aboutsummaryrefslogtreecommitdiff
path: root/libstdc++-v3/include/tr1/hashtable.h
blob: c1a82698fc77fbe0133ac02dc5375b9744895467 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
// TR1 hashtable.h header -*- C++ -*-

// Copyright (C) 2007-2015 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

/** @file tr1/hashtable.h
 *  This is an internal header file, included by other library headers.
 *  Do not attempt to use it directly.
 *  @headername{tr1/unordered_set, tr1/unordered_map}
 */

#ifndef _GLIBCXX_TR1_HASHTABLE_H
#define _GLIBCXX_TR1_HASHTABLE_H 1

#pragma GCC system_header

#include <tr1/hashtable_policy.h>

namespace std _GLIBCXX_VISIBILITY(default)
{
namespace tr1
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION

  // Class template _Hashtable, class definition.

  // Meaning of class template _Hashtable's template parameters

  // _Key and _Value: arbitrary CopyConstructible types.

  // _Allocator: an allocator type ([lib.allocator.requirements]) whose
  // value type is Value.  As a conforming extension, we allow for
  // value type != Value.

  // _ExtractKey: function object that takes a object of type Value
  // and returns a value of type _Key.

  // _Equal: function object that takes two objects of type k and returns
  // a bool-like value that is true if the two objects are considered equal.

  // _H1: the hash function.  A unary function object with argument type
  // Key and result type size_t.  Return values should be distributed
  // over the entire range [0, numeric_limits<size_t>:::max()].

  // _H2: the range-hashing function (in the terminology of Tavori and
  // Dreizin).  A binary function object whose argument types and result
  // type are all size_t.  Given arguments r and N, the return value is
  // in the range [0, N).

  // _Hash: the ranged hash function (Tavori and Dreizin). A binary function
  // whose argument types are _Key and size_t and whose result type is
  // size_t.  Given arguments k and N, the return value is in the range
  // [0, N).  Default: hash(k, N) = h2(h1(k), N).  If _Hash is anything other
  // than the default, _H1 and _H2 are ignored.

  // _RehashPolicy: Policy class with three members, all of which govern
  // the bucket count. _M_next_bkt(n) returns a bucket count no smaller
  // than n.  _M_bkt_for_elements(n) returns a bucket count appropriate
  // for an element count of n.  _M_need_rehash(n_bkt, n_elt, n_ins)
  // determines whether, if the current bucket count is n_bkt and the
  // current element count is n_elt, we need to increase the bucket
  // count.  If so, returns make_pair(true, n), where n is the new
  // bucket count.  If not, returns make_pair(false, <anything>).

  // ??? Right now it is hard-wired that the number of buckets never
  // shrinks.  Should we allow _RehashPolicy to change that?

  // __cache_hash_code: bool.  true if we store the value of the hash
  // function along with the value.  This is a time-space tradeoff.
  // Storing it may improve lookup speed by reducing the number of times
  // we need to call the Equal function.

  // __constant_iterators: bool.  true if iterator and const_iterator are
  // both constant iterator types.  This is true for unordered_set and
  // unordered_multiset, false for unordered_map and unordered_multimap.

  // __unique_keys: bool.  true if the return value of _Hashtable::count(k)
  // is always at most one, false if it may be an arbitrary number.  This
  // true for unordered_set and unordered_map, false for unordered_multiset
  // and unordered_multimap.

  template<typename _Key, typename _Value, typename _Allocator,
	   typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash,
	   typename _RehashPolicy,
	   bool __cache_hash_code,
	   bool __constant_iterators,
	   bool __unique_keys>
    class _Hashtable
    : public __detail::_Rehash_base<_RehashPolicy,
				    _Hashtable<_Key, _Value, _Allocator,
					       _ExtractKey,
					       _Equal, _H1, _H2, _Hash,
					       _RehashPolicy,
					       __cache_hash_code,
					       __constant_iterators,
					       __unique_keys> >,
      public __detail::_Hash_code_base<_Key, _Value, _ExtractKey, _Equal,
				       _H1, _H2, _Hash, __cache_hash_code>,
      public __detail::_Map_base<_Key, _Value, _ExtractKey, __unique_keys,
				 _Hashtable<_Key, _Value, _Allocator,
					    _ExtractKey,
					    _Equal, _H1, _H2, _Hash,
					    _RehashPolicy,
					    __cache_hash_code,
					    __constant_iterators,
					    __unique_keys> >
    {
    public:
      typedef _Allocator                                  allocator_type;
      typedef _Value                                      value_type;
      typedef _Key                                        key_type;
      typedef _Equal                                      key_equal;
      // mapped_type, if present, comes from _Map_base.
      // hasher, if present, comes from _Hash_code_base.
      typedef typename _Allocator::difference_type        difference_type;
      typedef typename _Allocator::size_type              size_type;
      typedef typename _Allocator::pointer                pointer;
      typedef typename _Allocator::const_pointer          const_pointer;
      typedef typename _Allocator::reference              reference;
      typedef typename _Allocator::const_reference        const_reference;

