aboutsummaryrefslogtreecommitdiff
path: root/libsanitizer/tsan/tsan_rtl_report.cpp
blob: 0311df553fdd0a34d9f891824e3a8f2abde5a6e0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
//===-- tsan_rtl_report.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
//===----------------------------------------------------------------------===//

#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_libc.h"
#include "sanitizer_common/sanitizer_placement_new.h"
#include "sanitizer_common/sanitizer_stackdepot.h"
#include "sanitizer_common/sanitizer_stacktrace.h"
#include "tsan_fd.h"
#include "tsan_flags.h"
#include "tsan_mman.h"
#include "tsan_platform.h"
#include "tsan_report.h"
#include "tsan_rtl.h"
#include "tsan_suppressions.h"
#include "tsan_symbolize.h"
#include "tsan_sync.h"

namespace __tsan {

using namespace __sanitizer;

static ReportStack *SymbolizeStack(StackTrace trace);

// Can be overriden by an application/test to intercept reports.
#ifdef TSAN_EXTERNAL_HOOKS
bool OnReport(const ReportDesc *rep, bool suppressed);
#else
SANITIZER_WEAK_CXX_DEFAULT_IMPL
bool OnReport(const ReportDesc *rep, bool suppressed) {
  (void)rep;
  return suppressed;
}
#endif

SANITIZER_WEAK_DEFAULT_IMPL
void __tsan_on_report(const ReportDesc *rep) {
  (void)rep;
}

static void StackStripMain(SymbolizedStack *frames) {
  SymbolizedStack *last_frame = nullptr;
  SymbolizedStack *last_frame2 = nullptr;
  for (SymbolizedStack *cur = frames; cur; cur = cur->next) {
    last_frame2 = last_frame;
    last_frame = cur;
  }

  if (last_frame2 == 0)
    return;
#if !SANITIZER_GO
  const char *last = last_frame->info.function;
  const char *last2 = last_frame2->info.function;
  // Strip frame above 'main'
  if (last2 && 0 == internal_strcmp(last2, "main")) {
    last_frame->ClearAll();
    last_frame2->next = nullptr;
  // Strip our internal thread start routine.
  } else if (last && 0 == internal_strcmp(last, "__tsan_thread_start_func")) {
    last_frame->ClearAll();
    last_frame2->next = nullptr;
    // Strip global ctors init, .preinit_array and main caller.
  } else if (last && (0 == internal_strcmp(last, "__do_global_ctors_aux") ||
                      0 == internal_strcmp(last, "__libc_csu_init") ||
                      0 == internal_strcmp(last, "__libc_start_main"))) {
    last_frame->ClearAll();
    last_frame2->next = nullptr;
  // If both are 0, then we probably just failed to symbolize.
  } else if (last || last2) {
    // Ensure that we recovered stack completely. Trimmed stack
    // can actually happen if we do not instrument some code,
    // so it's only a debug print. However we must try hard to not miss it
    // due to our fault.
    DPrintf("Bottom stack frame is missed\n");
  }
#else
  // The last frame always point into runtime (gosched0, goexit0, runtime.main).
  last_frame->ClearAll();
  last_frame2->next = nullptr;
#endif
}

ReportStack *SymbolizeStackId(u32 stack_id) {
  if (stack_id == 0)
    return 0;
  StackTrace stack = StackDepotGet(stack_id);
  if (stack.trace == nullptr)
    return nullptr;
  return SymbolizeStack(stack);
}

static ReportStack *SymbolizeStack(StackTrace trace) {
  if (trace.size == 0)
    return 0;
  SymbolizedStack *top = nullptr;
  for (uptr si = 0; si < trace.size; si++) {
    const uptr pc = trace.trace[si];
    uptr pc1 = pc;
    // We obtain the return address, but we're interested in the previous
    // instruction.
    if ((pc & kExternalPCBit) == 0)
      pc1 = StackTrace::GetPreviousInstructionPc(pc);
    SymbolizedStack *ent = SymbolizeCode(pc1);
    CHECK_NE(ent, 0);
    SymbolizedStack *last = ent;
    while (last->next) {
      last->info.address = pc;  // restore original pc for report
      last = last->next;
    }
    last->info.address = pc;  // restore original pc for report
    last->next = top;
    top = ent;
  }
  StackStripMain(top);

