	      ("Fixed-point values must be assigned to fixed-point variables");
	  else
	    arg2 = coerce_for_assign (VALUE_TYPE (arg1), arg2);
	  return ada_value_assign (arg1, arg2);
	}

    case BINOP_ADD:
      arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
      arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
      if (noside == EVAL_SKIP)
	goto nosideret;
      if (binop_user_defined_p (op, arg1, arg2))
	return value_x_binop (arg1, arg2, op, OP_NULL, EVAL_NORMAL);
      else
	{
	  if ((ada_is_fixed_point_type (VALUE_TYPE (arg1))
	       || ada_is_fixed_point_type (VALUE_TYPE (arg2)))
	      && VALUE_TYPE (arg1) != VALUE_TYPE (arg2))
	    error
	      ("Operands of fixed-point addition must have the same type");
	  return value_cast (VALUE_TYPE (arg1), value_add (arg1, arg2));
	}

    case BINOP_SUB:
      arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
      arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
      if (noside == EVAL_SKIP)
	goto nosideret;
      if (binop_user_defined_p (op, arg1, arg2))
	return value_x_binop (arg1, arg2, op, OP_NULL, EVAL_NORMAL);
      else
	{
	  if ((ada_is_fixed_point_type (VALUE_TYPE (arg1))
	       || ada_is_fixed_point_type (VALUE_TYPE (arg2)))
	      && VALUE_TYPE (arg1) != VALUE_TYPE (arg2))
	    error
	      ("Operands of fixed-point subtraction must have the same type");
	  return value_cast (VALUE_TYPE (arg1), value_sub (arg1, arg2));
	}

    case BINOP_MUL:
    case BINOP_DIV:
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      if (noside == EVAL_SKIP)
	goto nosideret;
      if (binop_user_defined_p (op, arg1, arg2))
	return value_x_binop (arg1, arg2, op, OP_NULL, EVAL_NORMAL);
      else
	if (noside == EVAL_AVOID_SIDE_EFFECTS
	    && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD))
	return value_zero (VALUE_TYPE (arg1), not_lval);
      else
	{
	  if (ada_is_fixed_point_type (VALUE_TYPE (arg1)))
	    arg1 = cast_from_fixed_to_double (arg1);
	  if (ada_is_fixed_point_type (VALUE_TYPE (arg2)))
	    arg2 = cast_from_fixed_to_double (arg2);
	  return value_binop (arg1, arg2, op);
	}

    case UNOP_NEG:
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      if (noside == EVAL_SKIP)
	goto nosideret;
      if (unop_user_defined_p (op, arg1))
	return value_x_unop (arg1, op, EVAL_NORMAL);
      else if (ada_is_fixed_point_type (VALUE_TYPE (arg1)))
	return value_cast (VALUE_TYPE (arg1), value_neg (arg1));
      else
	return value_neg (arg1);

      /* FIXME:  OP_UNRESOLVED_VALUE should be defined in expression.h */
      /*    case OP_UNRESOLVED_VALUE:
         /* Only encountered when an unresolved symbol occurs in a
         context other than a function call, in which case, it is
   illegal. *//*
   (*pos) += 3;
   if (noside == EVAL_SKIP)
   goto nosideret;
   else 
   error ("Unexpected unresolved symbol, %s, during evaluation",
   ada_demangle (exp->elts[pc + 2].name));
 */
    case OP_VAR_VALUE:
      *pos -= 1;
      if (noside == EVAL_SKIP)
	{
	  *pos += 4;
	  goto nosideret;
	}
      else if (noside == EVAL_AVOID_SIDE_EFFECTS)
	{
	  *pos += 4;
	  return value_zero
	    (to_static_fixed_type
	     (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
	     not_lval);
	}
      else
	{
	  arg1 =
	    unwrap_value (evaluate_subexp_standard
			  (expect_type, exp, pos, noside));
	  return ada_to_fixed_value (VALUE_TYPE (arg1), 0,
				     VALUE_ADDRESS (arg1) +
				     VALUE_OFFSET (arg1), arg1);
	}

    case OP_ARRAY:
      (*pos) += 3;
      tem2 = longest_to_int (exp->elts[pc + 1].longconst);
      tem3 = longest_to_int (exp->elts[pc + 2].longconst);
      nargs = tem3 - tem2 + 1;
      type = expect_type ? check_typedef (expect_type) : NULL_TYPE;

      argvec =
	(struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
      for (tem = 0; tem == 0 || tem < nargs; tem += 1)
	/* At least one element gets inserted for the type */
	{
	  /* Ensure that array expressions are coerced into pointer objects. */
	  argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
	}
      if (noside == EVAL_SKIP)
	goto nosideret;
      return value_array (tem2, tem3, argvec);

    case OP_FUNCALL:
      (*pos) += 2;

      /* Allocate arg vector, including space for the function to be
         called in argvec[0] and a terminating NULL */
      nargs = longest_to_int (exp->elts[pc + 1].longconst);
      argvec =
	(struct value * *) alloca (sizeof (struct value *) * (nargs + 2));

