aboutsummaryrefslogtreecommitdiff
path: root/libstdc++-v3/include/tr1/functional
blob: 30a79871ac8ad899339ad0854384a960fb5bed3c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
// TR1 functional header -*- C++ -*-

// Copyright (C) 2004, 2005 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING.  If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.

// As a special exception, you may use this file as part of a free software
// library without restriction.  Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License.  This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.

/** @file
 *  This is a TR1 C++ Library header.
 */

#ifndef _TR1_FUNCTIONAL
#define _TR1_FUNCTIONAL 1

#include "../functional"
#include <typeinfo>
#include <tr1/type_traits>
#include "../bits/cpp_type_traits.h"
#include <string>               // for std::tr1::hash
#include <cstdlib>              // for std::abort

namespace std
{
namespace tr1
{
  template<typename _MemberPointer>
    class _Mem_fn;

  /**
   *  @if maint
   *  Actual implementation of _Has_result_type, which uses SFINAE to
   *  determine if the type _Tp has a publicly-accessible member type
   *  result_type.
   *  @endif
  */
  template<typename _Tp>
    class _Has_result_type_helper : __sfinae_types
    {
      template<typename _Up>
      struct _Wrap_type
      { };

      template<typename _Up>
        static __one __test(_Wrap_type<typename _Up::result_type>*);

      template<typename _Up>
        static __two __test(...);

    public:
      static const bool value = sizeof(__test<_Tp>(0)) == 1;
    };

  template<typename _Tp>
    struct _Has_result_type
       : integral_constant<
           bool,
           _Has_result_type_helper<typename remove_cv<_Tp>::type>::value>
    { };

  /**
   *  @if maint
   *  If we have found a result_type, extract it.
   *  @endif
  */
  template<bool _Has_result_type, typename _Functor>
    struct _Maybe_get_result_type
    { };

  template<typename _Functor>
    struct _Maybe_get_result_type<true, _Functor>
    {
      typedef typename _Functor::result_type result_type;
    };

  /**
   *  @if maint
   *  Base class for any function object that has a weak result type, as
   *  defined in 3.3/3 of TR1.
   *  @endif
  */
  template<typename _Functor>
    struct _Weak_result_type_impl
      : _Maybe_get_result_type<_Has_result_type<_Functor>::value, _Functor>
    {
    };

  /**
   *  @if maint
   *  Strip top-level cv-qualifiers from the function object and let
   *  _Weak_result_type_impl perform the real work.
   *  @endif
  */
  template<typename _Functor>
    struct _Weak_result_type
    : _Weak_result_type_impl<typename remove_cv<_Functor>::type>
    {
    };

  template<typename _Signature>
    class result_of;

  /**
   *  @if maint
   *  Actual implementation of result_of. When _Has_result_type is
   *  true, gets its result from _Weak_result_type. Otherwise, uses
   *  the function object's member template result to extract the
   *  result type.
   *  @endif
  */
  template<bool _Has_result_type, typename _Signature>
    struct _Result_of_impl;

  // Handle member data pointers using _Mem_fn's logic
  template<typename _Res, typename _Class, typename _T1>
    struct _Result_of_impl<false, _Res _Class::*(_T1)>
    {
      typedef typename _Mem_fn<_Res _Class::*>
                ::template _Result_type<_T1>::type type;
    };

  /**
   *  @if maint
   *  Determines if the type _Tp derives from unary_function.
   *  @endif
  */
  template<typename _Tp>
    struct _Derives_from_unary_function : __sfinae_types
    {
    private:
      template<typename _T1, typename _Res>
        static __one __test(const volatile unary_function<_T1, _Res>*);

      // It's tempting to change "..." to const volatile void*, but
      // that fails when _Tp is a function type.
      static __two __test(...);

    public:
      static const bool value = sizeof(__test((_Tp*)0)) == 1;
    };

  /**
   *  @if maint
   *  Determines if the type _Tp derives from binary_function.
   *  @endif
  */
  template<typename _Tp>
    struct _Derives_from_binary_function : __sfinae_types
    {
    private:
      template<typename _T1, typename _T2, typename _Res>
        static __one __test(const volatile binary_function<_T1, _T2, _Res>*);

      // It's tempting to change "..." to const volatile void*, but
      // that fails when _Tp is a function type.
      static __two __test(...);

    public:
      static const bool value = sizeof(__test((_Tp*)0)) == 1;
    };

