aboutsummaryrefslogtreecommitdiff
path: root/libstdc++-v3/testsuite/util/testsuite_allocator.h
blob: e5ffad2ba5875de9bed447903c62083bcb5c9089 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
// -*- C++ -*-
// Testing allocator for the C++ library testsuite.
//
// Copyright (C) 2002-2025 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING3.  If not see
// <http://www.gnu.org/licenses/>.
//

// This file provides an test instrumentation allocator that can be
// used to verify allocation functionality of standard library
// containers.  2002.11.25 smw

#ifndef _GLIBCXX_TESTSUITE_ALLOCATOR_H
#define _GLIBCXX_TESTSUITE_ALLOCATOR_H

#include <bits/move.h>
#include <ext/pointer.h>
#include <ext/alloc_traits.h>
#include <testsuite_hooks.h>
#if __cplusplus >= 201703L
# include <memory_resource>
# include <new>
#endif

#if __cplusplus >= 201103L
# include <unordered_map>
namespace unord = std;
#else
# include <tr1/unordered_map>
namespace unord = std::tr1;
#endif

namespace __gnu_test
{
  // A common API for calling max_size() on an allocator in any -std mode.
  template<typename A>
    typename A::size_type
    max_size(const A& a)
    {
#if __cplusplus >= 201103L
      return std::allocator_traits<A>::max_size(a);
#else
      return a.max_size();
#endif
    }

  class tracker_allocator_counter
  {
  public:
    typedef std::size_t    size_type;

    static void
    allocate(size_type blocksize)
    { allocationCount_ += blocksize; }

    static void
    construct() { ++constructCount_; }

    static void
    destroy() { ++destructCount_; }

    static void
    deallocate(size_type blocksize)
    { deallocationCount_ += blocksize; }

    static size_type
    get_allocation_count() { return allocationCount_; }

    static size_type
    get_deallocation_count() { return deallocationCount_; }

    static int
    get_construct_count() { return constructCount_; }

    static int
    get_destruct_count() { return destructCount_; }

    static void
    reset()
    {
      allocationCount_ = 0;
      deallocationCount_ = 0;
      constructCount_ = 0;
      destructCount_ = 0;
    }

 private:
    static size_type  allocationCount_;
    static size_type  deallocationCount_;
    static int        constructCount_;
    static int        destructCount_;
  };

  // Helper to detect inconsistency between type used to instantiate an
  // allocator and the underlying allocator value_type.
  template<typename T, typename Alloc,
	   typename = typename Alloc::value_type>
    struct check_consistent_alloc_value_type;

  template<typename T, typename Alloc>
    struct check_consistent_alloc_value_type<T, Alloc, T>
    { typedef T value_type; };

  // An allocator facade that intercepts allocate/deallocate/construct/destroy
  // calls and track them through the tracker_allocator_counter class. This
  // class is templated on the target object type, but tracker isn't.
  template<typename T, typename Alloc = std::allocator<T> >
    class tracker_allocator : public Alloc
    {
    private:
      typedef tracker_allocator_counter counter_type;

      typedef __gnu_cxx::__alloc_traits<Alloc> AllocTraits;

    public:
      typedef typename
      check_consistent_alloc_value_type<T, Alloc>::value_type value_type;
      typedef typename AllocTraits::pointer pointer;
      typedef typename AllocTraits::size_type size_type;

      template<class U>
	struct rebind
	{
	  typedef tracker_allocator<U,
		typename AllocTraits::template rebind<U>::other> other;
	};

#if __cplusplus >= 201103L
      tracker_allocator() = default;
      tracker_allocator(const tracker_allocator&) = default;
      tracker_allocator(tracker_allocator&&) = default;
      tracker_allocator& operator=(const tracker_allocator&) = default;
      tracker_allocator& operator=(tracker_allocator&&) = default;

      // Perfect forwarding constructor.
      template<typename... _Args>
	tracker_allocator(_Args&&... __args)
	  : Alloc(std::forward<_Args>(__args)...)
	{ }
#else
      tracker_allocator()
      { }

      tracker_allocator(const tracker_allocator& a) : Alloc(a)
      { }

      ~tracker_allocator()
      { }
#endif

      template<class U>
	tracker_allocator(const tracker_allocator<U,
	  typename AllocTraits::template rebind<U>::other>& alloc)
	    _GLIBCXX_USE_NOEXCEPT
	  : Alloc(alloc)
	{ }

      pointer
      allocate(size_type n, const void* = 0)
      {
	pointer p = AllocTraits::allocate(*this, n);
	counter_type::allocate(n * sizeof(T));
	return p;
      }