  auto *stack = New<ReportStack>();
  stack->frames = top;
  return stack;
}

bool ShouldReport(ThreadState *thr, ReportType typ) {
  // We set thr->suppress_reports in the fork context.
  // Taking any locking in the fork context can lead to deadlocks.
  // If any locks are already taken, it's too late to do this check.
  CheckedMutex::CheckNoLocks();
  // For the same reason check we didn't lock thread_registry yet.
  if (SANITIZER_DEBUG)
    ThreadRegistryLock l(&ctx->thread_registry);
  if (!flags()->report_bugs || thr->suppress_reports)
    return false;
  switch (typ) {
    case ReportTypeSignalUnsafe:
      return flags()->report_signal_unsafe;
    case ReportTypeThreadLeak:
#if !SANITIZER_GO
      // It's impossible to join phantom threads
      // in the child after fork.
      if (ctx->after_multithreaded_fork)
        return false;
#endif
      return flags()->report_thread_leaks;
    case ReportTypeMutexDestroyLocked:
      return flags()->report_destroy_locked;
    default:
      return true;
  }
}

ScopedReportBase::ScopedReportBase(ReportType typ, uptr tag) {
  ctx->thread_registry.CheckLocked();
  rep_ = New<ReportDesc>();
  rep_->typ = typ;
  rep_->tag = tag;
  ctx->report_mtx.Lock();
}

ScopedReportBase::~ScopedReportBase() {
  ctx->report_mtx.Unlock();
  DestroyAndFree(rep_);
}

void ScopedReportBase::AddStack(StackTrace stack, bool suppressable) {
  ReportStack **rs = rep_->stacks.PushBack();
  *rs = SymbolizeStack(stack);
  (*rs)->suppressable = suppressable;
}

void ScopedReportBase::AddMemoryAccess(uptr addr, uptr external_tag, Shadow s,
                                       Tid tid, StackTrace stack,
                                       const MutexSet *mset) {
  uptr addr0, size;
  AccessType typ;
  s.GetAccess(&addr0, &size, &typ);
  auto *mop = New<ReportMop>();
  rep_->mops.PushBack(mop);
  mop->tid = tid;
  mop->addr = addr + addr0;
  mop->size = size;
  mop->write = !(typ & kAccessRead);
  mop->atomic = typ & kAccessAtomic;
  mop->stack = SymbolizeStack(stack);
  mop->external_tag = external_tag;
  if (mop->stack)
    mop->stack->suppressable = true;
  for (uptr i = 0; i < mset->Size(); i++) {
    MutexSet::Desc d = mset->Get(i);
    int id = this->AddMutex(d.addr, d.stack_id);
    ReportMopMutex mtx = {id, d.write};
    mop->mset.PushBack(mtx);
  }
}

void ScopedReportBase::AddUniqueTid(Tid unique_tid) {
  rep_->unique_tids.PushBack(unique_tid);
}

void ScopedReportBase::AddThread(const ThreadContext *tctx, bool suppressable) {
  for (uptr i = 0; i < rep_->threads.Size(); i++) {
    if ((u32)rep_->threads[i]->id == tctx->tid)
      return;
  }
  auto *rt = New<ReportThread>();
  rep_->threads.PushBack(rt);
  rt->id = tctx->tid;
  rt->os_id = tctx->os_id;
  rt->running = (tctx->status == ThreadStatusRunning);
  rt->name = internal_strdup(tctx->name);
  rt->parent_tid = tctx->parent_tid;
  rt->thread_type = tctx->thread_type;
  rt->stack = 0;
  rt->stack = SymbolizeStackId(tctx->creation_stack_id);
  if (rt->stack)
    rt->stack->suppressable = suppressable;
}

#if !SANITIZER_GO
static ThreadContext *FindThreadByTidLocked(Tid tid) {
  ctx->thread_registry.CheckLocked();
  return static_cast<ThreadContext *>(
      ctx->thread_registry.GetThreadLocked(tid));
}

static bool IsInStackOrTls(ThreadContextBase *tctx_base, void *arg) {
  uptr addr = (uptr)arg;
  ThreadContext *tctx = static_cast<ThreadContext*>(tctx_base);
  if (tctx->status != ThreadStatusRunning)
    return false;
  ThreadState *thr = tctx->thr;
  CHECK(thr);
  return ((addr >= thr->stk_addr && addr < thr->stk_addr + thr->stk_size) ||
          (addr >= thr->tls_addr && addr < thr->tls_addr + thr->tls_size));
}