      /* FIXME: OP_UNRESOLVED_VALUE should be defined in expression.h */
      /* FIXME: name should be defined in expresion.h */
      /*      if (exp->elts[*pos].opcode == OP_UNRESOLVED_VALUE)
         error ("Unexpected unresolved symbol, %s, during evaluation",
         ada_demangle (exp->elts[pc + 5].name));
       */
      if (0)
	{
	  error ("unexpected code path, FIXME");
	}
      else
	{
	  for (tem = 0; tem <= nargs; tem += 1)
	    argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
	  argvec[tem] = 0;

	  if (noside == EVAL_SKIP)
	    goto nosideret;
	}

      if (TYPE_CODE (VALUE_TYPE (argvec[0])) == TYPE_CODE_REF)
	argvec[0] = value_addr (argvec[0]);

      if (ada_is_packed_array_type (VALUE_TYPE (argvec[0])))
	argvec[0] = ada_coerce_to_simple_array (argvec[0]);

      type = check_typedef (VALUE_TYPE (argvec[0]));
      if (TYPE_CODE (type) == TYPE_CODE_PTR)
	{
	  switch (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (type))))
	    {
	    case TYPE_CODE_FUNC:
	      type = check_typedef (TYPE_TARGET_TYPE (type));
	      break;
	    case TYPE_CODE_ARRAY:
	      break;
	    case TYPE_CODE_STRUCT:
	      if (noside != EVAL_AVOID_SIDE_EFFECTS)
		argvec[0] = ada_value_ind (argvec[0]);
	      type = check_typedef (TYPE_TARGET_TYPE (type));
	      break;
	    default:
	      error ("cannot subscript or call something of type `%s'",
		     ada_type_name (VALUE_TYPE (argvec[0])));
	      break;
	    }
	}

      switch (TYPE_CODE (type))
	{
	case TYPE_CODE_FUNC:
	  if (noside == EVAL_AVOID_SIDE_EFFECTS)
	    return allocate_value (TYPE_TARGET_TYPE (type));
	  return call_function_by_hand (argvec[0], nargs, argvec + 1);
	case TYPE_CODE_STRUCT:
	  {
	    int arity = ada_array_arity (type);
	    type = ada_array_element_type (type, nargs);
	    if (type == NULL)
	      error ("cannot subscript or call a record");
	    if (arity != nargs)
	      error ("wrong number of subscripts; expecting %d", arity);
	    if (noside == EVAL_AVOID_SIDE_EFFECTS)
	      return allocate_value (ada_aligned_type (type));
	    return
	      unwrap_value (ada_value_subscript
			    (argvec[0], nargs, argvec + 1));
	  }
	case TYPE_CODE_ARRAY:
	  if (noside == EVAL_AVOID_SIDE_EFFECTS)
	    {
	      type = ada_array_element_type (type, nargs);
	      if (type == NULL)
		error ("element type of array unknown");
	      else
		return allocate_value (ada_aligned_type (type));
	    }
	  return
	    unwrap_value (ada_value_subscript
			  (ada_coerce_to_simple_array (argvec[0]),
			   nargs, argvec + 1));
	case TYPE_CODE_PTR:	/* Pointer to array */
	  type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
	  if (noside == EVAL_AVOID_SIDE_EFFECTS)
	    {
	      type = ada_array_element_type (type, nargs);
	      if (type == NULL)
		error ("element type of array unknown");
	      else
		return allocate_value (ada_aligned_type (type));
	    }
	  return
	    unwrap_value (ada_value_ptr_subscript (argvec[0], type,
						   nargs, argvec + 1));

	default:
	  error ("Internal error in evaluate_subexp");
	}

    case TERNOP_SLICE:
      {
	struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
	int lowbound
	  = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
	int upper
	  = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
	if (noside == EVAL_SKIP)
	  goto nosideret;

	/* If this is a reference to an array, then dereference it */
	if (TYPE_CODE (VALUE_TYPE (array)) == TYPE_CODE_REF
	    && TYPE_TARGET_TYPE (VALUE_TYPE (array)) != NULL
	    && TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (array))) ==
	    TYPE_CODE_ARRAY
	    && !ada_is_array_descriptor (check_typedef (VALUE_TYPE (array))))
	  {
	    array = ada_coerce_ref (array);
	  }

	if (noside == EVAL_AVOID_SIDE_EFFECTS &&
	    ada_is_array_descriptor (check_typedef (VALUE_TYPE (array))))
	  {
	    /* Try to dereference the array, in case it is an access to array */
	    struct type *arrType = ada_type_of_array (array, 0);
	    if (arrType != NULL)
	      array = value_at_lazy (arrType, 0, NULL);
	  }
	if (ada_is_array_descriptor (VALUE_TYPE (array)))
	  array = ada_coerce_to_simple_array (array);

	/* If at this point we have a pointer to an array, it means that
	   it is a pointer to a simple (non-ada) array. We just then
	   dereference it */
	if (TYPE_CODE (VALUE_TYPE (array)) == TYPE_CODE_PTR
	    && TYPE_TARGET_TYPE (VALUE_TYPE (array)) != NULL
	    && TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (array))) ==
	    TYPE_CODE_ARRAY)
	  {
	    array = ada_value_ind (array);
	  }

	if (noside == EVAL_AVOID_SIDE_EFFECTS)
	  /* The following will get the bounds wrong, but only in contexts
	     where the value is not being requested (FIXME?). */
	  return array;
	else
	  return value_slice (array, lowbound, upper - lowbound + 1);
      }