#if __cplusplus >= 201103L
      template<typename U, typename... Args>
	void
	construct(U* p, Args&&... args)
	{
	  AllocTraits::construct(*this, p, std::forward<Args>(args)...);
	  counter_type::construct();
	}

      template<typename U>
	void
	destroy(U* p)
	{
	  AllocTraits::destroy(*this, p);
	  counter_type::destroy();
	}
#else
      void
      construct(pointer p, const T& value)
      {
	AllocTraits::construct(*this, p, value);
	counter_type::construct();
      }

      void
      destroy(pointer p)
      {
	AllocTraits::destroy(*this, p);
	counter_type::destroy();
      }
#endif

      void
      deallocate(pointer p, size_type num)
      {
	counter_type::deallocate(num * sizeof(T));
	AllocTraits::deallocate(*this, p, num);
      }

      // Implement swap for underlying allocators that might need it.
      friend inline void
      swap(tracker_allocator& a, tracker_allocator& b)
      {
	using std::swap;

	Alloc& aa = a;
	Alloc& ab = b;
	swap(aa, ab);
      }
    };

  template<class T1, class Alloc1, class T2, class Alloc2>
    bool
    operator==(const tracker_allocator<T1, Alloc1>& lhs,
	       const tracker_allocator<T2, Alloc2>& rhs) throw()
    {
      const Alloc1& alloc1 = lhs;
      const Alloc2& alloc2 = rhs;
      return alloc1 == alloc2;
    }

  template<class T1, class Alloc1, class T2, class Alloc2>
    bool
    operator!=(const tracker_allocator<T1, Alloc1>& lhs,
	       const tracker_allocator<T2, Alloc2>& rhs) throw()
    { return !(lhs == rhs); }

  bool
  check_construct_destroy(const char* tag, int expected_c, int expected_d);

  template<typename Alloc>
    bool
    check_deallocate_null()
    {
      // Let's not core here...
      Alloc a;
      a.deallocate(0, 1);
      a.deallocate(0, 10);
      return true;
    }

#if __cpp_exceptions
  template<typename Alloc>
    bool
    check_allocate_max_size()
    {
      Alloc a;
      try
	{
	  (void) a.allocate(__gnu_test::max_size(a) + 1);
	}
      catch(std::bad_alloc&)
	{
	  return true;
	}
      catch(...)
	{
	  throw;
	}
      throw;
    }
#endif

  // A simple allocator which can be constructed endowed of a given
  // "personality" (an integer), queried in operator== to simulate the
  // behavior of realworld "unequal" allocators (i.e., not exploiting
  // the provision in 20.1.5/4, first bullet).  A global unordered_map,
  // filled at allocation time with (pointer, personality) pairs, is
  // then consulted to enforce the requirements in Table 32 about
  // deallocation vs allocator equality.  Note that this allocator is
  // swappable, not copy assignable, consistently with Option 3 of DR 431
  // (see N1599).
  struct uneq_allocator_base
  {
    typedef unord::unordered_map<void*, int>   map_type;

    // Avoid static initialization troubles and/or bad interactions
    // with tests linking testsuite_allocator.o and playing globally
    // with operator new/delete.
    static map_type&
    get_map()
    {
      static map_type alloc_map;
      return alloc_map;
    }
  };

  template<typename Tp, typename Alloc = std::allocator<Tp> >
    class uneq_allocator
    : private uneq_allocator_base,
      public Alloc
    {
      typedef __gnu_cxx::__alloc_traits<Alloc> AllocTraits;

      Alloc& base() { return *this; }
      const Alloc& base() const  { return *this; }
      void swap_base(Alloc& b) { using std::swap; swap(b, this->base()); }

    public:
      typedef typename check_consistent_alloc_value_type<Tp, Alloc>::value_type
	value_type;
      typedef typename AllocTraits::size_type	size_type;
      typedef typename AllocTraits::pointer	pointer;

