aboutsummaryrefslogtreecommitdiff
path: root/libsanitizer/hwasan/hwasan_report.cpp
blob: 0107b8b772a9d004827b44b4ac79703454c58736 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
//===-- hwasan_report.cpp -------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of HWAddressSanitizer.
//
// Error reporting.
//===----------------------------------------------------------------------===//

#include "hwasan_report.h"

#include <dlfcn.h>

#include "hwasan.h"
#include "hwasan_allocator.h"
#include "hwasan_globals.h"
#include "hwasan_mapping.h"
#include "hwasan_thread.h"
#include "hwasan_thread_list.h"
#include "sanitizer_common/sanitizer_allocator_internal.h"
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_flags.h"
#include "sanitizer_common/sanitizer_mutex.h"
#include "sanitizer_common/sanitizer_report_decorator.h"
#include "sanitizer_common/sanitizer_stackdepot.h"
#include "sanitizer_common/sanitizer_stacktrace_printer.h"
#include "sanitizer_common/sanitizer_symbolizer.h"

using namespace __sanitizer;

namespace __hwasan {

class ScopedReport {
 public:
  ScopedReport(bool fatal = false) : error_message_(1), fatal(fatal) {
    Lock lock(&error_message_lock_);
    error_message_ptr_ = fatal ? &error_message_ : nullptr;
    ++hwasan_report_count;
  }

  ~ScopedReport() {
    void (*report_cb)(const char *);
    {
      Lock lock(&error_message_lock_);
      report_cb = error_report_callback_;
      error_message_ptr_ = nullptr;
    }
    if (report_cb)
      report_cb(error_message_.data());
    if (fatal)
      SetAbortMessage(error_message_.data());
    if (common_flags()->print_module_map >= 2 ||
        (fatal && common_flags()->print_module_map))
      DumpProcessMap();
    if (fatal)
      Die();
  }

  static void MaybeAppendToErrorMessage(const char *msg) {
    Lock lock(&error_message_lock_);
    if (!error_message_ptr_)
      return;
    uptr len = internal_strlen(msg);
    uptr old_size = error_message_ptr_->size();
    error_message_ptr_->resize(old_size + len);
    // overwrite old trailing '\0', keep new trailing '\0' untouched.
    internal_memcpy(&(*error_message_ptr_)[old_size - 1], msg, len);
  }

  static void SetErrorReportCallback(void (*callback)(const char *)) {
    Lock lock(&error_message_lock_);
    error_report_callback_ = callback;
  }

 private:
  ScopedErrorReportLock error_report_lock_;
  InternalMmapVector<char> error_message_;
  bool fatal;

  static InternalMmapVector<char> *error_message_ptr_;
  static Mutex error_message_lock_;
  static void (*error_report_callback_)(const char *);
};

InternalMmapVector<char> *ScopedReport::error_message_ptr_;
Mutex ScopedReport::error_message_lock_;
void (*ScopedReport::error_report_callback_)(const char *);

// If there is an active ScopedReport, append to its error message.
void AppendToErrorMessageBuffer(const char *buffer) {
  ScopedReport::MaybeAppendToErrorMessage(buffer);
}

static StackTrace GetStackTraceFromId(u32 id) {
  CHECK(id);
  StackTrace res = StackDepotGet(id);
  CHECK(res.trace);
  return res;
}

// A RAII object that holds a copy of the current thread stack ring buffer.
// The actual stack buffer may change while we are iterating over it (for
// example, Printf may call syslog() which can itself be built with hwasan).
class SavedStackAllocations {
 public:
  SavedStackAllocations(StackAllocationsRingBuffer *rb) {
    uptr size = rb->size() * sizeof(uptr);
    void *storage =
        MmapAlignedOrDieOnFatalError(size, size * 2, "saved stack allocations");
    new (&rb_) StackAllocationsRingBuffer(*rb, storage);
  }

  ~SavedStackAllocations() {
    StackAllocationsRingBuffer *rb = get();
    UnmapOrDie(rb->StartOfStorage(), rb->size() * sizeof(uptr));
  }