      /* FIXME: UNOP_MBR should be defined in expression.h */
      /*    case UNOP_MBR:
         (*pos) += 2;
         arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
         type = exp->elts[pc + 1].type;

         if (noside == EVAL_SKIP)
         goto nosideret;

         switch (TYPE_CODE (type)) 
         {
         default:
         warning ("Membership test incompletely implemented; always returns true");
         return value_from_longest (builtin_type_int, (LONGEST) 1);

         case TYPE_CODE_RANGE:
         arg2 = value_from_longest (builtin_type_int, 
         (LONGEST) TYPE_LOW_BOUND (type));
         arg3 = value_from_longest (builtin_type_int, 
         (LONGEST) TYPE_HIGH_BOUND (type));
         return 
         value_from_longest (builtin_type_int,
         (value_less (arg1,arg3) 
         || value_equal (arg1,arg3))
         && (value_less (arg2,arg1)
         || value_equal (arg2,arg1)));
         }
       */
      /* FIXME: BINOP_MBR should be defined in expression.h */
      /*    case BINOP_MBR:
         (*pos) += 2;
         arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
         arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);

         if (noside == EVAL_SKIP)
         goto nosideret;

         if (noside == EVAL_AVOID_SIDE_EFFECTS)
         return value_zero (builtin_type_int, not_lval);

         tem = longest_to_int (exp->elts[pc + 1].longconst);

         if (tem < 1 || tem > ada_array_arity (VALUE_TYPE (arg2)))
         error ("invalid dimension number to '%s", "range");

         arg3 = ada_array_bound (arg2, tem, 1);
         arg2 = ada_array_bound (arg2, tem, 0);

         return 
         value_from_longest (builtin_type_int,
         (value_less (arg1,arg3) 
         || value_equal (arg1,arg3))
         && (value_less (arg2,arg1)
         || value_equal (arg2,arg1)));
       */
      /* FIXME: TERNOP_MBR should be defined in expression.h */
      /*    case TERNOP_MBR:
         arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
         arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
         arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);

         if (noside == EVAL_SKIP)
         goto nosideret;

         return 
         value_from_longest (builtin_type_int,
         (value_less (arg1,arg3) 
         || value_equal (arg1,arg3))
         && (value_less (arg2,arg1)
         || value_equal (arg2,arg1)));
       */
      /* FIXME: OP_ATTRIBUTE should be defined in expression.h */
      /*    case OP_ATTRIBUTE:
         *pos += 3;
         atr = (enum ada_attribute) longest_to_int (exp->elts[pc + 2].longconst);
         switch (atr) 
         {
         default:
         error ("unexpected attribute encountered");

         case ATR_FIRST:
         case ATR_LAST:
         case ATR_LENGTH:
         {
         struct type* type_arg;
         if (exp->elts[*pos].opcode == OP_TYPE)
         {
         evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
         arg1 = NULL;
         type_arg = exp->elts[pc + 5].type;
         }
         else
         {
         arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
         type_arg = NULL;
         }

         if (exp->elts[*pos].opcode != OP_LONG) 
         error ("illegal operand to '%s", ada_attribute_name (atr));
         tem = longest_to_int (exp->elts[*pos+2].longconst);
         *pos += 4;

         if (noside == EVAL_SKIP)
         goto nosideret;

         if (type_arg == NULL)
         {
         arg1 = ada_coerce_ref (arg1);

         if (ada_is_packed_array_type (VALUE_TYPE (arg1)))
         arg1 = ada_coerce_to_simple_array (arg1);

         if (tem < 1 || tem > ada_array_arity (VALUE_TYPE (arg1)))
         error ("invalid dimension number to '%s", 
         ada_attribute_name (atr));

         if (noside == EVAL_AVOID_SIDE_EFFECTS)
         {
         type = ada_index_type (VALUE_TYPE (arg1), tem);
         if (type == NULL) 
         error ("attempt to take bound of something that is not an array");
         return allocate_value (type);
         }

         switch (atr) 
         {
         default: 
         error ("unexpected attribute encountered");
         case ATR_FIRST:
         return ada_array_bound (arg1, tem, 0);
         case ATR_LAST:
         return ada_array_bound (arg1, tem, 1);
         case ATR_LENGTH:
         return ada_array_length (arg1, tem);
         }
         }
         else if (TYPE_CODE (type_arg) == TYPE_CODE_RANGE
         || TYPE_CODE (type_arg) == TYPE_CODE_INT) 
         {
         struct type* range_type;
         char* name = ada_type_name (type_arg);
         if (name == NULL)
         {
         if (TYPE_CODE (type_arg) == TYPE_CODE_RANGE) 
         range_type = type_arg;
         else
         error ("unimplemented type attribute");
         }
         else 
         range_type = 
         to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
         switch (atr) 
         {
         default: 
         error ("unexpected attribute encountered");
         case ATR_FIRST:
         return value_from_longest (TYPE_TARGET_TYPE (range_type),
         TYPE_LOW_BOUND (range_type));
         case ATR_LAST:
         return value_from_longest (TYPE_TARGET_TYPE (range_type),
         TYPE_HIGH_BOUND (range_type));
         }
         }              
         else if (TYPE_CODE (type_arg) == TYPE_CODE_ENUM)
         {
         switch (atr) 
         {
         default: 
         error ("unexpected attribute encountered");
         case ATR_FIRST:
         return value_from_longest 
         (type_arg, TYPE_FIELD_BITPOS (type_arg, 0));
         case ATR_LAST:
         return value_from_longest 
         (type_arg, 
         TYPE_FIELD_BITPOS (type_arg,
         TYPE_NFIELDS (type_arg) - 1));
         }
         }
         else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
         error ("unimplemented type attribute");
         else 
         {
         LONGEST low, high;

         if (ada_is_packed_array_type (type_arg))
         type_arg = decode_packed_array_type (type_arg);

         if (tem < 1 || tem > ada_array_arity (type_arg))
         error ("invalid dimension number to '%s", 
         ada_attribute_name (atr));

         if (noside == EVAL_AVOID_SIDE_EFFECTS)
         {
         type = ada_index_type (type_arg, tem);
         if (type == NULL) 
         error ("attempt to take bound of something that is not an array");
         return allocate_value (type);
         }

