aboutsummaryrefslogtreecommitdiff
path: root/libsanitizer/tsan/tsan_rtl.h
blob: de4ea0bb5f4877d226a17b35c15fa2341df60de5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
//===-- tsan_rtl.h ----------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
// Main internal TSan header file.
//
// Ground rules:
//   - C++ run-time should not be used (static CTORs, RTTI, exceptions, static
//     function-scope locals)
//   - All functions/classes/etc reside in namespace __tsan, except for those
//     declared in tsan_interface.h.
//   - Platform-specific files should be used instead of ifdefs (*).
//   - No system headers included in header files (*).
//   - Platform specific headres included only into platform-specific files (*).
//
//  (*) Except when inlining is critical for performance.
//===----------------------------------------------------------------------===//

#ifndef TSAN_RTL_H
#define TSAN_RTL_H

#include "sanitizer_common/sanitizer_allocator.h"
#include "sanitizer_common/sanitizer_allocator_internal.h"
#include "sanitizer_common/sanitizer_asm.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_deadlock_detector_interface.h"
#include "sanitizer_common/sanitizer_libignore.h"
#include "sanitizer_common/sanitizer_suppressions.h"
#include "sanitizer_common/sanitizer_thread_registry.h"
#include "sanitizer_common/sanitizer_vector.h"
#include "tsan_defs.h"
#include "tsan_flags.h"
#include "tsan_ignoreset.h"
#include "tsan_ilist.h"
#include "tsan_mman.h"
#include "tsan_mutexset.h"
#include "tsan_platform.h"
#include "tsan_report.h"
#include "tsan_shadow.h"
#include "tsan_stack_trace.h"
#include "tsan_sync.h"
#include "tsan_trace.h"
#include "tsan_vector_clock.h"

#if SANITIZER_WORDSIZE != 64
# error "ThreadSanitizer is supported only on 64-bit platforms"
#endif

namespace __tsan {

#if !SANITIZER_GO
struct MapUnmapCallback;
#  if defined(__mips64) || defined(__aarch64__) || defined(__loongarch__) || \
      defined(__powerpc__) || SANITIZER_RISCV64

struct AP32 {
  static const uptr kSpaceBeg = 0;
  static const u64 kSpaceSize = SANITIZER_MMAP_RANGE_SIZE;
  static const uptr kMetadataSize = 0;
  typedef __sanitizer::CompactSizeClassMap SizeClassMap;
  static const uptr kRegionSizeLog = 20;
  using AddressSpaceView = LocalAddressSpaceView;
  typedef __tsan::MapUnmapCallback MapUnmapCallback;
  static const uptr kFlags = 0;
};
typedef SizeClassAllocator32<AP32> PrimaryAllocator;
#else
struct AP64 {  // Allocator64 parameters. Deliberately using a short name.
#    if defined(__s390x__)
  typedef MappingS390x Mapping;
#    else
  typedef Mapping48AddressSpace Mapping;
#    endif
  static const uptr kSpaceBeg = Mapping::kHeapMemBeg;
  static const uptr kSpaceSize = Mapping::kHeapMemEnd - Mapping::kHeapMemBeg;
  static const uptr kMetadataSize = 0;
  typedef DefaultSizeClassMap SizeClassMap;
  typedef __tsan::MapUnmapCallback MapUnmapCallback;
  static const uptr kFlags = 0;
  using AddressSpaceView = LocalAddressSpaceView;
};
typedef SizeClassAllocator64<AP64> PrimaryAllocator;
#endif
typedef CombinedAllocator<PrimaryAllocator> Allocator;
typedef Allocator::AllocatorCache AllocatorCache;
Allocator *allocator();
#endif

struct ThreadSignalContext;

struct JmpBuf {
  uptr sp;
  int int_signal_send;
  bool in_blocking_func;
  uptr in_signal_handler;
  uptr *shadow_stack_pos;
};

// A Processor represents a physical thread, or a P for Go.
// It is used to store internal resources like allocate cache, and does not
// participate in race-detection logic (invisible to end user).
// In C++ it is tied to an OS thread just like ThreadState, however ideally
// it should be tied to a CPU (this way we will have fewer allocator caches).
// In Go it is tied to a P, so there are significantly fewer Processor's than
// ThreadState's (which are tied to Gs).
// A ThreadState must be wired with a Processor to handle events.
struct Processor {
  ThreadState *thr; // currently wired thread, or nullptr
#if !SANITIZER_GO
  AllocatorCache alloc_cache;
  InternalAllocatorCache internal_alloc_cache;
#endif
  DenseSlabAllocCache block_cache;
  DenseSlabAllocCache sync_cache;
  DDPhysicalThread *dd_pt;
};