ThreadContext *IsThreadStackOrTls(uptr addr, bool *is_stack) {
  ctx->thread_registry.CheckLocked();
  ThreadContext *tctx =
      static_cast<ThreadContext *>(ctx->thread_registry.FindThreadContextLocked(
          IsInStackOrTls, (void *)addr));
  if (!tctx)
    return 0;
  ThreadState *thr = tctx->thr;
  CHECK(thr);
  *is_stack = (addr >= thr->stk_addr && addr < thr->stk_addr + thr->stk_size);
  return tctx;
}
#endif

void ScopedReportBase::AddThread(Tid tid, bool suppressable) {
#if !SANITIZER_GO
  if (const ThreadContext *tctx = FindThreadByTidLocked(tid))
    AddThread(tctx, suppressable);
#endif
}

int ScopedReportBase::AddMutex(uptr addr, StackID creation_stack_id) {
  for (uptr i = 0; i < rep_->mutexes.Size(); i++) {
    if (rep_->mutexes[i]->addr == addr)
      return rep_->mutexes[i]->id;
  }
  auto *rm = New<ReportMutex>();
  rep_->mutexes.PushBack(rm);
  rm->id = rep_->mutexes.Size() - 1;
  rm->addr = addr;
  rm->stack = SymbolizeStackId(creation_stack_id);
  return rm->id;
}

void ScopedReportBase::AddLocation(uptr addr, uptr size) {
  if (addr == 0)
    return;
#if !SANITIZER_GO
  int fd = -1;
  Tid creat_tid = kInvalidTid;
  StackID creat_stack = 0;
  bool closed = false;
  if (FdLocation(addr, &fd, &creat_tid, &creat_stack, &closed)) {
    auto *loc = New<ReportLocation>();
    loc->type = ReportLocationFD;
    loc->fd_closed = closed;
    loc->fd = fd;
    loc->tid = creat_tid;
    loc->stack = SymbolizeStackId(creat_stack);
    rep_->locs.PushBack(loc);
    AddThread(creat_tid);
    return;
  }
  MBlock *b = 0;
  uptr block_begin = 0;
  Allocator *a = allocator();
  if (a->PointerIsMine((void*)addr)) {
    block_begin = (uptr)a->GetBlockBegin((void *)addr);
    if (block_begin)
      b = ctx->metamap.GetBlock(block_begin);
  }
  if (!b)
    b = JavaHeapBlock(addr, &block_begin);
  if (b != 0) {
    auto *loc = New<ReportLocation>();
    loc->type = ReportLocationHeap;
    loc->heap_chunk_start = block_begin;
    loc->heap_chunk_size = b->siz;
    loc->external_tag = b->tag;
    loc->tid = b->tid;
    loc->stack = SymbolizeStackId(b->stk);
    rep_->locs.PushBack(loc);
    AddThread(b->tid);
    return;
  }
  bool is_stack = false;
  if (ThreadContext *tctx = IsThreadStackOrTls(addr, &is_stack)) {
    auto *loc = New<ReportLocation>();
    loc->type = is_stack ? ReportLocationStack : ReportLocationTLS;
    loc->tid = tctx->tid;
    rep_->locs.PushBack(loc);
    AddThread(tctx);
  }
#endif
  if (ReportLocation *loc = SymbolizeData(addr)) {
    loc->suppressable = true;
    rep_->locs.PushBack(loc);
    return;
  }
}

#if !SANITIZER_GO
void ScopedReportBase::AddSleep(StackID stack_id) {
  rep_->sleep = SymbolizeStackId(stack_id);
}
#endif

void ScopedReportBase::SetCount(int count) { rep_->count = count; }

void ScopedReportBase::SetSigNum(int sig) { rep_->signum = sig; }

const ReportDesc *ScopedReportBase::GetReport() const { return rep_; }

ScopedReport::ScopedReport(ReportType typ, uptr tag)
    : ScopedReportBase(typ, tag) {}

