1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
|
/* GCC Quad-Precision Math Library
Copyright (C) 2010, 2011 Free Software Foundation, Inc.
Written by Francois-Xavier Coudert <fxcoudert@gcc.gnu.org>
This file is part of the libquadmath library.
Libquadmath is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
Libquadmath is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with libquadmath; see the file COPYING.LIB. If
not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor,
Boston, MA 02110-1301, USA. */
#ifndef QUADMATH_IMP_H
#define QUADMATH_IMP_H
#include <errno.h>
#include <limits.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include "quadmath.h"
#include "config.h"
#ifdef HAVE_FENV_H
# include <fenv.h>
#endif
/* Under IEEE 754, an architecture may determine tininess of
floating-point results either "before rounding" or "after
rounding", but must do so in the same way for all operations
returning binary results. Define TININESS_AFTER_ROUNDING to 1 for
"after rounding" architectures, 0 for "before rounding"
architectures. */
#define TININESS_AFTER_ROUNDING 1
#define HIGH_ORDER_BIT_IS_SET_FOR_SNAN 0
#define FIX_FLT128_LONG_CONVERT_OVERFLOW 0
#define FIX_FLT128_LLONG_CONVERT_OVERFLOW 0
/* Prototypes for internal functions. */
extern int32_t __quadmath_rem_pio2q (__float128, __float128 *);
extern void __quadmath_kernel_sincosq (__float128, __float128, __float128 *,
__float128 *, int);
extern __float128 __quadmath_kernel_sinq (__float128, __float128, int);
extern __float128 __quadmath_kernel_cosq (__float128, __float128);
extern __float128 __quadmath_kernel_tanq (__float128, __float128, int);
extern __float128 __quadmath_gamma_productq (__float128, __float128, int,
__float128 *);
extern __float128 __quadmath_gammaq_r (__float128, int *);
extern __float128 __quadmath_lgamma_negq (__float128, int *);
extern __float128 __quadmath_lgamma_productq (__float128, __float128,
__float128, int);
extern __float128 __quadmath_lgammaq_r (__float128, int *);
extern __float128 __quadmath_x2y2m1q (__float128 x, __float128 y);
extern __complex128 __quadmath_kernel_casinhq (__complex128, int);
static inline void
mul_splitq (__float128 *hi, __float128 *lo, __float128 x, __float128 y)
{
/* Fast built-in fused multiply-add. */
*hi = x * y;
*lo = fmaq (x, y, -*hi);
}
/* Frankly, if you have __float128, you have 64-bit integers, right? */
#ifndef UINT64_C
# error "No way!"
#endif
/* Main union type we use to manipulate the floating-point type. */
typedef union
{
__float128 value;
struct
#ifdef __MINGW32__
/* On mingw targets the ms-bitfields option is active by default.
Therefore enforce gnu-bitfield style. */
__attribute__ ((gcc_struct))
#endif
{
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
unsigned negative:1;
unsigned exponent:15;
unsigned mantissa0:16;
unsigned mantissa1:32;
unsigned mantissa2:32;
unsigned mantissa3:32;
#else
unsigned mantissa3:32;
unsigned mantissa2:32;
unsigned mantissa1:32;
unsigned mantissa0:16;
unsigned exponent:15;
unsigned negative:1;
#endif
} ieee;
struct
{
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
uint64_t high;
uint64_t low;
#else
uint64_t low;
uint64_t high;
#endif
} words64;
struct
{
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
uint32_t w0;
uint32_t w1;
uint32_t w2;
uint32_t w3;
#else
uint32_t w3;
uint32_t w2;
uint32_t w1;
uint32_t w0;
#endif
} words32;
struct
#ifdef __MINGW32__
/* Make sure we are using gnu-style bitfield handling. */
__attribute__ ((gcc_struct))
#endif
{
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
unsigned negative:1;
unsigned exponent:15;
unsigned quiet_nan:1;
unsigned mantissa0:15;
unsigned mantissa1:32;
unsigned mantissa2:32;
unsigned mantissa3:32;
#else
unsigned mantissa3:32;
unsigned mantissa2:32;
unsigned mantissa1:32;
unsigned mantissa0:15;
unsigned quiet_nan:1;
unsigned exponent:15;
unsigned negative:1;
#endif
} ieee_nan;
} ieee854_float128;
/* Get two 64 bit ints from a long double. */
#define GET_FLT128_WORDS64(ix0,ix1,d) \
do { \
ieee854_float128 u; \
u.value = (d); \
(ix0) = u.words64.high; \
(ix1) = u.words64.low; \
} while (0)
/* Set a long double from two 64 bit ints. */
#define SET_FLT128_WORDS64(d,ix0,ix1) \