#if !SANITIZER_GO
// ScopedGlobalProcessor temporary setups a global processor for the current
// thread, if it does not have one. Intended for interceptors that can run
// at the very thread end, when we already destroyed the thread processor.
struct ScopedGlobalProcessor {
  ScopedGlobalProcessor();
  ~ScopedGlobalProcessor();
};
#endif

struct TidEpoch {
  Tid tid;
  Epoch epoch;
};

struct TidSlot {
  Mutex mtx;
  Sid sid;
  atomic_uint32_t raw_epoch;
  ThreadState *thr;
  Vector<TidEpoch> journal;
  INode node;

  Epoch epoch() const {
    return static_cast<Epoch>(atomic_load(&raw_epoch, memory_order_relaxed));
  }

  void SetEpoch(Epoch v) {
    atomic_store(&raw_epoch, static_cast<u32>(v), memory_order_relaxed);
  }

  TidSlot();
} ALIGNED(SANITIZER_CACHE_LINE_SIZE);

// This struct is stored in TLS.
struct ThreadState {
  FastState fast_state;
  int ignore_sync;
#if !SANITIZER_GO
  int ignore_interceptors;
#endif
  uptr *shadow_stack_pos;

  // Current position in tctx->trace.Back()->events (Event*).
  atomic_uintptr_t trace_pos;
  // PC of the last memory access, used to compute PC deltas in the trace.
  uptr trace_prev_pc;

  // Technically `current` should be a separate THREADLOCAL variable;
  // but it is placed here in order to share cache line with previous fields.
  ThreadState* current;

  atomic_sint32_t pending_signals;

  VectorClock clock;

  // This is a slow path flag. On fast path, fast_state.GetIgnoreBit() is read.
  // We do not distinguish beteween ignoring reads and writes
  // for better performance.
  int ignore_reads_and_writes;
  int suppress_reports;
  // Go does not support ignores.
#if !SANITIZER_GO
  IgnoreSet mop_ignore_set;
  IgnoreSet sync_ignore_set;
#endif
  uptr *shadow_stack;
  uptr *shadow_stack_end;
#if !SANITIZER_GO
  Vector<JmpBuf> jmp_bufs;
  int in_symbolizer;
  atomic_uintptr_t in_blocking_func;
  bool in_ignored_lib;
  bool is_inited;
#endif
  MutexSet mset;
  bool is_dead;
  const Tid tid;
  uptr stk_addr;
  uptr stk_size;
  uptr tls_addr;
  uptr tls_size;
  ThreadContext *tctx;

  DDLogicalThread *dd_lt;

  TidSlot *slot;
  uptr slot_epoch;
  bool slot_locked;

  // Current wired Processor, or nullptr. Required to handle any events.
  Processor *proc1;
#if !SANITIZER_GO
  Processor *proc() { return proc1; }
#else
  Processor *proc();
#endif

  atomic_uintptr_t in_signal_handler;
  atomic_uintptr_t signal_ctx;

#if !SANITIZER_GO
  StackID last_sleep_stack_id;
  VectorClock last_sleep_clock;
#endif

  // Set in regions of runtime that must be signal-safe and fork-safe.
  // If set, malloc must not be called.
  int nomalloc;

  const ReportDesc *current_report;

  explicit ThreadState(Tid tid);
} ALIGNED(SANITIZER_CACHE_LINE_SIZE);

#if !SANITIZER_GO
#if SANITIZER_APPLE || SANITIZER_ANDROID
ThreadState *cur_thread();
void set_cur_thread(ThreadState *thr);
void cur_thread_finalize();
inline ThreadState *cur_thread_init() { return cur_thread(); }
#  else
__attribute__((tls_model("initial-exec")))
extern THREADLOCAL char cur_thread_placeholder[];
inline ThreadState *cur_thread() {
  return reinterpret_cast<ThreadState *>(cur_thread_placeholder)->current;
}
inline ThreadState *cur_thread_init() {
  ThreadState *thr = reinterpret_cast<ThreadState *>(cur_thread_placeholder);
  if (UNLIKELY(!thr->current))
    thr->current = thr;
  return thr->current;
}
inline void set_cur_thread(ThreadState *thr) {
  reinterpret_cast<ThreadState *>(cur_thread_placeholder)->current = thr;
}
inline void cur_thread_finalize() { }
#  endif  // SANITIZER_APPLE || SANITIZER_ANDROID
#endif  // SANITIZER_GO

class ThreadContext final : public ThreadContextBase {
 public:
  explicit ThreadContext(Tid tid);
  ~ThreadContext();
  ThreadState *thr;
  StackID creation_stack_id;
  VectorClock *sync;
  uptr sync_epoch;
  Trace trace;