  /**
   *  @if maint
   *  Turns a function type into a function pointer type
   *  @endif
  */
  template<typename _Tp, bool _IsFunctionType = is_function<_Tp>::value>
    struct _Function_to_function_pointer
    {
      typedef _Tp type;
    };

  template<typename _Tp>
    struct _Function_to_function_pointer<_Tp, true>
    {
      typedef _Tp* type;
    };

  /**
   *  @if maint
   *  Knowing which of unary_function and binary_function _Tp derives
   *  from, derives from the same and ensures that reference_wrapper
   *  will have a weak result type. See cases below.
   *  @endif
   */
  template<bool _Unary, bool _Binary, typename _Tp>
    struct _Reference_wrapper_base_impl;

  // Not a unary_function or binary_function, so try a weak result type
  template<typename _Tp>
    struct _Reference_wrapper_base_impl<false, false, _Tp>
      : _Weak_result_type<_Tp>
    { };

  // unary_function but not binary_function
  template<typename _Tp>
    struct _Reference_wrapper_base_impl<true, false, _Tp>
      : unary_function<typename _Tp::argument_type,
                       typename _Tp::result_type>
    { };

  // binary_function but not unary_function
  template<typename _Tp>
    struct _Reference_wrapper_base_impl<false, true, _Tp>
      : binary_function<typename _Tp::first_argument_type,
                        typename _Tp::second_argument_type,
                        typename _Tp::result_type>
    { };

  // both unary_function and binary_function. import result_type to
  // avoid conflicts.
   template<typename _Tp>
    struct _Reference_wrapper_base_impl<true, true, _Tp>
      : unary_function<typename _Tp::argument_type,
                       typename _Tp::result_type>,
        binary_function<typename _Tp::first_argument_type,
                        typename _Tp::second_argument_type,
                        typename _Tp::result_type>
    {
      typedef typename _Tp::result_type result_type;
    };

  /**
   *  @if maint
   *  Derives from unary_function or binary_function when it
   *  can. Specializations handle all of the easy cases. The primary
   *  template determines what to do with a class type, which may
   *  derive from both unary_function and binary_function.
   *  @endif
  */
  template<typename _Tp>
    struct _Reference_wrapper_base
      : _Reference_wrapper_base_impl<
          _Derives_from_unary_function<_Tp>::value,
          _Derives_from_binary_function<_Tp>::value,
          _Tp>
    { };

  // - a function type (unary)
  template<typename _Res, typename _T1>
    struct _Reference_wrapper_base<_Res(_T1)>
      : unary_function<_T1, _Res>
    { };

  // - a function type (binary)
  template<typename _Res, typename _T1, typename _T2>
    struct _Reference_wrapper_base<_Res(_T1, _T2)>
      : binary_function<_T1, _T2, _Res>
    { };

  // - a function pointer type (unary)
  template<typename _Res, typename _T1>
    struct _Reference_wrapper_base<_Res(*)(_T1)>
      : unary_function<_T1, _Res>
    { };

  // - a function pointer type (binary)
  template<typename _Res, typename _T1, typename _T2>
    struct _Reference_wrapper_base<_Res(*)(_T1, _T2)>
      : binary_function<_T1, _T2, _Res>
    { };

  // - a pointer to member function type (unary, no qualifiers)
  template<typename _Res, typename _T1>
    struct _Reference_wrapper_base<_Res (_T1::*)()>
      : unary_function<_T1*, _Res>
    { };

  // - a pointer to member function type (binary, no qualifiers)
  template<typename _Res, typename _T1, typename _T2>
    struct _Reference_wrapper_base<_Res (_T1::*)(_T2)>
      : binary_function<_T1*, _T2, _Res>
    { };

  // - a pointer to member function type (unary, const)
  template<typename _Res, typename _T1>
    struct _Reference_wrapper_base<_Res (_T1::*)() const>
      : unary_function<const _T1*, _Res>
    { };

  // - a pointer to member function type (binary, const)
  template<typename _Res, typename _T1, typename _T2>
    struct _Reference_wrapper_base<_Res (_T1::*)(_T2) const>
      : binary_function<const _T1*, _T2, _Res>
    { };

  // - a pointer to member function type (unary, volatile)
  template<typename _Res, typename _T1>
    struct _Reference_wrapper_base<_Res (_T1::*)() volatile>
      : unary_function<volatile _T1*, _Res>
    { };