#if __cplusplus >= 201103L
      typedef std::true_type			propagate_on_container_swap;
      typedef std::false_type			is_always_equal;
#endif

      template<typename Tp1>
	struct rebind
	{
	  typedef uneq_allocator<Tp1,
		typename AllocTraits::template rebind<Tp1>::other> other;
	};

      uneq_allocator() _GLIBCXX_USE_NOEXCEPT
      : personality(0) { }

      uneq_allocator(int person) _GLIBCXX_USE_NOEXCEPT
      : personality(person) { }

#if __cplusplus >= 201103L
      uneq_allocator(const uneq_allocator&) = default;
      uneq_allocator(uneq_allocator&&) = default;
#endif

      template<typename Tp1>
	uneq_allocator(const uneq_allocator<Tp1,
		       typename AllocTraits::template rebind<Tp1>::other>& b)
	_GLIBCXX_USE_NOEXCEPT
	: personality(b.get_personality()) { }

      ~uneq_allocator() _GLIBCXX_USE_NOEXCEPT
      { }

      int get_personality() const { return personality; }

      pointer
      allocate(size_type n, const void* = 0)
      {
	pointer p = AllocTraits::allocate(*this, n);

	try
	  {
	    get_map().insert(map_type::value_type(reinterpret_cast<void*>(p),
						  personality));
	  }
	catch(...)
	  {
	    AllocTraits::deallocate(*this, p, n);
	    __throw_exception_again;
	  }

	return p;
      }

      void
      deallocate(pointer p, size_type n)
      {
	VERIFY( p );

	map_type::iterator it = get_map().find(reinterpret_cast<void*>(p));
	VERIFY( it != get_map().end() );

	// Enforce requirements in Table 32 about deallocation vs
	// allocator equality.
	VERIFY( it->second == personality );

	get_map().erase(it);
	AllocTraits::deallocate(*this, p, n);
      }

#if __cplusplus >= 201103L
      // Not copy assignable...
      uneq_allocator&
      operator=(const uneq_allocator&) = delete;

      // ... but still moveable if base allocator is.
      uneq_allocator&
      operator=(uneq_allocator&&) = default;
#else
    private:
      // Not assignable...
      uneq_allocator&
      operator=(const uneq_allocator&);
#endif

    private:
      // ... yet swappable!
      friend inline void
      swap(uneq_allocator& a, uneq_allocator& b)
      {
	std::swap(a.personality, b.personality);
	a.swap_base(b);
      }

      template<typename Tp1>
	friend inline bool
	operator==(const uneq_allocator& a,
		   const uneq_allocator<Tp1,
		   typename AllocTraits::template rebind<Tp1>::other>& b)
	{ return a.personality == b.get_personality(); }

      template<typename Tp1>
	friend inline bool
	operator!=(const uneq_allocator& a,
		   const uneq_allocator<Tp1,
		   typename AllocTraits::template rebind<Tp1>::other>& b)
	{ return !(a == b); }

      int personality;
    };

#if __cplusplus >= 201103L
  // An uneq_allocator which can be used to test allocator propagation.
  template<typename Tp, bool Propagate, typename Alloc = std::allocator<Tp>>
    class propagating_allocator : public uneq_allocator<Tp, Alloc>
    {
      typedef __gnu_cxx::__alloc_traits<Alloc> AllocTraits;

      typedef uneq_allocator<Tp, Alloc> base_alloc;
      base_alloc& base() { return *this; }
      const base_alloc& base() const  { return *this; }
      void swap_base(base_alloc& b) { swap(b, this->base()); }

      typedef std::integral_constant<bool, Propagate> trait_type;

    public:
      // default allocator_traits::rebind_alloc would select
      // uneq_allocator::rebind so we must define rebind here
      template<typename Up>
	struct rebind
	{
	  typedef propagating_allocator<Up, Propagate,
		typename AllocTraits::template rebind<Up>::other> other;
	};

      propagating_allocator(int i) noexcept
      : base_alloc(i)
      { }

      template<typename Up>
	propagating_allocator(const propagating_allocator<Up, Propagate,
			      typename AllocTraits::template rebind<Up>::other>& a)
	noexcept
	: base_alloc(a)
	{ }

      propagating_allocator() noexcept = default;

      propagating_allocator(const propagating_allocator&) noexcept = default;

      propagating_allocator&
      operator=(const propagating_allocator& a) noexcept
      {
	static_assert(Propagate, "assigning propagating_allocator<T, true>");
	propagating_allocator(a).swap_base(*this);
	return *this;
      }

      template<bool P2>
	propagating_allocator&
	operator=(const propagating_allocator<Tp, P2, Alloc>& a) noexcept
  	{
	  static_assert(P2, "assigning propagating_allocator<T, true>");
	  propagating_allocator(a).swap_base(*this);
	  return *this;
  	}