ScopedReport::~ScopedReport() {}

// Replays the trace up to last_pos position in the last part
// or up to the provided epoch/sid (whichever is earlier)
// and calls the provided function f for each event.
template <typename Func>
void TraceReplay(Trace *trace, TracePart *last, Event *last_pos, Sid sid,
                 Epoch epoch, Func f) {
  TracePart *part = trace->parts.Front();
  Sid ev_sid = kFreeSid;
  Epoch ev_epoch = kEpochOver;
  for (;;) {
    DCHECK_EQ(part->trace, trace);
    // Note: an event can't start in the last element.
    // Since an event can take up to 2 elements,
    // we ensure we have at least 2 before adding an event.
    Event *end = &part->events[TracePart::kSize - 1];
    if (part == last)
      end = last_pos;
    f(kFreeSid, kEpochOver, nullptr);  // notify about part start
    for (Event *evp = &part->events[0]; evp < end; evp++) {
      Event *evp0 = evp;
      if (!evp->is_access && !evp->is_func) {
        switch (evp->type) {
          case EventType::kTime: {
            auto *ev = reinterpret_cast<EventTime *>(evp);
            ev_sid = static_cast<Sid>(ev->sid);
            ev_epoch = static_cast<Epoch>(ev->epoch);
            if (ev_sid == sid && ev_epoch > epoch)
              return;
            break;
          }
          case EventType::kAccessExt:
            FALLTHROUGH;
          case EventType::kAccessRange:
            FALLTHROUGH;
          case EventType::kLock:
            FALLTHROUGH;
          case EventType::kRLock:
            // These take 2 Event elements.
            evp++;
            break;
          case EventType::kUnlock:
            // This takes 1 Event element.
            break;
        }
      }
      CHECK_NE(ev_sid, kFreeSid);
      CHECK_NE(ev_epoch, kEpochOver);
      f(ev_sid, ev_epoch, evp0);
    }
    if (part == last)
      return;
    part = trace->parts.Next(part);
    CHECK(part);
  }
  CHECK(0);
}

static void RestoreStackMatch(VarSizeStackTrace *pstk, MutexSet *pmset,
                              Vector<uptr> *stack, MutexSet *mset, uptr pc,
                              bool *found) {
  DPrintf2("    MATCHED\n");
  *pmset = *mset;
  stack->PushBack(pc);
  pstk->Init(&(*stack)[0], stack->Size());
  stack->PopBack();
  *found = true;
}

// Checks if addr1|size1 is fully contained in addr2|size2.
// We check for fully contained instread of just overlapping
// because a memory access is always traced once, but can be
// split into multiple accesses in the shadow.
static constexpr bool IsWithinAccess(uptr addr1, uptr size1, uptr addr2,
                                     uptr size2) {
  return addr1 >= addr2 && addr1 + size1 <= addr2 + size2;
}