  // - a pointer to member function type (binary, volatile)
  template<typename _Res, typename _T1, typename _T2>
    struct _Reference_wrapper_base<_Res (_T1::*)(_T2) volatile>
      : binary_function<volatile _T1*, _T2, _Res>
    { };

  // - a pointer to member function type (unary, const volatile)
  template<typename _Res, typename _T1>
    struct _Reference_wrapper_base<_Res (_T1::*)() const volatile>
      : unary_function<const volatile _T1*, _Res>
    { };

  // - a pointer to member function type (binary, const volatile)
  template<typename _Res, typename _T1, typename _T2>
    struct _Reference_wrapper_base<_Res (_T1::*)(_T2) const volatile>
      : binary_function<const volatile _T1*, _T2, _Res>
    { };

  template<typename _Tp>
    class reference_wrapper
      : public _Reference_wrapper_base<typename remove_cv<_Tp>::type>
    {
      // If _Tp is a function type, we can't form result_of<_Tp(...)>,
      // so turn it into a function pointer type.
      typedef typename _Function_to_function_pointer<_Tp>::type
        _M_func_type;

      _Tp* _M_data;
    public:
      typedef _Tp type;
      explicit reference_wrapper(_Tp& __indata): _M_data(&__indata)
      { }

      reference_wrapper(const reference_wrapper<_Tp>& __inref):
      _M_data(__inref._M_data)
      { }

      reference_wrapper&
      operator=(const reference_wrapper<_Tp>& __inref)
      {
        _M_data = __inref._M_data;
        return *this;
      }

      operator _Tp&() const
      { return this->get(); }

      _Tp&
      get() const
      { return *_M_data; }

#define _GLIBCXX_REPEAT_HEADER <tr1/ref_wrap_iterate.h>
#include <tr1/repeat.h>
#undef _GLIBCXX_REPEAT_HEADER
    };


  // Denotes a reference should be taken to a variable.
  template<typename _Tp>
    reference_wrapper<_Tp>
    ref(_Tp& __t)
    { return reference_wrapper<_Tp>(__t); }

  // Denotes a const reference should be taken to a variable.
  template<typename _Tp>
    reference_wrapper<const _Tp>
    cref(const _Tp& __t)
    { return reference_wrapper<const _Tp>(__t); }

  template<typename _Tp>
    reference_wrapper<_Tp> ref(reference_wrapper<_Tp> __t)
    { return ref(__t.get()); }

  template<typename _Tp>
    reference_wrapper<const _Tp> cref(reference_wrapper<_Tp> __t)
    { return cref(__t.get()); }

   template<typename _Tp, bool>
     struct _Mem_fn_const_or_non
     {
       typedef const _Tp& type;
     };

    template<typename _Tp>
      struct _Mem_fn_const_or_non<_Tp, false>
      {
        typedef _Tp& type;
      };

  template<typename _Res, typename _Class>
  class _Mem_fn<_Res _Class::*>
  {
    // This bit of genius is due to Peter Dimov, improved slightly by
    // Douglas Gregor.
    template<typename _Tp>
      _Res&
      _M_call(_Tp& __object, _Class *) const
      { return __object.*__pm; }

    template<typename _Tp, typename _Up>
      _Res&
      _M_call(_Tp& __object, _Up * const *) const
      { return (*__object).*__pm; }

    template<typename _Tp, typename _Up>
      const _Res&
      _M_call(_Tp& __object, const _Up * const *) const
      { return (*__object).*__pm; }

    template<typename _Tp>
      const _Res&
      _M_call(_Tp& __object, const _Class *) const
      { return __object.*__pm; }

    template<typename _Tp>
      const _Res&
      _M_call(_Tp& __ptr, const volatile void*) const
      { return (*__ptr).*__pm; }

    template<typename _Tp> static _Tp& __get_ref();

    template<typename _Tp>
      static __sfinae_types::__one __check_const(_Tp&, _Class*);
    template<typename _Tp, typename _Up>
      static __sfinae_types::__one __check_const(_Tp&, _Up * const *);
    template<typename _Tp, typename _Up>
      static __sfinae_types::__two __check_const(_Tp&, const _Up * const *);
    template<typename _Tp>
      static __sfinae_types::__two __check_const(_Tp&, const _Class*);
    template<typename _Tp>
      static __sfinae_types::__two __check_const(_Tp&, const volatile void*);

  public:
    template<typename _Tp>
      struct _Result_type
        : _Mem_fn_const_or_non<
            _Res,
            (sizeof(__sfinae_types::__two)
             == sizeof(__check_const<_Tp>(__get_ref<_Tp>(), (_Tp*)0)))>
      { };

    explicit _Mem_fn(_Res _Class::*__pm) : __pm(__pm) { }

    // Handle objects
    _Res&       operator()(_Class& __object)       const
    { return __object.*__pm; }

    const _Res& operator()(const _Class& __object) const
    { return __object.*__pm; }