  // Override superclass callbacks.
  void OnDead() override;
  void OnJoined(void *arg) override;
  void OnFinished() override;
  void OnStarted(void *arg) override;
  void OnCreated(void *arg) override;
  void OnReset() override;
  void OnDetached(void *arg) override;
};

struct RacyStacks {
  MD5Hash hash[2];
  bool operator==(const RacyStacks &other) const;
};

struct RacyAddress {
  uptr addr_min;
  uptr addr_max;
};

struct FiredSuppression {
  ReportType type;
  uptr pc_or_addr;
  Suppression *supp;
};

struct Context {
  Context();

  bool initialized;
#if !SANITIZER_GO
  bool after_multithreaded_fork;
#endif

  MetaMap metamap;

  Mutex report_mtx;
  int nreported;
  atomic_uint64_t last_symbolize_time_ns;

  void *background_thread;
  atomic_uint32_t stop_background_thread;

  ThreadRegistry thread_registry;

  // This is used to prevent a very unlikely but very pathological behavior.
  // Since memory access handling is not synchronized with DoReset,
  // a thread running concurrently with DoReset can leave a bogus shadow value
  // that will be later falsely detected as a race. For such false races
  // RestoreStack will return false and we will not report it.
  // However, consider that a thread leaves a whole lot of such bogus values
  // and these values are later read by a whole lot of threads.
  // This will cause massive amounts of ReportRace calls and lots of
  // serialization. In very pathological cases the resulting slowdown
  // can be >100x. This is very unlikely, but it was presumably observed
  // in practice: https://github.com/google/sanitizers/issues/1552
  // If this happens, previous access sid+epoch will be the same for all of
  // these false races b/c if the thread will try to increment epoch, it will
  // notice that DoReset has happened and will stop producing bogus shadow
  // values. So, last_spurious_race is used to remember the last sid+epoch
  // for which RestoreStack returned false. Then it is used to filter out
  // races with the same sid+epoch very early and quickly.
  // It is of course possible that multiple threads left multiple bogus shadow
  // values and all of them are read by lots of threads at the same time.
  // In such case last_spurious_race will only be able to deduplicate a few
  // races from one thread, then few from another and so on. An alternative
  // would be to hold an array of such sid+epoch, but we consider such scenario
  // as even less likely.
  // Note: this can lead to some rare false negatives as well:
  // 1. When a legit access with the same sid+epoch participates in a race
  // as the "previous" memory access, it will be wrongly filtered out.
  // 2. When RestoreStack returns false for a legit memory access because it
  // was already evicted from the thread trace, we will still remember it in
  // last_spurious_race. Then if there is another racing memory access from
  // the same thread that happened in the same epoch, but was stored in the
  // next thread trace part (which is still preserved in the thread trace),
  // we will also wrongly filter it out while RestoreStack would actually
  // succeed for that second memory access.
  RawShadow last_spurious_race;

  Mutex racy_mtx;
  Vector<RacyStacks> racy_stacks;
  // Number of fired suppressions may be large enough.
  Mutex fired_suppressions_mtx;
  InternalMmapVector<FiredSuppression> fired_suppressions;
  DDetector *dd;

  Flags flags;
  fd_t memprof_fd;

  // The last slot index (kFreeSid) is used to denote freed memory.
  TidSlot slots[kThreadSlotCount - 1];

  // Protects global_epoch, slot_queue, trace_part_recycle.
  Mutex slot_mtx;
  uptr global_epoch;  // guarded by slot_mtx and by all slot mutexes
  bool resetting;     // global reset is in progress
  IList<TidSlot, &TidSlot::node> slot_queue SANITIZER_GUARDED_BY(slot_mtx);
  IList<TraceHeader, &TraceHeader::global, TracePart> trace_part_recycle
      SANITIZER_GUARDED_BY(slot_mtx);
  uptr trace_part_total_allocated SANITIZER_GUARDED_BY(slot_mtx);
  uptr trace_part_recycle_finished SANITIZER_GUARDED_BY(slot_mtx);
  uptr trace_part_finished_excess SANITIZER_GUARDED_BY(slot_mtx);
#if SANITIZER_GO
  uptr mapped_shadow_begin;
  uptr mapped_shadow_end;
#endif
};

extern Context *ctx;  // The one and the only global runtime context.