      typedef __detail::_Node_iterator<value_type, __constant_iterators,
				       __cache_hash_code>
							  local_iterator;
      typedef __detail::_Node_const_iterator<value_type,
					     __constant_iterators,
					     __cache_hash_code>
							  const_local_iterator;

      typedef __detail::_Hashtable_iterator<value_type, __constant_iterators,
					    __cache_hash_code>
							  iterator;
      typedef __detail::_Hashtable_const_iterator<value_type,
						  __constant_iterators,
						  __cache_hash_code>
							  const_iterator;

      template<typename _Key2, typename _Value2, typename _Ex2, bool __unique2,
	       typename _Hashtable2>
	friend struct __detail::_Map_base;

    private:
      typedef __detail::_Hash_node<_Value, __cache_hash_code> _Node;
      typedef typename _Allocator::template rebind<_Node>::other
							_Node_allocator_type;
      typedef typename _Allocator::template rebind<_Node*>::other
							_Bucket_allocator_type;

      typedef typename _Allocator::template rebind<_Value>::other
							_Value_allocator_type;

      _Node_allocator_type   _M_node_allocator;
      _Node**                _M_buckets;
      size_type              _M_bucket_count;
      size_type              _M_element_count;
      _RehashPolicy          _M_rehash_policy;

      _Node*
      _M_allocate_node(const value_type& __v);

      void
      _M_deallocate_node(_Node* __n);

      void
      _M_deallocate_nodes(_Node**, size_type);

      _Node**
      _M_allocate_buckets(size_type __n);

      void
      _M_deallocate_buckets(_Node**, size_type __n);

    public:
      // Constructor, destructor, assignment, swap
      _Hashtable(size_type __bucket_hint,
		 const _H1&, const _H2&, const _Hash&,
		 const _Equal&, const _ExtractKey&,
		 const allocator_type&);

      template<typename _InputIterator>
	_Hashtable(_InputIterator __first, _InputIterator __last,
		   size_type __bucket_hint,
		   const _H1&, const _H2&, const _Hash&,
		   const _Equal&, const _ExtractKey&,
		   const allocator_type&);

      _Hashtable(const _Hashtable&);

      _Hashtable&
      operator=(const _Hashtable&);

      ~_Hashtable();

      void swap(_Hashtable&);

      // Basic container operations
      iterator
      begin()
      {
	iterator __i(_M_buckets);
	if (!__i._M_cur_node)
	  __i._M_incr_bucket();
	return __i;
      }

      const_iterator
      begin() const
      {
	const_iterator __i(_M_buckets);
	if (!__i._M_cur_node)
	  __i._M_incr_bucket();
	return __i;
      }

      iterator
      end()
      { return iterator(_M_buckets + _M_bucket_count); }

      const_iterator
      end() const
      { return const_iterator(_M_buckets + _M_bucket_count); }

      size_type
      size() const
      { return _M_element_count; }

      bool
      empty() const
      { return size() == 0; }

      allocator_type
      get_allocator() const
      { return allocator_type(_M_node_allocator); }

      _Value_allocator_type
      _M_get_Value_allocator() const
      { return _Value_allocator_type(_M_node_allocator); }

      size_type
      max_size() const
      { return _M_node_allocator.max_size(); }

      // Observers
      key_equal
      key_eq() const
      { return this->_M_eq; }

      // hash_function, if present, comes from _Hash_code_base.

      // Bucket operations
      size_type
      bucket_count() const
      { return _M_bucket_count; }

      size_type
      max_bucket_count() const
      { return max_size(); }

      size_type
      bucket_size(size_type __n) const
      { return std::distance(begin(__n), end(__n)); }

      size_type
      bucket(const key_type& __k) const
      {
	return this->_M_bucket_index(__k, this->_M_hash_code(__k),
				     bucket_count());
      }

      local_iterator
      begin(size_type __n)
      { return local_iterator(_M_buckets[__n]); }

      local_iterator
      end(size_type)
      { return local_iterator(0); }

      const_local_iterator
      begin(size_type __n) const
      { return const_local_iterator(_M_buckets[__n]); }

      const_local_iterator
      end(size_type) const
      { return const_local_iterator(0); }

      float
      load_factor() const
      {
	return static_cast<float>(size()) / static_cast<float>(bucket_count());
      }

      // max_load_factor, if present, comes from _Rehash_base.