// Replays the trace of slot sid up to the target event identified
// by epoch/addr/size/typ and restores and returns tid, stack, mutex set
// and tag for that event. If there are multiple such events, it returns
// the last one. Returns false if the event is not present in the trace.
bool RestoreStack(EventType type, Sid sid, Epoch epoch, uptr addr, uptr size,
                  AccessType typ, Tid *ptid, VarSizeStackTrace *pstk,
                  MutexSet *pmset, uptr *ptag) {
  // This function restores stack trace and mutex set for the thread/epoch.
  // It does so by getting stack trace and mutex set at the beginning of
  // trace part, and then replaying the trace till the given epoch.
  DPrintf2("RestoreStack: sid=%u@%u addr=0x%zx/%zu typ=%x\n",
           static_cast<int>(sid), static_cast<int>(epoch), addr, size,
           static_cast<int>(typ));
  ctx->slot_mtx.CheckLocked();  // needed to prevent trace part recycling
  ctx->thread_registry.CheckLocked();
  TidSlot *slot = &ctx->slots[static_cast<uptr>(sid)];
  Tid tid = kInvalidTid;
  // Need to lock the slot mutex as it protects slot->journal.
  slot->mtx.CheckLocked();
  for (uptr i = 0; i < slot->journal.Size(); i++) {
    DPrintf2("  journal: epoch=%d tid=%d\n",
             static_cast<int>(slot->journal[i].epoch), slot->journal[i].tid);
    if (i == slot->journal.Size() - 1 || slot->journal[i + 1].epoch > epoch) {
      tid = slot->journal[i].tid;
      break;
    }
  }
  if (tid == kInvalidTid)
    return false;
  *ptid = tid;
  ThreadContext *tctx =
      static_cast<ThreadContext *>(ctx->thread_registry.GetThreadLocked(tid));
  Trace *trace = &tctx->trace;
  // Snapshot first/last parts and the current position in the last part.
  TracePart *first_part;
  TracePart *last_part;
  Event *last_pos;
  {
    Lock lock(&trace->mtx);
    first_part = trace->parts.Front();
    if (!first_part) {
      DPrintf2("RestoreStack: tid=%d trace=%p no trace parts\n", tid, trace);
      return false;
    }
    last_part = trace->parts.Back();
    last_pos = trace->final_pos;
    if (tctx->thr)
      last_pos = (Event *)atomic_load_relaxed(&tctx->thr->trace_pos);
  }
  DynamicMutexSet mset;
  Vector<uptr> stack;
  uptr prev_pc = 0;
  bool found = false;
  bool is_read = typ & kAccessRead;
  bool is_atomic = typ & kAccessAtomic;
  bool is_free = typ & kAccessFree;
  DPrintf2("RestoreStack: tid=%d parts=[%p-%p] last_pos=%p\n", tid,
           trace->parts.Front(), last_part, last_pos);
  TraceReplay(
      trace, last_part, last_pos, sid, epoch,
      [&](Sid ev_sid, Epoch ev_epoch, Event *evp) {
        if (evp == nullptr) {
          // Each trace part is self-consistent, so we reset state.
          stack.Resize(0);
          mset->Reset();
          prev_pc = 0;
          return;
        }
        bool match = ev_sid == sid && ev_epoch == epoch;
        if (evp->is_access) {
          if (evp->is_func == 0 && evp->type == EventType::kAccessExt &&
              evp->_ == 0)  // NopEvent
            return;
          auto *ev = reinterpret_cast<EventAccess *>(evp);
          uptr ev_addr = RestoreAddr(ev->addr);
          uptr ev_size = 1 << ev->size_log;
          uptr ev_pc =
              prev_pc + ev->pc_delta - (1 << (EventAccess::kPCBits - 1));
          prev_pc = ev_pc;
          DPrintf2("  Access: pc=0x%zx addr=0x%zx/%zu type=%u/%u\n", ev_pc,
                   ev_addr, ev_size, ev->is_read, ev->is_atomic);
          if (match && type == EventType::kAccessExt &&
              IsWithinAccess(addr, size, ev_addr, ev_size) &&
              is_read == ev->is_read && is_atomic == ev->is_atomic && !is_free)
            RestoreStackMatch(pstk, pmset, &stack, mset, ev_pc, &found);
          return;
        }
        if (evp->is_func) {
          auto *ev = reinterpret_cast<EventFunc *>(evp);
          if (ev->pc) {
            DPrintf2(" FuncEnter: pc=0x%llx\n", ev->pc);
            stack.PushBack(ev->pc);
          } else {
            DPrintf2(" FuncExit\n");
            // We don't log pathologically large stacks in each part,
            // if the stack was truncated we can have more func exits than
            // entries.
            if (stack.Size())
              stack.PopBack();
          }
          return;
        }
        switch (evp->type) {
          case EventType::kAccessExt: {
            auto *ev = reinterpret_cast<EventAccessExt *>(evp);
            uptr ev_addr = RestoreAddr(ev->addr);
            uptr ev_size = 1 << ev->size_log;
            prev_pc = ev->pc;
            DPrintf2("  AccessExt: pc=0x%llx addr=0x%zx/%zu type=%u/%u\n",
                     ev->pc, ev_addr, ev_size, ev->is_read, ev->is_atomic);
            if (match && type == EventType::kAccessExt &&
                IsWithinAccess(addr, size, ev_addr, ev_size) &&
                is_read == ev->is_read && is_atomic == ev->is_atomic &&
                !is_free)
              RestoreStackMatch(pstk, pmset, &stack, mset, ev->pc, &found);
            break;
          }
          case EventType::kAccessRange: {
            auto *ev = reinterpret_cast<EventAccessRange *>(evp);
            uptr ev_addr = RestoreAddr(ev->addr);
            uptr ev_size =
                (ev->size_hi << EventAccessRange::kSizeLoBits) + ev->size_lo;
            uptr ev_pc = RestoreAddr(ev->pc);
            prev_pc = ev_pc;
            DPrintf2("  Range: pc=0x%zx addr=0x%zx/%zu type=%u/%u\n", ev_pc,
                     ev_addr, ev_size, ev->is_read, ev->is_free);
            if (match && type == EventType::kAccessExt &&
                IsWithinAccess(addr, size, ev_addr, ev_size) &&
                is_read == ev->is_read && !is_atomic && is_free == ev->is_free)
              RestoreStackMatch(pstk, pmset, &stack, mset, ev_pc, &found);
            break;
          }
          case EventType::kLock:
            FALLTHROUGH;
          case EventType::kRLock: {
            auto *ev = reinterpret_cast<EventLock *>(evp);
            bool is_write = ev->type == EventType::kLock;
            uptr ev_addr = RestoreAddr(ev->addr);
            uptr ev_pc = RestoreAddr(ev->pc);
            StackID stack_id =
                (ev->stack_hi << EventLock::kStackIDLoBits) + ev->stack_lo;
            DPrintf2("  Lock: pc=0x%zx addr=0x%zx stack=%u write=%d\n", ev_pc,
                     ev_addr, stack_id, is_write);
            mset->AddAddr(ev_addr, stack_id, is_write);
            // Events with ev_pc == 0 are written to the beginning of trace
            // part as initial mutex set (are not real).
            if (match && type == EventType::kLock && addr == ev_addr && ev_pc)
              RestoreStackMatch(pstk, pmset, &stack, mset, ev_pc, &found);
            break;
          }
          case EventType::kUnlock: {
            auto *ev = reinterpret_cast<EventUnlock *>(evp);
            uptr ev_addr = RestoreAddr(ev->addr);
            DPrintf2("  Unlock: addr=0x%zx\n", ev_addr);
            mset->DelAddr(ev_addr);
            break;
          }
          case EventType::kTime:
            // TraceReplay already extracted sid/epoch from it,
            // nothing else to do here.
            break;
        }
      });
  ExtractTagFromStack(pstk, ptag);
  return found;
}