         switch (atr) 
         {
         default: 
         error ("unexpected attribute encountered");
         case ATR_FIRST:
         low = ada_array_bound_from_type (type_arg, tem, 0, &type);
         return value_from_longest (type, low);
         case ATR_LAST:
         high = ada_array_bound_from_type (type_arg, tem, 1, &type);
         return value_from_longest (type, high);
         case ATR_LENGTH:
         low = ada_array_bound_from_type (type_arg, tem, 0, &type);
         high = ada_array_bound_from_type (type_arg, tem, 1, NULL);
         return value_from_longest (type, high-low+1);
         }
         }
         }

         case ATR_TAG:
         arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
         if (noside == EVAL_SKIP)
         goto nosideret;

         if (noside == EVAL_AVOID_SIDE_EFFECTS)
         return         
         value_zero (ada_tag_type (arg1), not_lval);

         return ada_value_tag (arg1);

         case ATR_MIN:
         case ATR_MAX:
         evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
         arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
         arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
         if (noside == EVAL_SKIP)
         goto nosideret;
         else if (noside == EVAL_AVOID_SIDE_EFFECTS)
         return value_zero (VALUE_TYPE (arg1), not_lval);
         else
         return value_binop (arg1, arg2, 
         atr == ATR_MIN ? BINOP_MIN : BINOP_MAX);

         case ATR_MODULUS:
         {
         struct type* type_arg = exp->elts[pc + 5].type;
         evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
         *pos += 4;

         if (noside == EVAL_SKIP)
         goto nosideret;

         if (! ada_is_modular_type (type_arg))
         error ("'modulus must be applied to modular type");

         return value_from_longest (TYPE_TARGET_TYPE (type_arg),
         ada_modulus (type_arg));
         }


         case ATR_POS:
         evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
         arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
         if (noside == EVAL_SKIP)
         goto nosideret;
         else if (noside == EVAL_AVOID_SIDE_EFFECTS)
         return value_zero (builtin_type_ada_int, not_lval);
         else 
         return value_pos_atr (arg1);

         case ATR_SIZE:
         arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
         if (noside == EVAL_SKIP)
         goto nosideret;
         else if (noside == EVAL_AVOID_SIDE_EFFECTS)
         return value_zero (builtin_type_ada_int, not_lval);
         else
         return value_from_longest (builtin_type_ada_int,
         TARGET_CHAR_BIT 
         * TYPE_LENGTH (VALUE_TYPE (arg1)));

         case ATR_VAL:
         evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
         arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
         type = exp->elts[pc + 5].type;
         if (noside == EVAL_SKIP)
         goto nosideret;
         else if (noside == EVAL_AVOID_SIDE_EFFECTS)
         return value_zero (type, not_lval);
         else 
         return value_val_atr (type, arg1);
         } */
    case BINOP_EXP:
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      if (noside == EVAL_SKIP)
	goto nosideret;
      if (binop_user_defined_p (op, arg1, arg2))
	return unwrap_value (value_x_binop (arg1, arg2, op, OP_NULL,
					    EVAL_NORMAL));
      else if (noside == EVAL_AVOID_SIDE_EFFECTS)
	return value_zero (VALUE_TYPE (arg1), not_lval);
      else
	return value_binop (arg1, arg2, op);

    case UNOP_PLUS:
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      if (noside == EVAL_SKIP)
	goto nosideret;
      if (unop_user_defined_p (op, arg1))
	return unwrap_value (value_x_unop (arg1, op, EVAL_NORMAL));
      else
	return arg1;

    case UNOP_ABS:
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      if (noside == EVAL_SKIP)
	goto nosideret;
      if (value_less (arg1, value_zero (VALUE_TYPE (arg1), not_lval)))
	return value_neg (arg1);
      else
	return arg1;

    case UNOP_IND:
      if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR)
	expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
      arg1 = evaluate_subexp (expect_type, exp, pos, noside);
      if (noside == EVAL_SKIP)
	goto nosideret;
      type = check_typedef (VALUE_TYPE (arg1));
      if (noside == EVAL_AVOID_SIDE_EFFECTS)
	{
	  if (ada_is_array_descriptor (type))
	    /* GDB allows dereferencing GNAT array descriptors. */
	    {
	      struct type *arrType = ada_type_of_array (arg1, 0);
	      if (arrType == NULL)
		error ("Attempt to dereference null array pointer.");
	      return value_at_lazy (arrType, 0, NULL);
	    }
	  else if (TYPE_CODE (type) == TYPE_CODE_PTR
		   || TYPE_CODE (type) == TYPE_CODE_REF
		   /* In C you can dereference an array to get the 1st elt.  */
		   || TYPE_CODE (type) == TYPE_CODE_ARRAY)
	    return
	      value_zero
	      (to_static_fixed_type
	       (ada_aligned_type (check_typedef (TYPE_TARGET_TYPE (type)))),
	       lval_memory);
	  else if (TYPE_CODE (type) == TYPE_CODE_INT)
	    /* GDB allows dereferencing an int.  */
	    return value_zero (builtin_type_int, lval_memory);
	  else
	    error ("Attempt to take contents of a non-pointer value.");
	}
      arg1 = ada_coerce_ref (arg1);
      type = check_typedef (VALUE_TYPE (arg1));

      if (ada_is_array_descriptor (type))
	/* GDB allows dereferencing GNAT array descriptors. */
	return ada_coerce_to_simple_array (arg1);
      else
	return ada_value_ind (arg1);

    case STRUCTOP_STRUCT:
      tem = longest_to_int (exp->elts[pc + 1].longconst);
      (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      if (noside == EVAL_SKIP)
	goto nosideret;
      if (noside == EVAL_AVOID_SIDE_EFFECTS)
	return value_zero (ada_aligned_type
			   (ada_lookup_struct_elt_type (VALUE_TYPE (arg1),
							&exp->elts[pc +
								   2].string,
							0, NULL)),
			   lval_memory);
      else
	return unwrap_value (ada_value_struct_elt (arg1,
						   &exp->elts[pc + 2].string,
						   "record"));
    case OP_TYPE:
      /* The value is not supposed to be used. This is here to make it
         easier to accommodate expressions that contain types. */
      (*pos) += 2;
      if (noside == EVAL_SKIP)
	goto nosideret;
      else if (noside == EVAL_AVOID_SIDE_EFFECTS)
	return allocate_value (builtin_type_void);
      else
	error ("Attempt to use a type name as an expression");