  StackAllocationsRingBuffer *get() {
    return (StackAllocationsRingBuffer *)&rb_;
  }

 private:
  uptr rb_;
};

class Decorator: public __sanitizer::SanitizerCommonDecorator {
 public:
  Decorator() : SanitizerCommonDecorator() { }
  const char *Access() { return Blue(); }
  const char *Allocation() const { return Magenta(); }
  const char *Origin() const { return Magenta(); }
  const char *Name() const { return Green(); }
  const char *Location() { return Green(); }
  const char *Thread() { return Green(); }
};

static bool FindHeapAllocation(HeapAllocationsRingBuffer *rb, uptr tagged_addr,
                               HeapAllocationRecord *har, uptr *ring_index,
                               uptr *num_matching_addrs,
                               uptr *num_matching_addrs_4b) {
  if (!rb) return false;

  *num_matching_addrs = 0;
  *num_matching_addrs_4b = 0;
  for (uptr i = 0, size = rb->size(); i < size; i++) {
    auto h = (*rb)[i];
    if (h.tagged_addr <= tagged_addr &&
        h.tagged_addr + h.requested_size > tagged_addr) {
      *har = h;
      *ring_index = i;
      return true;
    }

    // Measure the number of heap ring buffer entries that would have matched
    // if we had only one entry per address (e.g. if the ring buffer data was
    // stored at the address itself). This will help us tune the allocator
    // implementation for MTE.
    if (UntagAddr(h.tagged_addr) <= UntagAddr(tagged_addr) &&
        UntagAddr(h.tagged_addr) + h.requested_size > UntagAddr(tagged_addr)) {
      ++*num_matching_addrs;
    }

    // Measure the number of heap ring buffer entries that would have matched
    // if we only had 4 tag bits, which is the case for MTE.
    auto untag_4b = [](uptr p) {
      return p & ((1ULL << 60) - 1);
    };
    if (untag_4b(h.tagged_addr) <= untag_4b(tagged_addr) &&
        untag_4b(h.tagged_addr) + h.requested_size > untag_4b(tagged_addr)) {
      ++*num_matching_addrs_4b;
    }
  }
  return false;
}

static void PrintStackAllocations(StackAllocationsRingBuffer *sa,
                                  tag_t addr_tag, uptr untagged_addr) {
  uptr frames = Min((uptr)flags()->stack_history_size, sa->size());
  bool found_local = false;
  for (uptr i = 0; i < frames; i++) {
    const uptr *record_addr = &(*sa)[i];
    uptr record = *record_addr;
    if (!record)
      break;
    tag_t base_tag =
        reinterpret_cast<uptr>(record_addr) >> kRecordAddrBaseTagShift;
    uptr fp = (record >> kRecordFPShift) << kRecordFPLShift;
    uptr pc_mask = (1ULL << kRecordFPShift) - 1;
    uptr pc = record & pc_mask;
    FrameInfo frame;
    if (Symbolizer::GetOrInit()->SymbolizeFrame(pc, &frame)) {
      for (LocalInfo &local : frame.locals) {
        if (!local.has_frame_offset || !local.has_size || !local.has_tag_offset)
          continue;
        tag_t obj_tag = base_tag ^ local.tag_offset;
        if (obj_tag != addr_tag)
          continue;
        // Calculate the offset from the object address to the faulting
        // address. Because we only store bits 4-19 of FP (bits 0-3 are
        // guaranteed to be zero), the calculation is performed mod 2^20 and may
        // harmlessly underflow if the address mod 2^20 is below the object
        // address.
        uptr obj_offset =
            (untagged_addr - fp - local.frame_offset) & (kRecordFPModulus - 1);
        if (obj_offset >= local.size)
          continue;
        if (!found_local) {
          Printf("Potentially referenced stack objects:\n");
          found_local = true;
        }
        Printf("  %s in %s %s:%d\n", local.name, local.function_name,
               local.decl_file, local.decl_line);
      }
      frame.Clear();
    }
  }

  if (found_local)
    return;