bool RacyStacks::operator==(const RacyStacks &other) const {
  if (hash[0] == other.hash[0] && hash[1] == other.hash[1])
    return true;
  if (hash[0] == other.hash[1] && hash[1] == other.hash[0])
    return true;
  return false;
}

static bool FindRacyStacks(const RacyStacks &hash) {
  for (uptr i = 0; i < ctx->racy_stacks.Size(); i++) {
    if (hash == ctx->racy_stacks[i]) {
      VPrintf(2, "ThreadSanitizer: suppressing report as doubled (stack)\n");
      return true;
    }
  }
  return false;
}

static bool HandleRacyStacks(ThreadState *thr, VarSizeStackTrace traces[2]) {
  if (!flags()->suppress_equal_stacks)
    return false;
  RacyStacks hash;
  hash.hash[0] = md5_hash(traces[0].trace, traces[0].size * sizeof(uptr));
  hash.hash[1] = md5_hash(traces[1].trace, traces[1].size * sizeof(uptr));
  {
    ReadLock lock(&ctx->racy_mtx);
    if (FindRacyStacks(hash))
      return true;
  }
  Lock lock(&ctx->racy_mtx);
  if (FindRacyStacks(hash))
    return true;
  ctx->racy_stacks.PushBack(hash);
  return false;
}

bool OutputReport(ThreadState *thr, const ScopedReport &srep) {
  // These should have been checked in ShouldReport.
  // It's too late to check them here, we have already taken locks.
  CHECK(flags()->report_bugs);
  CHECK(!thr->suppress_reports);
  atomic_store_relaxed(&ctx->last_symbolize_time_ns, NanoTime());
  const ReportDesc *rep = srep.GetReport();
  CHECK_EQ(thr->current_report, nullptr);
  thr->current_report = rep;
  Suppression *supp = 0;
  uptr pc_or_addr = 0;
  for (uptr i = 0; pc_or_addr == 0 && i < rep->mops.Size(); i++)
    pc_or_addr = IsSuppressed(rep->typ, rep->mops[i]->stack, &supp);
  for (uptr i = 0; pc_or_addr == 0 && i < rep->stacks.Size(); i++)
    pc_or_addr = IsSuppressed(rep->typ, rep->stacks[i], &supp);
  for (uptr i = 0; pc_or_addr == 0 && i < rep->threads.Size(); i++)
    pc_or_addr = IsSuppressed(rep->typ, rep->threads[i]->stack, &supp);
  for (uptr i = 0; pc_or_addr == 0 && i < rep->locs.Size(); i++)
    pc_or_addr = IsSuppressed(rep->typ, rep->locs[i], &supp);
  if (pc_or_addr != 0) {
    Lock lock(&ctx->fired_suppressions_mtx);
    FiredSuppression s = {srep.GetReport()->typ, pc_or_addr, supp};
    ctx->fired_suppressions.push_back(s);
  }
  {
    bool suppressed = OnReport(rep, pc_or_addr != 0);
    if (suppressed) {
      thr->current_report = nullptr;
      return false;
    }
  }
  PrintReport(rep);
  __tsan_on_report(rep);
  ctx->nreported++;
  if (flags()->halt_on_error)
    Die();
  thr->current_report = nullptr;
  return true;
}