    case STRUCTOP_PTR:
      tem = longest_to_int (exp->elts[pc + 1].longconst);
      (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
      if (noside == EVAL_SKIP)
	goto nosideret;
      if (noside == EVAL_AVOID_SIDE_EFFECTS)
	return value_zero (ada_aligned_type
			   (ada_lookup_struct_elt_type (VALUE_TYPE (arg1),
							&exp->elts[pc +
								   2].string,
							0, NULL)),
			   lval_memory);
      else
	return unwrap_value (ada_value_struct_elt (arg1,
						   &exp->elts[pc + 2].string,
						   "record access"));
    }

nosideret:
  return value_from_longest (builtin_type_long, (LONGEST) 1);
}


				/* Fixed point */

/* If TYPE encodes an Ada fixed-point type, return the suffix of the
   type name that encodes the 'small and 'delta information.
   Otherwise, return NULL. */

static const char *
fixed_type_info (struct type *type)
{
  const char *name = ada_type_name (type);
  enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);

  if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
    {
      const char *tail = strstr (name, "___XF_");
      if (tail == NULL)
	return NULL;
      else
	return tail + 5;
    }
  else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
    return fixed_type_info (TYPE_TARGET_TYPE (type));
  else
    return NULL;
}

/* Returns non-zero iff TYPE represents an Ada fixed-point type. */

int
ada_is_fixed_point_type (struct type *type)
{
  return fixed_type_info (type) != NULL;
}

/* Assuming that TYPE is the representation of an Ada fixed-point
   type, return its delta, or -1 if the type is malformed and the
   delta cannot be determined. */

DOUBLEST
ada_delta (struct type *type)
{
  const char *encoding = fixed_type_info (type);
  long num, den;

  if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2)
    return -1.0;
  else
    return (DOUBLEST) num / (DOUBLEST) den;
}

/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
   factor ('SMALL value) associated with the type. */

static DOUBLEST
scaling_factor (struct type *type)
{
  const char *encoding = fixed_type_info (type);
  unsigned long num0, den0, num1, den1;
  int n;

  n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1);

  if (n < 2)
    return 1.0;
  else if (n == 4)
    return (DOUBLEST) num1 / (DOUBLEST) den1;
  else
    return (DOUBLEST) num0 / (DOUBLEST) den0;
}


/* Assuming that X is the representation of a value of fixed-point
   type TYPE, return its floating-point equivalent. */

DOUBLEST
ada_fixed_to_float (struct type *type, LONGEST x)
{
  return (DOUBLEST) x *scaling_factor (type);
}

/* The representation of a fixed-point value of type TYPE 
   corresponding to the value X. */

LONGEST
ada_float_to_fixed (struct type *type, DOUBLEST x)
{
  return (LONGEST) (x / scaling_factor (type) + 0.5);
}


				/* VAX floating formats */

/* Non-zero iff TYPE represents one of the special VAX floating-point
   types. */
int
ada_is_vax_floating_type (struct type *type)
{
  int name_len =
    (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
  return
    name_len > 6
    && (TYPE_CODE (type) == TYPE_CODE_INT
	|| TYPE_CODE (type) == TYPE_CODE_RANGE)
    && STREQN (ada_type_name (type) + name_len - 6, "___XF", 5);
}

/* The type of special VAX floating-point type this is, assuming
   ada_is_vax_floating_point */
int
ada_vax_float_type_suffix (struct type *type)
{
  return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
}

/* A value representing the special debugging function that outputs 
   VAX floating-point values of the type represented by TYPE.  Assumes
   ada_is_vax_floating_type (TYPE). */
struct value *
ada_vax_float_print_function (struct type *type)
{
  switch (ada_vax_float_type_suffix (type))
    {
    case 'F':
      return get_var_value ("DEBUG_STRING_F", 0);
    case 'D':
      return get_var_value ("DEBUG_STRING_D", 0);
    case 'G':
      return get_var_value ("DEBUG_STRING_G", 0);
    default:
      error ("invalid VAX floating-point type");
    }
}


				/* Range types */

/* Scan STR beginning at position K for a discriminant name, and
   return the value of that discriminant field of DVAL in *PX.  If
   PNEW_K is not null, put the position of the character beyond the
   name scanned in *PNEW_K.  Return 1 if successful; return 0 and do
   not alter *PX and *PNEW_K if unsuccessful. */

static int
scan_discrim_bound (char *, int k, struct value *dval, LONGEST * px,
		    int *pnew_k)
{
  static char *bound_buffer = NULL;
  static size_t bound_buffer_len = 0;
  char *bound;
  char *pend;
  struct value *bound_val;

  if (dval == NULL || str == NULL || str[k] == '\0')
    return 0;

  pend = strstr (str + k, "__");
  if (pend == NULL)
    {
      bound = str + k;
      k += strlen (bound);
    }
  else
    {
      GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
      bound = bound_buffer;
      strncpy (bound_buffer, str + k, pend - (str + k));
      bound[pend - (str + k)] = '\0';
      k = pend - str;
    }

  bound_val = ada_search_struct_field (bound, dval, 0, VALUE_TYPE (dval));
  if (bound_val == NULL)
    return 0;

  *px = value_as_long (bound_val);
  if (pnew_k != NULL)
    *pnew_k = k;
  return 1;
}