  // We didn't find any locals. Most likely we don't have symbols, so dump
  // the information that we have for offline analysis.
  InternalScopedString frame_desc;
  Printf("Previously allocated frames:\n");
  for (uptr i = 0; i < frames; i++) {
    const uptr *record_addr = &(*sa)[i];
    uptr record = *record_addr;
    if (!record)
      break;
    uptr pc_mask = (1ULL << 48) - 1;
    uptr pc = record & pc_mask;
    frame_desc.append("  record_addr:0x%zx record:0x%zx",
                      reinterpret_cast<uptr>(record_addr), record);
    if (SymbolizedStack *frame = Symbolizer::GetOrInit()->SymbolizePC(pc)) {
      RenderFrame(&frame_desc, " %F %L", 0, frame->info.address, &frame->info,
                  common_flags()->symbolize_vs_style,
                  common_flags()->strip_path_prefix);
      frame->ClearAll();
    }
    Printf("%s\n", frame_desc.data());
    frame_desc.clear();
  }
}

// Returns true if tag == *tag_ptr, reading tags from short granules if
// necessary. This may return a false positive if tags 1-15 are used as a
// regular tag rather than a short granule marker.
static bool TagsEqual(tag_t tag, tag_t *tag_ptr) {
  if (tag == *tag_ptr)
    return true;
  if (*tag_ptr == 0 || *tag_ptr > kShadowAlignment - 1)
    return false;
  uptr mem = ShadowToMem(reinterpret_cast<uptr>(tag_ptr));
  tag_t inline_tag = *reinterpret_cast<tag_t *>(mem + kShadowAlignment - 1);
  return tag == inline_tag;
}

// HWASan globals store the size of the global in the descriptor. In cases where
// we don't have a binary with symbols, we can't grab the size of the global
// from the debug info - but we might be able to retrieve it from the
// descriptor. Returns zero if the lookup failed.
static uptr GetGlobalSizeFromDescriptor(uptr ptr) {
  // Find the ELF object that this global resides in.
  Dl_info info;
  if (dladdr(reinterpret_cast<void *>(ptr), &info) == 0)
    return 0;
  auto *ehdr = reinterpret_cast<const ElfW(Ehdr) *>(info.dli_fbase);
  auto *phdr_begin = reinterpret_cast<const ElfW(Phdr) *>(
      reinterpret_cast<const u8 *>(ehdr) + ehdr->e_phoff);

  // Get the load bias. This is normally the same as the dli_fbase address on
  // position-independent code, but can be different on non-PIE executables,
  // binaries using LLD's partitioning feature, or binaries compiled with a
  // linker script.
  ElfW(Addr) load_bias = 0;
  for (const auto &phdr :
       ArrayRef<const ElfW(Phdr)>(phdr_begin, phdr_begin + ehdr->e_phnum)) {
    if (phdr.p_type != PT_LOAD || phdr.p_offset != 0)
      continue;
    load_bias = reinterpret_cast<ElfW(Addr)>(ehdr) - phdr.p_vaddr;
    break;
  }

  // Walk all globals in this ELF object, looking for the one we're interested
  // in. Once we find it, we can stop iterating and return the size of the
  // global we're interested in.
  for (const hwasan_global &global :
       HwasanGlobalsFor(load_bias, phdr_begin, ehdr->e_phnum))
    if (global.addr() <= ptr && ptr < global.addr() + global.size())
      return global.size();

