1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
|
//===-- tsan_rtl_thread.cc ------------------------------------------------===//
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
//===----------------------------------------------------------------------===//
#include "sanitizer_common/sanitizer_placement_new.h"
#include "tsan_rtl.h"
#include "tsan_mman.h"
#include "tsan_platform.h"
#include "tsan_report.h"
#include "tsan_sync.h"
namespace __tsan {
#ifndef TSAN_GO
const int kThreadQuarantineSize = 16;
#else
const int kThreadQuarantineSize = 64;
#endif
static void MaybeReportThreadLeak(ThreadContext *tctx) {
if (tctx->detached)
return;
if (tctx->status != ThreadStatusCreated
&& tctx->status != ThreadStatusRunning
&& tctx->status != ThreadStatusFinished)
return;
ScopedReport rep(ReportTypeThreadLeak);
rep.AddThread(tctx);
OutputReport(CTX(), rep);
}
void ThreadFinalize(ThreadState *thr) {
CHECK_GT(thr->in_rtl, 0);
if (!flags()->report_thread_leaks)
return;
Context *ctx = CTX();
Lock l(&ctx->thread_mtx);
for (unsigned i = 0; i < kMaxTid; i++) {
ThreadContext *tctx = ctx->threads[i];
if (tctx == 0)
continue;
MaybeReportThreadLeak(tctx);
}
}
int ThreadCount(ThreadState *thr) {
CHECK_GT(thr->in_rtl, 0);
Context *ctx = CTX();
Lock l(&ctx->thread_mtx);
int cnt = 0;
for (unsigned i = 0; i < kMaxTid; i++) {
ThreadContext *tctx = ctx->threads[i];
if (tctx == 0)
continue;
if (tctx->status != ThreadStatusCreated
&& tctx->status != ThreadStatusRunning)
continue;
cnt++;
}
return cnt;
}
static void ThreadDead(ThreadState *thr, ThreadContext *tctx) {
Context *ctx = CTX();
CHECK_GT(thr->in_rtl, 0);
CHECK(tctx->status == ThreadStatusRunning
|| tctx->status == ThreadStatusFinished);
DPrintf("#%d: ThreadDead uid=%zu\n", thr->tid, tctx->user_id);
tctx->status = ThreadStatusDead;
tctx->user_id = 0;
tctx->sync.Reset();
// Put to dead list.
tctx->dead_next = 0;
if (ctx->dead_list_size == 0)
ctx->dead_list_head = tctx;
else
ctx->dead_list_tail->dead_next = tctx;
ctx->dead_list_tail = tctx;
ctx->dead_list_size++;
}
int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached) {
CHECK_GT(thr->in_rtl, 0);
Context *ctx = CTX();
Lock l(&ctx->thread_mtx);
StatInc(thr, StatThreadCreate);
int tid = -1;
ThreadContext *tctx = 0;
if (ctx->dead_list_size > kThreadQuarantineSize
|| ctx->thread_seq >= kMaxTid) {
// Reusing old thread descriptor and tid.
if (ctx->dead_list_size == 0) {
Printf("ThreadSanitizer: %d thread limit exceeded. Dying.\n",
kMaxTid);
Die();
}
StatInc(thr, StatThreadReuse);
tctx = ctx->dead_list_head;
ctx->dead_list_head = tctx->dead_next;
ctx->dead_list_size--;
if (ctx->dead_list_size == 0) {
CHECK_EQ(tctx->dead_next, 0);
ctx->dead_list_head = 0;
}
CHECK_EQ(tctx->status, ThreadStatusDead);
tctx->status = ThreadStatusInvalid;
tctx->reuse_count++;
tctx->sync.Reset();
tid = tctx->tid;
DestroyAndFree(tctx->dead_info);
if (tctx->name) {
internal_free(tctx->name);
tctx->name = 0;
}
} else {
// Allocating new thread descriptor and tid.