/* Value of variable named NAME in the current environment.  If
   no such variable found, then if ERR_MSG is null, returns 0, and
   otherwise causes an error with message ERR_MSG. */
static struct value *
get_var_value (char *name, char *err_msg)
{
  struct symbol **syms;
  struct block **blocks;
  int nsyms;

  nsyms =
    ada_lookup_symbol_list (name, get_selected_block (NULL), VAR_NAMESPACE,
			    &syms, &blocks);

  if (nsyms != 1)
    {
      if (err_msg == NULL)
	return 0;
      else
	error ("%s", err_msg);
    }

  return value_of_variable (syms[0], blocks[0]);
}

/* Value of integer variable named NAME in the current environment.  If
   no such variable found, then if ERR_MSG is null, returns 0, and sets
   *FLAG to 0.  If successful, sets *FLAG to 1. */
LONGEST
get_int_var_value (char *name, char *err_msg, int *flag)
{
  struct value *var_val = get_var_value (name, err_msg);

  if (var_val == 0)
    {
      if (flag != NULL)
	*flag = 0;
      return 0;
    }
  else
    {
      if (flag != NULL)
	*flag = 1;
      return value_as_long (var_val);
    }
}


/* Return a range type whose base type is that of the range type named
   NAME in the current environment, and whose bounds are calculated
   from NAME according to the GNAT range encoding conventions. 
   Extract discriminant values, if needed, from DVAL.  If a new type
   must be created, allocate in OBJFILE's space.  The bounds
   information, in general, is encoded in NAME, the base type given in
   the named range type. */

static struct type *
to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
{
  struct type *raw_type = ada_find_any_type (name);
  struct type *base_type;
  LONGEST low, high;
  char *subtype_info;

  if (raw_type == NULL)
    base_type = builtin_type_int;
  else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
    base_type = TYPE_TARGET_TYPE (raw_type);
  else
    base_type = raw_type;

  subtype_info = strstr (name, "___XD");
  if (subtype_info == NULL)
    return raw_type;
  else
    {
      static char *name_buf = NULL;
      static size_t name_len = 0;
      int prefix_len = subtype_info - name;
      LONGEST L, U;
      struct type *type;
      char *bounds_str;
      int n;

      GROW_VECT (name_buf, name_len, prefix_len + 5);
      strncpy (name_buf, name, prefix_len);
      name_buf[prefix_len] = '\0';

      subtype_info += 5;
      bounds_str = strchr (subtype_info, '_');
      n = 1;

      if (*subtype_info == 'L')
	{
	  if (!ada_scan_number (bounds_str, n, &L, &n)
	      && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
	    return raw_type;
	  if (bounds_str[n] == '_')
	    n += 2;
	  else if (bounds_str[n] == '.')	/* FIXME? SGI Workshop kludge. */
	    n += 1;
	  subtype_info += 1;
	}
      else
	{
	  strcpy (name_buf + prefix_len, "___L");
	  L = get_int_var_value (name_buf, "Index bound unknown.", NULL);
	}

      if (*subtype_info == 'U')
	{
	  if (!ada_scan_number (bounds_str, n, &U, &n)
	      && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
	    return raw_type;
	}
      else
	{
	  strcpy (name_buf + prefix_len, "___U");
	  U = get_int_var_value (name_buf, "Index bound unknown.", NULL);
	}

      if (objfile == NULL)
	objfile = TYPE_OBJFILE (base_type);
      type = create_range_type (alloc_type (objfile), base_type, L, U);
      TYPE_NAME (type) = name;
      return type;
    }
}

/* True iff NAME is the name of a range type. */
int
ada_is_range_type_name (const char *name)
{
  return (name != NULL && strstr (name, "___XD"));
}


				/* Modular types */

/* True iff TYPE is an Ada modular type. */
int
ada_is_modular_type (struct type *type)
{
  /* FIXME: base_type should be declared in gdbtypes.h, implemented in
     valarith.c */
  struct type *subranged_type;	/* = base_type (type); */

  return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
	  && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM
	  && TYPE_UNSIGNED (subranged_type));
}

/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
LONGEST
ada_modulus (struct type * type)
{
  return TYPE_HIGH_BOUND (type) + 1;
}



				/* Operators */

/* Table mapping opcodes into strings for printing operators
   and precedences of the operators.  */

static const struct op_print ada_op_print_tab[] = {
  {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
  {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
  {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
  {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
  {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
  {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
  {"=", BINOP_EQUAL, PREC_EQUAL, 0},
  {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
  {"<=", BINOP_LEQ, PREC_ORDER, 0},
  {">=", BINOP_GEQ, PREC_ORDER, 0},
  {">", BINOP_GTR, PREC_ORDER, 0},
  {"<", BINOP_LESS, PREC_ORDER, 0},
  {">>", BINOP_RSH, PREC_SHIFT, 0},
  {"<<", BINOP_LSH, PREC_SHIFT, 0},
  {"+", BINOP_ADD, PREC_ADD, 0},
  {"-", BINOP_SUB, PREC_ADD, 0},
  {"&", BINOP_CONCAT, PREC_ADD, 0},
  {"*", BINOP_MUL, PREC_MUL, 0},
  {"/", BINOP_DIV, PREC_MUL, 0},
  {"rem", BINOP_REM, PREC_MUL, 0},
  {"mod", BINOP_MOD, PREC_MUL, 0},
  {"**", BINOP_EXP, PREC_REPEAT, 0},
  {"@", BINOP_REPEAT, PREC_REPEAT, 0},
  {"-", UNOP_NEG, PREC_PREFIX, 0},
  {"+", UNOP_PLUS, PREC_PREFIX, 0},
  {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
  {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
  {"abs ", UNOP_ABS, PREC_PREFIX, 0},
  {".all", UNOP_IND, PREC_SUFFIX, 1},	/* FIXME: postfix .ALL */
  {"'access", UNOP_ADDR, PREC_SUFFIX, 1},	/* FIXME: postfix 'ACCESS */
  {NULL, 0, 0, 0}
};