  return 0;
}

static void ShowHeapOrGlobalCandidate(uptr untagged_addr, tag_t *candidate,
                                      tag_t *left, tag_t *right) {
  Decorator d;
  uptr mem = ShadowToMem(reinterpret_cast<uptr>(candidate));
  HwasanChunkView chunk = FindHeapChunkByAddress(mem);
  if (chunk.IsAllocated()) {
    uptr offset;
    const char *whence;
    if (untagged_addr < chunk.End() && untagged_addr >= chunk.Beg()) {
      offset = untagged_addr - chunk.Beg();
      whence = "inside";
    } else if (candidate == left) {
      offset = untagged_addr - chunk.End();
      whence = "to the right of";
    } else {
      offset = chunk.Beg() - untagged_addr;
      whence = "to the left of";
    }
    Printf("%s", d.Error());
    Printf("\nCause: heap-buffer-overflow\n");
    Printf("%s", d.Default());
    Printf("%s", d.Location());
    Printf("%p is located %zd bytes %s %zd-byte region [%p,%p)\n",
           untagged_addr, offset, whence, chunk.UsedSize(), chunk.Beg(),
           chunk.End());
    Printf("%s", d.Allocation());
    Printf("allocated here:\n");
    Printf("%s", d.Default());
    GetStackTraceFromId(chunk.GetAllocStackId()).Print();
    return;
  }
  // Check whether the address points into a loaded library. If so, this is
  // most likely a global variable.
  const char *module_name;
  uptr module_address;
  Symbolizer *sym = Symbolizer::GetOrInit();
  if (sym->GetModuleNameAndOffsetForPC(mem, &module_name, &module_address)) {
    Printf("%s", d.Error());
    Printf("\nCause: global-overflow\n");
    Printf("%s", d.Default());
    DataInfo info;
    Printf("%s", d.Location());
    if (sym->SymbolizeData(mem, &info) && info.start) {
      Printf(
          "%p is located %zd bytes to the %s of %zd-byte global variable "
          "%s [%p,%p) in %s\n",
          untagged_addr,
          candidate == left ? untagged_addr - (info.start + info.size)
                            : info.start - untagged_addr,
          candidate == left ? "right" : "left", info.size, info.name,
          info.start, info.start + info.size, module_name);
    } else {
      uptr size = GetGlobalSizeFromDescriptor(mem);
      if (size == 0)
        // We couldn't find the size of the global from the descriptors.
        Printf(
            "%p is located to the %s of a global variable in "
            "\n    #0 0x%x (%s+0x%x)\n",
            untagged_addr, candidate == left ? "right" : "left", mem,
            module_name, module_address);
      else
        Printf(
            "%p is located to the %s of a %zd-byte global variable in "
            "\n    #0 0x%x (%s+0x%x)\n",
            untagged_addr, candidate == left ? "right" : "left", size, mem,
            module_name, module_address);
    }
    Printf("%s", d.Default());
  }
}

void PrintAddressDescription(
    uptr tagged_addr, uptr access_size,
    StackAllocationsRingBuffer *current_stack_allocations) {
  Decorator d;
  int num_descriptions_printed = 0;
  uptr untagged_addr = UntagAddr(tagged_addr);

  if (MemIsShadow(untagged_addr)) {
    Printf("%s%p is HWAsan shadow memory.\n%s", d.Location(), untagged_addr,
           d.Default());
    return;
  }

  // Print some very basic information about the address, if it's a heap.
  HwasanChunkView chunk = FindHeapChunkByAddress(untagged_addr);
  if (uptr beg = chunk.Beg()) {
    uptr size = chunk.ActualSize();
    Printf("%s[%p,%p) is a %s %s heap chunk; "
           "size: %zd offset: %zd\n%s",
           d.Location(),
           beg, beg + size,
           chunk.FromSmallHeap() ? "small" : "large",
           chunk.IsAllocated() ? "allocated" : "unallocated",
           size, untagged_addr - beg,
           d.Default());
  }

  tag_t addr_tag = GetTagFromPointer(tagged_addr);

  bool on_stack = false;
  // Check stack first. If the address is on the stack of a live thread, we
  // know it cannot be a heap / global overflow.
  hwasanThreadList().VisitAllLiveThreads([&](Thread *t) {
    if (t->AddrIsInStack(untagged_addr)) {
      on_stack = true;
      // TODO(fmayer): figure out how to distinguish use-after-return and
      // stack-buffer-overflow.
      Printf("%s", d.Error());
      Printf("\nCause: stack tag-mismatch\n");
      Printf("%s", d.Location());
      Printf("Address %p is located in stack of thread T%zd\n", untagged_addr,
             t->unique_id());
      Printf("%s", d.Default());
      t->Announce();

      auto *sa = (t == GetCurrentThread() && current_stack_allocations)
                     ? current_stack_allocations
                     : t->stack_allocations();
      PrintStackAllocations(sa, addr_tag, untagged_addr);
      num_descriptions_printed++;
    }
  });

