aboutsummaryrefslogtreecommitdiff
path: root/libsanitizer/sanitizer_common/sanitizer_mutex.cpp
blob: 40fe56661250e5a94cef4425f265d494bb54a338 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
//===-- sanitizer_mutex.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is shared between AddressSanitizer and ThreadSanitizer
// run-time libraries.
//===----------------------------------------------------------------------===//

#include "sanitizer_mutex.h"

#include "sanitizer_common.h"

namespace __sanitizer {

void StaticSpinMutex::LockSlow() {
  for (int i = 0;; i++) {
    if (i < 100)
      proc_yield(1);
    else
      internal_sched_yield();
    if (atomic_load(&state_, memory_order_relaxed) == 0 &&
        atomic_exchange(&state_, 1, memory_order_acquire) == 0)
      return;
  }
}

void Semaphore::Wait() {
  u32 count = atomic_load(&state_, memory_order_relaxed);
  for (;;) {
    if (count == 0) {
      FutexWait(&state_, 0);
      count = atomic_load(&state_, memory_order_relaxed);
      continue;
    }
    if (atomic_compare_exchange_weak(&state_, &count, count - 1,
                                     memory_order_acquire))
      break;
  }
}

void Semaphore::Post(u32 count) {
  CHECK_NE(count, 0);
  atomic_fetch_add(&state_, count, memory_order_release);
  FutexWake(&state_, count);
}

#if SANITIZER_CHECK_DEADLOCKS
// An empty mutex meta table, it effectively disables deadlock detection.
// Each tool can override the table to define own mutex hierarchy and
// enable deadlock detection.
// The table defines a static mutex type hierarchy (what mutex types can be locked
// under what mutex types). This table is checked to be acyclic and then
// actual mutex lock/unlock operations are checked to adhere to this hierarchy.
// The checking happens on mutex types rather than on individual mutex instances
// because doing it on mutex instances will both significantly complicate
// the implementation, worsen performance and memory overhead and is mostly
// unnecessary (we almost never lock multiple mutexes of the same type recursively).
static constexpr int kMutexTypeMax = 20;
SANITIZER_WEAK_ATTRIBUTE MutexMeta mutex_meta[kMutexTypeMax] = {};
SANITIZER_WEAK_ATTRIBUTE void PrintMutexPC(uptr pc) {}
static StaticSpinMutex mutex_meta_mtx;
static int mutex_type_count = -1;
// Adjacency matrix of what mutexes can be locked under what mutexes.
static bool mutex_can_lock[kMutexTypeMax][kMutexTypeMax];
// Mutex types with MutexMulti mark.
static bool mutex_multi[kMutexTypeMax];

void DebugMutexInit() {
  // Build adjacency matrix.
  bool leaf[kMutexTypeMax];
  internal_memset(&leaf, 0, sizeof(leaf));
  int cnt[kMutexTypeMax];
  internal_memset(&cnt, 0, sizeof(cnt));
  for (int t = 0; t < kMutexTypeMax; t++) {
    mutex_type_count = t;
    if (!mutex_meta[t].name)
      break;
    CHECK_EQ(t, mutex_meta[t].type);
    for (uptr j = 0; j < ARRAY_SIZE(mutex_meta[t].can_lock); j++) {
      MutexType z = mutex_meta[t].can_lock[j];
      if (z == MutexInvalid)
        break;
      if (z == MutexLeaf) {
        CHECK(!leaf[t]);
        leaf[t] = true;
        continue;
      }
      if (z == MutexMulti) {
        mutex_multi[t] = true;
        continue;
      }
      CHECK_LT(z, kMutexTypeMax);
      CHECK(!mutex_can_lock[t][z]);
      mutex_can_lock[t][z] = true;
      cnt[t]++;
    }
  }
  // Indicates the array is not properly terminated.
  CHECK_LT(mutex_type_count, kMutexTypeMax);
  // Add leaf mutexes.
  for (int t = 0; t < mutex_type_count; t++) {
    if (!leaf[t])
      continue;
    CHECK_EQ(cnt[t], 0);
    for (int z = 0; z < mutex_type_count; z++) {
      if (z == MutexInvalid || t == z || leaf[z])
        continue;
      CHECK(!mutex_can_lock[z][t]);
      mutex_can_lock[z][t] = true;
    }
  }
  // Build the transitive closure and check that the graphs is acyclic.
  u32 trans[kMutexTypeMax];
  static_assert(sizeof(trans[0]) * 8 >= kMutexTypeMax,
                "kMutexTypeMax does not fit into u32, switch to u64");
  internal_memset(&trans, 0, sizeof(trans));
  for (int i = 0; i < mutex_type_count; i++) {
    for (int j = 0; j < mutex_type_count; j++)
      if (mutex_can_lock[i][j])
        trans[i] |= 1 << j;
  }
  for (int k = 0; k < mutex_type_count; k++) {
    for (int i = 0; i < mutex_type_count; i++) {
      if (trans[i] & (1 << k))
        trans[i] |= trans[k];
    }
  }
  for (int i = 0; i < mutex_type_count; i++) {
    if (trans[i] & (1 << i)) {
      Printf("Mutex %s participates in a cycle\n", mutex_meta[i].name);
      Die();
    }
  }
}