ALWAYS_INLINE Flags *flags() {
  return &ctx->flags;
}

struct ScopedIgnoreInterceptors {
  ScopedIgnoreInterceptors() {
#if !SANITIZER_GO
    cur_thread()->ignore_interceptors++;
#endif
  }

  ~ScopedIgnoreInterceptors() {
#if !SANITIZER_GO
    cur_thread()->ignore_interceptors--;
#endif
  }
};

const char *GetObjectTypeFromTag(uptr tag);
const char *GetReportHeaderFromTag(uptr tag);
uptr TagFromShadowStackFrame(uptr pc);

class ScopedReportBase {
 public:
  void AddMemoryAccess(uptr addr, uptr external_tag, Shadow s, Tid tid,
                       StackTrace stack, const MutexSet *mset);
  void AddStack(StackTrace stack, bool suppressable = false);
  void AddThread(const ThreadContext *tctx, bool suppressable = false);
  void AddThread(Tid tid, bool suppressable = false);
  void AddUniqueTid(Tid unique_tid);
  int AddMutex(uptr addr, StackID creation_stack_id);
  void AddLocation(uptr addr, uptr size);
  void AddSleep(StackID stack_id);
  void SetCount(int count);
  void SetSigNum(int sig);

  const ReportDesc *GetReport() const;

 protected:
  ScopedReportBase(ReportType typ, uptr tag);
  ~ScopedReportBase();

 private:
  ReportDesc *rep_;
  // Symbolizer makes lots of intercepted calls. If we try to process them,
  // at best it will cause deadlocks on internal mutexes.
  ScopedIgnoreInterceptors ignore_interceptors_;

  ScopedReportBase(const ScopedReportBase &) = delete;
  void operator=(const ScopedReportBase &) = delete;
};

class ScopedReport : public ScopedReportBase {
 public:
  explicit ScopedReport(ReportType typ, uptr tag = kExternalTagNone);
  ~ScopedReport();

 private:
  ScopedErrorReportLock lock_;
};

bool ShouldReport(ThreadState *thr, ReportType typ);
ThreadContext *IsThreadStackOrTls(uptr addr, bool *is_stack);

// The stack could look like:
//   <start> | <main> | <foo> | tag | <bar>
// This will extract the tag and keep:
//   <start> | <main> | <foo> | <bar>
template<typename StackTraceTy>
void ExtractTagFromStack(StackTraceTy *stack, uptr *tag = nullptr) {
  if (stack->size < 2) return;
  uptr possible_tag_pc = stack->trace[stack->size - 2];
  uptr possible_tag = TagFromShadowStackFrame(possible_tag_pc);
  if (possible_tag == kExternalTagNone) return;
  stack->trace_buffer[stack->size - 2] = stack->trace_buffer[stack->size - 1];
  stack->size -= 1;
  if (tag) *tag = possible_tag;
}

template<typename StackTraceTy>
void ObtainCurrentStack(ThreadState *thr, uptr toppc, StackTraceTy *stack,
                        uptr *tag = nullptr) {
  uptr size = thr->shadow_stack_pos - thr->shadow_stack;
  uptr start = 0;
  if (size + !!toppc > kStackTraceMax) {
    start = size + !!toppc - kStackTraceMax;
    size = kStackTraceMax - !!toppc;
  }
  stack->Init(&thr->shadow_stack[start], size, toppc);
  ExtractTagFromStack(stack, tag);
}