  // Check if this looks like a heap buffer overflow by scanning
  // the shadow left and right and looking for the first adjacent
  // object with a different memory tag. If that tag matches addr_tag,
  // check the allocator if it has a live chunk there.
  tag_t *tag_ptr = reinterpret_cast<tag_t*>(MemToShadow(untagged_addr));
  tag_t *candidate = nullptr, *left = tag_ptr, *right = tag_ptr;
  uptr candidate_distance = 0;
  for (; candidate_distance < 1000; candidate_distance++) {
    if (MemIsShadow(reinterpret_cast<uptr>(left)) &&
        TagsEqual(addr_tag, left)) {
      candidate = left;
      break;
    }
    --left;
    if (MemIsShadow(reinterpret_cast<uptr>(right)) &&
        TagsEqual(addr_tag, right)) {
      candidate = right;
      break;
    }
    ++right;
  }

  constexpr auto kCloseCandidateDistance = 1;

  if (!on_stack && candidate && candidate_distance <= kCloseCandidateDistance) {
    ShowHeapOrGlobalCandidate(untagged_addr, candidate, left, right);
    num_descriptions_printed++;
  }

  hwasanThreadList().VisitAllLiveThreads([&](Thread *t) {
    // Scan all threads' ring buffers to find if it's a heap-use-after-free.
    HeapAllocationRecord har;
    uptr ring_index, num_matching_addrs, num_matching_addrs_4b;
    if (FindHeapAllocation(t->heap_allocations(), tagged_addr, &har,
                           &ring_index, &num_matching_addrs,
                           &num_matching_addrs_4b)) {
      Printf("%s", d.Error());
      Printf("\nCause: use-after-free\n");
      Printf("%s", d.Location());
      Printf("%p is located %zd bytes inside of %zd-byte region [%p,%p)\n",
             untagged_addr, untagged_addr - UntagAddr(har.tagged_addr),
             har.requested_size, UntagAddr(har.tagged_addr),
             UntagAddr(har.tagged_addr) + har.requested_size);
      Printf("%s", d.Allocation());
      Printf("freed by thread T%zd here:\n", t->unique_id());
      Printf("%s", d.Default());
      GetStackTraceFromId(har.free_context_id).Print();

      Printf("%s", d.Allocation());
      Printf("previously allocated here:\n", t);
      Printf("%s", d.Default());
      GetStackTraceFromId(har.alloc_context_id).Print();

      // Print a developer note: the index of this heap object
      // in the thread's deallocation ring buffer.
      Printf("hwasan_dev_note_heap_rb_distance: %zd %zd\n", ring_index + 1,
             flags()->heap_history_size);
      Printf("hwasan_dev_note_num_matching_addrs: %zd\n", num_matching_addrs);
      Printf("hwasan_dev_note_num_matching_addrs_4b: %zd\n",
             num_matching_addrs_4b);

      t->Announce();
      num_descriptions_printed++;
    }
  });

  if (candidate && num_descriptions_printed == 0) {
    ShowHeapOrGlobalCandidate(untagged_addr, candidate, left, right);
    num_descriptions_printed++;
  }

  // Print the remaining threads, as an extra information, 1 line per thread.
  hwasanThreadList().VisitAllLiveThreads([&](Thread *t) { t->Announce(); });

  if (!num_descriptions_printed)
    // We exhausted our possibilities. Bail out.
    Printf("HWAddressSanitizer can not describe address in more detail.\n");
  if (num_descriptions_printed > 1) {
    Printf(
        "There are %d potential causes, printed above in order "
        "of likeliness.\n",
        num_descriptions_printed);
  }
}