			/* Assorted Types and Interfaces */

struct type *builtin_type_ada_int;
struct type *builtin_type_ada_short;
struct type *builtin_type_ada_long;
struct type *builtin_type_ada_long_long;
struct type *builtin_type_ada_char;
struct type *builtin_type_ada_float;
struct type *builtin_type_ada_double;
struct type *builtin_type_ada_long_double;
struct type *builtin_type_ada_natural;
struct type *builtin_type_ada_positive;
struct type *builtin_type_ada_system_address;

struct type **const (ada_builtin_types[]) =
{

  &builtin_type_ada_int,
    &builtin_type_ada_long,
    &builtin_type_ada_short,
    &builtin_type_ada_char,
    &builtin_type_ada_float,
    &builtin_type_ada_double,
    &builtin_type_ada_long_long,
    &builtin_type_ada_long_double,
    &builtin_type_ada_natural, &builtin_type_ada_positive,
    /* The following types are carried over from C for convenience. */
&builtin_type_int,
    &builtin_type_long,
    &builtin_type_short,
    &builtin_type_char,
    &builtin_type_float,
    &builtin_type_double,
    &builtin_type_long_long,
    &builtin_type_void,
    &builtin_type_signed_char,
    &builtin_type_unsigned_char,
    &builtin_type_unsigned_short,
    &builtin_type_unsigned_int,
    &builtin_type_unsigned_long,
    &builtin_type_unsigned_long_long,
    &builtin_type_long_double,
    &builtin_type_complex, &builtin_type_double_complex, 0};

/* Not really used, but needed in the ada_language_defn. */
static void
emit_char (int c, struct ui_file *stream, int quoter)
{
  ada_emit_char (c, stream, quoter, 1);
}

const struct language_defn ada_language_defn = {
  "ada",			/* Language name */
  /*  language_ada, */
  language_unknown,
  /* FIXME: language_ada should be defined in defs.h */
  ada_builtin_types,
  range_check_off,
  type_check_off,
  case_sensitive_on,		/* Yes, Ada is case-insensitive, but
				 * that's not quite what this means. */
  ada_parse,
  ada_error,
  ada_evaluate_subexp,
  ada_printchar,		/* Print a character constant */
  ada_printstr,			/* Function to print string constant */
  emit_char,			/* Function to print single char (not used) */
  ada_create_fundamental_type,	/* Create fundamental type in this language */
  ada_print_type,		/* Print a type using appropriate syntax */
  ada_val_print,		/* Print a value using appropriate syntax */
  ada_value_print,		/* Print a top-level value */
  {"", "", "", ""},		/* Binary format info */
#if 0
  {"8#%lo#", "8#", "o", "#"},	/* Octal format info */
  {"%ld", "", "d", ""},		/* Decimal format info */
  {"16#%lx#", "16#", "x", "#"},	/* Hex format info */
#else
  /* Copied from c-lang.c. */
  {"0%lo", "0", "o", ""},	/* Octal format info */
  {"%ld", "", "d", ""},		/* Decimal format info */
  {"0x%lx", "0x", "x", ""},	/* Hex format info */
#endif
  ada_op_print_tab,		/* expression operators for printing */
  1,				/* c-style arrays (FIXME?) */
  0,				/* String lower bound (FIXME?) */
  &builtin_type_ada_char,
  LANG_MAGIC
};

void
_initialize_ada_language (void)
{
  builtin_type_ada_int =
    init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
	       0, "integer", (struct objfile *) NULL);
  builtin_type_ada_long =
    init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT,
	       0, "long_integer", (struct objfile *) NULL);
  builtin_type_ada_short =
    init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT,
	       0, "short_integer", (struct objfile *) NULL);
  builtin_type_ada_char =
    init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
	       0, "character", (struct objfile *) NULL);
  builtin_type_ada_float =
    init_type (TYPE_CODE_FLT, TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
	       0, "float", (struct objfile *) NULL);
  builtin_type_ada_double =
    init_type (TYPE_CODE_FLT, TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
	       0, "long_float", (struct objfile *) NULL);
  builtin_type_ada_long_long =
    init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
	       0, "long_long_integer", (struct objfile *) NULL);
  builtin_type_ada_long_double =
    init_type (TYPE_CODE_FLT, TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
	       0, "long_long_float", (struct objfile *) NULL);
  builtin_type_ada_natural =
    init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
	       0, "natural", (struct objfile *) NULL);
  builtin_type_ada_positive =
    init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
	       0, "positive", (struct objfile *) NULL);


  builtin_type_ada_system_address =
    lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
				    (struct objfile *) NULL));
  TYPE_NAME (builtin_type_ada_system_address) = "system__address";

  add_language (&ada_language_defn);

  add_show_from_set
    (add_set_cmd ("varsize-limit", class_support, var_uinteger,
		  (char *) &varsize_limit,
		  "Set maximum bytes in dynamic-sized object.",
		  &setlist), &showlist);
  varsize_limit = 65536;

  add_com ("begin", class_breakpoint, begin_command,
	   "Start the debugged program, stopping at the beginning of the\n\
main program.  You may specify command-line arguments to give it, as for\n\
the \"run\" command (q.v.).");
}


/* Create a fundamental Ada type using default reasonable for the current
   target machine.