#define GET_STACK_TRACE_FATAL(thr, pc) \
  VarSizeStackTrace stack; \
  ObtainCurrentStack(thr, pc, &stack); \
  stack.ReverseOrder();

void MapShadow(uptr addr, uptr size);
void MapThreadTrace(uptr addr, uptr size, const char *name);
void DontNeedShadowFor(uptr addr, uptr size);
void UnmapShadow(ThreadState *thr, uptr addr, uptr size);
void InitializeShadowMemory();
void DontDumpShadow(uptr addr, uptr size);
void InitializeInterceptors();
void InitializeLibIgnore();
void InitializeDynamicAnnotations();

void ForkBefore(ThreadState *thr, uptr pc);
void ForkParentAfter(ThreadState *thr, uptr pc);
void ForkChildAfter(ThreadState *thr, uptr pc, bool start_thread);

void ReportRace(ThreadState *thr, RawShadow *shadow_mem, Shadow cur, Shadow old,
                AccessType typ);
bool OutputReport(ThreadState *thr, const ScopedReport &srep);
bool IsFiredSuppression(Context *ctx, ReportType type, StackTrace trace);
bool IsExpectedReport(uptr addr, uptr size);

#if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 1
# define DPrintf Printf
#else
# define DPrintf(...)
#endif

#if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 2
# define DPrintf2 Printf
#else
# define DPrintf2(...)
#endif

StackID CurrentStackId(ThreadState *thr, uptr pc);
ReportStack *SymbolizeStackId(StackID stack_id);
void PrintCurrentStack(ThreadState *thr, uptr pc);
void PrintCurrentStackSlow(uptr pc);  // uses libunwind
MBlock *JavaHeapBlock(uptr addr, uptr *start);

void Initialize(ThreadState *thr);
void MaybeSpawnBackgroundThread();
int Finalize(ThreadState *thr);

void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write);
void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write);

void MemoryAccess(ThreadState *thr, uptr pc, uptr addr, uptr size,
                  AccessType typ);
void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr, uptr size,
                           AccessType typ);
// This creates 2 non-inlined specialized versions of MemoryAccessRange.
template <bool is_read>
void MemoryAccessRangeT(ThreadState *thr, uptr pc, uptr addr, uptr size);

ALWAYS_INLINE
void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size,
                       bool is_write) {
  if (size == 0)
    return;
  if (is_write)
    MemoryAccessRangeT<false>(thr, pc, addr, size);
  else
    MemoryAccessRangeT<true>(thr, pc, addr, size);
}

void ShadowSet(RawShadow *p, RawShadow *end, RawShadow v);
void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size);
void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size);
void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size);
void MemoryRangeImitateWriteOrResetRange(ThreadState *thr, uptr pc, uptr addr,
                                         uptr size);

void ThreadIgnoreBegin(ThreadState *thr, uptr pc);
void ThreadIgnoreEnd(ThreadState *thr);
void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc);
void ThreadIgnoreSyncEnd(ThreadState *thr);

Tid ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached);
void ThreadStart(ThreadState *thr, Tid tid, tid_t os_id,
                 ThreadType thread_type);
void ThreadFinish(ThreadState *thr);
Tid ThreadConsumeTid(ThreadState *thr, uptr pc, uptr uid);
void ThreadJoin(ThreadState *thr, uptr pc, Tid tid);
void ThreadDetach(ThreadState *thr, uptr pc, Tid tid);
void ThreadFinalize(ThreadState *thr);
void ThreadSetName(ThreadState *thr, const char *name);
int ThreadCount(ThreadState *thr);
void ProcessPendingSignalsImpl(ThreadState *thr);
void ThreadNotJoined(ThreadState *thr, uptr pc, Tid tid, uptr uid);

Processor *ProcCreate();
void ProcDestroy(Processor *proc);
void ProcWire(Processor *proc, ThreadState *thr);
void ProcUnwire(Processor *proc, ThreadState *thr);

// Note: the parameter is called flagz, because flags is already taken
// by the global function that returns flags.
void MutexCreate(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
void MutexDestroy(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
void MutexPreLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
void MutexPostLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0,
    int rec = 1);
int  MutexUnlock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
void MutexPreReadLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
void MutexPostReadLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
void MutexReadUnlock(ThreadState *thr, uptr pc, uptr addr);
void MutexReadOrWriteUnlock(ThreadState *thr, uptr pc, uptr addr);
void MutexRepair(ThreadState *thr, uptr pc, uptr addr);  // call on EOWNERDEAD
void MutexInvalidAccess(ThreadState *thr, uptr pc, uptr addr);

void Acquire(ThreadState *thr, uptr pc, uptr addr);
// AcquireGlobal synchronizes the current thread with all other threads.
// In terms of happens-before relation, it draws a HB edge from all threads
// (where they happen to execute right now) to the current thread. We use it to
// handle Go finalizers. Namely, finalizer goroutine executes AcquireGlobal
// right before executing finalizers. This provides a coarse, but simple
// approximation of the actual required synchronization.
void AcquireGlobal(ThreadState *thr);
void Release(ThreadState *thr, uptr pc, uptr addr);
void ReleaseStoreAcquire(ThreadState *thr, uptr pc, uptr addr);
void ReleaseStore(ThreadState *thr, uptr pc, uptr addr);
void AfterSleep(ThreadState *thr, uptr pc);
void IncrementEpoch(ThreadState *thr);

