1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
|
/* Implementation of gamma function according to ISO C.
Copyright (C) 1997-2018 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997 and
Jakub Jelinek <jj@ultra.linux.cz, 1999.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include "quadmath-imp.h"
__float128
tgammaq (__float128 x)
{
int sign;
__float128 ret;
ret = __quadmath_gammaq_r (x, &sign);
return sign < 0 ? -ret : ret;
}
/* Coefficients B_2k / 2k(2k-1) of x^-(2k-1) inside exp in Stirling's
approximation to gamma function. */
static const __float128 gamma_coeff[] =
{
0x1.5555555555555555555555555555p-4Q,
-0xb.60b60b60b60b60b60b60b60b60b8p-12Q,
0x3.4034034034034034034034034034p-12Q,
-0x2.7027027027027027027027027028p-12Q,
0x3.72a3c5631fe46ae1d4e700dca8f2p-12Q,
-0x7.daac36664f1f207daac36664f1f4p-12Q,
0x1.a41a41a41a41a41a41a41a41a41ap-8Q,
-0x7.90a1b2c3d4e5f708192a3b4c5d7p-8Q,
0x2.dfd2c703c0cfff430edfd2c703cp-4Q,
-0x1.6476701181f39edbdb9ce625987dp+0Q,
0xd.672219167002d3a7a9c886459cp+0Q,
-0x9.cd9292e6660d55b3f712eb9e07c8p+4Q,
0x8.911a740da740da740da740da741p+8Q,
-0x8.d0cc570e255bf59ff6eec24b49p+12Q,
};
#define NCOEFF (sizeof (gamma_coeff) / sizeof (gamma_coeff[0]))
/* Return gamma (X), for positive X less than 1775, in the form R *
2^(*EXP2_ADJ), where R is the return value and *EXP2_ADJ is set to
avoid overflow or underflow in intermediate calculations. */
static __float128
gammal_positive (__float128 x, int *exp2_adj)
{
int local_signgam;
if (x < 0.5Q)
{
*exp2_adj = 0;
return expq (__quadmath_lgammaq_r (x + 1, &local_signgam)) / x;
}
else if (x <= 1.5Q)
{
*exp2_adj = 0;
return expq (__quadmath_lgammaq_r (x, &local_signgam));
}
else if (x < 12.5Q)
{
/* Adjust into the range for using exp (lgamma). */
*exp2_adj = 0;
__float128 n = ceilq (x - 1.5Q);
__float128 x_adj = x - n;
__float128 eps;
__float128 prod = __quadmath_gamma_productq (x_adj, 0, n, &eps);
return (expq (__quadmath_lgammaq_r (x_adj, &local_signgam))
* prod * (1 + eps));
}
else
{
__float128 eps = 0;
__float128 x_eps = 0;
__float128 x_adj = x;
__float128 prod = 1;
if (x < 24)
{
/* Adjust into the range for applying Stirling's
approximation. */
__float128 n = ceilq (24 - x);
x_adj = x + n;
x_eps = (x - (x_adj - n));
prod = __quadmath_gamma_productq (x_adj - n, x_eps, n, &eps);
}
/* The result is now gamma (X_ADJ + X_EPS) / (PROD * (1 + EPS)).
Compute gamma (X_ADJ + X_EPS) using Stirling's approximation,
starting by computing pow (X_ADJ, X_ADJ) with a power of 2
factored out. */
__float128 exp_adj = -eps;
__float128 x_adj_int = roundq (x_adj);
__float128 x_adj_frac = x_adj - x_adj_int;
int x_adj_log2;
__float128 x_adj_mant = frexpq (x_adj, &x_adj_log2);
if (x_adj_mant < M_SQRT1_2q)
{
x_adj_log2--;
x_adj_mant *= 2;
}
*exp2_adj = x_adj_log2 * (int) x_adj_int;
__float128 ret = (powq (x_adj_mant, x_adj)
* exp2q (x_adj_log2 * x_adj_frac)
* expq (-x_adj)
* sqrtq (2 * M_PIq / x_adj)
/ prod);
exp_adj += x_eps * logq (x_adj);
__float128 bsum = gamma_coeff[NCOEFF - 1];
__float128 x_adj2 = x_adj * x_adj;
for (size_t i = 1; i <= NCOEFF - 1; i++)
bsum = bsum / x_adj2 + gamma_coeff[NCOEFF - 1 - i];
exp_adj += bsum / x_adj;
return ret + ret * expm1q (exp_adj);
}
}
__float128
__quadmath_gammaq_r (__float128 x, int *signgamp)
{
int64_t hx;
uint64_t lx;
__float128 ret;
GET_FLT128_WORDS64 (hx, lx, x);
if (((hx & 0x7fffffffffffffffLL) | lx) == 0)
{
/* Return value for x == 0 is Inf with divide by zero exception. */
*signgamp = 0;
return 1.0 / x;
}
if (hx < 0 && (uint64_t) hx < 0xffff000000000000ULL && rintq (x) == x)
{
/* Return value for integer x < 0 is NaN with invalid exception. */
*signgamp = 0;
return (x - x) / (x - x);
}
if (hx == 0xffff000000000000ULL && lx == 0)
{
/* x == -Inf. According to ISO this is NaN. */
*signgamp = 0;
return x - x;
}
if ((hx & 0x7fff000000000000ULL) == 0x7fff000000000000ULL)
{
/* Positive infinity (return positive infinity) or NaN (return
NaN). */
*signgamp = 0;
return x + x;
}
if (x >= 1756)
{
/* Overflow. */
*signgamp = 0;
return FLT128_MAX * FLT128_MAX;
}
else
{
SET_RESTORE_ROUNDF128 (FE_TONEAREST);
if (x > 0)
{
*signgamp = 0;
int exp2_adj;
ret = gammal_positive (x, &exp2_adj);
ret = scalbnq (ret, exp2_adj);
}
else if (x >= -FLT128_EPSILON / 4)
{
*signgamp = 0;
ret = 1 / x;
}
else
{
__float128 tx = truncq (x);
*signgamp = (tx == 2 * truncq (tx / 2)) ? -1 : 1;
if (x <= -1775)
/* Underflow. */
ret = FLT128_MIN * FLT128_MIN;
else
{
__float128 frac = tx - x;
if (frac > 0.5Q)
frac = 1 - frac;
__float128 sinpix = (frac <= 0.25Q
? sinq (M_PIq * frac)
: cosq (M_PIq * (0.5Q - frac)));
int exp2_adj;
ret = M_PIq / (-x * sinpix
* gammal_positive (-x, &exp2_adj));
ret = scalbnq (ret, -exp2_adj);
math_check_force_underflow_nonneg (ret);
}
}
}
if (isinfq (ret) && x != 0)
{
if (*signgamp < 0)
return -(-copysignq (FLT128_MAX, ret) * FLT128_MAX);
else
return copysignq (FLT128_MAX, ret) * FLT128_MAX;
}
else if (ret == 0)
{
if (*signgamp < 0)
return -(-copysignq (FLT128_MIN, ret) * FLT128_MIN);
else
return copysignq (FLT128_MIN, ret) * FLT128_MIN;
}
else
return ret;
}
|