      // postcondition: LWG2593 a.get_personality() un-changed.
      propagating_allocator(propagating_allocator&& a) noexcept
      : base_alloc(std::move(a.base()))
      { }

      // postcondition: LWG2593 a.get_personality() un-changed
      propagating_allocator&
      operator=(propagating_allocator&& a) noexcept
      {
	propagating_allocator(std::move(a)).swap_base(*this);
	return *this;
      }

      typedef trait_type propagate_on_container_copy_assignment;
      typedef trait_type propagate_on_container_move_assignment;
      typedef trait_type propagate_on_container_swap;

      propagating_allocator select_on_container_copy_construction() const
      { return Propagate ? *this : propagating_allocator(); }
    };

  // Class template supporting the minimal interface that satisfies the
  // Allocator requirements, from example in [allocator.requirements]
  template <class Tp>
    struct SimpleAllocator
    {
      typedef Tp value_type;

      constexpr SimpleAllocator() noexcept { }

      template <class T>
        SimpleAllocator(const SimpleAllocator<T>&) { }

      Tp *allocate(std::size_t n)
      { return std::allocator<Tp>().allocate(n); }

      void deallocate(Tp *p, std::size_t n)
      { std::allocator<Tp>().deallocate(p, n); }
    };

  template <class T, class U>
    bool operator==(const SimpleAllocator<T>&, const SimpleAllocator<U>&)
    { return true; }
  template <class T, class U>
    bool operator!=(const SimpleAllocator<T>&, const SimpleAllocator<U>&)
    { return false; }

  template<typename T>
    struct default_init_allocator
    {
      using value_type = T;

      default_init_allocator() = default;

      template<typename U>
	constexpr
        default_init_allocator(const default_init_allocator<U>& a)
	  : state(a.state)
        { }

      constexpr T*
      allocate(std::size_t n)
      { return std::allocator<T>().allocate(n); }

      constexpr void
      deallocate(T* p, std::size_t n)
      { std::allocator<T>().deallocate(p, n); }

      int state;
    };

  template<typename T, typename U>
    constexpr bool
    operator==(const default_init_allocator<T>& t,
	       const default_init_allocator<U>& u)
    { return t.state == u.state; }

  template<typename T, typename U>
    constexpr bool
    operator!=(const default_init_allocator<T>& t,
	       const default_init_allocator<U>& u)
    { return !(t == u); }
#endif // C++11

  template<typename Tp>
    struct ExplicitConsAlloc : std::allocator<Tp>
    {
      ExplicitConsAlloc() { }

      template<typename Up>
        explicit
        ExplicitConsAlloc(const ExplicitConsAlloc<Up>&) { }

      template<typename Up>
        struct rebind
        { typedef ExplicitConsAlloc<Up> other; };
    };

#if __cplusplus >= 201103L
  template<typename Tp>
    class CustomPointerAlloc : public std::allocator<Tp>
    {
      template<typename Up, typename Sp = __gnu_cxx::_Std_pointer_impl<Up>>
	using Ptr =  __gnu_cxx::_Pointer_adapter<Sp>;

    public:
      CustomPointerAlloc() = default;

      template<typename Up>
        CustomPointerAlloc(const CustomPointerAlloc<Up>&) { }

      template<typename Up>
        struct rebind
        { typedef CustomPointerAlloc<Up> other; };

      typedef Ptr<Tp> 		pointer;
      typedef Ptr<const Tp>	const_pointer;
      typedef Ptr<void>		void_pointer;
      typedef Ptr<const void>	const_void_pointer;

      pointer allocate(std::size_t n, const_void_pointer = {})
      { return pointer(std::allocator<Tp>::allocate(n)); }

      void deallocate(pointer p, std::size_t n)
      { std::allocator<Tp>::deallocate(std::addressof(*p), n); }
    };

  // A class type meeting *only* the Cpp17NullablePointer requirements.
  // Can be used as a base class for fancy pointers (like PointerBase, below)
  // or to wrap a built-in pointer type to remove operations not required
  // by the Cpp17NullablePointer requirements (dereference, increment etc.)
  template<typename Ptr>
    struct NullablePointer
    {
      // N.B. default constructor does not initialize value
      NullablePointer() = default;
      NullablePointer(std::nullptr_t) noexcept : value() { }

      explicit operator bool() const noexcept { return value != nullptr; }

      friend inline bool
      operator==(NullablePointer lhs, NullablePointer rhs) noexcept
      { return lhs.value == rhs.value; }

      friend inline bool
      operator!=(NullablePointer lhs, NullablePointer rhs) noexcept
      { return lhs.value != rhs.value; }

    protected:
      explicit NullablePointer(Ptr p) noexcept : value(p) { }
      Ptr value;
    };