      // Generalization of max_load_factor.  Extension, not found in TR1.  Only
      // useful if _RehashPolicy is something other than the default.
      const _RehashPolicy&
      __rehash_policy() const
      { return _M_rehash_policy; }

      void
      __rehash_policy(const _RehashPolicy&);

      // Lookup.
      iterator
      find(const key_type& __k);

      const_iterator
      find(const key_type& __k) const;

      size_type
      count(const key_type& __k) const;

      std::pair<iterator, iterator>
      equal_range(const key_type& __k);

      std::pair<const_iterator, const_iterator>
      equal_range(const key_type& __k) const;

    private:			// Find, insert and erase helper functions
      // ??? This dispatching is a workaround for the fact that we don't
      // have partial specialization of member templates; it would be
      // better to just specialize insert on __unique_keys.  There may be a
      // cleaner workaround.
      typedef typename __gnu_cxx::__conditional_type<__unique_keys,
		       	    std::pair<iterator, bool>, iterator>::__type
	_Insert_Return_Type;

      typedef typename __gnu_cxx::__conditional_type<__unique_keys,
					  std::_Select1st<_Insert_Return_Type>,
				  	  std::_Identity<_Insert_Return_Type>
				   >::__type
	_Insert_Conv_Type;

      _Node*
      _M_find_node(_Node*, const key_type&,
		   typename _Hashtable::_Hash_code_type) const;

      iterator
      _M_insert_bucket(const value_type&, size_type,
		       typename _Hashtable::_Hash_code_type);

      std::pair<iterator, bool>
      _M_insert(const value_type&, std::tr1::true_type);

      iterator
      _M_insert(const value_type&, std::tr1::false_type);

      void
      _M_erase_node(_Node*, _Node**);

    public:
      // Insert and erase
      _Insert_Return_Type
      insert(const value_type& __v)
      { return _M_insert(__v, std::tr1::integral_constant<bool,
			 __unique_keys>()); }

      iterator
      insert(iterator, const value_type& __v)
      { return iterator(_Insert_Conv_Type()(this->insert(__v))); }

      const_iterator
      insert(const_iterator, const value_type& __v)
      { return const_iterator(_Insert_Conv_Type()(this->insert(__v))); }

      template<typename _InputIterator>
	void
	insert(_InputIterator __first, _InputIterator __last);

      iterator
      erase(iterator);

      const_iterator
      erase(const_iterator);

      size_type
      erase(const key_type&);

      iterator
      erase(iterator, iterator);

      const_iterator
      erase(const_iterator, const_iterator);

      void
      clear();

      // Set number of buckets to be appropriate for container of n element.
      void rehash(size_type __n);

    private:
      // Unconditionally change size of bucket array to n.
      void _M_rehash(size_type __n);
    };


  // Definitions of class template _Hashtable's out-of-line member functions.
  template<typename _Key, typename _Value,
	   typename _Allocator, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   bool __chc, bool __cit, bool __uk>
    typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
			_H1, _H2, _Hash, _RehashPolicy,
			__chc, __cit, __uk>::_Node*
    _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
    _M_allocate_node(const value_type& __v)
    {
      _Node* __n = _M_node_allocator.allocate(1);
      __try
	{
	  _M_get_Value_allocator().construct(&__n->_M_v, __v);
	  __n->_M_next = 0;
	  return __n;
	}
      __catch(...)
	{
	  _M_node_allocator.deallocate(__n, 1);
	  __throw_exception_again;
	}
    }

  template<typename _Key, typename _Value,
	   typename _Allocator, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   bool __chc, bool __cit, bool __uk>
    void
    _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
    _M_deallocate_node(_Node* __n)
    {
      _M_get_Value_allocator().destroy(&__n->_M_v);
      _M_node_allocator.deallocate(__n, 1);
    }

  template<typename _Key, typename _Value,
	   typename _Allocator, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   bool __chc, bool __cit, bool __uk>
    void
    _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
    _M_deallocate_nodes(_Node** __array, size_type __n)
    {
      for (size_type __i = 0; __i < __n; ++__i)
	{
	  _Node* __p = __array[__i];
	  while (__p)
	    {
	      _Node* __tmp = __p;
	      __p = __p->_M_next;
	      _M_deallocate_node(__tmp);
	    }
	  __array[__i] = 0;
	}
    }

  template<typename _Key, typename _Value,
	   typename _Allocator, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   bool __chc, bool __cit, bool __uk>
    typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
			_H1, _H2, _Hash, _RehashPolicy,
			__chc, __cit, __uk>::_Node**
    _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
    _M_allocate_buckets(size_type __n)
    {
      _Bucket_allocator_type __alloc(_M_node_allocator);