bool IsFiredSuppression(Context *ctx, ReportType type, StackTrace trace) {
  ReadLock lock(&ctx->fired_suppressions_mtx);
  for (uptr k = 0; k < ctx->fired_suppressions.size(); k++) {
    if (ctx->fired_suppressions[k].type != type)
      continue;
    for (uptr j = 0; j < trace.size; j++) {
      FiredSuppression *s = &ctx->fired_suppressions[k];
      if (trace.trace[j] == s->pc_or_addr) {
        if (s->supp)
          atomic_fetch_add(&s->supp->hit_count, 1, memory_order_relaxed);
        return true;
      }
    }
  }
  return false;
}

static bool IsFiredSuppression(Context *ctx, ReportType type, uptr addr) {
  ReadLock lock(&ctx->fired_suppressions_mtx);
  for (uptr k = 0; k < ctx->fired_suppressions.size(); k++) {
    if (ctx->fired_suppressions[k].type != type)
      continue;
    FiredSuppression *s = &ctx->fired_suppressions[k];
    if (addr == s->pc_or_addr) {
      if (s->supp)
        atomic_fetch_add(&s->supp->hit_count, 1, memory_order_relaxed);
      return true;
    }
  }
  return false;
}

static bool SpuriousRace(Shadow old) {
  Shadow last(LoadShadow(&ctx->last_spurious_race));
  return last.sid() == old.sid() && last.epoch() == old.epoch();
}

void ReportRace(ThreadState *thr, RawShadow *shadow_mem, Shadow cur, Shadow old,
                AccessType typ0) {
  CheckedMutex::CheckNoLocks();

  // Symbolizer makes lots of intercepted calls. If we try to process them,
  // at best it will cause deadlocks on internal mutexes.
  ScopedIgnoreInterceptors ignore;

  uptr addr = ShadowToMem(shadow_mem);
  DPrintf("#%d: ReportRace %p\n", thr->tid, (void *)addr);
  if (!ShouldReport(thr, ReportTypeRace))
    return;
  uptr addr_off0, size0;
  cur.GetAccess(&addr_off0, &size0, nullptr);
  uptr addr_off1, size1, typ1;
  old.GetAccess(&addr_off1, &size1, &typ1);
  if (!flags()->report_atomic_races &&
      ((typ0 & kAccessAtomic) || (typ1 & kAccessAtomic)) &&
      !(typ0 & kAccessFree) && !(typ1 & kAccessFree))
    return;
  if (SpuriousRace(old))
    return;

  const uptr kMop = 2;
  Shadow s[kMop] = {cur, old};
  uptr addr0 = addr + addr_off0;
  uptr addr1 = addr + addr_off1;
  uptr end0 = addr0 + size0;
  uptr end1 = addr1 + size1;
  uptr addr_min = min(addr0, addr1);
  uptr addr_max = max(end0, end1);
  if (IsExpectedReport(addr_min, addr_max - addr_min))
    return;

  ReportType rep_typ = ReportTypeRace;
  if ((typ0 & kAccessVptr) && (typ1 & kAccessFree))
    rep_typ = ReportTypeVptrUseAfterFree;
  else if (typ0 & kAccessVptr)
    rep_typ = ReportTypeVptrRace;
  else if (typ1 & kAccessFree)
    rep_typ = ReportTypeUseAfterFree;

  if (IsFiredSuppression(ctx, rep_typ, addr))
    return;

  VarSizeStackTrace traces[kMop];
  Tid tids[kMop] = {thr->tid, kInvalidTid};
  uptr tags[kMop] = {kExternalTagNone, kExternalTagNone};