   Some object/debugging file formats (DWARF version 1, COFF, etc) do not
   define fundamental types such as "int" or "double".  Others (stabs or
   DWARF version 2, etc) do define fundamental types.  For the formats which
   don't provide fundamental types, gdb can create such types using this
   function.

   FIXME:  Some compilers distinguish explicitly signed integral types
   (signed short, signed int, signed long) from "regular" integral types
   (short, int, long) in the debugging information.  There is some dis-
   agreement as to how useful this feature is.  In particular, gcc does
   not support this.  Also, only some debugging formats allow the
   distinction to be passed on to a debugger.  For now, we always just
   use "short", "int", or "long" as the type name, for both the implicit
   and explicitly signed types.  This also makes life easier for the
   gdb test suite since we don't have to account for the differences
   in output depending upon what the compiler and debugging format
   support.  We will probably have to re-examine the issue when gdb
   starts taking it's fundamental type information directly from the
   debugging information supplied by the compiler.  fnf@cygnus.com */

static struct type *
ada_create_fundamental_type (struct objfile *objfile, int typeid)
{
  struct type *type = NULL;

  switch (typeid)
    {
    default:
      /* FIXME:  For now, if we are asked to produce a type not in this
         language, create the equivalent of a C integer type with the
         name "<?type?>".  When all the dust settles from the type
         reconstruction work, this should probably become an error. */
      type = init_type (TYPE_CODE_INT,
			TARGET_INT_BIT / TARGET_CHAR_BIT,
			0, "<?type?>", objfile);
      warning ("internal error: no Ada fundamental type %d", typeid);
      break;
    case FT_VOID:
      type = init_type (TYPE_CODE_VOID,
			TARGET_CHAR_BIT / TARGET_CHAR_BIT,
			0, "void", objfile);
      break;
    case FT_CHAR:
      type = init_type (TYPE_CODE_INT,
			TARGET_CHAR_BIT / TARGET_CHAR_BIT,
			0, "character", objfile);
      break;
    case FT_SIGNED_CHAR:
      type = init_type (TYPE_CODE_INT,
			TARGET_CHAR_BIT / TARGET_CHAR_BIT,
			0, "signed char", objfile);
      break;
    case FT_UNSIGNED_CHAR:
      type = init_type (TYPE_CODE_INT,
			TARGET_CHAR_BIT / TARGET_CHAR_BIT,
			TYPE_FLAG_UNSIGNED, "unsigned char", objfile);
      break;
    case FT_SHORT:
      type = init_type (TYPE_CODE_INT,
			TARGET_SHORT_BIT / TARGET_CHAR_BIT,
			0, "short_integer", objfile);
      break;
    case FT_SIGNED_SHORT:
      type = init_type (TYPE_CODE_INT,
			TARGET_SHORT_BIT / TARGET_CHAR_BIT,
			0, "short_integer", objfile);
      break;
    case FT_UNSIGNED_SHORT:
      type = init_type (TYPE_CODE_INT,
			TARGET_SHORT_BIT / TARGET_CHAR_BIT,
			TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
      break;
    case FT_INTEGER:
      type = init_type (TYPE_CODE_INT,
			TARGET_INT_BIT / TARGET_CHAR_BIT,
			0, "integer", objfile);
      break;
    case FT_SIGNED_INTEGER:
      type = init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT, 0, "integer", objfile);	/* FIXME -fnf */
      break;
    case FT_UNSIGNED_INTEGER:
      type = init_type (TYPE_CODE_INT,
			TARGET_INT_BIT / TARGET_CHAR_BIT,
			TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
      break;
    case FT_LONG:
      type = init_type (TYPE_CODE_INT,
			TARGET_LONG_BIT / TARGET_CHAR_BIT,
			0, "long_integer", objfile);
      break;
    case FT_SIGNED_LONG:
      type = init_type (TYPE_CODE_INT,
			TARGET_LONG_BIT / TARGET_CHAR_BIT,
			0, "long_integer", objfile);
      break;
    case FT_UNSIGNED_LONG:
      type = init_type (TYPE_CODE_INT,
			TARGET_LONG_BIT / TARGET_CHAR_BIT,
			TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
      break;
    case FT_LONG_LONG:
      type = init_type (TYPE_CODE_INT,
			TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
			0, "long_long_integer", objfile);
      break;
    case FT_SIGNED_LONG_LONG:
      type = init_type (TYPE_CODE_INT,
			TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
			0, "long_long_integer", objfile);
      break;
    case FT_UNSIGNED_LONG_LONG:
      type = init_type (TYPE_CODE_INT,
			TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
			TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
      break;
    case FT_FLOAT:
      type = init_type (TYPE_CODE_FLT,
			TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
			0, "float", objfile);
      break;
    case FT_DBL_PREC_FLOAT:
      type = init_type (TYPE_CODE_FLT,
			TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
			0, "long_float", objfile);
      break;
    case FT_EXT_PREC_FLOAT:
      type = init_type (TYPE_CODE_FLT,
			TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
			0, "long_long_float", objfile);
      break;
    }
  return (type);
}

void
ada_dump_symtab (struct symtab *s)
{
  int i;
  fprintf (stderr, "New symtab: [\n");
  fprintf (stderr, "  Name: %s/%s;\n",
	   s->dirname ? s->dirname : "?", s->filename ? s->filename : "?");
  fprintf (stderr, "  Format: %s;\n", s->debugformat);
  if (s->linetable != NULL)
    {
      fprintf (stderr, "  Line table (section %d):\n", s->block_line_section);
      for (i = 0; i < s->linetable->nitems; i += 1)
	{
	  struct linetable_entry *e = s->linetable->item + i;
	  fprintf (stderr, "    %4ld: %8lx\n", (long) e->line, (long) e->pc);
	}
    }
  fprintf (stderr, "]\n");
}