      // We allocate one extra bucket to hold a sentinel, an arbitrary
      // non-null pointer.  Iterator increment relies on this.
      _Node** __p = __alloc.allocate(__n + 1);
      std::fill(__p, __p + __n, (_Node*) 0);
      __p[__n] = reinterpret_cast<_Node*>(0x1000);
      return __p;
    }

  template<typename _Key, typename _Value,
	   typename _Allocator, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   bool __chc, bool __cit, bool __uk>
    void
    _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
    _M_deallocate_buckets(_Node** __p, size_type __n)
    {
      _Bucket_allocator_type __alloc(_M_node_allocator);
      __alloc.deallocate(__p, __n + 1);
    }

  template<typename _Key, typename _Value,
	   typename _Allocator, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   bool __chc, bool __cit, bool __uk>
    _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
    _Hashtable(size_type __bucket_hint,
	       const _H1& __h1, const _H2& __h2, const _Hash& __h,
	       const _Equal& __eq, const _ExtractKey& __exk,
	       const allocator_type& __a)
    : __detail::_Rehash_base<_RehashPolicy, _Hashtable>(),
      __detail::_Hash_code_base<_Key, _Value, _ExtractKey, _Equal,
				_H1, _H2, _Hash, __chc>(__exk, __eq,
							__h1, __h2, __h),
      __detail::_Map_base<_Key, _Value, _ExtractKey, __uk, _Hashtable>(),
      _M_node_allocator(__a),
      _M_bucket_count(0),
      _M_element_count(0),
      _M_rehash_policy()
    {
      _M_bucket_count = _M_rehash_policy._M_next_bkt(__bucket_hint);
      _M_buckets = _M_allocate_buckets(_M_bucket_count);
    }

  template<typename _Key, typename _Value,
	   typename _Allocator, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   bool __chc, bool __cit, bool __uk>
    template<typename _InputIterator>
      _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
		 _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
      _Hashtable(_InputIterator __f, _InputIterator __l,
		 size_type __bucket_hint,
		 const _H1& __h1, const _H2& __h2, const _Hash& __h,
		 const _Equal& __eq, const _ExtractKey& __exk,
		 const allocator_type& __a)
      : __detail::_Rehash_base<_RehashPolicy, _Hashtable>(),
	__detail::_Hash_code_base<_Key, _Value, _ExtractKey, _Equal,
				  _H1, _H2, _Hash, __chc>(__exk, __eq,
							  __h1, __h2, __h),
	__detail::_Map_base<_Key, _Value, _ExtractKey, __uk, _Hashtable>(),
	_M_node_allocator(__a),
	_M_bucket_count(0),
	_M_element_count(0),
	_M_rehash_policy()
      {
	_M_bucket_count = std::max(_M_rehash_policy._M_next_bkt(__bucket_hint),
				   _M_rehash_policy.
				   _M_bkt_for_elements(__detail::
						       __distance_fw(__f,
								     __l)));
	_M_buckets = _M_allocate_buckets(_M_bucket_count);
	__try
	  {
	    for (; __f != __l; ++__f)
	      this->insert(*__f);
	  }
	__catch(...)
	  {
	    clear();
	    _M_deallocate_buckets(_M_buckets, _M_bucket_count);
	    __throw_exception_again;
	  }
      }

  template<typename _Key, typename _Value,
	   typename _Allocator, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   bool __chc, bool __cit, bool __uk>
    _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
    _Hashtable(const _Hashtable& __ht)
    : __detail::_Rehash_base<_RehashPolicy, _Hashtable>(__ht),
      __detail::_Hash_code_base<_Key, _Value, _ExtractKey, _Equal,
				_H1, _H2, _Hash, __chc>(__ht),
      __detail::_Map_base<_Key, _Value, _ExtractKey, __uk, _Hashtable>(__ht),
      _M_node_allocator(__ht._M_node_allocator),
      _M_bucket_count(__ht._M_bucket_count),
      _M_element_count(__ht._M_element_count),
      _M_rehash_policy(__ht._M_rehash_policy)
    {
      _M_buckets = _M_allocate_buckets(_M_bucket_count);
      __try
	{
	  for (size_type __i = 0; __i < __ht._M_bucket_count; ++__i)
	    {
	      _Node* __n = __ht._M_buckets[__i];
	      _Node** __tail = _M_buckets + __i;
	      while (__n)
		{
		  *__tail = _M_allocate_node(__n->_M_v);
		  this->_M_copy_code(*__tail, __n);
		  __tail = &((*__tail)->_M_next);
		  __n = __n->_M_next;
		}
	    }
	}
      __catch(...)
	{
	  clear();
	  _M_deallocate_buckets(_M_buckets, _M_bucket_count);
	  __throw_exception_again;
	}
    }