  ObtainCurrentStack(thr, thr->trace_prev_pc, &traces[0], &tags[0]);
  if (IsFiredSuppression(ctx, rep_typ, traces[0]))
    return;

  DynamicMutexSet mset1;
  MutexSet *mset[kMop] = {&thr->mset, mset1};

  // We need to lock the slot during RestoreStack because it protects
  // the slot journal.
  Lock slot_lock(&ctx->slots[static_cast<uptr>(s[1].sid())].mtx);
  ThreadRegistryLock l0(&ctx->thread_registry);
  Lock slots_lock(&ctx->slot_mtx);
  if (SpuriousRace(old))
    return;
  if (!RestoreStack(EventType::kAccessExt, s[1].sid(), s[1].epoch(), addr1,
                    size1, typ1, &tids[1], &traces[1], mset[1], &tags[1])) {
    StoreShadow(&ctx->last_spurious_race, old.raw());
    return;
  }

  if (IsFiredSuppression(ctx, rep_typ, traces[1]))
    return;

  if (HandleRacyStacks(thr, traces))
    return;

  // If any of the accesses has a tag, treat this as an "external" race.
  uptr tag = kExternalTagNone;
  for (uptr i = 0; i < kMop; i++) {
    if (tags[i] != kExternalTagNone) {
      rep_typ = ReportTypeExternalRace;
      tag = tags[i];
      break;
    }
  }

  ScopedReport rep(rep_typ, tag);
  for (uptr i = 0; i < kMop; i++)
    rep.AddMemoryAccess(addr, tags[i], s[i], tids[i], traces[i], mset[i]);

  for (uptr i = 0; i < kMop; i++) {
    ThreadContext *tctx = static_cast<ThreadContext *>(
        ctx->thread_registry.GetThreadLocked(tids[i]));
    rep.AddThread(tctx);
  }

  rep.AddLocation(addr_min, addr_max - addr_min);

  if (flags()->print_full_thread_history) {
    const ReportDesc *rep_desc = rep.GetReport();
    for (uptr i = 0; i < rep_desc->threads.Size(); i++) {
      Tid parent_tid = rep_desc->threads[i]->parent_tid;
      if (parent_tid == kMainTid || parent_tid == kInvalidTid)
        continue;
      ThreadContext *parent_tctx = static_cast<ThreadContext *>(
          ctx->thread_registry.GetThreadLocked(parent_tid));
      rep.AddThread(parent_tctx);
    }
  }

#if !SANITIZER_GO
  if (!((typ0 | typ1) & kAccessFree) &&
      s[1].epoch() <= thr->last_sleep_clock.Get(s[1].sid()))
    rep.AddSleep(thr->last_sleep_stack_id);
#endif
  OutputReport(thr, rep);
}

void PrintCurrentStack(ThreadState *thr, uptr pc) {
  VarSizeStackTrace trace;
  ObtainCurrentStack(thr, pc, &trace);
  PrintStack(SymbolizeStack(trace));
}

// Always inlining PrintCurrentStackSlow, because LocatePcInTrace assumes
// __sanitizer_print_stack_trace exists in the actual unwinded stack, but
// tail-call to PrintCurrentStackSlow breaks this assumption because
// __sanitizer_print_stack_trace disappears after tail-call.
// However, this solution is not reliable enough, please see dvyukov's comment
// http://reviews.llvm.org/D19148#406208
// Also see PR27280 comment 2 and 3 for breaking examples and analysis.
ALWAYS_INLINE USED void PrintCurrentStackSlow(uptr pc) {
#if !SANITIZER_GO
  uptr bp = GET_CURRENT_FRAME();
  auto *ptrace = New<BufferedStackTrace>();
  ptrace->Unwind(pc, bp, nullptr, false);

  for (uptr i = 0; i < ptrace->size / 2; i++) {
    uptr tmp = ptrace->trace_buffer[i];
    ptrace->trace_buffer[i] = ptrace->trace_buffer[ptrace->size - i - 1];
    ptrace->trace_buffer[ptrace->size - i - 1] = tmp;
  }
  PrintStack(SymbolizeStack(*ptrace));
#endif
}

}  // namespace __tsan

using namespace __tsan;

extern "C" {
SANITIZER_INTERFACE_ATTRIBUTE
void __sanitizer_print_stack_trace() {
  PrintCurrentStackSlow(StackTrace::GetCurrentPc());
}
}  // extern "C"