void ReportStats() {}

static void PrintTagInfoAroundAddr(tag_t *tag_ptr, uptr num_rows,
                                   void (*print_tag)(InternalScopedString &s,
                                                     tag_t *tag)) {
  const uptr row_len = 16;  // better be power of two.
  tag_t *center_row_beg = reinterpret_cast<tag_t *>(
      RoundDownTo(reinterpret_cast<uptr>(tag_ptr), row_len));
  tag_t *beg_row = center_row_beg - row_len * (num_rows / 2);
  tag_t *end_row = center_row_beg + row_len * ((num_rows + 1) / 2);
  InternalScopedString s;
  for (tag_t *row = beg_row; row < end_row; row += row_len) {
    s.append("%s", row == center_row_beg ? "=>" : "  ");
    s.append("%p:", row);
    for (uptr i = 0; i < row_len; i++) {
      s.append("%s", row + i == tag_ptr ? "[" : " ");
      print_tag(s, &row[i]);
      s.append("%s", row + i == tag_ptr ? "]" : " ");
    }
    s.append("\n");
  }
  Printf("%s", s.data());
}

static void PrintTagsAroundAddr(tag_t *tag_ptr) {
  Printf(
      "Memory tags around the buggy address (one tag corresponds to %zd "
      "bytes):\n", kShadowAlignment);
  PrintTagInfoAroundAddr(tag_ptr, 17, [](InternalScopedString &s, tag_t *tag) {
    s.append("%02x", *tag);
  });

  Printf(
      "Tags for short granules around the buggy address (one tag corresponds "
      "to %zd bytes):\n",
      kShadowAlignment);
  PrintTagInfoAroundAddr(tag_ptr, 3, [](InternalScopedString &s, tag_t *tag) {
    if (*tag >= 1 && *tag <= kShadowAlignment) {
      uptr granule_addr = ShadowToMem(reinterpret_cast<uptr>(tag));
      s.append("%02x",
               *reinterpret_cast<u8 *>(granule_addr + kShadowAlignment - 1));
    } else {
      s.append("..");
    }
  });
  Printf(
      "See "
      "https://clang.llvm.org/docs/"
      "HardwareAssistedAddressSanitizerDesign.html#short-granules for a "
      "description of short granule tags\n");
}

uptr GetTopPc(StackTrace *stack) {
  return stack->size ? StackTrace::GetPreviousInstructionPc(stack->trace[0])
                     : 0;
}

void ReportInvalidFree(StackTrace *stack, uptr tagged_addr) {
  ScopedReport R(flags()->halt_on_error);

  uptr untagged_addr = UntagAddr(tagged_addr);
  tag_t ptr_tag = GetTagFromPointer(tagged_addr);
  tag_t *tag_ptr = nullptr;
  tag_t mem_tag = 0;
  if (MemIsApp(untagged_addr)) {
    tag_ptr = reinterpret_cast<tag_t *>(MemToShadow(untagged_addr));
    if (MemIsShadow(reinterpret_cast<uptr>(tag_ptr)))
      mem_tag = *tag_ptr;
    else
      tag_ptr = nullptr;
  }
  Decorator d;
  Printf("%s", d.Error());
  uptr pc = GetTopPc(stack);
  const char *bug_type = "invalid-free";
  const Thread *thread = GetCurrentThread();
  if (thread) {
    Report("ERROR: %s: %s on address %p at pc %p on thread T%zd\n",
           SanitizerToolName, bug_type, untagged_addr, pc, thread->unique_id());
  } else {
    Report("ERROR: %s: %s on address %p at pc %p on unknown thread\n",
           SanitizerToolName, bug_type, untagged_addr, pc);
  }
  Printf("%s", d.Access());
  if (tag_ptr)
    Printf("tags: %02x/%02x (ptr/mem)\n", ptr_tag, mem_tag);
  Printf("%s", d.Default());

  stack->Print();

  PrintAddressDescription(tagged_addr, 0, nullptr);

  if (tag_ptr)
    PrintTagsAroundAddr(tag_ptr);

  ReportErrorSummary(bug_type, stack);
}

void ReportTailOverwritten(StackTrace *stack, uptr tagged_addr, uptr orig_size,
                           const u8 *expected) {
  uptr tail_size = kShadowAlignment - (orig_size % kShadowAlignment);
  u8 actual_expected[kShadowAlignment];
  internal_memcpy(actual_expected, expected, tail_size);
  tag_t ptr_tag = GetTagFromPointer(tagged_addr);
  // Short granule is stashed in the last byte of the magic string. To avoid
  // confusion, make the expected magic string contain the short granule tag.
  if (orig_size % kShadowAlignment != 0) {
    actual_expected[tail_size - 1] = ptr_tag;
  }