  template<typename _Key, typename _Value,
	   typename _Allocator, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   bool __chc, bool __cit, bool __uk>
    _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>&
    _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
    operator=(const _Hashtable& __ht)
    {
      _Hashtable __tmp(__ht);
      this->swap(__tmp);
      return *this;
    }

  template<typename _Key, typename _Value,
	   typename _Allocator, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   bool __chc, bool __cit, bool __uk>
    _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
    ~_Hashtable()
    {
      clear();
      _M_deallocate_buckets(_M_buckets, _M_bucket_count);
    }

  template<typename _Key, typename _Value,
	   typename _Allocator, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   bool __chc, bool __cit, bool __uk>
    void
    _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
    swap(_Hashtable& __x)
    {
      // The only base class with member variables is hash_code_base.  We
      // define _Hash_code_base::_M_swap because different specializations
      // have different members.
      __detail::_Hash_code_base<_Key, _Value, _ExtractKey, _Equal,
	_H1, _H2, _Hash, __chc>::_M_swap(__x);

      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // 431. Swapping containers with unequal allocators.
      std::__alloc_swap<_Node_allocator_type>::_S_do_it(_M_node_allocator,
							__x._M_node_allocator);

      std::swap(_M_rehash_policy, __x._M_rehash_policy);
      std::swap(_M_buckets, __x._M_buckets);
      std::swap(_M_bucket_count, __x._M_bucket_count);
      std::swap(_M_element_count, __x._M_element_count);
    }

  template<typename _Key, typename _Value,
	   typename _Allocator, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   bool __chc, bool __cit, bool __uk>
    void
    _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
    __rehash_policy(const _RehashPolicy& __pol)
    {
      _M_rehash_policy = __pol;
      size_type __n_bkt = __pol._M_bkt_for_elements(_M_element_count);
      if (__n_bkt > _M_bucket_count)
	_M_rehash(__n_bkt);
    }

  template<typename _Key, typename _Value,
	   typename _Allocator, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   bool __chc, bool __cit, bool __uk>
    typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
			_H1, _H2, _Hash, _RehashPolicy,
			__chc, __cit, __uk>::iterator
    _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
    find(const key_type& __k)
    {
      typename _Hashtable::_Hash_code_type __code = this->_M_hash_code(__k);
      std::size_t __n = this->_M_bucket_index(__k, __code, _M_bucket_count);
      _Node* __p = _M_find_node(_M_buckets[__n], __k, __code);
      return __p ? iterator(__p, _M_buckets + __n) : this->end();
    }

  template<typename _Key, typename _Value,
	   typename _Allocator, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   bool __chc, bool __cit, bool __uk>
    typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
			_H1, _H2, _Hash, _RehashPolicy,
			__chc, __cit, __uk>::const_iterator
    _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
    find(const key_type& __k) const
    {
      typename _Hashtable::_Hash_code_type __code = this->_M_hash_code(__k);
      std::size_t __n = this->_M_bucket_index(__k, __code, _M_bucket_count);
      _Node* __p = _M_find_node(_M_buckets[__n], __k, __code);
      return __p ? const_iterator(__p, _M_buckets + __n) : this->end();
    }

  template<typename _Key, typename _Value,
	   typename _Allocator, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   bool __chc, bool __cit, bool __uk>
    typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
			_H1, _H2, _Hash, _RehashPolicy,
			__chc, __cit, __uk>::size_type
    _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
    count(const key_type& __k) const
    {
      typename _Hashtable::_Hash_code_type __code = this->_M_hash_code(__k);
      std::size_t __n = this->_M_bucket_index(__k, __code, _M_bucket_count);
      std::size_t __result = 0;
      for (_Node* __p = _M_buckets[__n]; __p; __p = __p->_M_next)
	if (this->_M_compare(__k, __code, __p))
	  ++__result;
      return __result;
    }