do { \
ieee854_float128 u; \
u.words64.high = (ix0); \
u.words64.low = (ix1); \
(d) = u.value; \
} while (0)
/* Get the more significant 64 bits of a long double mantissa. */
#define GET_FLT128_MSW64(v,d) \
do { \
ieee854_float128 u; \
u.value = (d); \
(v) = u.words64.high; \
} while (0)
/* Set the more significant 64 bits of a long double mantissa from an int. */
#define SET_FLT128_MSW64(d,v) \
do { \
ieee854_float128 u; \
u.value = (d); \
u.words64.high = (v); \
(d) = u.value; \
} while (0)
/* Get the least significant 64 bits of a long double mantissa. */
#define GET_FLT128_LSW64(v,d) \
do { \
ieee854_float128 u; \
u.value = (d); \
(v) = u.words64.low; \
} while (0)
#define IEEE854_FLOAT128_BIAS 0x3fff
#define QUADFP_NAN 0
#define QUADFP_INFINITE 1
#define QUADFP_ZERO 2
#define QUADFP_SUBNORMAL 3
#define QUADFP_NORMAL 4
#define fpclassifyq(x) \
__builtin_fpclassify (QUADFP_NAN, QUADFP_INFINITE, QUADFP_NORMAL, \
QUADFP_SUBNORMAL, QUADFP_ZERO, x)
#ifndef math_opt_barrier
# define math_opt_barrier(x) \
({ __typeof (x) __x = (x); __asm ("" : "+m" (__x)); __x; })
# define math_force_eval(x) \
({ __typeof (x) __x = (x); __asm __volatile__ ("" : : "m" (__x)); })
#endif
/* math_narrow_eval reduces its floating-point argument to the range
and precision of its semantic type. (The original evaluation may
still occur with excess range and precision, so the result may be
affected by double rounding.) */
#define math_narrow_eval(x) (x)
/* If X (which is not a NaN) is subnormal, force an underflow
exception. */
#define math_check_force_underflow(x) \
do \
{ \
__float128 force_underflow_tmp = (x); \
if (fabsq (force_underflow_tmp) < FLT128_MIN) \
{ \
__float128 force_underflow_tmp2 \
= force_underflow_tmp * force_underflow_tmp; \
math_force_eval (force_underflow_tmp2); \
} \
} \
while (0)
/* Likewise, but X is also known to be nonnegative. */
#define math_check_force_underflow_nonneg(x) \
do \
{ \
__float128 force_underflow_tmp = (x); \
if (force_underflow_tmp < FLT128_MIN) \
{ \
__float128 force_underflow_tmp2 \
= force_underflow_tmp * force_underflow_tmp; \
math_force_eval (force_underflow_tmp2); \
} \
} \
while (0)
/* Likewise, for both real and imaginary parts of a complex
result. */
#define math_check_force_underflow_complex(x) \
do \
{ \
__typeof (x) force_underflow_complex_tmp = (x); \
math_check_force_underflow (__real__ force_underflow_complex_tmp); \
math_check_force_underflow (__imag__ force_underflow_complex_tmp); \
} \
while (0)
#ifndef HAVE_FENV_H
# define feraiseexcept(arg) ((void) 0)
typedef int fenv_t;
# define feholdexcept(arg) ((void) 0)
# define fesetround(arg) ((void) 0)
# define feupdateenv(arg) ((void) (arg))
# define fesetenv(arg) ((void) (arg))
# define fetestexcept(arg) 0
# define feclearexcept(arg) ((void) 0)
#else
# ifndef HAVE_FEHOLDEXCEPT
# define feholdexcept(arg) ((void) 0)
# endif
# ifndef HAVE_FESETROUND
# define fesetround(arg) ((void) 0)
# endif
# ifndef HAVE_FEUPDATEENV
# define feupdateenv(arg) ((void) (arg))
# endif
# ifndef HAVE_FESETENV
# define fesetenv(arg) ((void) (arg))
# endif
# ifndef HAVE_FETESTEXCEPT
# define fetestexcept(arg) 0
# endif
#endif
#ifndef __glibc_likely
# define __glibc_likely(cond) __builtin_expect ((cond), 1)
#endif
#ifndef __glibc_unlikely
# define __glibc_unlikely(cond) __builtin_expect ((cond), 0)
#endif
#if defined HAVE_FENV_H && defined HAVE_FESETROUND && defined HAVE_FEUPDATEENV
struct rm_ctx
{
fenv_t env;
bool updated_status;
};
# define SET_RESTORE_ROUNDF128(RM) \
struct rm_ctx ctx __attribute__((cleanup (libc_feresetround_ctx))); \
libc_feholdsetround_ctx (&ctx, (RM))
static inline __attribute__ ((always_inline)) void
libc_feholdsetround_ctx (struct rm_ctx *ctx, int round)
{
ctx->updated_status = false;
/* Update rounding mode only if different. */
if (__glibc_unlikely (round != fegetround ()))
{
ctx->updated_status = true;
fegetenv (&ctx->env);
fesetround (round);
}
}
static inline __attribute__ ((always_inline)) void
libc_feresetround_ctx (struct rm_ctx *ctx)
{
/* Restore the rounding mode if updated. */
if (__glibc_unlikely (ctx->updated_status))
feupdateenv (&ctx->env);
}
#else
# define SET_RESTORE_ROUNDF128(RM) ((void) 0)
#endif
#endif
|