  ScopedReport R(flags()->halt_on_error);
  Decorator d;
  uptr untagged_addr = UntagAddr(tagged_addr);
  Printf("%s", d.Error());
  const char *bug_type = "allocation-tail-overwritten";
  Report("ERROR: %s: %s; heap object [%p,%p) of size %zd\n", SanitizerToolName,
         bug_type, untagged_addr, untagged_addr + orig_size, orig_size);
  Printf("\n%s", d.Default());
  Printf(
      "Stack of invalid access unknown. Issue detected at deallocation "
      "time.\n");
  Printf("%s", d.Allocation());
  Printf("deallocated here:\n");
  Printf("%s", d.Default());
  stack->Print();
  HwasanChunkView chunk = FindHeapChunkByAddress(untagged_addr);
  if (chunk.Beg()) {
    Printf("%s", d.Allocation());
    Printf("allocated here:\n");
    Printf("%s", d.Default());
    GetStackTraceFromId(chunk.GetAllocStackId()).Print();
  }

  InternalScopedString s;
  CHECK_GT(tail_size, 0U);
  CHECK_LT(tail_size, kShadowAlignment);
  u8 *tail = reinterpret_cast<u8*>(untagged_addr + orig_size);
  s.append("Tail contains: ");
  for (uptr i = 0; i < kShadowAlignment - tail_size; i++)
    s.append(".. ");
  for (uptr i = 0; i < tail_size; i++)
    s.append("%02x ", tail[i]);
  s.append("\n");
  s.append("Expected:      ");
  for (uptr i = 0; i < kShadowAlignment - tail_size; i++)
    s.append(".. ");
  for (uptr i = 0; i < tail_size; i++) s.append("%02x ", actual_expected[i]);
  s.append("\n");
  s.append("               ");
  for (uptr i = 0; i < kShadowAlignment - tail_size; i++)
    s.append("   ");
  for (uptr i = 0; i < tail_size; i++)
    s.append("%s ", actual_expected[i] != tail[i] ? "^^" : "  ");

  s.append("\nThis error occurs when a buffer overflow overwrites memory\n"
    "to the right of a heap object, but within the %zd-byte granule, e.g.\n"
    "   char *x = new char[20];\n"
    "   x[25] = 42;\n"
    "%s does not detect such bugs in uninstrumented code at the time of write,"
    "\nbut can detect them at the time of free/delete.\n"
    "To disable this feature set HWASAN_OPTIONS=free_checks_tail_magic=0\n",
    kShadowAlignment, SanitizerToolName);
  Printf("%s", s.data());
  GetCurrentThread()->Announce();

  tag_t *tag_ptr = reinterpret_cast<tag_t*>(MemToShadow(untagged_addr));
  PrintTagsAroundAddr(tag_ptr);

  ReportErrorSummary(bug_type, stack);
}

void ReportTagMismatch(StackTrace *stack, uptr tagged_addr, uptr access_size,
                       bool is_store, bool fatal, uptr *registers_frame) {
  ScopedReport R(fatal);
  SavedStackAllocations current_stack_allocations(
      GetCurrentThread()->stack_allocations());

  Decorator d;
  uptr untagged_addr = UntagAddr(tagged_addr);
  // TODO: when possible, try to print heap-use-after-free, etc.
  const char *bug_type = "tag-mismatch";
  uptr pc = GetTopPc(stack);
  Printf("%s", d.Error());
  Report("ERROR: %s: %s on address %p at pc %p\n", SanitizerToolName, bug_type,
         untagged_addr, pc);

  Thread *t = GetCurrentThread();

  sptr offset =
      __hwasan_test_shadow(reinterpret_cast<void *>(tagged_addr), access_size);
  CHECK(offset >= 0 && offset < static_cast<sptr>(access_size));
  tag_t ptr_tag = GetTagFromPointer(tagged_addr);
  tag_t *tag_ptr =
      reinterpret_cast<tag_t *>(MemToShadow(untagged_addr + offset));
  tag_t mem_tag = *tag_ptr;