#if !SANITIZER_GO
uptr ALWAYS_INLINE HeapEnd() {
  return HeapMemEnd() + PrimaryAllocator::AdditionalSize();
}
#endif

void SlotAttachAndLock(ThreadState *thr) SANITIZER_ACQUIRE(thr->slot->mtx);
void SlotDetach(ThreadState *thr);
void SlotLock(ThreadState *thr) SANITIZER_ACQUIRE(thr->slot->mtx);
void SlotUnlock(ThreadState *thr) SANITIZER_RELEASE(thr->slot->mtx);
void DoReset(ThreadState *thr, uptr epoch);
void FlushShadowMemory();

ThreadState *FiberCreate(ThreadState *thr, uptr pc, unsigned flags);
void FiberDestroy(ThreadState *thr, uptr pc, ThreadState *fiber);
void FiberSwitch(ThreadState *thr, uptr pc, ThreadState *fiber, unsigned flags);

// These need to match __tsan_switch_to_fiber_* flags defined in
// tsan_interface.h. See documentation there as well.
enum FiberSwitchFlags {
  FiberSwitchFlagNoSync = 1 << 0, // __tsan_switch_to_fiber_no_sync
};

class SlotLocker {
 public:
  ALWAYS_INLINE
  SlotLocker(ThreadState *thr, bool recursive = false)
      : thr_(thr), locked_(recursive ? thr->slot_locked : false) {
#if !SANITIZER_GO
    // We are in trouble if we are here with in_blocking_func set.
    // If in_blocking_func is set, all signals will be delivered synchronously,
    // which means we can't lock slots since the signal handler will try
    // to lock it recursively and deadlock.
    DCHECK(!atomic_load(&thr->in_blocking_func, memory_order_relaxed));
#endif
    if (!locked_)
      SlotLock(thr_);
  }

  ALWAYS_INLINE
  ~SlotLocker() {
    if (!locked_)
      SlotUnlock(thr_);
  }

 private:
  ThreadState *thr_;
  bool locked_;
};

class SlotUnlocker {
 public:
  SlotUnlocker(ThreadState *thr) : thr_(thr), locked_(thr->slot_locked) {
    if (locked_)
      SlotUnlock(thr_);
  }

  ~SlotUnlocker() {
    if (locked_)
      SlotLock(thr_);
  }

 private:
  ThreadState *thr_;
  bool locked_;
};

ALWAYS_INLINE void ProcessPendingSignals(ThreadState *thr) {
  if (UNLIKELY(atomic_load_relaxed(&thr->pending_signals)))
    ProcessPendingSignalsImpl(thr);
}

extern bool is_initialized;

ALWAYS_INLINE
void LazyInitialize(ThreadState *thr) {
  // If we can use .preinit_array, assume that __tsan_init
  // called from .preinit_array initializes runtime before
  // any instrumented code except when tsan is used as a 
  // shared library.
#if (!SANITIZER_CAN_USE_PREINIT_ARRAY || defined(SANITIZER_SHARED))
  if (UNLIKELY(!is_initialized))
    Initialize(thr);
#endif
}

void TraceResetForTesting();
void TraceSwitchPart(ThreadState *thr);
void TraceSwitchPartImpl(ThreadState *thr);
bool RestoreStack(EventType type, Sid sid, Epoch epoch, uptr addr, uptr size,
                  AccessType typ, Tid *ptid, VarSizeStackTrace *pstk,
                  MutexSet *pmset, uptr *ptag);