StatInc(thr, StatThreadMaxTid);
tid = ctx->thread_seq++;
void *mem = internal_alloc(MBlockThreadContex, sizeof(ThreadContext));
tctx = new(mem) ThreadContext(tid);
ctx->threads[tid] = tctx;
MapThreadTrace(GetThreadTrace(tid), TraceSize() * sizeof(Event));
}
CHECK_NE(tctx, 0);
CHECK_GE(tid, 0);
CHECK_LT(tid, kMaxTid);
DPrintf("#%d: ThreadCreate tid=%d uid=%zu\n", thr->tid, tid, uid);
CHECK_EQ(tctx->status, ThreadStatusInvalid);
ctx->alive_threads++;
if (ctx->max_alive_threads < ctx->alive_threads) {
ctx->max_alive_threads++;
CHECK_EQ(ctx->max_alive_threads, ctx->alive_threads);
StatInc(thr, StatThreadMaxAlive);
}
tctx->status = ThreadStatusCreated;
tctx->thr = 0;
tctx->user_id = uid;
tctx->unique_id = ctx->unique_thread_seq++;
tctx->detached = detached;
if (tid) {
thr->fast_state.IncrementEpoch();
// Can't increment epoch w/o writing to the trace as well.
TraceAddEvent(thr, thr->fast_state, EventTypeMop, 0);
thr->clock.set(thr->tid, thr->fast_state.epoch());
thr->fast_synch_epoch = thr->fast_state.epoch();
thr->clock.release(&tctx->sync);
StatInc(thr, StatSyncRelease);
tctx->creation_stack.ObtainCurrent(thr, pc);
tctx->creation_tid = thr->tid;
}
return tid;
}
void ThreadStart(ThreadState *thr, int tid, uptr os_id) {
CHECK_GT(thr->in_rtl, 0);
uptr stk_addr = 0;
uptr stk_size = 0;
uptr tls_addr = 0;
uptr tls_size = 0;
GetThreadStackAndTls(tid == 0, &stk_addr, &stk_size, &tls_addr, &tls_size);
if (tid) {
if (stk_addr && stk_size) {
MemoryResetRange(thr, /*pc=*/ 1, stk_addr, stk_size);
}
if (tls_addr && tls_size) {
// Check that the thr object is in tls;
const uptr thr_beg = (uptr)thr;
const uptr thr_end = (uptr)thr + sizeof(*thr);
CHECK_GE(thr_beg, tls_addr);
CHECK_LE(thr_beg, tls_addr + tls_size);
CHECK_GE(thr_end, tls_addr);
CHECK_LE(thr_end, tls_addr + tls_size);
// Since the thr object is huge, skip it.
MemoryResetRange(thr, /*pc=*/ 2, tls_addr, thr_beg - tls_addr);
MemoryResetRange(thr, /*pc=*/ 2, thr_end, tls_addr + tls_size - thr_end);
}
}
Lock l(&CTX()->thread_mtx);
ThreadContext *tctx = CTX()->threads[tid];
CHECK_NE(tctx, 0);
CHECK_EQ(tctx->status, ThreadStatusCreated);
tctx->status = ThreadStatusRunning;
tctx->os_id = os_id;
// RoundUp so that one trace part does not contain events
// from different threads.
tctx->epoch0 = RoundUp(tctx->epoch1 + 1, kTracePartSize);
tctx->epoch1 = (u64)-1;
new(thr) ThreadState(CTX(), tid, tctx->unique_id,
tctx->epoch0, stk_addr, stk_size,
tls_addr, tls_size);
#ifdef TSAN_GO
// Setup dynamic shadow stack.
const int kInitStackSize = 8;
thr->shadow_stack = (uptr*)internal_alloc(MBlockShadowStack,
kInitStackSize * sizeof(uptr));
thr->shadow_stack_pos = thr->shadow_stack;
thr->shadow_stack_end = thr->shadow_stack + kInitStackSize;
#endif
tctx->thr = thr;
thr->fast_synch_epoch = tctx->epoch0;
thr->clock.set(tid, tctx->epoch0);
thr->clock.acquire(&tctx->sync);
thr->fast_state.SetHistorySize(flags()->history_size);
const uptr trace = (tctx->epoch0 / kTracePartSize) % TraceParts();
thr->trace.headers[trace].epoch0 = tctx->epoch0;
StatInc(thr, StatSyncAcquire);
DPrintf("#%d: ThreadStart epoch=%zu stk_addr=%zx stk_size=%zx "
"tls_addr=%zx tls_size=%zx\n",
tid, (uptr)tctx->epoch0, stk_addr, stk_size, tls_addr, tls_size);
thr->is_alive = true;
}
void ThreadFinish(ThreadState *thr) {
CHECK_GT(thr->in_rtl, 0);
StatInc(thr, StatThreadFinish);
// FIXME: Treat it as write.
