1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
|
//=-- lsan_common_mac.cc --------------------------------------------------===//
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of LeakSanitizer.
// Implementation of common leak checking functionality. Darwin-specific code.
//
//===----------------------------------------------------------------------===//
#include "sanitizer_common/sanitizer_platform.h"
#include "lsan_common.h"
#if CAN_SANITIZE_LEAKS && SANITIZER_MAC
#include "sanitizer_common/sanitizer_allocator_internal.h"
#include "lsan_allocator.h"
#include <pthread.h>
#include <mach/mach.h>
// Only introduced in Mac OS X 10.9.
#ifdef VM_MEMORY_OS_ALLOC_ONCE
static const int kSanitizerVmMemoryOsAllocOnce = VM_MEMORY_OS_ALLOC_ONCE;
#else
static const int kSanitizerVmMemoryOsAllocOnce = 73;
#endif
namespace __lsan {
typedef struct {
int disable_counter;
u32 current_thread_id;
AllocatorCache cache;
} thread_local_data_t;
static pthread_key_t key;
static pthread_once_t key_once = PTHREAD_ONCE_INIT;
// The main thread destructor requires the current thread id,
// so we can't destroy it until it's been used and reset to invalid tid
void restore_tid_data(void *ptr) {
thread_local_data_t *data = (thread_local_data_t *)ptr;
if (data->current_thread_id != kInvalidTid)
pthread_setspecific(key, data);
}
static void make_tls_key() {
CHECK_EQ(pthread_key_create(&key, restore_tid_data), 0);
}
static thread_local_data_t *get_tls_val(bool alloc) {
pthread_once(&key_once, make_tls_key);
thread_local_data_t *ptr = (thread_local_data_t *)pthread_getspecific(key);
if (ptr == NULL && alloc) {
ptr = (thread_local_data_t *)InternalAlloc(sizeof(*ptr));
ptr->disable_counter = 0;
ptr->current_thread_id = kInvalidTid;
ptr->cache = AllocatorCache();
pthread_setspecific(key, ptr);
}
return ptr;
}
bool DisabledInThisThread() {
thread_local_data_t *data = get_tls_val(false);
return data ? data->disable_counter > 0 : false;
}
void DisableInThisThread() { ++get_tls_val(true)->disable_counter; }
void EnableInThisThread() {
int *disable_counter = &get_tls_val(true)->disable_counter;
if (*disable_counter == 0) {
DisableCounterUnderflow();
}
--*disable_counter;
}
u32 GetCurrentThread() {
thread_local_data_t *data = get_tls_val(false);
return data ? data->current_thread_id : kInvalidTid;
}
void SetCurrentThread(u32 tid) { get_tls_val(true)->current_thread_id = tid; }
AllocatorCache *GetAllocatorCache() { return &get_tls_val(true)->cache; }
LoadedModule *GetLinker() { return nullptr; }
// Required on Linux for initialization of TLS behavior, but should not be
// required on Darwin.
void InitializePlatformSpecificModules() {}
// Sections which can't contain contain global pointers. This list errs on the
// side of caution to avoid false positives, at the expense of performance.
//
// Other potentially safe sections include:
// __all_image_info, __crash_info, __const, __got, __interpose, __objc_msg_break
//
// Sections which definitely cannot be included here are:
// __objc_data, __objc_const, __data, __bss, __common, __thread_data,
// __thread_bss, __thread_vars, __objc_opt_rw, __objc_opt_ptrs
static const char *kSkippedSecNames[] = {
"__cfstring", "__la_symbol_ptr", "__mod_init_func",
"__mod_term_func", "__nl_symbol_ptr", "__objc_classlist",
"__objc_classrefs", "__objc_imageinfo", "__objc_nlclslist",
"__objc_protolist", "__objc_selrefs", "__objc_superrefs"};
// Scans global variables for heap pointers.
void ProcessGlobalRegions(Frontier *frontier) {
for (auto name : kSkippedSecNames) CHECK(ARRAY_SIZE(name) < kMaxSegName);
MemoryMappingLayout memory_mapping(false);
InternalMmapVector<LoadedModule> modules(/*initial_capacity*/ 128);
memory_mapping.DumpListOfModules(&modules);
for (uptr i = 0; i < modules.size(); ++i) {
// Even when global scanning is disabled, we still need to scan
// system libraries for stashed pointers
if (!flags()->use_globals && modules[i].instrumented()) continue;
for (const __sanitizer::LoadedModule::AddressRange &range :
modules[i].ranges()) {
// Sections storing global variables are writable and non-executable
if (range.executable || !range.writable) continue;
for (auto name : kSkippedSecNames) {
if (!internal_strcmp(range.name, name)) continue;
}
ScanGlobalRange(range.beg, range.end, frontier);
}
}
}
void ProcessPlatformSpecificAllocations(Frontier *frontier) {
mach_port_name_t port;
if (task_for_pid(mach_task_self(), internal_getpid(), &port)
!= KERN_SUCCESS) {
return;
}
unsigned depth = 1;
vm_size_t size = 0;
vm_address_t address = 0;
kern_return_t err = KERN_SUCCESS;
mach_msg_type_number_t count = VM_REGION_SUBMAP_INFO_COUNT_64;
InternalMmapVector<RootRegion> const *root_regions = GetRootRegions();
while (err == KERN_SUCCESS) {
struct vm_region_submap_info_64 info;
err = vm_region_recurse_64(port, &address, &size, &depth,
(vm_region_info_t)&info, &count);
uptr end_address = address + size;
// libxpc stashes some pointers in the Kernel Alloc Once page,
// make sure not to report those as leaks.
if (info.user_tag == kSanitizerVmMemoryOsAllocOnce) {
ScanRangeForPointers(address, end_address, frontier, "GLOBAL",
kReachable);
// Recursing over the full memory map is very slow, break out
// early if we don't need the full iteration.
if (!flags()->use_root_regions || !root_regions->size())
break;
}
// This additional root region scan is required on Darwin in order to
// detect root regions contained within mmap'd memory regions, because
// the Darwin implementation of sanitizer_procmaps traverses images
// as loaded by dyld, and not the complete set of all memory regions.
//
// TODO(fjricci) - remove this once sanitizer_procmaps_mac has the same
// behavior as sanitizer_procmaps_linux and traverses all memory regions
if (flags()->use_root_regions) {
for (uptr i = 0; i < root_regions->size(); i++) {
ScanRootRegion(frontier, (*root_regions)[i], address, end_address,
info.protection & kProtectionRead);
}
}
address = end_address;
}
}
// On darwin, we can intercept _exit gracefully, and return a failing exit code
// if required at that point. Calling Die() here is undefined behavior and
// causes rare race conditions.
void HandleLeaks() {}
void DoStopTheWorld(StopTheWorldCallback callback, void *argument) {
StopTheWorld(callback, argument);
}
} // namespace __lsan
#endif // CAN_SANITIZE_LEAKS && SANITIZER_MAC
|