  template<typename _Key, typename _Value,
	   typename _Allocator, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   bool __chc, bool __cit, bool __uk>
    std::pair<typename _Hashtable<_Key, _Value, _Allocator,
				  _ExtractKey, _Equal, _H1,
				  _H2, _Hash, _RehashPolicy,
				  __chc, __cit, __uk>::iterator,
	      typename _Hashtable<_Key, _Value, _Allocator,
				  _ExtractKey, _Equal, _H1,
				  _H2, _Hash, _RehashPolicy,
				  __chc, __cit, __uk>::iterator>
    _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
    equal_range(const key_type& __k)
    {
      typename _Hashtable::_Hash_code_type __code = this->_M_hash_code(__k);
      std::size_t __n = this->_M_bucket_index(__k, __code, _M_bucket_count);
      _Node** __head = _M_buckets + __n;
      _Node* __p = _M_find_node(*__head, __k, __code);

      if (__p)
	{
	  _Node* __p1 = __p->_M_next;
	  for (; __p1; __p1 = __p1->_M_next)
	    if (!this->_M_compare(__k, __code, __p1))
	      break;

	  iterator __first(__p, __head);
	  iterator __last(__p1, __head);
	  if (!__p1)
	    __last._M_incr_bucket();
	  return std::make_pair(__first, __last);
	}
      else
	return std::make_pair(this->end(), this->end());
    }

  template<typename _Key, typename _Value,
	   typename _Allocator, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   bool __chc, bool __cit, bool __uk>
    std::pair<typename _Hashtable<_Key, _Value, _Allocator,
				  _ExtractKey, _Equal, _H1,
				  _H2, _Hash, _RehashPolicy,
				  __chc, __cit, __uk>::const_iterator,
	      typename _Hashtable<_Key, _Value, _Allocator,
				  _ExtractKey, _Equal, _H1,
				  _H2, _Hash, _RehashPolicy,
				  __chc, __cit, __uk>::const_iterator>
    _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
    equal_range(const key_type& __k) const
    {
      typename _Hashtable::_Hash_code_type __code = this->_M_hash_code(__k);
      std::size_t __n = this->_M_bucket_index(__k, __code, _M_bucket_count);
      _Node** __head = _M_buckets + __n;
      _Node* __p = _M_find_node(*__head, __k, __code);

      if (__p)
	{
	  _Node* __p1 = __p->_M_next;
	  for (; __p1; __p1 = __p1->_M_next)
	    if (!this->_M_compare(__k, __code, __p1))
	      break;

	  const_iterator __first(__p, __head);
	  const_iterator __last(__p1, __head);
	  if (!__p1)
	    __last._M_incr_bucket();
	  return std::make_pair(__first, __last);
	}
      else
	return std::make_pair(this->end(), this->end());
    }

  // Find the node whose key compares equal to k, beginning the search
  // at p (usually the head of a bucket).  Return zero if no node is found.
  template<typename _Key, typename _Value,
	   typename _Allocator, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   bool __chc, bool __cit, bool __uk>
    typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey,
			_Equal, _H1, _H2, _Hash, _RehashPolicy,
			__chc, __cit, __uk>::_Node*
    _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
    _M_find_node(_Node* __p, const key_type& __k,
		typename _Hashtable::_Hash_code_type __code) const
    {
      for (; __p; __p = __p->_M_next)
	if (this->_M_compare(__k, __code, __p))
	  return __p;
      return 0;
    }

  // Insert v in bucket n (assumes no element with its key already present).
  template<typename _Key, typename _Value,
	   typename _Allocator, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   bool __chc, bool __cit, bool __uk>
    typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
			_H1, _H2, _Hash, _RehashPolicy,
			__chc, __cit, __uk>::iterator
    _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
    _M_insert_bucket(const value_type& __v, size_type __n,
		    typename _Hashtable::_Hash_code_type __code)
    {
      std::pair<bool, std::size_t> __do_rehash
	= _M_rehash_policy._M_need_rehash(_M_bucket_count,
					  _M_element_count, 1);

      // Allocate the new node before doing the rehash so that we don't
      // do a rehash if the allocation throws.
      _Node* __new_node = _M_allocate_node(__v);

      __try
	{
	  if (__do_rehash.first)
	    {
	      const key_type& __k = this->_M_extract(__v);
	      __n = this->_M_bucket_index(__k, __code, __do_rehash.second);
	      _M_rehash(__do_rehash.second);
	    }

	  __new_node->_M_next = _M_buckets[__n];
	  this->_M_store_code(__new_node, __code);
	  _M_buckets[__n] = __new_node;
	  ++_M_element_count;
	  return iterator(__new_node, _M_buckets + __n);
	}
      __catch(...)
	{
	  _M_deallocate_node(__new_node);
	  __throw_exception_again;
	}
    }