if (thr->stk_addr && thr->stk_size)
MemoryResetRange(thr, /*pc=*/ 3, thr->stk_addr, thr->stk_size);
if (thr->tls_addr && thr->tls_size) {
const uptr thr_beg = (uptr)thr;
const uptr thr_end = (uptr)thr + sizeof(*thr);
// Since the thr object is huge, skip it.
MemoryResetRange(thr, /*pc=*/ 4, thr->tls_addr, thr_beg - thr->tls_addr);
MemoryResetRange(thr, /*pc=*/ 5,
thr_end, thr->tls_addr + thr->tls_size - thr_end);
}
thr->is_alive = false;
Context *ctx = CTX();
Lock l(&ctx->thread_mtx);
ThreadContext *tctx = ctx->threads[thr->tid];
CHECK_NE(tctx, 0);
CHECK_EQ(tctx->status, ThreadStatusRunning);
CHECK_GT(ctx->alive_threads, 0);
ctx->alive_threads--;
if (tctx->detached) {
ThreadDead(thr, tctx);
} else {
thr->fast_state.IncrementEpoch();
// Can't increment epoch w/o writing to the trace as well.
TraceAddEvent(thr, thr->fast_state, EventTypeMop, 0);
thr->clock.set(thr->tid, thr->fast_state.epoch());
thr->fast_synch_epoch = thr->fast_state.epoch();
thr->clock.release(&tctx->sync);
StatInc(thr, StatSyncRelease);
tctx->status = ThreadStatusFinished;
}
// Save from info about the thread.
tctx->dead_info = new(internal_alloc(MBlockDeadInfo, sizeof(ThreadDeadInfo)))
ThreadDeadInfo();
for (uptr i = 0; i < TraceParts(); i++) {
tctx->dead_info->trace.headers[i].epoch0 = thr->trace.headers[i].epoch0;
tctx->dead_info->trace.headers[i].stack0.CopyFrom(
thr->trace.headers[i].stack0);
}
tctx->epoch1 = thr->fast_state.epoch();
#ifndef TSAN_GO
AlloctorThreadFinish(thr);
#endif
thr->~ThreadState();
StatAggregate(ctx->stat, thr->stat);
tctx->thr = 0;
}
int ThreadTid(ThreadState *thr, uptr pc, uptr uid) {
CHECK_GT(thr->in_rtl, 0);
Context *ctx = CTX();
Lock l(&ctx->thread_mtx);
int res = -1;
for (unsigned tid = 0; tid < kMaxTid; tid++) {
ThreadContext *tctx = ctx->threads[tid];
if (tctx != 0 && tctx->user_id == uid
&& tctx->status != ThreadStatusInvalid) {
tctx->user_id = 0;
res = tid;
break;
}
}
DPrintf("#%d: ThreadTid uid=%zu tid=%d\n", thr->tid, uid, res);
return res;
}
void ThreadJoin(ThreadState *thr, uptr pc, int tid) {
CHECK_GT(thr->in_rtl, 0);
CHECK_GT(tid, 0);
CHECK_LT(tid, kMaxTid);
DPrintf("#%d: ThreadJoin tid=%d\n", thr->tid, tid);
Context *ctx = CTX();
Lock l(&ctx->thread_mtx);
ThreadContext *tctx = ctx->threads[tid];
if (tctx->status == ThreadStatusInvalid) {
Printf("ThreadSanitizer: join of non-existent thread\n");
return;
}
// FIXME(dvyukov): print message and continue (it's user error).