struct InternalDeadlockDetector {
  struct LockDesc {
    u64 seq;
    uptr pc;
    int recursion;
  };
  int initialized;
  u64 sequence;
  LockDesc locked[kMutexTypeMax];

  void Lock(MutexType type, uptr pc) {
    if (!Initialize(type))
      return;
    CHECK_LT(type, mutex_type_count);
    // Find the last locked mutex type.
    // This is the type we will use for hierarchy checks.
    u64 max_seq = 0;
    MutexType max_idx = MutexInvalid;
    for (int i = 0; i != mutex_type_count; i++) {
      if (locked[i].seq == 0)
        continue;
      CHECK_NE(locked[i].seq, max_seq);
      if (max_seq < locked[i].seq) {
        max_seq = locked[i].seq;
        max_idx = (MutexType)i;
      }
    }
    if (max_idx == type && mutex_multi[type]) {
      // Recursive lock of the same type.
      CHECK_EQ(locked[type].seq, max_seq);
      CHECK(locked[type].pc);
      locked[type].recursion++;
      return;
    }
    if (max_idx != MutexInvalid && !mutex_can_lock[max_idx][type]) {
      Printf("%s: internal deadlock: can't lock %s under %s mutex\n", SanitizerToolName,
             mutex_meta[type].name, mutex_meta[max_idx].name);
      PrintMutexPC(locked[max_idx].pc);
      CHECK(0);
    }
    locked[type].seq = ++sequence;
    locked[type].pc = pc;
    locked[type].recursion = 1;
  }

  void Unlock(MutexType type) {
    if (!Initialize(type))
      return;
    CHECK_LT(type, mutex_type_count);
    CHECK(locked[type].seq);
    CHECK_GT(locked[type].recursion, 0);
    if (--locked[type].recursion)
      return;
    locked[type].seq = 0;
    locked[type].pc = 0;
  }

  void CheckNoLocks() {
    for (int i = 0; i < mutex_type_count; i++) CHECK_EQ(locked[i].recursion, 0);
  }

  bool Initialize(MutexType type) {
    if (type == MutexUnchecked || type == MutexInvalid)
      return false;
    CHECK_GT(type, MutexInvalid);
    if (initialized != 0)
      return initialized > 0;
    initialized = -1;
    SpinMutexLock lock(&mutex_meta_mtx);
    if (mutex_type_count < 0)
      DebugMutexInit();
    initialized = mutex_type_count ? 1 : -1;
    return initialized > 0;
  }
};

static THREADLOCAL InternalDeadlockDetector deadlock_detector;

void CheckedMutex::LockImpl(uptr pc) { deadlock_detector.Lock(type_, pc); }

void CheckedMutex::UnlockImpl() { deadlock_detector.Unlock(type_); }

void CheckedMutex::CheckNoLocksImpl() { deadlock_detector.CheckNoLocks(); }
#endif

}  // namespace __sanitizer