  // Insert v if no element with its key is already present.
  template<typename _Key, typename _Value,
	   typename _Allocator, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   bool __chc, bool __cit, bool __uk>
    std::pair<typename _Hashtable<_Key, _Value, _Allocator,
				  _ExtractKey, _Equal, _H1,
				  _H2, _Hash, _RehashPolicy,
				  __chc, __cit, __uk>::iterator, bool>
    _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
  _M_insert(const value_type& __v, std::tr1::true_type)
    {
      const key_type& __k = this->_M_extract(__v);
      typename _Hashtable::_Hash_code_type __code = this->_M_hash_code(__k);
      size_type __n = this->_M_bucket_index(__k, __code, _M_bucket_count);

      if (_Node* __p = _M_find_node(_M_buckets[__n], __k, __code))
	return std::make_pair(iterator(__p, _M_buckets + __n), false);
      return std::make_pair(_M_insert_bucket(__v, __n, __code), true);
    }

  // Insert v unconditionally.
  template<typename _Key, typename _Value,
	   typename _Allocator, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   bool __chc, bool __cit, bool __uk>
    typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
			_H1, _H2, _Hash, _RehashPolicy,
			__chc, __cit, __uk>::iterator
    _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
    _M_insert(const value_type& __v, std::tr1::false_type)
    {
      std::pair<bool, std::size_t> __do_rehash
	= _M_rehash_policy._M_need_rehash(_M_bucket_count,
					  _M_element_count, 1);
      if (__do_rehash.first)
	_M_rehash(__do_rehash.second);

      const key_type& __k = this->_M_extract(__v);
      typename _Hashtable::_Hash_code_type __code = this->_M_hash_code(__k);
      size_type __n = this->_M_bucket_index(__k, __code, _M_bucket_count);

      // First find the node, avoid leaking new_node if compare throws.
      _Node* __prev = _M_find_node(_M_buckets[__n], __k, __code);
      _Node* __new_node = _M_allocate_node(__v);

      if (__prev)
	{
	  __new_node->_M_next = __prev->_M_next;
	  __prev->_M_next = __new_node;
	}
      else
	{
	  __new_node->_M_next = _M_buckets[__n];
	  _M_buckets[__n] = __new_node;
	}
      this->_M_store_code(__new_node, __code);

      ++_M_element_count;
      return iterator(__new_node, _M_buckets + __n);
    }

  // For erase(iterator) and erase(const_iterator).
  template<typename _Key, typename _Value,
	   typename _Allocator, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   bool __chc, bool __cit, bool __uk>
    void
    _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
    _M_erase_node(_Node* __p, _Node** __b)
    {
      _Node* __cur = *__b;
      if (__cur == __p)
	*__b = __cur->_M_next;
      else
	{
	  _Node* __next = __cur->_M_next;
	  while (__next != __p)
	    {
	      __cur = __next;
	      __next = __cur->_M_next;
	    }
	  __cur->_M_next = __next->_M_next;
	}

      _M_deallocate_node(__p);
      --_M_element_count;
    }

  template<typename _Key, typename _Value,
	   typename _Allocator, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   bool __chc, bool __cit, bool __uk>
    template<typename _InputIterator>
      void
      _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
		 _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
      insert(_InputIterator __first, _InputIterator __last)
      {
	size_type __n_elt = __detail::__distance_fw(__first, __last);
	std::pair<bool, std::size_t> __do_rehash
	  = _M_rehash_policy._M_need_rehash(_M_bucket_count,
					    _M_element_count, __n_elt);
	if (__do_rehash.first)
	  _M_rehash(__do_rehash.second);

	for (; __first != __last; ++__first)
	  this->insert(*__first);
      }

  template<typename _Key, typename _Value,
	   typename _Allocator, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   bool __chc, bool __cit, bool __uk>
    typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
			_H1, _H2, _Hash, _RehashPolicy,
			__chc, __cit, __uk>::iterator
    _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
    erase(iterator __it)
    {
      iterator __result = __it;
      ++__result;
      _M_erase_node(__it._M_cur_node, __it._M_cur_bucket);
      return __result;
    }

  template<typename _Key, typename _Value,
	   typename _Allocator, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   bool __chc, bool __cit, bool __uk>
    typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
			_H1, _H2, _Hash, _RehashPolicy,
			__chc, __cit, __uk>::const_iterator
    _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
    erase(const_iterator __it)
    {
      const_iterator __result = __it;
      ++__result;
      _M_erase_node(__it._M_cur_node, __it._M_cur_bucket);
      return __result;
    }

  template<typename _Key, typename _Value,
	   typename _Allocator, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   bool __chc, bool __cit, bool __uk>
    typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
			_H1, _H2, _Hash, _RehashPolicy,
			__chc, __cit, __uk>::size_type
    _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
    erase(const key_type& __k)
    {
      typename _Hashtable::_Hash_code_type __code = this->_M_hash_code(__k);
      std::size_t __n = this->_M_bucket_index(__k, __code, _M_bucket_count);
      size_type __result = 0;