  // NullablePointer<void> is an empty type that models Cpp17NullablePointer.
  template<>
    struct NullablePointer<void>
    {
      NullablePointer() = default;
      NullablePointer(std::nullptr_t) noexcept { }
      explicit NullablePointer(const volatile void*) noexcept { }

      explicit operator bool() const noexcept { return false; }

      friend inline bool
      operator==(NullablePointer, NullablePointer) noexcept
      { return true; }

      friend inline bool
      operator!=(NullablePointer, NullablePointer) noexcept
      { return false; }
    };

  // Utility for use as CRTP base class of custom pointer types
  template<typename Derived, typename T>
    struct PointerBase : NullablePointer<T*>
    {
      typedef T element_type;

      // typedefs for iterator_traits
      typedef T value_type;
      typedef std::ptrdiff_t difference_type;
      typedef std::random_access_iterator_tag iterator_category;
      typedef Derived pointer;
      typedef T& reference;

      using NullablePointer<T*>::NullablePointer;

      // Public (but explicit) constructor from raw pointer:
      explicit PointerBase(T* p) noexcept : NullablePointer<T*>(p) { }

      template<typename D, typename U,
	       typename = decltype(static_cast<T*>(std::declval<U*>()))>
	PointerBase(const PointerBase<D, U>& p)
	: NullablePointer<T*>(p.operator->()) { }

      T& operator*() const { return *this->value; }
      T* operator->() const { return this->value; }
      T& operator[](difference_type n) const { return this->value[n]; }

      Derived& operator++() { ++this->value; return derived(); }
      Derived& operator--() { --this->value; return derived(); }

      Derived operator++(int) { return Derived(this->value++); }

      Derived operator--(int) { return Derived(this->value--); }

      Derived& operator+=(difference_type n)
      {
	this->value += n;
	return derived();
      }

      Derived& operator-=(difference_type n)
      {
	this->value -= n;
	return derived();
      }

      Derived
      operator+(difference_type n) const
      {
	Derived p(derived());
	return p += n;
      }

      Derived
      operator-(difference_type n) const
      {
	Derived p(derived());
	return p -= n;
      }

    private:
      friend std::ptrdiff_t operator-(PointerBase l, PointerBase r)
      { return l.value - r.value; }

      friend bool operator<(PointerBase l, PointerBase r)
      { return l.value < r.value; }
      friend bool operator>(PointerBase l, PointerBase r)
      { return l.value > r.value; }
      friend bool operator<=(PointerBase l, PointerBase r)
      { return l.value <= r.value; }
      friend bool operator>=(PointerBase l, PointerBase r)
      { return l.value >= r.value; }

      Derived&
      derived() { return static_cast<Derived&>(*this); }

      const Derived&
      derived() const { return static_cast<const Derived&>(*this); }
    };

  // implementation for pointer-to-void specializations
  template<typename T>
    struct PointerBase_void : NullablePointer<T*>
    {
      typedef T element_type;

      // typedefs for iterator_traits
      typedef T value_type;
      typedef std::ptrdiff_t difference_type;
      typedef std::random_access_iterator_tag iterator_category;

      using NullablePointer<T*>::NullablePointer;

      T* operator->() const { return this->value; }

      template<typename D, typename U,
	       typename = decltype(static_cast<T*>(std::declval<U*>()))>
	PointerBase_void(const PointerBase<D, U>& p)
	: NullablePointer<T*>(p.operator->()) { }
    };

  template<typename Derived>
    struct PointerBase<Derived, void> : PointerBase_void<void>
    {
      using PointerBase_void::PointerBase_void;
      typedef Derived pointer;
    };

  template<typename Derived>
    struct PointerBase<Derived, const void> : PointerBase_void<const void>
    {
      using PointerBase_void::PointerBase_void;
      typedef Derived pointer;
    };
#endif // C++11