    // Handle pointers
    _Res&       operator()(_Class* __object)       const
    { return __object->*__pm; }

    const _Res&
    operator()(const _Class* __object) const
    { return __object->*__pm; }

    // Handle smart pointers and derived
    template<typename _Tp>
      typename _Result_type<_Tp>::type
      operator()(_Tp& __unknown) const
      { return _M_call(__unknown, &__unknown); }

  private:
    _Res _Class::*__pm;
  };

  /**
   *  @brief Returns a function object that forwards to the member
   *  pointer @a pm.
   */
  template<typename _Tp, typename _Class>
    inline _Mem_fn<_Tp _Class::*>
    mem_fn(_Tp _Class::* __pm)
    {
      return _Mem_fn<_Tp _Class::*>(__pm);
    }

  /**
   *  @brief Exception class thrown when class template function's
   *  operator() is called with an empty target.
   *
   */
  class bad_function_call : public std::exception { };

  /**
   *  @if maint
   *  The integral constant expression 0 can be converted into a
   *  pointer to this type. It is used by the function template to
   *  accept NULL pointers.
   *  @endif
   */
  struct _M_clear_type;

  /**
   *  @if maint
   *  Trait identifying "location-invariant" types, meaning that the
   *  address of the object (or any of its members) will not escape.
   *  Also implies a trivial copy constructor and assignment operator.
   *   @endif
   */
  template<typename _Tp>
    struct __is_location_invariant
    : integral_constant<bool,
                        (is_pointer<_Tp>::value
                         || is_member_pointer<_Tp>::value)>
    {
    };

  class _Undefined_class;

  union _Nocopy_types
  {
    void*       _M_object;
    const void* _M_const_object;
    void (*_M_function_pointer)();
    void (_Undefined_class::*_M_member_pointer)();
  };

  union _Any_data {
    void*       _M_access()       { return &_M_pod_data[0]; }
    const void* _M_access() const { return &_M_pod_data[0]; }

    template<typename _Tp> _Tp& _M_access()
    { return *static_cast<_Tp*>(_M_access()); }

    template<typename _Tp> const _Tp& _M_access() const
    { return *static_cast<const _Tp*>(_M_access()); }

    _Nocopy_types _M_unused;
    char _M_pod_data[sizeof(_Nocopy_types)];
  };

  enum _Manager_operation
  {
    __get_type_info,
    __get_functor_ptr,
    __clone_functor,
    __destroy_functor
  };

  /* Simple type wrapper that helps avoid annoying const problems
     when casting between void pointers and pointers-to-pointers. */
  template<typename _Tp>
    struct _Simple_type_wrapper
    {
      _Simple_type_wrapper(_Tp __value) : __value(__value) { }

      _Tp __value;
    };

  template<typename _Tp>
    struct __is_location_invariant<_Simple_type_wrapper<_Tp> >
      : __is_location_invariant<_Tp>
    {
    };

  // Converts a reference to a function object into a callable
  // function object.
  template<typename _Functor>
    inline _Functor& __callable_functor(_Functor& __f) { return __f; }

  template<typename _Member, typename _Class>
    inline _Mem_fn<_Member _Class::*>
    __callable_functor(_Member _Class::* &__p)
    { return mem_fn(__p); }

  template<typename _Member, typename _Class>
    inline _Mem_fn<_Member _Class::*>
    __callable_functor(_Member _Class::* const &__p)
    { return mem_fn(__p); }

  template<typename _Signature, typename _Functor>
    class _Function_handler;

  template<typename _Signature>
    class function;