      _Node** __slot = _M_buckets + __n;
      while (*__slot && !this->_M_compare(__k, __code, *__slot))
	__slot = &((*__slot)->_M_next);

      _Node** __saved_slot = 0;
      while (*__slot && this->_M_compare(__k, __code, *__slot))
	{
	  // _GLIBCXX_RESOLVE_LIB_DEFECTS
	  // 526. Is it undefined if a function in the standard changes
	  // in parameters?
	  if (&this->_M_extract((*__slot)->_M_v) != &__k)
	    {
	      _Node* __p = *__slot;
	      *__slot = __p->_M_next;
	      _M_deallocate_node(__p);
	      --_M_element_count;
	      ++__result;
	    }
	  else
	    {
	      __saved_slot = __slot;
	      __slot = &((*__slot)->_M_next);
	    }
	}

      if (__saved_slot)
	{
	  _Node* __p = *__saved_slot;
	  *__saved_slot = __p->_M_next;
	  _M_deallocate_node(__p);
	  --_M_element_count;
	  ++__result;
	}

      return __result;
    }

  // ??? This could be optimized by taking advantage of the bucket
  // structure, but it's not clear that it's worth doing.  It probably
  // wouldn't even be an optimization unless the load factor is large.
  template<typename _Key, typename _Value,
	   typename _Allocator, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   bool __chc, bool __cit, bool __uk>
    typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
			_H1, _H2, _Hash, _RehashPolicy,
			__chc, __cit, __uk>::iterator
    _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
    erase(iterator __first, iterator __last)
    {
      while (__first != __last)
	__first = this->erase(__first);
      return __last;
    }

  template<typename _Key, typename _Value,
	   typename _Allocator, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   bool __chc, bool __cit, bool __uk>
    typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
			_H1, _H2, _Hash, _RehashPolicy,
			__chc, __cit, __uk>::const_iterator
    _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
    erase(const_iterator __first, const_iterator __last)
    {
      while (__first != __last)
	__first = this->erase(__first);
      return __last;
    }

  template<typename _Key, typename _Value,
	   typename _Allocator, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   bool __chc, bool __cit, bool __uk>
    void
    _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
    clear()
    {
      _M_deallocate_nodes(_M_buckets, _M_bucket_count);
      _M_element_count = 0;
    }

  template<typename _Key, typename _Value,
	   typename _Allocator, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   bool __chc, bool __cit, bool __uk>
    void
    _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
    rehash(size_type __n)
    {
      _M_rehash(std::max(_M_rehash_policy._M_next_bkt(__n),
			 _M_rehash_policy._M_bkt_for_elements(_M_element_count
							      + 1)));
    }

  template<typename _Key, typename _Value,
	   typename _Allocator, typename _ExtractKey, typename _Equal,
	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
	   bool __chc, bool __cit, bool __uk>
    void
    _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
    _M_rehash(size_type __n)
    {
      _Node** __new_array = _M_allocate_buckets(__n);
      __try
	{
	  for (size_type __i = 0; __i < _M_bucket_count; ++__i)
	    while (_Node* __p = _M_buckets[__i])
	      {
		std::size_t __new_index = this->_M_bucket_index(__p, __n);
		_M_buckets[__i] = __p->_M_next;
		__p->_M_next = __new_array[__new_index];
		__new_array[__new_index] = __p;
	      }
	  _M_deallocate_buckets(_M_buckets, _M_bucket_count);
	  _M_bucket_count = __n;
	  _M_buckets = __new_array;
	}
      __catch(...)
	{
	  // A failure here means that a hash function threw an exception.
	  // We can't restore the previous state without calling the hash
	  // function again, so the only sensible recovery is to delete
	  // everything.
	  _M_deallocate_nodes(__new_array, __n);
	  _M_deallocate_buckets(__new_array, __n);
	  _M_deallocate_nodes(_M_buckets, _M_bucket_count);
	  _M_element_count = 0;
	  __throw_exception_again;
	}
    }

_GLIBCXX_END_NAMESPACE_VERSION
} // namespace tr1
} // namespace std

#endif // _GLIBCXX_TR1_HASHTABLE_H