#if __cplusplus >= 201703L
#if __cpp_aligned_new
  // A concrete memory_resource, with error checking.
  class memory_resource : public std::pmr::memory_resource
  {
  public:
    memory_resource()
    : lists(new allocation_lists)
    { }

    memory_resource(const memory_resource& r) noexcept
    : lists(r.lists)
    { lists->refcount++; }

    memory_resource& operator=(const memory_resource&) = delete;

    ~memory_resource()
    {
      if (lists->refcount-- == 1)
	delete lists;  // last one out turns out the lights
    }

    struct bad_size { };
    struct bad_alignment { };
    struct bad_address { };

    // Deallocate everything (moving the tracking info to the freed list)
    void
    deallocate_everything()
    {
      while (lists->active)
	{
	  auto a = lists->active;
	  // Intentionally virtual dispatch, to inform derived classes:
	  this->do_deallocate(a->p, a->bytes, a->alignment);
	}
    }

    // Clear the freed list
    void
    forget_freed_allocations()
    { lists->forget_allocations(lists->freed); }

    // Count how many allocations have been done and not freed.
    std::size_t
    number_of_active_allocations() const noexcept
    {
      std::size_t n = 0;
      for (auto a = lists->active; a != nullptr; a = a->next)
	++n;
      return n;
    }

  protected:
    void*
    do_allocate(std::size_t bytes, std::size_t alignment) override
    {
      // TODO perform a single allocation and put the allocation struct
      // in the buffer using placement new? It means deallocation won't
      // actually return memory to the OS, as it will stay in lists->freed.
      //
      // TODO adjust the returned pointer to be minimally aligned?
      // e.g. if alignment==1 don't return something aligned to 2 bytes.
      // Maybe not worth it, at least monotonic_buffer_resource will
      // never ask upstream for anything with small alignment.
      void* p = ::operator new(bytes, std::align_val_t(alignment));
      lists->active = new allocation{p, bytes, alignment, lists->active};
      return p;
    }

    void
    do_deallocate(void* p, std::size_t bytes, std::size_t alignment) override
    {
      allocation** aptr = &lists->active;
      while (*aptr)
	{
	  allocation* a = *aptr;
	  if (p == a->p)
	    {
	      if (bytes != a->bytes)
		_S_throw<bad_size>();
	      if (alignment != a->alignment)
		_S_throw<bad_alignment>();
#if __cpp_sized_deallocation
	      ::operator delete(p, bytes, std::align_val_t(alignment));
#else
	      ::operator delete(p, std::align_val_t(alignment));
#endif
	      *aptr = a->next;
	      a->next = lists->freed;
	      lists->freed = a;
	      return;
	    }
	  aptr = &a->next;
	}
      _S_throw<bad_address>();
    }

    bool
    do_is_equal(const std::pmr::memory_resource& r) const noexcept override
    {
#if __cpp_rtti
      // Equality is determined by sharing the same allocation_lists object.
      if (auto p = dynamic_cast<const memory_resource*>(&r))
	return p->lists == lists;
#else
      if (this == &r) // Is this the best we can do without RTTI?
	return true;
#endif
      return false;
    }

  private:
    template<typename E>
      static void
      _S_throw()
      {
#if __cpp_exceptions
	throw E();
#else
	__builtin_abort();
#endif
      }

    struct allocation
    {
      void* p;
      std::size_t bytes;
      std::size_t alignment;
      allocation* next;
    };

    // Maintain list of allocated blocks and list of freed blocks.
    // Copies of this memory_resource share the same ref-counted lists.
    struct allocation_lists
    {
      unsigned refcount = 1;
      allocation* active = nullptr;
      allocation* freed = nullptr;

      void forget_allocations(allocation*& list)
      {
	while (list)
	  {
	    auto p = list;
	    list = list->next;
	    delete p;
	  }
      }

      ~allocation_lists()
      {
	forget_allocations(active); // Anything in this list is a leak!
	forget_allocations(freed);
      }
    };

    allocation_lists* lists;
  };
#endif // aligned-new

  // Set the default resource, and restore the previous one on destruction.
  struct default_resource_mgr
  {
    explicit default_resource_mgr(std::pmr::memory_resource* r)
    : prev(std::pmr::set_default_resource(r))
    { }

    ~default_resource_mgr()
    { std::pmr::set_default_resource(prev); }

    std::pmr::memory_resource* prev;
  };

#endif // C++17

} // namespace __gnu_test

#endif // _GLIBCXX_TESTSUITE_ALLOCATOR_H