  /**
   *  @if maint
   *  Base class of all polymorphic function object wrappers.
   *  @endif
   */
  class _Function_base
  {
  public:
    static const std::size_t _M_max_size = sizeof(_Nocopy_types);
    static const std::size_t _M_max_align = __alignof__(_Nocopy_types);

    template<typename _Functor>
    class _Base_manager
    {
    protected:
      static const bool __stored_locally =
        (__is_location_invariant<_Functor>::value
         && sizeof(_Functor) <= _M_max_size
         && __alignof__(_Functor) <= _M_max_align
         && (_M_max_align % __alignof__(_Functor) == 0));
      typedef integral_constant<bool, __stored_locally> _Local_storage;

      // Retrieve a pointer to the function object
      static _Functor* _M_get_pointer(const _Any_data& __source)
      {
        const _Functor* __ptr =
          __stored_locally? &__source._M_access<_Functor>()
          /* have stored a pointer */ : __source._M_access<_Functor*>();
        return const_cast<_Functor*>(__ptr);
      }

      // Clone a location-invariant function object that fits within
      // an _Any_data structure.
      static void
      _M_clone(_Any_data& __dest, const _Any_data& __source, true_type)
      {
        new (__dest._M_access()) _Functor(__source._M_access<_Functor>());
      }

      // Clone a function object that is not location-invariant or
      // that cannot fit into an _Any_data structure.
      static void
      _M_clone(_Any_data& __dest, const _Any_data& __source, false_type)
      {
        __dest._M_access<_Functor*>() =
          new _Functor(*__source._M_access<_Functor*>());
      }

      // Destroying a location-invariant object may still require
      // destruction.
      static void
      _M_destroy(_Any_data& __victim, true_type)
      {
        __victim._M_access<_Functor>().~_Functor();
      }

      // Destroying an object located on the heap.
      static void
      _M_destroy(_Any_data& __victim, false_type)
      {
        delete __victim._M_access<_Functor*>();
      }

    public:
      static bool
      _M_manager(_Any_data& __dest, const _Any_data& __source,
                 _Manager_operation __op)
      {
        switch (__op) {
        case __get_type_info:
          __dest._M_access<const type_info*>() = &typeid(_Functor);
          break;

        case __get_functor_ptr:
          __dest._M_access<_Functor*>() = _M_get_pointer(__source);
          break;

        case __clone_functor:
          _M_clone(__dest, __source, _Local_storage());
          break;

        case __destroy_functor:
          _M_destroy(__dest, _Local_storage());
          break;
        }
        return false;
      }

      static void
      _M_init_functor(_Any_data& __functor, const _Functor& __f)
      {
        _M_init_functor(__functor, __f, _Local_storage());
      }

      template<typename _Signature>
      static bool
      _M_not_empty_function(const function<_Signature>& __f)
      {
        return __f;
      }

      template<typename _Tp>
      static bool
      _M_not_empty_function(const _Tp*& __fp)
      {
        return __fp;
      }

      template<typename _Class, typename _Tp>
      static bool
      _M_not_empty_function(_Tp _Class::* const& __mp)
      {
        return __mp;
      }

      template<typename _Tp>
      static bool
      _M_not_empty_function(const _Tp&)
      {
        return true;
      }

    private:
      static void
      _M_init_functor(_Any_data& __functor, const _Functor& __f, true_type)
      {
        new (__functor._M_access()) _Functor(__f);
      }

      static void
      _M_init_functor(_Any_data& __functor, const _Functor& __f, false_type)
      {
        __functor._M_access<_Functor*>() = new _Functor(__f);
      }
    };

    template<typename _Functor>
    class _Ref_manager : public _Base_manager<_Functor*>
    {
      typedef _Function_base::_Base_manager<_Functor*> _Base;

    public:
      static bool
      _M_manager(_Any_data& __dest, const _Any_data& __source,
                 _Manager_operation __op)
      {
        switch (__op) {
        case __get_type_info:
          __dest._M_access<const type_info*>() = &typeid(_Functor);
          break;

        case __get_functor_ptr:
          __dest._M_access<_Functor*>() = *_Base::_M_get_pointer(__source);
          return is_const<_Functor>::value;
          break;

        default:
          _Base::_M_manager(__dest, __source, __op);
        }
        return false;
      }

      static void
      _M_init_functor(_Any_data& __functor, reference_wrapper<_Functor> __f)
      {
        // TBD: Use address_of function instead
        _Base::_M_init_functor(__functor, &__f.get());
      }
    };