template <typename EventT>
ALWAYS_INLINE WARN_UNUSED_RESULT bool TraceAcquire(ThreadState *thr,
                                                   EventT **ev) {
  // TraceSwitchPart accesses shadow_stack, but it's called infrequently,
  // so we check it here proactively.
  DCHECK(thr->shadow_stack);
  Event *pos = reinterpret_cast<Event *>(atomic_load_relaxed(&thr->trace_pos));
#if SANITIZER_DEBUG
  // TraceSwitch acquires these mutexes,
  // so we lock them here to detect deadlocks more reliably.
  { Lock lock(&ctx->slot_mtx); }
  { Lock lock(&thr->tctx->trace.mtx); }
  TracePart *current = thr->tctx->trace.parts.Back();
  if (current) {
    DCHECK_GE(pos, &current->events[0]);
    DCHECK_LE(pos, &current->events[TracePart::kSize]);
  } else {
    DCHECK_EQ(pos, nullptr);
  }
#endif
  // TracePart is allocated with mmap and is at least 4K aligned.
  // So the following check is a faster way to check for part end.
  // It may have false positives in the middle of the trace,
  // they are filtered out in TraceSwitch.
  if (UNLIKELY(((uptr)(pos + 1) & TracePart::kAlignment) == 0))
    return false;
  *ev = reinterpret_cast<EventT *>(pos);
  return true;
}

template <typename EventT>
ALWAYS_INLINE void TraceRelease(ThreadState *thr, EventT *evp) {
  DCHECK_LE(evp + 1, &thr->tctx->trace.parts.Back()->events[TracePart::kSize]);
  atomic_store_relaxed(&thr->trace_pos, (uptr)(evp + 1));
}

template <typename EventT>
void TraceEvent(ThreadState *thr, EventT ev) {
  EventT *evp;
  if (!TraceAcquire(thr, &evp)) {
    TraceSwitchPart(thr);
    UNUSED bool res = TraceAcquire(thr, &evp);
    DCHECK(res);
  }
  *evp = ev;
  TraceRelease(thr, evp);
}

ALWAYS_INLINE WARN_UNUSED_RESULT bool TryTraceFunc(ThreadState *thr,
                                                   uptr pc = 0) {
  if (!kCollectHistory)
    return true;
  EventFunc *ev;
  if (UNLIKELY(!TraceAcquire(thr, &ev)))
    return false;
  ev->is_access = 0;
  ev->is_func = 1;
  ev->pc = pc;
  TraceRelease(thr, ev);
  return true;
}

WARN_UNUSED_RESULT
bool TryTraceMemoryAccess(ThreadState *thr, uptr pc, uptr addr, uptr size,
                          AccessType typ);
WARN_UNUSED_RESULT
bool TryTraceMemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size,
                               AccessType typ);
void TraceMemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size,
                            AccessType typ);
void TraceFunc(ThreadState *thr, uptr pc = 0);
void TraceMutexLock(ThreadState *thr, EventType type, uptr pc, uptr addr,
                    StackID stk);
void TraceMutexUnlock(ThreadState *thr, uptr addr);
void TraceTime(ThreadState *thr);

void TraceRestartFuncExit(ThreadState *thr);
void TraceRestartFuncEntry(ThreadState *thr, uptr pc);

void GrowShadowStack(ThreadState *thr);

ALWAYS_INLINE
void FuncEntry(ThreadState *thr, uptr pc) {
  DPrintf2("#%d: FuncEntry %p\n", (int)thr->fast_state.sid(), (void *)pc);
  if (UNLIKELY(!TryTraceFunc(thr, pc)))
    return TraceRestartFuncEntry(thr, pc);
  DCHECK_GE(thr->shadow_stack_pos, thr->shadow_stack);
#if !SANITIZER_GO
  DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
#else
  if (thr->shadow_stack_pos == thr->shadow_stack_end)
    GrowShadowStack(thr);
#endif
  thr->shadow_stack_pos[0] = pc;
  thr->shadow_stack_pos++;
}

ALWAYS_INLINE
void FuncExit(ThreadState *thr) {
  DPrintf2("#%d: FuncExit\n", (int)thr->fast_state.sid());
  if (UNLIKELY(!TryTraceFunc(thr, 0)))
    return TraceRestartFuncExit(thr);
  DCHECK_GT(thr->shadow_stack_pos, thr->shadow_stack);
#if !SANITIZER_GO
  DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
#endif
  thr->shadow_stack_pos--;
}

#if !SANITIZER_GO
extern void (*on_initialize)(void);
extern int (*on_finalize)(int);
#endif
}  // namespace __tsan

#endif  // TSAN_RTL_H