  Printf("%s", d.Access());
  if (mem_tag && mem_tag < kShadowAlignment) {
    tag_t *granule_ptr = reinterpret_cast<tag_t *>((untagged_addr + offset) &
                                                   ~(kShadowAlignment - 1));
    // If offset is 0, (untagged_addr + offset) is not aligned to granules.
    // This is the offset of the leftmost accessed byte within the bad granule.
    u8 in_granule_offset = (untagged_addr + offset) & (kShadowAlignment - 1);
    tag_t short_tag = granule_ptr[kShadowAlignment - 1];
    // The first mismatch was a short granule that matched the ptr_tag.
    if (short_tag == ptr_tag) {
      // If the access starts after the end of the short granule, then the first
      // bad byte is the first byte of the access; otherwise it is the first
      // byte past the end of the short granule
      if (mem_tag > in_granule_offset) {
        offset += mem_tag - in_granule_offset;
      }
    }
    Printf(
        "%s of size %zu at %p tags: %02x/%02x(%02x) (ptr/mem) in thread T%zd\n",
        is_store ? "WRITE" : "READ", access_size, untagged_addr, ptr_tag,
        mem_tag, short_tag, t->unique_id());
  } else {
    Printf("%s of size %zu at %p tags: %02x/%02x (ptr/mem) in thread T%zd\n",
           is_store ? "WRITE" : "READ", access_size, untagged_addr, ptr_tag,
           mem_tag, t->unique_id());
  }
  if (offset != 0)
    Printf("Invalid access starting at offset %zu\n", offset);
  Printf("%s", d.Default());

  stack->Print();

  PrintAddressDescription(tagged_addr, access_size,
                          current_stack_allocations.get());
  t->Announce();

  PrintTagsAroundAddr(tag_ptr);

  if (registers_frame)
    ReportRegisters(registers_frame, pc);

  ReportErrorSummary(bug_type, stack);
}

// See the frame breakdown defined in __hwasan_tag_mismatch (from
// hwasan_tag_mismatch_aarch64.S).
void ReportRegisters(uptr *frame, uptr pc) {
  Printf("Registers where the failure occurred (pc %p):\n", pc);

  // We explicitly print a single line (4 registers/line) each iteration to
  // reduce the amount of logcat error messages printed. Each Printf() will
  // result in a new logcat line, irrespective of whether a newline is present,
  // and so we wish to reduce the number of Printf() calls we have to make.
  Printf("    x0  %016llx  x1  %016llx  x2  %016llx  x3  %016llx\n",
       frame[0], frame[1], frame[2], frame[3]);
  Printf("    x4  %016llx  x5  %016llx  x6  %016llx  x7  %016llx\n",
       frame[4], frame[5], frame[6], frame[7]);
  Printf("    x8  %016llx  x9  %016llx  x10 %016llx  x11 %016llx\n",
       frame[8], frame[9], frame[10], frame[11]);
  Printf("    x12 %016llx  x13 %016llx  x14 %016llx  x15 %016llx\n",
       frame[12], frame[13], frame[14], frame[15]);
  Printf("    x16 %016llx  x17 %016llx  x18 %016llx  x19 %016llx\n",
       frame[16], frame[17], frame[18], frame[19]);
  Printf("    x20 %016llx  x21 %016llx  x22 %016llx  x23 %016llx\n",
       frame[20], frame[21], frame[22], frame[23]);
  Printf("    x24 %016llx  x25 %016llx  x26 %016llx  x27 %016llx\n",
       frame[24], frame[25], frame[26], frame[27]);
  // hwasan_check* reduces the stack pointer by 256, then __hwasan_tag_mismatch
  // passes it to this function.
  Printf("    x28 %016llx  x29 %016llx  x30 %016llx   sp %016llx\n", frame[28],
         frame[29], frame[30], reinterpret_cast<u8 *>(frame) + 256);
}

}  // namespace __hwasan

void __hwasan_set_error_report_callback(void (*callback)(const char *)) {
  __hwasan::ScopedReport::SetErrorReportCallback(callback);
}