    _Function_base() : _M_manager(0) { }

    ~_Function_base()
    {
      if (_M_manager)
        {
          _M_manager(_M_functor, _M_functor, __destroy_functor);
        }
    }


    bool _M_empty() const { return !_M_manager; }

    typedef bool (*_Manager_type)(_Any_data&, const _Any_data&,
                                  _Manager_operation);

    _Any_data     _M_functor;
    _Manager_type _M_manager;
  };

  // [3.7.2.7] null pointer comparisons

  /**
   *  @brief Compares a polymorphic function object wrapper against 0
   *  (the NULL pointer).
   *  @returns @c true if the wrapper has no target, @c false otherwise
   *
   *  This function will not throw an exception.
   */
  template<typename _Signature>
    inline bool
    operator==(const function<_Signature>& __f, _M_clear_type*)
    {
      return !__f;
    }

  /**
   *  @overload
   */
  template<typename _Signature>
    inline bool
    operator==(_M_clear_type*, const function<_Signature>& __f)
    {
      return !__f;
    }

  /**
   *  @brief Compares a polymorphic function object wrapper against 0
   *  (the NULL pointer).
   *  @returns @c false if the wrapper has no target, @c true otherwise
   *
   *  This function will not throw an exception.
   */
  template<typename _Signature>
    inline bool
    operator!=(const function<_Signature>& __f, _M_clear_type*)
    {
      return __f;
    }

  /**
   *  @overload
   */
  template<typename _Signature>
    inline bool
    operator!=(_M_clear_type*, const function<_Signature>& __f)
    {
      return __f;
    }

  // [3.7.2.8] specialized algorithms

  /**
   *  @brief Swap the targets of two polymorphic function object wrappers.
   *
   *  This function will not throw an exception.
   */
  template<typename _Signature>
    inline void
    swap(function<_Signature>& __x, function<_Signature>& __y)
    {
      __x.swap(__y);
    }

#define _GLIBCXX_REPEAT_HEADER <tr1/functional_iterate.h>
#include <tr1/repeat.h>
#undef _GLIBCXX_REPEAT_HEADER

// Definition of default hash function std::tr1::hash<>.  The types for
// which std::tr1::hash<T> is defined is in clause 6.3.3. of the PDTR.

  template <typename T> struct hash;

  #define tr1_hashtable_define_trivial_hash(T)                              \
    template <> struct hash<T> {                                                    \
      std::size_t operator()(T val) const { return static_cast<std::size_t>(val); } \
    }                                                                       \

  tr1_hashtable_define_trivial_hash(bool);
  tr1_hashtable_define_trivial_hash(char);
  tr1_hashtable_define_trivial_hash(signed char);
  tr1_hashtable_define_trivial_hash(unsigned char);
  tr1_hashtable_define_trivial_hash(wchar_t);
  tr1_hashtable_define_trivial_hash(short);
  tr1_hashtable_define_trivial_hash(int);
  tr1_hashtable_define_trivial_hash(long);
  tr1_hashtable_define_trivial_hash(unsigned short);
  tr1_hashtable_define_trivial_hash(unsigned int);
  tr1_hashtable_define_trivial_hash(unsigned long);

  tr1_hashtable_define_trivial_hash(float);
  tr1_hashtable_define_trivial_hash(double);
  tr1_hashtable_define_trivial_hash(long double);

  #undef tr1_hashtable_define_trivial_hash

  template <typename T>
    struct hash<T*> {
      std::size_t operator()(T* p) const {
        return reinterpret_cast<std::size_t>(p);
      }
    };

  // ??? We can probably find a better hash function than this (i.e. one
  // that vectorizes better and that produces a more uniform distribution).

  // XXX String hash probably shouldn't be an inline member function,
  // since it's nontrivial.  Once we have the framework for TR1 .cc
  // files, this should go in one.

  template <>
    struct hash<std::string>
    {
      std::size_t operator()(const std::string& s) const
      {
        std::size_t result = 0;
        for (std::string::const_iterator i = s.begin(); i != s.end(); ++i)
          result = (result * 131) + *i;
        return result;
      }
    };

#ifdef _GLIBCXX_USE_WCHAR_T
  template <>
    struct hash<std::wstring>
    {
      std::size_t operator()(const std::wstring& s) const
      {
        std::size_t result = 0;
        for (std::wstring::const_iterator i = s.begin(); i != s.end(); ++i)
          result = (result * 131) + *i;
        return result;
      }
    };
#endif

}
}

#endif