CHECK_EQ(tctx->detached, false);
CHECK_EQ(tctx->status, ThreadStatusFinished);
thr->clock.acquire(&tctx->sync);
StatInc(thr, StatSyncAcquire);
ThreadDead(thr, tctx);
}
void ThreadDetach(ThreadState *thr, uptr pc, int tid) {
CHECK_GT(thr->in_rtl, 0);
CHECK_GT(tid, 0);
CHECK_LT(tid, kMaxTid);
Context *ctx = CTX();
Lock l(&ctx->thread_mtx);
ThreadContext *tctx = ctx->threads[tid];
if (tctx->status == ThreadStatusInvalid) {
Printf("ThreadSanitizer: detach of non-existent thread\n");
return;
}
if (tctx->status == ThreadStatusFinished) {
ThreadDead(thr, tctx);
} else {
tctx->detached = true;
}
}
void ThreadSetName(ThreadState *thr, const char *name) {
Context *ctx = CTX();
Lock l(&ctx->thread_mtx);
ThreadContext *tctx = ctx->threads[thr->tid];
CHECK_NE(tctx, 0);
CHECK_EQ(tctx->status, ThreadStatusRunning);
if (tctx->name) {
internal_free(tctx->name);
tctx->name = 0;
}
if (name)
tctx->name = internal_strdup(name);
}
void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr,
uptr size, bool is_write) {
if (size == 0)
return;
u64 *shadow_mem = (u64*)MemToShadow(addr);
DPrintf2("#%d: MemoryAccessRange: @%p %p size=%d is_write=%d\n",
thr->tid, (void*)pc, (void*)addr,
(int)size, is_write);
#if TSAN_DEBUG
if (!IsAppMem(addr)) {
Printf("Access to non app mem %zx\n", addr);
DCHECK(IsAppMem(addr));
}
if (!IsAppMem(addr + size - 1)) {
Printf("Access to non app mem %zx\n", addr + size - 1);
DCHECK(IsAppMem(addr + size - 1));
}
if (!IsShadowMem((uptr)shadow_mem)) {
Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr);
DCHECK(IsShadowMem((uptr)shadow_mem));
}
if (!IsShadowMem((uptr)(shadow_mem + size * kShadowCnt / 8 - 1))) {
Printf("Bad shadow addr %p (%zx)\n",
shadow_mem + size * kShadowCnt / 8 - 1, addr + size - 1);
DCHECK(IsShadowMem((uptr)(shadow_mem + size * kShadowCnt / 8 - 1)));
}
#endif
StatInc(thr, StatMopRange);
FastState fast_state = thr->fast_state;
if (fast_state.GetIgnoreBit())
return;
fast_state.IncrementEpoch();
thr->fast_state = fast_state;
TraceAddEvent(thr, fast_state, EventTypeMop, pc);
bool unaligned = (addr % kShadowCell) != 0;
// Handle unaligned beginning, if any.
for (; addr % kShadowCell && size; addr++, size--) {
int const kAccessSizeLog = 0;
Shadow cur(fast_state);
cur.SetWrite(is_write);
cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kAccessSizeLog);
MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write,
shadow_mem, cur);
}
if (unaligned)
shadow_mem += kShadowCnt;
// Handle middle part, if any.
for (; size >= kShadowCell; addr += kShadowCell, size -= kShadowCell) {
int const kAccessSizeLog = 3;
Shadow cur(fast_state);
cur.SetWrite(is_write);
cur.SetAddr0AndSizeLog(0, kAccessSizeLog);
MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write,
shadow_mem, cur);
shadow_mem += kShadowCnt;
}
// Handle ending, if any.
for (; size; addr++, size--) {
int const kAccessSizeLog = 0;
Shadow cur(fast_state);
cur.SetWrite(is_write);
cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kAccessSizeLog);
MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write,
shadow_mem, cur);
}
}
void MemoryRead1Byte(ThreadState *thr, uptr pc, uptr addr) {
MemoryAccess(thr, pc, addr, 0, 0);
}
void MemoryWrite1Byte(ThreadState *thr, uptr pc, uptr addr) {
MemoryAccess(thr, pc, addr, 0, 1);
}
void MemoryRead8Byte(ThreadState *thr, uptr pc, uptr addr) {
MemoryAccess(thr, pc, addr, 3, 0);
}
void MemoryWrite8Byte(ThreadState *thr, uptr pc, uptr addr) {
MemoryAccess(thr, pc, addr, 3, 1);
}
} // namespace __tsan
|